YMEP 2018 REPORT

TESLIN MOUNTAIN GOLD PROJECT

YMEP # 18-001

WHITEHORSE MINING DISTRICT

NTS: 105E/02 UTM NAD 83: 524500E, 6781000N

Work conducted: August 26 and 27, 2018 (Geochemical Sampling, prospecting & geological mapping)

BY: ROGER HULSTEIN, P. GEO.

DECEMBER 5, 2018

SUMMARY

The 2018 Teslin Mountain Gold Project explored an area of orange – brown weathering calcareous siltstone, thought to be the Aksala Formation of the Lewes River Group, part of Stikinia terrane. This area is bounded by a regional northwest-trending faults and is near the northeast margin of the Late Cretaceous (79 Ma) Open Creek volcanics. Related, approximately coeval intrusions include the Teslin Mountain Pluton and the Red Mountain porphyry, both associated spatially and temporally with molybdenum, copper and gold mineralization. The focus of the 2018 program was to explore for epithermal gold – silver deposits near known and suspected fault structures on the margin of the Open Creek volcanics.

The 2018 program follows on previous programs started in 2015 and continued in 2016. This work led to the identification of gold-bearing vein-type mineralization at the Pond Zone, now covered by the NOOC quartz claims. Rock samples from the NOOC claims of veins cutting carbonates and volcanic rocks —that are likely part of the Lewes River Group—contained **0.373 ppm Au over 4 m** and a grab sample from a separate zone contained **0.823 ppm Au.** Due to extensive glacial cover exploration in this immediate area has been curtailed at present.

No Open Creek volcanics or intrusive rocks of any type were encountered during the 2018 program. Geological contacts and locations of faults as mapped by Bordet (2018) were moved as a result of mapping and prospecting. No significant mineralization or zones of obvious hydrothermal alteration was noted. The weak gossanous orange-brown colour noted during aerial reconnaissance is attributed to the weathering of the calcareous siltstone. Aside from a **0.0366 ppm Au** in soil anomaly and isolated weak arsenic rock and soil anomalies no anomalous geochemical results were obtained in 2018.

Additional exploration is warranted to the south of anomalous soil sample M895710 (0.0366 ppm Au). No further work is recommended within the area covered in 2018. Additional regional work is recommended in the Teslin Mountain Area as the Teslin Mountain Pluton, Open Creek volcanics as the temporal association with the Red Mountain porphyry deposit indicates the possibility of a mineralizing magmatic – hydrothermal system in the area. In addition to the possible magmatic contribution, the intersection of regional faults and the variable aeromagnetic signature also points to a favorable environment for epithermal mineralization in the Teslin Mountain area.

A helicopter-supported reconnaissance program carrying out prospecting, stream sediment, soil and rock sampling is recommended to explore the Teslin Mountain area. In particular, the area surrounding the Debicki occurrence and NOOC claims needs to be further explored to determine the structural controls on the known vein type mineralization and its significance.

TABLE OF CONTENTS

Summary	ii
Table of Contents	iii
Introduction	1
Location, Access and Land Status	1
Topography, Vegetation and Climate	4
History	4
Regional Geology	5
GSC - RGS Data	11
Regional Geophysical data	11
Mineralization	13
Geochemistry	14
Conclusions and Recommendations	19
References	20
Statement of Qualifications (RH)	21

LIST OF FIGURES

Figure 1. Teslin gold project location	2
Figure 2. Mineral tenure in Teslin gold project area.	3
Figure 3. Regional geology of Teslin gold project area.	6
Figure 4. Geology of Teslin gold project area (after Bordet, 2018).	9
Figure 5. Geology of 2018 project work area.	10
Figure 6. GSC Regional total field aeromagnetics	12
Figure 7. 2018 field stations and sample locations	16
Figure 8. 2018 gold geochemical values	17
Figure 9. 2018 arsenic geochemical values	18

LIST OF TABLES

Table 1. Geology legend of Teslin gold project area	7
Table 2. Range of values for significant elements.	15

LIST OF PHOTOS

Photo 1. Typical carbonate vein, sample M895801	13
Photo 2. Deformed siltstone with calcite veining, Rock sample M895802	14
Photo 3. Soil sample site M895710 (0.0366 ppm Au)	15

LIST OF APPENDICES

Appendix A:	Sample Descriptions and Geological Field Stations
Appendix B:	Analytical Certificates

Cover photo: Danièle Héon on outcrop of orange weathering calcareous siltstone

INTRODUCTION

Following fixed wing reconnaissance flights, an exploration program of prospecting, reconnaissance geological mapping and geochemical sampling was carried out on August 26 – 27, 2018 in the Teslin Mountain Project area by a two person crew consisting of Roger Hulstein and Danièle Héon, both of Whitehorse, Yukon. This work was carried out from a helicopter supported fly camp on the margin of the Teslin Mountain and East Lake Laberge area recently mapped by E. Bordet (2018a, 2018b). The exploration target initially focused on structurally controlled epithermal-style precious metal deposits associated with the margins of the Late Cretaceous Open Creek volcanic rocks and immediate surrounding area. The focus of the exploration changed somewhat, to include replacement type precious metal deposits, when the orange – brown weathering outcrops spotted during an aerial reconnaissance were revealed to be predominantly calcareous siltstone when examined on the ground.

This report describes the location, access, history, geological setting, known mineral occurrences and results of the prospecting, reconnaissance geological mapping and geochemincal (rock and soil sampling) program and suggests an exploration program to further explore the project area for gold deposits.

LOCATION, ACCESS AND LAND STATUS

The Teslin Mountain Project is approximately 60 km northeast of Whitehorse (Figure 1) and accessible by helicopter. Several helicopter companies offer air charter service from Whitehorse. In 2016 Capital Helicopters provided great service utilizing Bell 206's and Robinson R44 models. Although Teslin Mountain constitutes some of the highest ground of the Lewes Plateau (Yukon Plateau) between the south end of Lake Laberge to the west and Teslin River to the east, the terrain in the project area is more subdued and well vegetated.

The Project area is in the Whitehorse Trough (Colpron, 2014), on a topographic divide with the north and northwest side of the area draining to the north and west. The 2018 project area covers a small portion on the east side of NTS map sheet 105E/02. The recently mapped Open Creek volcanics and immediate surrounding area were targeted and a portion of the eastern included in Bordets (2018) map examined in 2018.

The 2018 project area lies south of a KDFN Category B owned lands (block KDFN R-65B) that cover the mouth of Open Creek to the Teslin River (Figure 2). There are no other areas withdrawn from staking or development in the Teslin Project Area. On the west side of Teslin Mountain are 20 Yukon Quartz claims, the BBK claim group, registered to Golden Predator Corp., with an expiry date of 03/07/2019 (Figure 2). These claims cover the source drainage for a GSC-RGS stream sediment sample that is anomalous in gold (sample #881373). The NOOK 1-24 claims, held by Roger Hulstein and Danièle Héon, were staked as part of a previous YMEP sponsored project in 2015-2016.

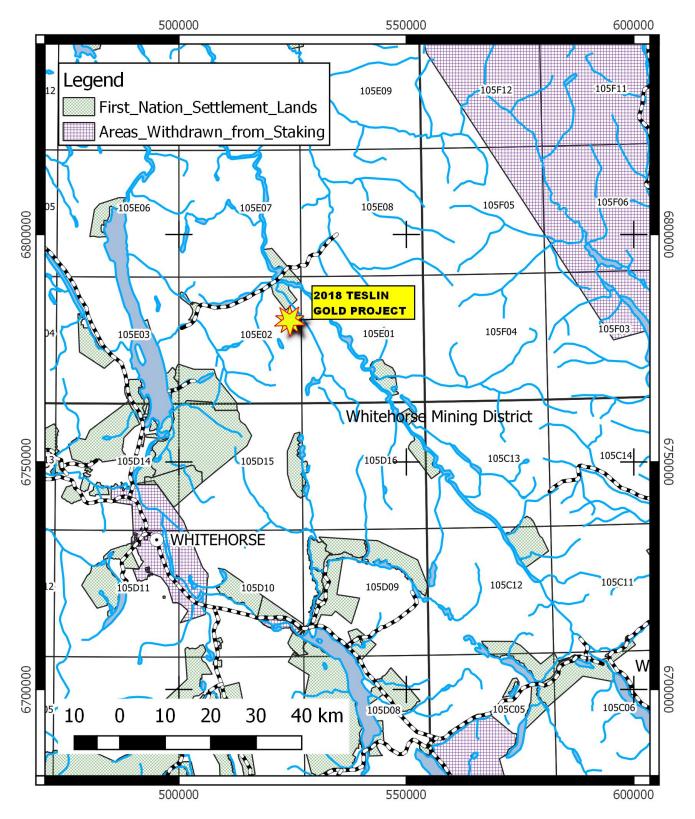


FIGURE 1. TESLIN GOLD PROJECT LOCATION

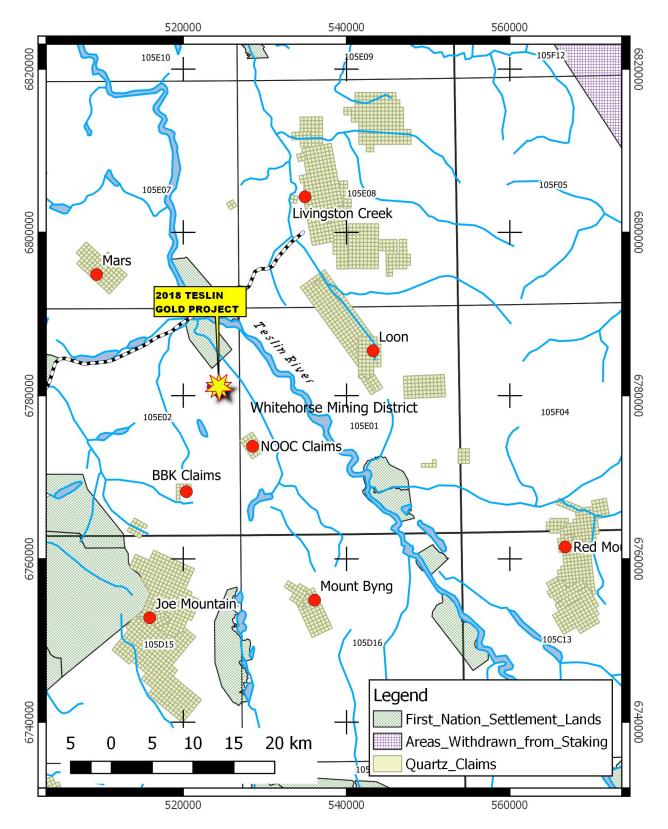


FIGURE 2. MINERAL TENURE IN TESLIN GOLD PROJECT AREA.

TOPOGRAPHY, VEGETATION AND CLIMATE

Topography in the region is typical of an incised peneplain (Yukon Plateau) with steep hillsides and rounded crests. Elevations range from approximately 800 m in the Open Creek valley to about 1800 m at Teslin Mountain. Areas of high elevation locally consist of rugged alpine terrain with rare patches of stagnant ice and abundant evidence of recently departed alpine glaciers. Areas of lower elevation and the valleys, approximately below 1350 m elevation are moderately to densely vegetated. Larger valleys such as the Open Creek valley are broad and filled with glacial debris.

Topography in the 2018 project area consists of low rolling hills, well vegetated for the most part, with bare steep glacially scoured slopes with intermittent outcrop on the sides of 'humps' that rise from otherwise glacially covered areas. It was these orange – brown weathering outcrop areas that drew interest to the area during reconnaissance fixed wing flights carried out on April 23 and June 3, 2018.

The climate in the project area is variable with warm summers and long cold winters. Precipitation is light, with moderate snowfalls during the winter months. Depending on the elevation the typical field season extends from late May to middle -late September. Permafrost can be expected anywhere within the project area, particularly on northerly facing slopes.

HISTORY

Little mineral exploration history has been documented within the Teslin project area. Two Yukon Minfile occurrences are found in the area are listed as anomalies, the Crost (#105E037) and the Sline (#105E 038) (Yukon Minfile, 2018) and were staked by Dupont in 1981 over geochemical anomalies as part of a regional exploration program. Both are underlain by Laberge clastic rocks and the rocks on the Sline, are also intruded by Cretaceous feldspar porphyry dykes. More significantly, the Debicki #105E 050, was staked in 1982 by Inco over epithermal type veins and alteration covering a limonitic 100 m x 50 m zone of weakly sheared and fractured hornblende granodiorite adjacent to grey weathering Open Creek volcanic rocks. No further work was recorded until the occurrence was visited by the author in 2017. Rock sampling at the occurrence returned weakly anomalous values; 160 ppb Au, 5.2 Ag, 753 ppm Pb, 2130 ppm Zn, 31 ppm Sb and low As values (33 ppm). Eight soil samples from the occurrence area contained a similar suite of anomalous elements with four of them returning between 34.8 ppm to 41.7 ppm As indicating arsenic is a pathfinder element at Debicki.

The NOOC 1-24 claims were staked on Feb. 26, 2016, by Héon and Hulstein following receipt of anomalous rock and soil samples results (up to 823 ppb and 77.8 ppb gold respectively). Prospecting east of the barren 'gossan' area in 2015 found quartz +/- carbonate veining cutting sandstone – siltstone, feldspathic epiclastics and carbonate-altered intermediate volcanic - intrusive rocks (now called the Pond Zone). The mineralization at the NOOC claims has a similar anomalous geochemical signature for Au, Ag, As with lower and more erratic values for Sb, Pb and Zn. Mineralization at both the NOOC and Debicki consists of narrow, commonly coxcomb textured, quartz – carbonate veinlets, with rare disseminated sulfides, and little to no obvious selvages indicating a distal emplacement.

The Plateau target on the south flank of Teslin Mountain and near the Debicki occurrence is underlain by Middle Triassic Joe Mountain Formation volcanics intruded by a number of dykes and sills of unknown age and felsic to intermediate composition. In 2015, a **1.7 g/t Au** in soil anomaly (2015 sample 579499) was obtained from a NE-trending recessive weathering felsic dyke - vein – fault structure in the Plateau Area. Although this recessive zone is up to 20 m wide, composed of clay and decomposed quartz feldspar porphyry and was traced for over

700 m, follow-up sampling in 2016 further away from the 2015 anomalous sample returned low gold values (<3.4 ppb) and pathfinder elements. No further work was recommended on this target.

An overgrown bulldozer trail up the creek bottom on the east side of Teslin Mountain indicates that exploration, not recorded in the literature, also took place there. This trail appears to lead to the claims held by Golden Predator Corp. on the west side of Teslin Mountain. Golden Predator staked a large claim block in 2011 by over an anomalous (gold) RGS sample on the west side of Teslin Mountain. The claim bock was subsequently reduced in size and now consists of 13 claims with an expiry date of March 7, 2019. Rumour has it that the exploration results to date are encouraging for gold mineralization.

Further afield, approximately 45 km to the SE of the 2018 project area lies the Late Cretaceous Red Mountain molybdenum porphyry deposit. The host porphyry stock is thought to be temporally correlative with the Open Creek volcanics. This indicates that the Late Cretaceous metallogenic – intrusive event is both large and mineralized.

REGIONAL GEOLOGY

The Project Area was mapped by Tempelman-Kluit in the 1980s. Bordet remapped most of the area in 2015 - 2017 and published a map (Open File 2018 - 1) and report (Bordet, 2018a, 2018b respectively) in 2018. Table 1 showing the geologic column and relevant age dates is modified after Bordet, 2018.

The area is underlain by rocks of the Whitehorse Trough, part of Stikinia (Figure 3 and Table 1), a frontier intermontane basin in south-central Yukon, south of the Tintina fault (Colpron, 2011). As described by the Yukon Geological Survey (Anonymous, 2015);

The trough is an overlap assemblage, with strata unconformably overlying both the Stikine terrane (Lewes River arc), and also the Quesnel terrane locally. The trough originated as a forearc basin (based on structural geology and detrital clast content, but progressively evolved to become a synorogenic piggy-back basin sometime after the end of the Pliensbachian (Colpron 2014). The basin straddles the Yukon – British Columbia border, with its northernmost margin in the Carmacks area, and covers an area of approximately 2.44 million hectares. Its geology is characterized by an approximately 3000m thick deformed Jurassic sedimentary succession (the Laberge Group), underlain by a depositional basement of Triassic sediments (the Lewes River Group), and capped by Cretaceous and Neogene volcanic rocks.

Stikinia is bounded by the Teslin Fault on the eastern margin and the project area is flanked on the eastern side by the Open Fault, a major fault interpreted to be a splay of the Teslin Fault as mapped by Tempelman-Kluit (2009). These and other faults likely account for the down dropping and preservation, of the Open Creek volcanics and the uplift of the Late Cretaceous Teslin Mountain granodiorite. These deep-seated fault structures may have potential to be mineralizing fault structure due to their depth and its long range of activity (Colpron, pers. com.).

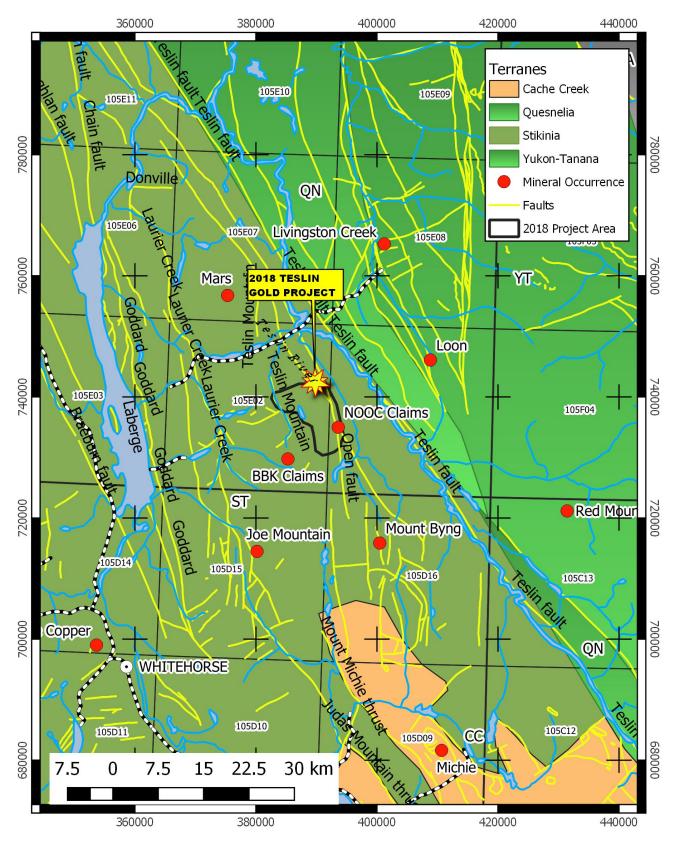


FIGURE 3. REGIONAL GEOLOGY OF TESLIN GOLD PROJECT AREA.

TABLE 1. GEOLOGY LEGEND OF TESLIN GOLD PROJECT AREA

Upper C	retaceous	U/Pb age date*
uKC1	Open Creek Formation; augite-olivine basalt and breccia	79 Ma
10.17	Open Creek Formation; quartz-phyric dacite flows, ash and	70.14
uKW	lapilli tuff	79 Ma
Early Cr	etaceous	
	Teslin Mountain Pluton; Biotite granodiorite, tonalite,	
LKgR	monzogranite	78 Ma
	-	
	Hornblende-Biotite granite, granodiorite, quartz	
EKgT	monzonite, quartz monzodiorite	116 Ma
Lower a	nd Middle Jurassic	
·	Laberge Group (Whitehorse Trough)	
	Laberge Group, Ricthofen Formation; turbiditic sandstone-	
JL1	siltstone-mudstone, conglomerate	
Upper T	riassin	
opperi	Lewes River Group	
	Aksala Formation; shale, siltstone, calcareous greywacke,	
UTrAK1	argillaceous limestone	
L	-	
UTrAK2	Aksala Formation; massive to thick-bedded limestone	
Middle	Triassic	
	Joe Mountain Formation; massive basalt flows, breccia,	
mTrJ	sandstone, mudstone	245 Ma
Pennsyl	ranian	
rennsyn	Boswell Fromation; siliceous argillite, siltstone, sandstone,	
	chert conglomerate, volcanic breccia	
L LICB1		
uCB1		

The Late Cretaceous Open Creek volcanic rocks overlie the Jurassic-Triassic stratigraphy and are approximately coeval to the Late Cretaceous porphyry hosting the Red Mountain molybdenum deposit, located to the southeast and the nearby Late Cretaceous Teslin Mountain granodiorite.

Two sedimentary units are found within the project area, the Triassic Lewes River and Jurassic Laberge Groups (map units uTrAK1, uTrAK2 and JL1 respectively, Figure 4). The formations that are of interest in project area, Aksala of the Lewes River and Richthofen of the Laberge Group, have similar lithologic description. Both are comprised of shale, conglomerate, limestone, siltstone and porphyry flows. One or both of these units may also underlie the Pond Zone on the NOOC claims.

By far the most common rock type encountered in 2018 was an orange – brown weathering, more rarely grey weathering, variably calcareous mudstone – siltstone with local sandy bands. Locally carbonate is absent and in places the rocks are could be described as an impure limestone. These rocks are poorly cleaved, commonly

spaced 1cm or greater and only locally were laminations or bedding clearly observed. Cleavage is commonly parallel to what is believed to be laminations and bedding although in places tight upright steeply dipping folds were noted. Calcite veining, mm to cm in width, is often crudely banded, contains wall rock inclusions and is both cross-cutting and parallel to cleavage with stronger veining in areas of tight folds and structural complexity.

Results of 2018 Geological Mapping

Reconnaissance geological mapping in 2018 resulted in the modification of Bordet's (2018) map (Figure 5). The fault contact between the Laberge Group and Lewes River Group was interpreted to be a steeply dipping normal fault rather than a thrust fault; this fault contact was moved westward about 325 m. The fault was inferred to be in a prominent northwest trending linear physiographic depression that, based on our 2018 work, marks the west margin of the orange weather calcareous siltstone, the predominant unit of the Lewes River Group in this area. No outcrops of Open Creek volcanics or any intrusive rocks were noted in 2018. The resulting geological map is simple, Laberge Group to the west and Lewes River Group to the west separated by a steep northwest trending normal fault.

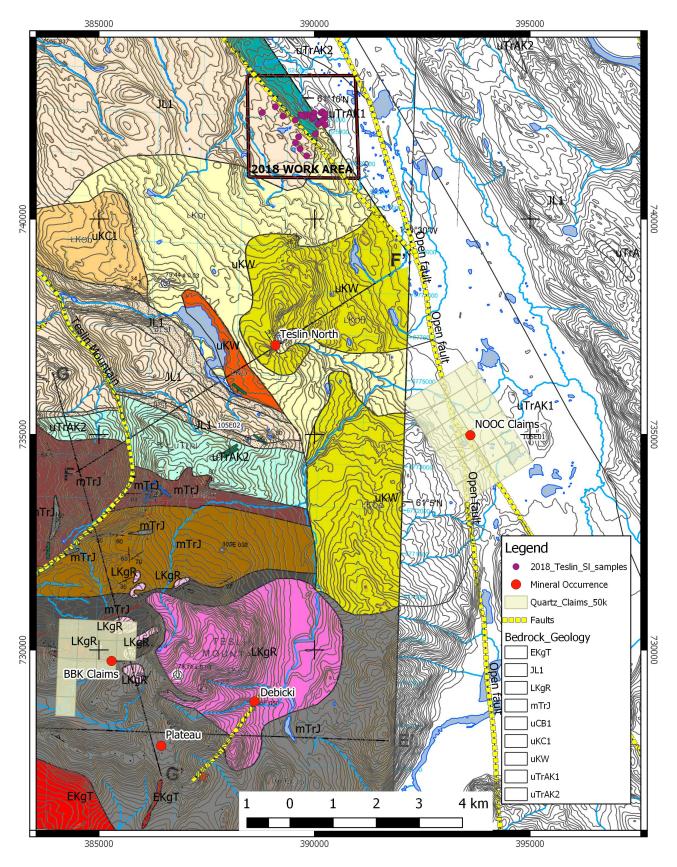


FIGURE 4. GEOLOGY OF TESLIN GOLD PROJECT AREA (AFTER BORDET, 2018).

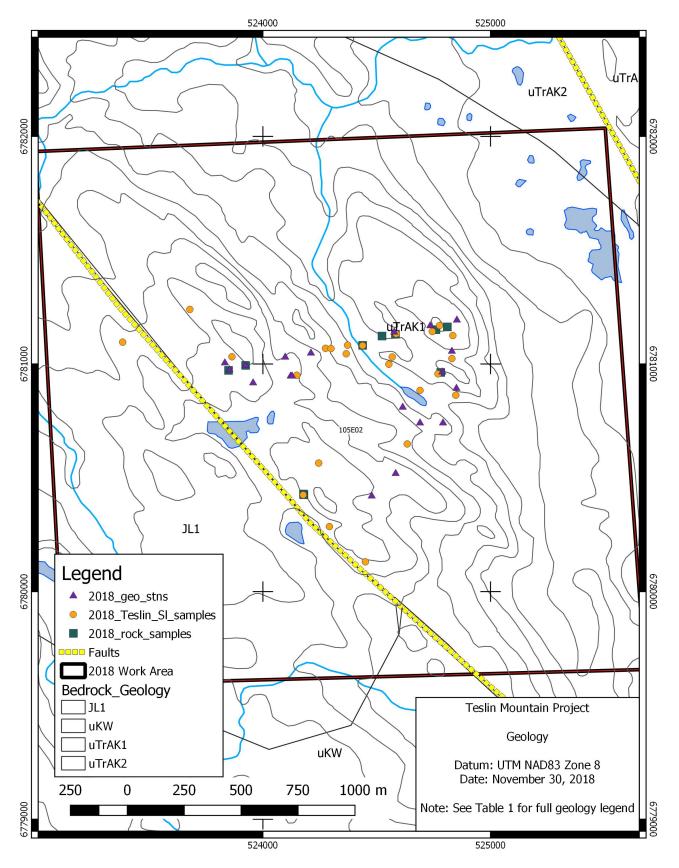


FIGURE 5. GEOLOGY OF 2018 PROJECT WORK AREA.

GSC - RGS DATA

The GSC's regional geochemical sample spacing is widely spaced and samples from drainages within or below the Open Creek volcanics have not yielded anomalous values for gold – silver and common pathfinder elements such as mercury, arsenic and antimony nor for copper, lead and zinc. Given that the target is a gold – silver bearing epithermal target, a widespread robust geochemical anomaly is not expected.

REGIONAL GEOPHYSICAL DATA

The complexity of the aeromagnetic signature over the project area is likely due to a number of sizeable fault structures juxtaposing rocks with differing magnetic susceptibility, some masking of bedrock by thick glacial till, and a variable magnetic signature typical of volcanic rocks.

There is a prominent unexplained aeromagnetic high in the west centre of the project, near the Teslin North occurrence. The 2018 exploration area is situated on the margin of a pronounced magnetic low, underlain by Lewes River Group rocks and is in close proximity to the regional NW-trending Open. This is a similar geological setting to that found on the NOOC claims where low temperature quartz +/- carbonate veins mineralization carry anomalous amounts of gold (Hulstein, 2017b) (Figure 4).

The regional NW-trending fault zones that underlie the Open Creek valley and the Teslin River valley show up in part as strong NW-trending magnetic lows and highs. On the NOOC claims, the Pond Zone, an area of weak auriferous quartz +/- carbonate veining cutting metasediments and carbonate altered intrusive(?), is underlain by a magnetic low but near subtle magnetic highs.

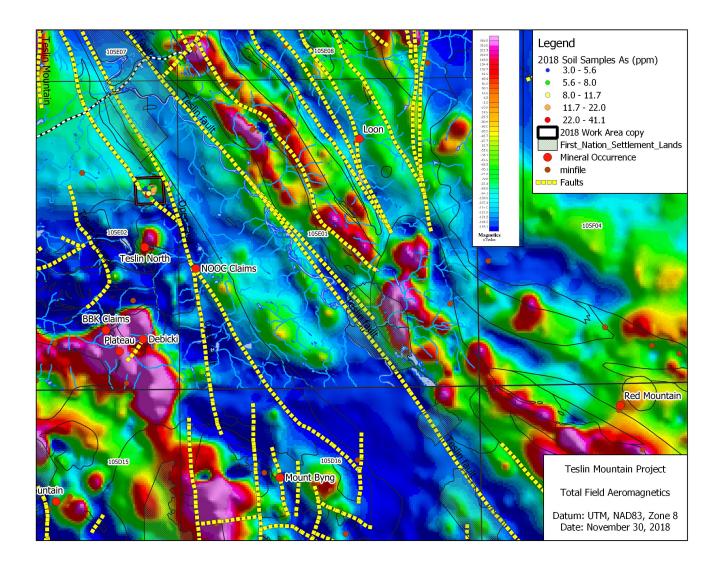


FIGURE 6. GSC REGIONAL TOTAL FIELD AEROMAGNETICS

MINERALIZATION

No new mineralization was discovered in the 2018 work area. The orange-brown weathering that was observed during the aerial reconnaissance was attributed to the weathering of the calcareous siltstone and not obviously related to hydrothermal alteration. The calcite veining, which locally has a small quartz component, while similar in appearance to the veining found at the Debicki and NOOC occurrences was not visibly mineralized. Sulphides were only rarely noted (see rock descriptions in Appendix A) and then they were very finely disseminated. Locally iron oxides filled fractures and coated partings in the rocks but, where sampled, contained no values of interest.

PHOTO 1. TYPICAL CARBONATE VEIN, SAMPLE M895801.

PHOTO 2. DEFORMED SILTSTONE WITH CALCITE VEINING, ROCK SAMPLE M895802.

GEOCHEMISTRY

As with previous YMEP funded programs all sample and field stations locations were collected by GPS, Garmin model's 60CSx or better, with an accuracy commonly of +/- 3 m, using a UTM grid, NAD83 Datum in zone 8v. Sample locations are shown on Figure 7, sample descriptions are included in Appendix A and analytical certificates are included as Appendix B.

All samples collected in 2018, 10 rock and 24 soil samples, were submitted to ALS Canada Ltd.'s preparation laboratory in Whitehorse, Yukon and analyzed using analytical techniques compatible with previous samples so correlations and comparisons can be made. All rocks that looked remotely prospective, both in outcrop and as float, were sampled. Samples from outcrops were grab samples with a focus on collecting anomalous looking material, which in almost all cases consisted of carbonate – calcite veining, +/- quartz, +/- trace fine grained sulfides (pyrite, where identified). Soil sample sites usually consisted of scree slopes or the base of scree slopes below outcrops so as to avoid sampling material derived from glacial till. Both soil and rock sampling were constrained by the limited outcrop available and were hampered by extensive glacial till, except for areas of bald exposures on steep hillsides.

Other than arsenic, no significant analytical results were returned from samples submitted in 2018 (Table 2). No anomalous Bi or Mo values were received indicating that it is unlikely there is a nearby magmatic influence.

TABLE 2. RANGE OF VALUES FOR SIGNIFICANT ELEMENTS.

	Rock Samples (n=10)	Soil Samples (n=24)
Element	Range of Values (ppm)	Range of Values (ppm)
Au	<0.001 - 0.007	0.001 - 0.0366
Ag	<0.2 - <0.2	0.09 - 0.413
As	2 - 76	2.95 - 41.1
Ва	60 - 580	73 - 360
Bi	<2 - 2	0.046 - 0.212
Cu	3 - 62	35.7 - 116.5
Fe	3 - 4.46	2.45 - 4.84
Мо	<1 - 2	0.58 - 3.55
Pb	<2 - 14	3.92 – 20.2
Sb	<2 - <2	0.209 - 0.819
Zn	16 - 87	40.7 - 110.5

A rock float sample of orange weathering carbonate veining (sample no M895804) contained 76 ppm As, the highest value returned in 2018. Three soil samples (samples M895705, M895709 and M895712) contained 15.7 to 41.1 ppm As. Of interest is that soil sample M895712 is near rock samples M895652 and M895653 that were possibly silicified and decalcified and contained minor fine grained pyrite. The sample site is near the NW-trending fault that forms a contact between the Lewes River and Laberge Groups.

The most significant soil sample is M895710 collected from talus of orange-weathering calcareous siltstone with rare calcite veining, also located near the fault contact between the Lewes River and Laberge Groups, contained **0.0366 ppm Au**, 0.212 Bi (highest Bi soil value), 20.2 ppm Pb (highest Pb value) and 110.5 ppm Zn (highest Zn value).

PHOTO 3. SOIL SAMPLE SITE M895710 (0.0366 PPM AU)

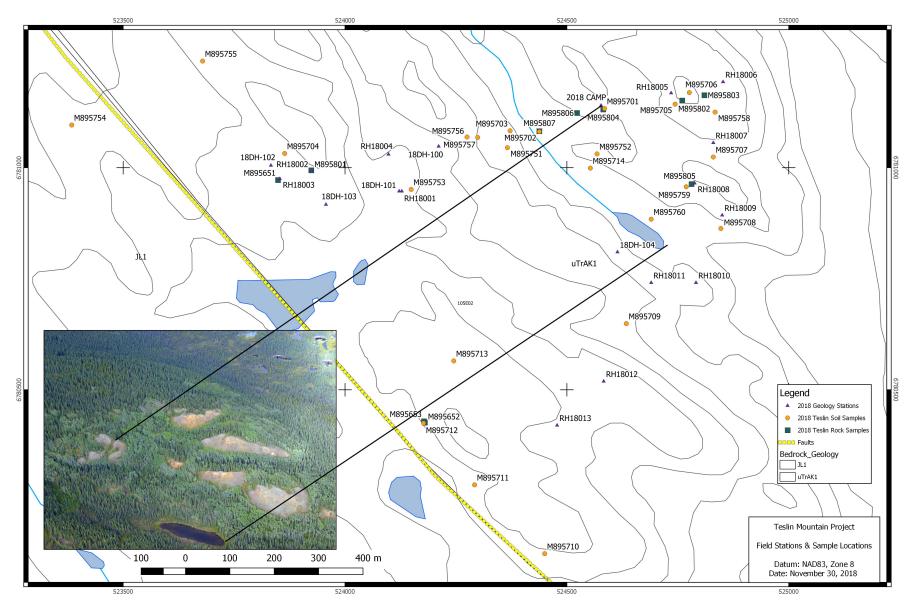


FIGURE 7. 2018 FIELD STATIONS AND SAMPLE LOCATIONS.

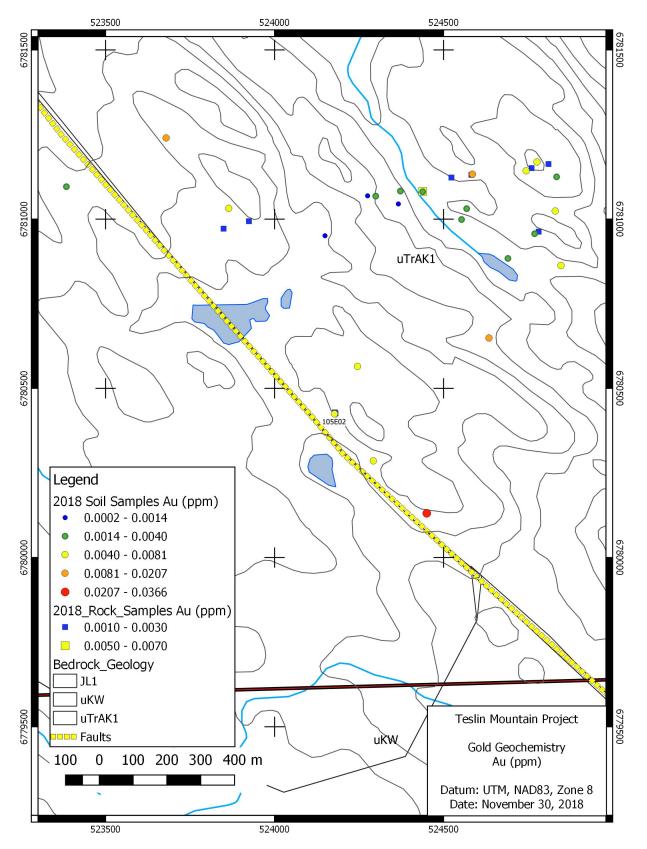


FIGURE 8. 2018 GOLD GEOCHEMICAL VALUES

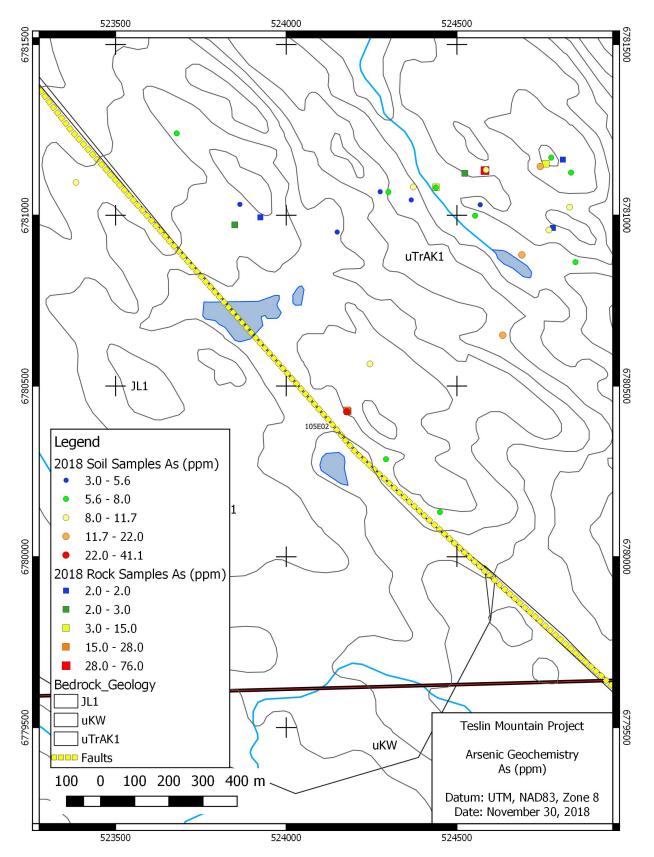


FIGURE 9. 2018 ARSENIC GEOCHEMICAL VALUES.

CONCLUSIONS AND RECOMMENDATIONS

No Open Creek volcanic or intrusive rocks of any type were encountered during the 2018 program. Geological contacts and locations of faults as mapped by Bordet (2018) were moved as a result of mapping and prospecting. No significant mineralization or zones of obvious hydrothermal alteration was noted. The weak gossanous orange – brown colour noted during aerial reconnaissance is attributed to the weathering of the calcareous siltstone. Aside from a **0.0366 ppm gold** in soil anomaly and isolated weak arsenic rock and soil anomalies, no anomalous geochemical results were obtained in 2018.

Additional exploration is warranted to the south of anomalous soil sample M895710 (0.0366 ppm Au). No further work is recommended within the area covered in 2018. Additional regional work is recommended in the Teslin Mountain Area as the Teslin Mountain Pluton, Open Creek volcanics and the temporal association with the Red Mountain porphyry deposit indicates the possibility of a mineralizing magmatic – hydrothermal system in the area. In addition to the possible magmatic contribution the intersection of regional faults and the variable aeromagnetic signature also points to a favourable environment for epithermal mineralization in the Teslin Mountain area.

A helicopter-supported reconnaissance program carrying out prospecting, stream sediment, soil and rock sampling is recommended to explore the Teslin Mountain area. In particular, the area surrounding the Debicki occurrence and NOOC claims needs to be further explored to determine the structural controls on the known vein type mineralization and its significance.

Respectfully submitted,

Roger Hulstein, B.Sc., P.Geo. Geologist

REFERENCES

Anonymous, 2015. Digital products from Yukon Geological Survey, available on-line from the YGS: <u>http://www.geology.gov.yk.ca/whitehorse_trough.html</u>

Bordet, E., 2018a. Bedrock geology map of the Teslin Mountain and East Lake Laberge areas, parts of NTS 105E/2, 3, 6. Yukon Geological Survey, Open File 2018 – 1, 2 sheets, Scale 1:50,000.

Bordet, E., 2018b. Bedrock Geology of the Teslin Mountain and East Lake Laberge Areas. South –Central Yukon. In; Yukon Exploration and Geology 2017, K.E. MacFarlane (ed.), Yukon Geological Survey, p. 1-24.

Colpron, M. (comp.), 2011. Geological compilation of Whitehorse trough - Whitehorse (105D), Lake Laberge (105E), and part of Carmacks (115I), Glenlyon (105L), Aishihik Lake (115H), Quiet Lake (105F) and Teslin (105C) (1:250 000-scale). Yukon Geological Survey, Geoscience Map 2011-1, 3 maps, legend and appendices.

Hulstein, R., 2016. YMEP 2015 -069 Report – Teslin Mountain Project. Yukon Geological Survey.

Hulstein, R., 2017a. YMEP 2016-019 Report – Teslin Mountain Project. Yukon Geological Survey.

Hulstein, R., 2017b. Geological and Geochemical Report on the NOOC Claims, Yukon Assessment Report #097016, Yukon Geological Survey.

Tempelman-Kluit, D.J., 2009. Geology of Carmacks and Laberge map areas, central Yukon: Incomplete draft manuscript on stratigraphy, structure and its early interpretation (ca. 1986), GSC OF 5982

Yukon Minfile, 2018. Digital products from Yukon Geological Survey, available on-line from the YGS: http://www.geology.gov.yk.ca/

STATEMENT OF QUALIFICATIONS (RH)

I, Roger W. Hulstein, of:

106 Wilson Drive Whitehorse, Yukon Territory Y1A 0C9,

do hereby certify that:

- 1. I am an independent, self-employed, mineral exploration geologist with over 30 years of experience working in the Yukon.
- 2. I am a graduate of Saint Mary's University, Halifax, with a degree in geology (B.Sc., 1981) and have been involved in geology and mineral exploration continuously since 1978.
- 3. I am a fellow of the Geological Association of Canada (F3572).
- 4. I am registered as a professional geoscientist (No. 19127) with the Association of Professional Engineers and Geoscientists of the Province of British Columbia.
- 5. I am the author of this report on the Teslin Gold Project in the Whitehorse Mining District, Yukon.
- The report is based on personal examination of selected areas within the project area from: June 20 27th, 2015;
 August 8, 9, 2016, September 23, 24, 2016 and August 26 and 27, 2018, on referenced sources.

Roger Hulstein, P.Geo. December 5, 2018

APPENDIX A

Rock, Soil Sample and Field Station Descriptions

Туре	Date	Sampler	ID_Rx	UTM_E	UTM_N	Туре	Description	photo	SAMPLE	Au_ppm	Ag_ppm	Al_%
							Brown weathering weakly calcareous brown - drk grey siltstone					
							cross cut by thin (<0.5cm) locally banded qtz-calcite veinlets with					
rock	August 26 2018	RH	M895651	523849	6780972	o/c	trace pyrite.		M895651	< 0.001	<0.2	0.82
							Small outcrop (0.3m) on scree slope of brecciated calcite flooded					
							siltstone ('cherty' grey with tr diss very fine py where fresh) with					
							very fine open fractures - possibly decalcified? Appros S1 060/90,					
rock	August 27 2018	RH	M895652	524180	6780426	o/c	S1 267/75 (=S0? Almost certain).		M895652		0.002 < 0.2	0.79
							about 3 m north of M895652, brown weathering brown to grey					
							cherty (where fresh), very fine open fractured, possibly					
							decalcified?, weakly and variably calcareous siltstone. Crosscut by					
rock	August 27 2018	RH	M895653	524178	6780429	o/c	<2cm wide, mm banded white - dark grey - clear qtz vein.		M895653		0.001 < 0.2	0.66
							Carbonate vein, 3-4cm (up to 10 cm along strike), locally vuggy,					
							with limonite patches and fragments of host rock. Continues along	g				
rock	August 26 2018	DH	M895801	523924	6780994	o/c	strike for 4 metres. Strikes 089° /40°		M895801		0.002 <0.2	0.25
							Orange-weathering, very weakly calcareous siltstone with networ	k				
							of finely banded carbonate ± (rare) guartz veining. Veins show					
							brecciating and crustiform/banded carbonate. Trace rusty blebby					
							pyrite. May be in nose of fold. Veins strike 030°/78° and 265°/35°					
							Outcrop is orange where carbonate veining is visible, elsewhere					
rock	August 27 2018	DH	M895802	524760	6781151	o/c	o/c weathers grey-brown.		M895802	<0.001	<0.2	0.49
	0						Orange-weathering banded carbonate vein, with trace of limonite					
rock	August 27 2018	DH	M895803	524810	6781163	s/c	after pyrite? If in place: 330°/30°.	5740-5742	M895803	< 0.001	<0.2	0.2
							Below kitchen area: carbonate breccia with clasts of unaltered					
rock	August 27 2018	DH	M895804	524582	6781131	float	siltstone. Approximate location.		M895804	< 0.001	<0.2	0.37
							Orange-weathering breccia with light grey siliceous (?) grey-browr	ı				
							groundmass with fragments of subangular fragments composed o	f				
							small carbonate crystals. Thin brownish veinlets, that cut the					
						float at	carbonate clasts, contain < 1% blebby sulphides (py?). Weathered					
						top of	surface shows finely banded carbonate bands brecciated (by later					
rock	August 27 2018	DH	M895805	524781	6780963	ridge	carbonate?).		M895805	< 0.001	<0.2	0.33
							Carbonate breccia-vein, 4-10 cm, with crustiform banding, loc					
							curved with "bladed" calcite lining open space. Vein is // to					
							cleavage in host of orange-weathering calcareous siltstone. Strike					
rock	August 27 2018	DH	M895806	524523	6781123	o/c	is // to ridge, dips \sim 60° S in to the hill.	5767-5771	M895806	<0.001	<0.2	0.16
						rounded	Rusty intrusive granitic rock, oxidized, with 1-2% diss py. Not local					
rock	August 27 2018	DH	M895807	524438	6781082	float	NOT ENTERED IN GPS		M895807		0.007 < 0.2	1.39

2018 Teslin Mountain Project

SAMPLE	As_ppm	B_ppm	Ba_ppm	Be_ppm	Bi_ppm	Ca_%	Cd_ppm	Co_ppm	Cr_ppm	Cu_ppm	Fe_%	Ga_ppm	Hg_ppm	K_%	La_ppm	Mg_%	Mn_ppm	Mo_ppm	Na_%
M895651	3	10	330	0.6	2	2 4.67	<0.5	11	21	. 62	3.15	<10	<1	0.16	10	1.26	524	<1	0.04
M895652	28	10	60	<0.5	<2	7.8	<0.5	11	15	50	3.94	<10	<1	0.07	<10	2.74	842	1	L 0.01
M895653	19	10	70	<0.5	<2	7.1	<0.5	6	12	34	3.1	<10	<1	0.06	<10	2.57	715	1	L 0.01
M895801	<2	<10	170	0 <0.5	<2	21.1	<0.5	2	5	9	3 / 2	<10	<1	0.06	10	7.06	1190	c1	<0.01
10055001	~2	10	170	1 10.5	~2	21.1	0.5			, ,	5.42		N	0.00	10	7.00	1150		
M895802	15	10	340	0.5	<2	18.4	<0.5	9	10	36	4.46	<10	<1	0.07	10	4.74	1310	<1	0.02
M895803	2	<10	580	0.6	<2	20.9	<0.5	3	3	7	3.41	<10	<1	0.02	<10	8.95	662	<1	0.01
M895804	76	10	0 150	<0.5	<2	20.7	<0.5	4	6	16	4.13	<10	<1	0.04	10	6.94	1140	<1	0.02
M895805	2	<10	180	<0.5	<2	19.8	<0.5	3	6	5 15	3.54	<10	<1	0.05	<10	8.55	643	<1	0.04
M895806	3	<10	580	0.6	<2	21.6	<0.5	3	3	3	3	<10	<1	0.01	10	8.65	834	<1	0.02
M895807	11	<10	120	<0.5	<2	0.75	<0.5	2	17	11	3.2	10	0 <1	0.14	10	1.31	633	2	2 0.1

SAMPLE	Ni_ppm	P_ppm	Pb_ppm	S_% Sb_ppm	Sc_ppm	Sr_ppm	Th_ppm	Ti_%	Tl_ppm	U_ppm	V_ppm	W_ppm	Zn_ppm	Certificate
M895651	16	910	11	0.08 <2	8	235	<20	<0.01	<10	<10	59	<10	72	WH18212701
111033031	10	510		0.00 12		233		10.01	10			10		1110212701
M895652	12	70	14	0.04 <2	8	565	<20	<0.01	<10	<10	66	<10	87	WH18212701
M895653	7	80	11	0.04 <2	5	462	<20	<0.01	<10	<10	46	<10	76	WH18212701
M895801	5	120	<2	0.02 <2	6	3650	<20	<0.01	<10	<10	17	<10	16	WH18212701
M895802	13	330	<2	0.13 <2	8	1700	<20	<0.01	<10	<10	55	<10	50	WH18212701
M895803	7	90	<2	0.02 <2	2	2620	<20	<0.01	<10	<10	25	<10	24	WH18212701
M895804	11	190	<2	0.07 <2	5	1490	<20	<0.01	<10	<10	38	<10	24	WH18212701
M895805	13	150	<2	0.03 <2	3	1305	<20	<0.01	<10	<10	46	<10	30	WH18212701
M895806	6	80	<2	0.01 <2	2	3200	<20	<0.01	<10	<10	22	<10	18	WH18212701
M895807	3	1140	4	1.27 <2	7	124	<20	0.16	<10	<10	80	<10	51	WH18212701

								Au	Ag
Туре	Date	ID_soil	Sampler	UTM_E	UTM_N	Description	photo	ppm	ppm
						Soil facing scree slope of orange - brown weakly calcareous siltstone, rare clacite			
soil	August 26 2018	M895701	RH	524585	6781133	veining. o/c S1 244/70N		0.0129	0.332
soil	August 26 2018	M895702	RH	524438	6781081	dark brown soil, angular rock chips, near outcrop of dark grey siltstone.		0.0028	0.123
						Brown loamy soil, subcrop of brown calcareous siltstone crosscut by calcite veinlets,			
soil	August 26 2018	M895703	RH	524372		possible bladed clacite.		0.0035	0.162
soil	August 26 2018	M895704	RH	523864		Brown soil, 10m below orange - brown weathering calcareous siltstone outcrop.		0.0046	0.169
soil	August 27 2018	M895705	RH	524744		Orange brown soil, below M895802.		0.0065	0.246
soil	August 27 2018	M895706	RH	524776		Orange brown soil		0.0081	0.378
soil	August 27 2018	M895707	RH	524830		Brown sandy - shaley talus soil below station RH18-007.		0.0054	0.413
soil	August 27 2018	M895708	RH	524847	6780863	Loamy gritty soil, abundant shale - calcite vein pieces. Ok sample.		0.0049	0.29
						Ok brown soil, talus of fissile orange weathering weakly calcareous brown siltstone, rare			
soil	August 27 2018	M895709	RH	524634	6780649	clacite veining. Avg fissile shale 280/70N		0.0207	0.279
						Ok brown soil, talus of fissile orange weathering weakly calcareous brown siltstone, rare			
soil	August 27 2018	M895710	RH	524450	6780131	clacite veining. S1 268/70N		0.0366	0.285
						Loamy (ash?) siltstone with orange brown weakly calcareous siltstone fragments. Ok			
						sample below outcrop. O/c of fissile shale, usual orange brown weathering brown			
						calcareous siltstone, photo with ob on topo shale, ghrey shale approx 50m to west on			
soil	August 27 2018	M895711	RH	524292	6780286	ridge top. S1 280/65N.		0.0058	0.191
soil	August 27 2018	M895712	RH	524177	6780425	Ok sample, brown loamy with calcite veined brown weakly calcareous siltstone.		0.0059	0.238
						Brown pebbly soil, brown weathering weakly calcareous siltstone, very rare mm calcite			
soil	August 27 2018	M895713	RH	524245	6780565	veining. S1 272/80N		0.0051	0.186
						Brown pebbly soil, brown weathering weakly calcareous siltstone, very rare calcite			
soil	August 27 2018	M895714	RH	524553	6780999	veining.		0.0024	0.185
soil	August 26 2018	M895751	DH	524366	6781045	Reddish brown, slightly clayey, at surface at top of knob		0.001	0.064
						Light brown, rocky soil, near subcrop of weakly calcareous siltstone; just east of (down			
soil	August 26 2018	M895752	DH	524568	6781031	from) crest of ridge		0.0023	0.09
						Thin orangy-brown soil horizon between organics and bedrock; slightly clayey on shallow			
soil	August 26 2018	M895753	DH	524149	6780951	slope at south end of little knob		0.0002	0.064
						Brown soil with angular rx fragments on o/c at top of ridge, near occurrence of			
soil	August 26 2018	M895754	DH	523384	6781096	carbonate breccia-vein (in o/c); 15 cm wide zone of mm- to cm-veinlets		0.0027	0.146
						Reddish brown soil (with some ash?) on top of ridge at end of open section; above o/c of			
soil	August 26 2018	M895755	DH	523679	6781240	orange-weathering fissile calcareous siltstone. S ₁ : 318/75		0.01	0.506
soil	August 26 2018	M895756	DH	524275	6781069	Brown soil with angular rock chips, on slope.		0.0014	0.111
soil	August 26 2018	M895757	DH	524299		Orangy-brown soil at base of slope below o/c		0.0031	
soil	August 27 2018	M895758	DH	524834		Brown soil at surface, above ash-rich horizon	5743		
soil	August 27 2018	M895759	DH	524769		Light brown talus fines at base of o/c, below rx sample M895805	5754		
						Brown talus fine at side of small knoll at valley bottom, next to pond. Float of orange-			
soil	August 27 2018	M895760	DH	524690	6780884	weathering siltstone and of some carbonate breccia-vein material	5755	0.004	0.183

	Al	As	В	Ва	Ве	Bi	Са	Cd	Ce	Со	Cr	Cs	Cu	Fe	Ga	Ge	Hf	Hg	In	К	La
ID_soil	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm
M895701	1.13	9.5	10	350	0.6	0.099	1.85	0.281	24.6	20.7	22.8	0.491	73.5	3.6	4.25	0.071	0.085	0.087	0.039	0.16	12.4
M895702	1.59	7.31	<10	183	0.48	0.108	0.55	0.226	20.3	14.2	22.4	0.552	47.4	3.13	5.34	0.054	0.09	0.03	0.03	0.16	12.4
M895703	1.21	10.35	10	203	0.4	0.109	3.86	0.211	18	14.1	24.7	0.297	59.8	3.04	4.33	0.051	0.087	0.035	0.031	0.14	9.62
M895704	0.67	4.75	10	162.5	0.5	0.094	5.55	0.284	19.25	16.35	24.1	1.365	82.4	3.84	3.03	0.065	0.093	0.038	0.044	0.13	10.7
M895705	0.94	19.05	10	273	0.5	0.076	3.4	0.295	19.35	25.2	20.5	0.676	93.2	4.81	3.28	0.065	0.07	0.07	0.046	0.2	9.87
M895706	1.09	7.9	10	157	0.49	0.076	1.43	0.19	27.4	21.3	25.3	0.258	76.3	4.55	3.67	0.068	0.076	0.091	0.037	0.15	14.85
M895707	1.56	11.7	10	300	0.58	0.077	4.59	0.271	17.25	20	24.2	0.593	95	3.91	6.43	0.067	0.111	0.044	0.039	0.18	11.4
M895708	1.82	8.03	10	204	0.41	0.078	5.9	0.27	14.2	19.4	31.6	0.745	106.5	4.55	6.94	0.067	0.101	0.053	0.045	0.17	8.73
M895709	1.26	15.7	10	360	0.57	0.185	1.14	0.28	18.6	18.7	21.3	1.32	75.1	3.16	3.66	0.055	0.089	0.069	0.032	0.2	9.12
M895710	0.77	7.84	10	283	0.39	0.212	1.4	0.36	32.8	14.65	15.1	0.509	104.5	2.82	2.6	0.066	0.066	0.105	0.033	0.12	17.6
M895711	0.97	6.01	10	184.5	0.37	0.131	5.39	0.277	18	17.3	30.2	0.541	116.5	4.56	4.13	0.068	0.051	0.035	0.046	0.19	9.58
M895712	0.5	41.1	10	327	0.4	0.084	5.64	0.238	10.2	19.75	17.5	1.185	101	4.84	1.22	0.046	0.027	0.144	0.044	0.15	4.83
M895713	1.45	10.7	10	375	0.32	0.093	0.79	0.115	18.6	13.95	22.8	1.61	35.7	2.84	3.83	0.038	0.072	0.05	0.025	0.17	8.76
M895714	1.25	7.02	10	322	0.41	0.087	0.58	0.326	16.05	13.65	16.1	0.679	56.8	3.16	3.45	0.042	0.103	0.035	0.026	0.18	9.42
M895751	1.34	5.05	<10	133	0.47	0.103	0.42	0.08	16.1	10.1	20.3	0.525	32.9	2.7	4.12	0.044	0.07	0.02	0.024	0.06	8.98
M895752	1.1	4.75	<10	107.5	0.39	0.116	1.51	0.131	15.7	11.4	27.4	0.407	47.3	2.86	3.44	0.041	0.073	0.027	0.027	0.13	8.08
M895753	1.53	2.95	<10	73	0.38	0.083	0.27	0.094	8.42	11.45	23.5	0.678	26.8	2.45	5.36	0.029	0.037	0.019	0.025	0.07	3.58
M895754	1.38	8.81	<10	183.5	0.63	0.121	0.67	0.118	22.7	15.6	25.8	0.543	46.2	3.23	3.92	0.05	0.08	0.04	0.029	0.15	10.8
M895755	0.95	6.55	10	192	0.52	0.104	1.92	0.172	13.4	17.05	27.2	0.758	120.5	4.37	2.56	0.055	0.066	0.101	0.044	0.14	7.96
M895756	1.45	5.59	<10	189	0.63	0.108	0.56	0.158	27.2	16.65	21.5	0.396	53.6	2.73	4.2	0.061	0.105	0.021	0.025	0.23	13.8
M895757	1.23	5.84	<10	225	0.81	0.129	0.42	0.164	30.8	19.1	19.2	0.493	65	3.17	3.61	0.07	0.107	0.026	0.029	0.16	19.5
M895758	1.91	6.52	10	94.7	0.38	0.046	4.28	0.163	14.05	21.9	27.2	0.193	87.9	4.51	7	0.058	0.076	0.046	0.038	0.18	7.53
M895759	1.36	9.99	10	169.5	0.4	0.085	4.53	0.292	14.85	20.8	31.5	0.723	98	4.54	5.38	0.074	0.07	0.032	0.043	0.19	7.98
M895760	0.72	22	10	177	0.39	0.084	3.66	0.228	11.75	19.5	14.1	0.421	87.2	3.96	1.67	0.05	0.059	0.081	0.04	0.16	5.91

	Li	Mg	Mn	Мо	Na	Nb	Ni	Р	Pb	Pd	Pt	Rb	Re	S	Sb	Sc	Se	Sn	Sr	Та	Те
ID_soil	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm
M895701	9.5	0.54	1085	0.68	0.012	0.216	29.2	0.105	8.11	0.012	0.002	6.29	<0.001	0.08	0.357	9.67	0.9	0.36	80.7	< 0.005	0.05
M895702	14.4	0.38	667	1.15	0.016	0.554	20.5	0.046	6.96	<0.001	<0.002	8.3	<0.001	0.02	0.336	10.2	0.3	0.32	43.8	<0.005	0.03
M895703	11.9	0.69	429	1.22	0.016	0.401	25.9	0.053	7.8	0.004	0.002	5.55	0.001	0.04	0.538	7.89	0.6	0.25	140	<0.005	0.05
M895704	5.2	0.72	580	0.76	0.014	0.102	29.1	0.102	6.63	0.008	0.002	7.62	0.002	0.09	0.366	9.98	1.2	0.33	151	<0.005	0.05
M895705	6	0.72	963	3.55	0.011	0.136	31.3	0.112	7.75	0.009	0.003	6.72	<0.001	0.07	0.471	12.2	0.9	0.29	156	<0.005	0.04
M895706	6.5	0.41	812	0.7	0.012	0.234	29.8	0.056	7.49	0.005	<0.002	6.43	<0.001	0.04	0.262	14.15	0.7	0.31	102.5	<0.005	0.03
M895707	15.4	0.96	718	0.7	0.013	0.155	23.5	0.11	8.42	0.006	0.002	6.91	<0.001	0.07	0.321	8.82	0.9	0.26	134	<0.005	0.05
M895708	22.4	1.24	600	0.75	0.013	0.08	28.6	0.09	6.11	0.004	0.002	6.83	0.001	0.04	0.396	12.5	1.1	0.3	159.5	<0.005	0.06
M895709	7.2	0.53	988	2.04	0.017	0.41	26.9	0.082	16.95	0.006	<0.002	11.3	<0.001	0.07	0.503	7.42	0.9	0.31	82.5	<0.005	0.1
M895710	4	0.34	868	1.6	0.017	0.172	20.8	0.105	20.2	0.002	<0.002	7.64	<0.001	0.07	0.441	5.06	1	0.34	80.3	<0.005	0.19
M895711	7.3	0.81	668	1.14	0.019	0.063	32	0.1	9.87		<0.002		<0.001	0.04	0.455	12.25	1.3			<0.005	0.11
M895712	1.8	1.67	725	0.85	0.009	0.035	34.7	0.086	7.29	0.007	0.002	5.34	0.001	0.01	0.819	15.65	1	0.2	313	<0.005	0.06
M895713	8.5	0.36	666	0.58	0.016	0.585	23.6	0.035	5.92	0.004	<0.002	10.95	<0.001	0.01	0.439	13.3	0.4	0.32	99.9	<0.005	0.02
M895714	7.4	0.32	694	0.92	0.022	0.325	21.6	0.078	6.08		<0.002		< 0.001	0.04			0.4			<0.005	0.04
M895751	5.9	0.25	366	0.72	0.016	0.453	16.5	0.017	6.4	<0.001	<0.002	5.9	<0.001	0.01	0.209	5.37	0.3	0.29	26.2	<0.005	0.04
M895752	6.8	0.32	331	0.79	0.012	0.611	21.8	0.029	7.11	<0.001	0.005	7.4	<0.001	0.03	0.237	6.67	0.4	0.31	36.6	< 0.005	0.04
M895753	16.3	0.61	238	0.82	0.017	0.36	17.25	0.026	5.23	<0.001	<0.002	1.11	<0.001	0.02	0.237	3.59	0.2	0.35	14.65	< 0.005	0.03
N 4005 75 4		0.22	F 2 7	0.00	0.010	0.46	26.0	0.020	7 70	-0.001	.0.002	10	-0.001	0.02	0.20	10.2	0.5	0.00	02.4	-0.005	0.02
M895754	8.4	0.32	537	0.89	0.012	0.46	26.8	0.029	7.76	<0.001	<0.002	10	<0.001	0.03	0.29	10.2	0.5	0.36	82.1	<0.005	0.03
M895755	5.3	0.39	448	0.82	0.012	0.24	31	0.045	7.12		0.002	8.05	<0.001	0.04			0.9	0.28	91.7	<0.005	0.06
M895756	12.5	0.32	633	0.62	0.014	0.56	23	0.029	7.29		<0.002		<0.001	0.01			0.3			<0.005	0.03
M895757	10.6	0.24	644	0.67	0.014	0.416	30.9	0.043	10.25		<0.002		<0.001	0.02	0.289	8.42	0.5			<0.005	0.03
M895758	27.3	1.3	642	0.57	0.012	0.142	26.3	0.061	3.92	0.007	0.002	5.69			0.229	11.3	0.8			<0.005	0.04
M895759	14.4	1.26	708	1.08	0.011	0.205	31.7	0.093	6.44	0.004	<0.002	7.05	<0.001	0.05	0.471	12.15	0.9	0.3	146	<0.005	0.07
M895760	4.9	0.76	624	0.64	0.008	0.125	28.1	0.065	5.58	0.005	0.002	6.38	<0.001	0.05	0.285	11.9	0.7	0.22	202	<0.005	0.04

	Th	Ti	TI	U	V	W	Y	Zn	Zr	
ID_soil	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	Certificate
						_			_	
M895701	0.86	0.006	0.141	0.23	-	0.113	14.85	92.8		WH18212711
M895702	1.645	0.021	0.104	0.511	63	0.138	15.7	63.8	2.72	WH18212711
M005702	1.2	0.021	0 112	0.225	FO 1	0.201	11.05	F0 F	2 62	MU140242744
M895703	1.3	0.021		0.325		0.361	11.05	59.5		WH18212711
M895704	0.82	0.004		0.513		0.164	14.25	103.5		WH18212711
M895705	0.91	0.004		0.288		0.073	14.45	108.5	-	WH18212711
M895706	1.235	0.004		0.173		0.112	19.7	74.5	-	WH18212711
M895707	0.682	0.006		0.245		0.127	15.65	95.6		WH18212711
M895708	0.847	0.004	0.075	0.324	88.7	0.124	14.3	97.6	1.95	WH18212711
M895709	0.756	0.02	0.278	0.287	53.3	0.134	15.05	92.6	2.73	WH18212711
M895710	0.647	0.014	0.19	0.301	46.9	0.289	15	110.5	1.99	WH18212711
M895711	0.974	0.004	0.09	0.444	85.7	0.254	15	120	1.33	WH18212711
M895712	0.961	0.001	0.078	0.398	62	0.129	11.75	99.1	0.96	WH18212711
M895713	1.82	0.024	0.162	0.239	49.5	0.144	11.6	43.4	2.22	WH18212711
M895714	0.966	0.017	0.105	0.344	49.8	0.086	11.4	79.3	3.39	WH18212711
M895751	1.27	0.014	0.065	0.302	56.2	0.106	7.95	38.6	2.3	WH18212711
M895752	1.47	0.028	0.065	0.245	60.2	0.222	7.7	45.1	1.93	WH18212711
M895753	0.581	0.015	0.061	0.227	62.4	0.1	2.26	59	1.01	WH18212711
M895754	1.805	0.011	0.097	0.407	65.1	0.129	16.1	40.7	2.65	WH18212711
M895755	1.27	0.004	0.082	0.321	78.7	0.131	18.05	63.8	2.05	WH18212711
M895756	2.37	0.022	0.069	0.437	50.7	0.13	13.9	55.4	3.33	WH18212711
M895757	2.74	0.013	0.082	0.581	52.9	0.145	15.6	69.7	3.11	WH18212711
M895758	0.754	0.005	0.037	0.182	91.8	0.081	13.4	78	1.87	WH18212711
M895759	0.989	0.012	0.103	0.386	92.2	0.121	13.1	105	1.77	WH18212711
M895760	0.909	0.002	0.059	0.209	62	0.099	12.1	70.4	1.59	WH18212711

Туре	Date	ID_Stn	UTM_E	UTM_N	Description	photo
station	August 26 2018	18DH-100	524211	6781048	Limb of folded silty and sandy layers. S ₀ : 150/62, S ₁ : 304/85	
station	August 26 2018	18DH-101	524122	6780947	Calcareous siltstone	
station	August 26 2018	18DH-102	523833	6781005	Orange-weathering and pervasively orange-altered mudstone/siltstone, weakly calcareous	
station	August 26 2018	18DH-103	523957	6780917	Outcrop of orange-brown-weathering siltstone, pervasive brown alteration	
station	August 27 2018	18DH-104	524614	6780810	o/c in steep moss-covered slope of finely cleaved grey-weathering calcareous siltstone (limestone?); dark grey-black on fresh surface. S_1 : 240°/5 °; S_2 curved jointing: 320°/20°	5756
station	August 26 2018	RH18001	524128	6780947	Glacial scoured knob, typical NW trend, Grey calcareous siltstone sub outcrop and scree. More massive siltstone cross cut by occasional white calcite veinlets.	
station	August 26 2018	RH18002	523924	6780994	Bedded siltstone, fine shistose siltst - mudst and coarser more compentent beds. Discontinuous calcite veining = 1cm - 4 cm wide (see M895801) vuggy calcite, minor shale fragments, local crustiform texture. Photo looking down ridge with orange weathering fissile calcareous siltstone. S0 320/65E, S1 335/75E, fold axis plung to north, 1-4 cm calcite vein (M895801) 089/90 traced 4 m, discontinuos </= 1cm calcite veinlets 115/90, calcite veinlets on joints 075/85N.</td <td></td>	
station	August 26 2018	RH18003	523853	6780975	West side of gully from stn 002, orange - brown weathering brown weakly calcareous siltstone x/c by rare 1-2 mm calcite and lesser qtz veinlets, S1 317/85E crosscutting more 'horizontal' veinlets with dips <20 deg.	
station	August 26 2018	RH18004	524098	6781030	Brown weathering - drak grey weakly calcareous mudstone - siltstone, moss covered o/c.	
station	August 27 2018	RH18005	524735	6781168	Small <0.5m o/c of dull brown - grey weathering brown very weakly calcareous siltstone. On margin with orange weathering grey - brown very very weakly calcareous siltstone to south. S1 010/25E	
station	August 27 2018	RH18006	524852	6781193	Top of cliff edge trending about 120 deg of orange weathering brown weakly calcareous siltstone, Fold hinge 125/60, S1 125/55W & S1 034/54S.	
station	August 27 2018	RH18007	524830	6781056	O/C on large 'hump' in clearing, grey brown weathering brown siltstone, very weakly calcareous. Nose of fold, cleavage perpendicular to bedding, S1 278/58N, calcite veinlets 102/52S, Joint 016/90 spaced 10-20 cm. S0 155/55-70W (approx 20m E of photo).	5749
station	August 27 2018	RH18008	524788	6780965	Orange brown weathering, brown weakly calcareous brown siltstone. S1 (S0?) 103/46S.	
station	August 27 2018	RH18009	524850	6780893	Minor fold in green - grey weathering siltstone, approx 1cm beds, photo. Fold axis hinge 355/50, S0 000/60E, 1cm banded calcite vein 320/85N.	
station	August 27 2018	RH18010	524791	6780741	Top of cliff o/c of orange brown weathering weakly calcareous (?) brown siltstone, x/c by occassional mm calcite veinlets, fractured, blocky, boring o/c Pan photo of ridge looking approx n, stn 008, 009.	
station	August 27 2018	RH18011	524690	6780741	2x 10 m o/c of orange brown o/c of brown weakly calcareous siltstone. Very lensey beds on 0.1-0.01m scale. x/c by clacite veinlets on jnts. S1 (=S0?) lensey 224/40W, jnts and cal veinlets 088/38S.	
station	August 27 2018	RH18012	524583	6780519	thin bedded (?) = 0.5cm orange - brown weatheing brown weakly calcareous siltstone. S1 272/75N</td <td></td>	
station	August 27 2018	RH18013	524478	6780420	approx 20m ENE of Stn, orange - brown weatheing brown weakly calcareous fissile thin bedded(?) siltstone.	
station	August 27 2018	Aaa-CAMP	524577	6781140	camp site	

APPENDIX B

Analytical Certificates

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: HULSTEIN, ROGER 106 WILSON DR. WHITEHORSE YT Y1A 5R2

Page: 1 Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 25- SEP- 2018 This copy reported on 26- SEP- 2018 Account: HULROG

CERTIFICATE WH18212701

Project: Teslin Mtn

This report is for 10 Rock samples submitted to our lab in Whitehorse, YT, Canada on 29- AUG- 2018.

The following have access to data associated with this certificate:

DANIELE HEON

ROGER HULSTEIN

	SAMPLE PREPARATION
ALS CODE	DESCRIPTION
WEI- 21	Received Sample Weight
LOG- 21	Sample logging - ClientBarCode
CRU- QC	Crushing QC Test
CRU- 31	Fine crushing - 70% < 2mm
SPL- 21	Split sample - riffle splitter
PUL- 31	Pulverize split to 85% < 75 um
L	

	ANALYTICAL PROCEDURES	
ALS CODE	DESCRIPTION	INSTRUMENT
ME- ICP41 Au- ICP21	35 Element Aqua Regia ICP- AES Au 30g FA ICP- AES Finish	ICP- AES ICP- AES

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

***** See Appendix Page for comments regarding this certificate *****

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: HULSTEIN, ROGER 106 WILSON DR. WHITEHORSE YT Y1A 5R2

Page: 2 - A Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 25- SEP- 2018 Account: HULROG

Project: Teslin Mtn

Sample Description	Method Analyte Units LOD	WEI- 21 Recvd Wt. kg 0.02	Au- ICP21 Au ppm 0.001	ME- ICP41 Ag ppm 0.2	ME- ICP41 Al % 0.01	ME- ICP41 As ppm 2	ME- ICP41 B ppm 10	ME- ICP41 Ba ppm 10	ME- ICP41 Be ppm 0.5	ME- ICP41 Bi ppm 2	ME- ICP41 Ca % 0.01	ME- ICP41 Cd ppm 0.5	ME- ICP41 Co ppm 1	ME- ICP41 Cr ppm 1	ME- ICP41 Cu ppm 1	ME- ICP41 Fe % 0.01
M895801		0.75	0.002	<0.2	0.25	<2	<10	170	<0.5	<2	21.1	<0.5	2	5	9	3.42
M895802		1.15	<0.001	<0.2	0.49	15	10	340	0.5	<2	18.4	<0.5	9	10	36	4.46
M895803		0.66	<0.001	<0.2	0.20	2	<10	580	0.6	<2	20.9	<0.5	3	3	7	3.41
M895804		1.44	<0.001	<0.2	0.37	76	10	150	<0.5	<2	20.7	<0.5	4	6	16	4.13
M895805		0.47	<0.001	<0.2	0.33	2	<10	180	<0.5	<2	19.8	<0.5	3	6	15	3.54
M895806		1.05	<0.001	<0.2	0.16	3	<10	580	0.6	<2	21.6	<0.5	3	3	3	3.00
M895807		0.42	0.007	<0.2	1.39	11	<10	120	<0.5	<2	0.75	<0.5	2	17	11	3.20
M895651		0.90	<0.001	<0.2	0.82	3	10	330	0.6	2	4.67	<0.5	11	21	62	3.15
M895652		1.29	0.002	<0.2	0.79	28	10	60	<0.5	<2	7.8	<0.5	11	15	50	3.94
M895653		1.40	0.001	<0.2	0.66	19	10	70	<0.5	<2	7.1	<0.5	6	12	34	3.10

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: HULSTEIN, ROGER 106 WILSON DR. WHITEHORSE YT Y1A 5R2

Page: 2 - B Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 25- SEP- 2018 Account: HULROG

Project: Teslin Mtn

Sample Description	Method Analyte Units LOD	ME- ICP41 Ga ppm 10	ME- ICP41 Hg ppm 1	ME- ICP41 K % 0.01	ME- ICP41 La ppm 10	ME- ICP41 Mg % 0.01	ME- ICP41 Mn ppm 5	ME- ICP41 Mo ppm 1	ME- ICP41 Na % 0.01	ME- ICP41 Ni ppm 1	ME- ICP41 P ppm 10	ME- ICP41 Pb ppm 2	ME- ICP41 S % 0.01	ME- ICP41 Sb ppm 2	ME- ICP41 Sc ppm 1	ME- ICP41 Sr ppm 1
M895801		<10	<1	0.06	10	7.06	1190	<1	<0.01	5	120	<2	0.02	<2	6	3650
M895802		<10	<1	0.07	10	4.74	1310	<1	0.02	13	330	<2	0.13	<2	8	1700
M895803		<10	<1	0.02	<10	8.95	662	<1	0.01	7	90	<2	0.02	<2	2	2620
M895804		<10	<1	0.04	10	6.94	1140	<1	0.02	11	190	<2	0.07	<2	5	1490
M895805		<10	<1	0.05	<10	8.55	643	<1	0.04	13	150	<2	0.03	<2	3	1305
M895806		<10	<1	0.01	10	8.65	834	<1	0.02	6	80	<2	0.01	<2	2	3200
M895807		10	<1	0.14	10	1.31	633	2	0.10	3	1140	4	1.27	<2	7	124
M895651		<10	<1	0.16	10	1.26	524	<1	0.04	16	910	11	0.08	<2	8	235
M895652		<10	<1	0.07	<10	2.74	842	1	0.01	12	70	14	0.04	<2	8	565
M895653		<10	<1	0.06	<10	2.57	715	1	0.01	7	80	11	0.04	<2	5	462

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: HULSTEIN, ROGER 106 WILSON DR. WHITEHORSE YT Y1A 5R2

Page: 2 - C Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 25- SEP- 2018 Account: HULROG

Project: Teslin Mtn

Sample Description	Method Analyte Units LOD	ME- ICP41 Th ppm 20	ME- ICP41 Ti % 0.01	ME- ICP41 TI ppm 10	ME- ICP41 U ppm 10	ME- ICP41 V ppm 1	ME- ICP41 W ppm 10	ME- ICP41 Zn ppm 2	
M895801		<20	<0.01	<10	<10	17	<10	16	
M895802		<20	<0.01	<10	<10	55	<10	50	
M895803		<20	<0.01	<10	<10	25	<10	24	
M895804		<20	<0.01	<10	<10	38	<10	24	
M895805		<20	<0.01	<10	<10	46	<10	30	
M895806		<20	<0.01	<10	<10	22	<10	18	
M895807		<20	0.16	<10	<10	80	<10	51	
M895651		<20	<0.01	<10	<10	59	<10	72	
M895652		<20	<0.01	<10	<10	66	<10	87	
M895653		<20	<0.01	<10	<10	46	<10	76	

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: HULSTEIN, ROGER 106 WILSON DR. WHITEHORSE YT Y1A 5R2

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 25- SEP- 2018 Account: HULROG

Project: Teslin Mtn

		CERTIFICATE CON	IMENTS	
		LABOR	ATORY ADDRESSES	
Applies to Method:	Processed at ALS Whitehorse locate CRU- 31 WEI- 21	ed at 78 Mt. Sima Rd, Whiteh CRU- QC	orse, YT, Canada. LOG- 21	SPL- 21
Applies to Method:	Processed at ALS Vancouver locate Au- ICP21	d at 2103 Dollarton Hwy, No ME- ICP41	rth Vancouver, BC, Canada. PUL- 31	

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: HULSTEIN, ROGER 106 WILSON DR. WHITEHORSE YT Y1A 5R2

Page: 1 Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 19- SEP- 2018 Account: HULROG

CERTIFICATE WH18212711

Project: Teslin Mtn

This report is for 24 Soil samples submitted to our lab in Whitehorse, YT, Canada on 29- AUG- 2018.

The following have access to data associated with this certificate:

DANIELE HEON

ROGER HULSTEIN

	SAMPLE PREPARATION
ALS CODE	DESCRIPTION
WEI- 21	Received Sample Weight
LOG- 21	Sample logging - ClientBarCode
SCR- 41	Screen to - 180um and save both
	ANALYTICAL PROCEDURES
ALS CODE	DESCRIPTION
ME- MS41L	Super Trace Lowest DL AR by ICP- MS

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

***** See Appendix Page for comments regarding this certificate *****

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: HULSTEIN, ROGER 106 WILSON DR. WHITEHORSE YT Y1A 5R2

Page: 2 - A Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 19- SEP- 2018 Account: HULROG

Project: Teslin Mtn

Sample Description	Method	WEI- 21	ME- MS41L													
	Analyte	Recvd Wt.	Au	Ag	Al	As	B	Ba	Be	Bi	Ca	Cd	Ce	Co	Cr	Cs
	Units	kg	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm
	LOD	0.02	0.0002	0.001	0.01	0.01	10	0.5	0.01	0.001	0.01	0.001	0.003	0.001	0.01	0.005
M895751		0.37	0.0010	0.064	1.34	5.05	<10	133.0	0.47	0.103	0.42	0.080	16.10	10.10	20.3	0.525
M895752		0.26	0.0023	0.090	1.10	4.75	<10	107.5	0.39	0.116	1.51	0.131	15.70	11.40	27.4	0.407
M895753		0.39	0.0002	0.064	1.53	2.95	<10	73.0	0.38	0.083	0.27	0.094	8.42	11.45	23.5	0.678
M895754		0.41	0.0027	0.146	1.38	8.81	<10	183.5	0.63	0.121	0.67	0.118	22.7	15.60	25.8	0.543
M895755		0.35	0.0100	0.506	0.95	6.55	10	192.0	0.52	0.104	1.92	0.172	13.40	17.05	27.2	0.758
M895756		0.37	0.0014	0.111	1.45	5.59	<10	189.0	0.63	0.108	0.56	0.158	27.2	16.65	21.5	0.396
M895757		0.43	0.0031	0.152	1.23	5.84	<10	225	0.81	0.129	0.42	0.164	30.8	19.10	19.20	0.493
M895758		0.24	0.0032	0.171	1.91	6.52	10	94.7	0.38	0.046	4.28	0.163	14.05	21.9	27.2	0.193
M895759		0.42	0.0030	0.188	1.36	9.99	10	169.5	0.40	0.085	4.53	0.292	14.85	20.8	31.5	0.723
M895760		0.36	0.0040	0.183	0.72	22.0	10	177.0	0.39	0.084	3.66	0.228	11.75	19.50	14.10	0.421
M895701		0.34	0.0129	0.332	1.13	9.50	10	350	0.60	0.099	1.85	0.281	24.6	20.7	22.8	0.491
M895702		0.28	0.0028	0.123	1.59	7.31	<10	183.0	0.48	0.108	0.55	0.226	20.3	14.20	22.4	0.552
M895703		0.32	0.0035	0.162	1.21	10.35	10	203	0.40	0.109	3.86	0.211	18.00	14.10	24.7	0.297
M895704		0.33	0.0046	0.169	0.67	4.75	10	162.5	0.50	0.094	5.55	0.284	19.25	16.35	24.1	1.365
M895705		0.37	0.0065	0.246	0.94	19.05	10	273	0.50	0.076	3.40	0.295	19.35	25.2	20.5	0.676
M895706		0.35	0.0081	0.378	1.09	7.90	10	157.0	0.49	0.076	1.43	0.190	27.4	21.3	25.3	0.258
M895707		0.40	0.0054	0.413	1.56	11.70	10	300	0.58	0.077	4.59	0.271	17.25	20.0	24.2	0.593
M895708		0.26	0.0049	0.290	1.82	8.03	10	204	0.41	0.078	5.90	0.270	14.20	19.40	31.6	0.745
M895709		0.32	0.0207	0.279	1.26	15.70	10	360	0.57	0.185	1.14	0.280	18.60	18.70	21.3	1.320
M895710		0.35	0.0366	0.285	0.77	7.84	10	283	0.39	0.212	1.40	0.360	32.8	14.65	15.10	0.509
M895711		0.32	0.0058	0.191	0.97	6.01	10	184.5	0.37	0.131	5.39	0.277	18.00	17.30	30.2	0.541
M895712		0.41	0.0059	0.238	0.50	41.1	10	327	0.40	0.084	5.64	0.238	10.20	19.75	17.50	1.185
M895713		0.36	0.0051	0.186	1.45	10.70	10	375	0.32	0.093	0.79	0.115	18.60	13.95	22.8	1.610
M895714		0.30	0.0024	0.185	1.25	7.02	10	322	0.41	0.087	0.58	0.326	16.05	13.65	16.10	0.679

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: HULSTEIN, ROGER 106 WILSON DR. WHITEHORSE YT Y1A 5R2

Page: 2 - B Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 19- SEP- 2018 Account: HULROG

Project: Teslin Mtn

Sample Description	Method	ME- MS41L														
	Analyte	Cu	Fe	Ga	Ge	Hf	Hg	In	K	La	Li	Mg	Mn	Mo	Na	Nb
	Units	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm
	LOD	0.01	0.001	0.004	0.005	0.002	0.004	0.005	0.01	0.002	0.1	0.01	0.1	0.01	0.001	0.002
M895751		32.9	2.70	4.12	0.044	0.070	0.020	0.024	0.06	8.98	5.9	0.25	366	0.72	0.016	0.453
M895752		47.3	2.86	3.44	0.041	0.073	0.027	0.027	0.13	8.08	6.8	0.32	331	0.79	0.012	0.611
M895753		26.8	2.45	5.36	0.029	0.037	0.019	0.025	0.07	3.58	16.3	0.61	238	0.82	0.017	0.360
M895754		46.2	3.23	3.92	0.050	0.080	0.040	0.029	0.15	10.80	8.4	0.32	537	0.89	0.012	0.460
M895755		120.5	4.37	2.56	0.055	0.066	0.101	0.044	0.14	7.96	5.3	0.39	448	0.82	0.012	0.240
M895756		53.6	2.73	4.20	0.061	0.105	0.021	0.025	0.23	13.80	12.5	0.32	633	0.62	0.014	0.560
M895757		65.0	3.17	3.61	0.070	0.107	0.026	0.029	0.16	19.50	10.6	0.24	644	0.67	0.014	0.416
M895758		87.9	4.51	7.00	0.058	0.076	0.046	0.038	0.18	7.53	27.3	1.30	642	0.57	0.012	0.142
M895759		98.0	4.54	5.38	0.074	0.070	0.032	0.043	0.19	7.98	14.4	1.26	708	1.08	0.011	0.205
M895760		87.2	3.96	1.670	0.050	0.059	0.081	0.040	0.16	5.91	4.9	0.76	624	0.64	0.008	0.125
M895701		73.5	3.60	4.25	0.071	0.085	0.087	0.039	0.16	12.40	9.5	0.54	1085	0.68	0.012	0.216
M895702		47.4	3.13	5.34	0.054	0.090	0.030	0.030	0.16	12.40	14.4	0.38	667	1.15	0.016	0.554
M895703		59.8	3.04	4.33	0.051	0.087	0.035	0.031	0.14	9.62	11.9	0.69	429	1.22	0.016	0.401
M895704		82.4	3.84	3.03	0.065	0.093	0.038	0.044	0.13	10.70	5.2	0.72	580	0.76	0.014	0.102
M895705		93.2	4.81	3.28	0.065	0.070	0.070	0.046	0.20	9.87	6.0	0.72	963	3.55	0.011	0.136
M895706		76.3	4.55	3.67	0.068	0.076	0.091	0.037	0.15	14.85	6.5	0.41	812	0.70	0.012	0.234
M895707		95.0	3.91	6.43	0.067	0.111	0.044	0.039	0.18	11.40	15.4	0.96	718	0.70	0.013	0.155
M895708		106.5	4.55	6.94	0.067	0.101	0.053	0.045	0.17	8.73	22.4	1.24	600	0.75	0.013	0.080
M895709		75.1	3.16	3.66	0.055	0.089	0.069	0.032	0.20	9.12	7.2	0.53	988	2.04	0.017	0.410
M895710		104.5	2.82	2.60	0.066	0.066	0.105	0.033	0.12	17.60	4.0	0.34	868	1.60	0.017	0.172
M895711		116.5	4.56	4.13	0.068	0.051	0.035	0.046	0.19	9.58	7.3	0.81	668	1.14	0.019	0.063
M895712		101.0	4.84	1.220	0.046	0.027	0.144	0.044	0.15	4.83	1.8	1.67	725	0.85	0.009	0.035
M895713		35.7	2.84	3.83	0.038	0.072	0.050	0.025	0.17	8.76	8.5	0.36	666	0.58	0.016	0.585
M895714		56.8	3.16	3.45	0.042	0.103	0.035	0.026	0.18	9.42	7.4	0.32	694	0.92	0.022	0.325

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: HULSTEIN, ROGER 106 WILSON DR. WHITEHORSE YT Y1A 5R2

Page: 2 - C Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 19- SEP- 2018 Account: HULROG

Project: Teslin Mtn

	Method	ME- MS41L	ME- MS41L	ME- MS41L	ME- MS41L	ME- MS41L	ME- MS41L	ME- MS41L	ME- MS41L	ME- MS41L	ME- MS41L	ME- MS41L	ME- MS41L	ME- MS41L	ME- MS41L	ME- MS41L
Sample Description	Analyte Units LOD	Ni ppm 0.04	P % 0.001	Pb ppm 0.005	Pd ppm 0.001	Pt ppm 0.002	Rb ppm 0.005	Re ppm 0.001	S % 0.01	Sb ppm 0.005	Sc ppm 0.005	Se ppm 0.1	Sn ppm 0.01	Sr ppm 0.01	Ta ppm 0.005	Те ррт 0.01
M895751 M895752		16.50 21.8	0.017 0.029	6.40 7.11	<0.001 <0.001	<0.002 0.005	5.90 7.40	<0.001 <0.001	0.01 0.03	0.209 0.237	5.37 6.67	0.3 0.4	0.29 0.31	26.2 36.6	<0.005 <0.005	0.04 0.04
M895753 M895754 M895755		17.25 26.8 31.0	0.026 0.029 0.045	5.23 7.76 7.12	<0.001 <0.001 0.007	<0.002 <0.002 0.002	7.77 10.00 8.05	<0.001 <0.001 <0.001	0.02 0.03 0.04	0.237 0.290 0.370	3.59 10.20 16.65	0.2 0.5 0.9	0.35 0.36 0.28	14.65 82.1 91.7	<0.005 <0.005 <0.005	0.03 0.03 0.06
M895756 M895757		23.0 30.9	0.029	7.29 10.25	0.002 <0.001	<0.002 <0.002	9.04 7.80	<0.001 <0.001	0.01 0.02	0.226 0.289	9.06 8.42	0.3 0.5	0.35 0.33	43.3 40.0	<0.005 <0.005	0.03 0.03
M895758 M895759 M895760		26.3 31.7 28.1	0.061 0.093 0.065	3.92 6.44 5.58	0.007 0.004 0.005	0.002 <0.002 0.002	5.69 7.05 6.38	0.001 <0.001 <0.001	0.03 0.05 0.05	0.229 0.471 0.285	11.30 12.15 11.90	0.8 0.9 0.7	0.29 0.30 0.22	102.0 146.0 202	<0.005 <0.005 <0.005	0.04 0.07 0.04
M895701 M895702 M895703		29.2 20.5 25.9	0.105 0.046 0.053	8.11 6.96 7.80	0.012 <0.001 0.004	0.002 <0.002 0.002	6.29 8.30 5.55	<0.001 <0.001 0.001	0.08 0.02 0.04	0.357 0.336 0.538	9.67 10.20 7.89	0.9 0.3 0.6	0.36 0.32 0.25	80.7 43.8 140.0	<0.005 <0.005 <0.005	0.05 0.03 0.05
M895705 M895704 M895705		29.1 31.3	0.102 0.112	6.63 7.75	0.008 0.009	0.002 0.003	7.62 6.72	0.002 <0.001	0.09 0.07	0.366 0.471	9.98 12.20	1.2 0.9	0.33 0.29	151.0 156.0	<0.005 <0.005	0.05 0.04
M895706 M895707 M895708		29.8 23.5 28.6	0.056 0.110 0.090	7.49 8.42 6.11	0.005 0.006 0.004	<0.002 0.002 0.002	6.43 6.91 6.83	<0.001 <0.001 0.001	0.04 0.07 0.04	0.262 0.321 0.396	14.15 8.82 12.50	0.7 0.9 1.1	0.31 0.26 0.30	102.5 134.0 159.5	<0.005 <0.005 <0.005	0.03 0.05 0.06
M895709 M895710		26.9 20.8	0.082 0.105	16.95 20.2	0.006 0.002	<0.002 <0.002	11.30 7.64	<0.001 <0.001	0.07 0.07	0.503 0.441	7.42 5.06	0.9 1.0	0.31 0.34	82.5 80.3	<0.005 <0.005	0.10 0.19
M895711 M895712 M895713 M895714		32.0 34.7 23.6 21.6	0.100 0.086 0.035 0.078	9.87 7.29 5.92 6.08	0.004 0.007 0.004 0.001	<0.002 0.002 <0.002 <0.002	8.48 5.34 10.95 8.74	<0.001 0.001 <0.001 <0.001	0.04 0.01 0.01 0.04	0.455 0.819 0.439 0.378	12.25 15.65 13.30 7.69	1.3 1.0 0.4 0.4	0.40 0.20 0.32 0.26	105.0 313 99.9 66.4	<0.005 <0.005 <0.005 <0.005	0.11 0.06 0.02 0.04

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: HULSTEIN, ROGER 106 WILSON DR. WHITEHORSE YT Y1A 5R2

Page: 2 - D Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 19- SEP- 2018 Account: HULROG

Project: Teslin Mtn

Sample Description	Method Analyte Units LOD	ME- MS41L Th ppm 0.002	ME- MS41L Ti % 0.001	ME- MS41L Tl ppm 0.002	ME- MS41L U ppm 0.005	ME- MS41L V ppm 0.1	ME- MS41L W ppm 0.001	ME- MS41L Y ppm 0.003	ME-MS41L Zn ppm 0.1	ME- MS41L Zr ppm 0.01	
M895751 M895752 M895753 M895754 M895755		1.270 1.470 0.581 1.805 1.270	0.014 0.028 0.015 0.011 0.004	0.065 0.065 0.061 0.097 0.082	0.302 0.245 0.227 0.407 0.321	56.2 60.2 62.4 65.1 78.7	0.106 0.222 0.100 0.129 0.131	7.95 7.70 2.26 16.10 18.05	38.6 45.1 59.0 40.7 63.8	2.30 1.93 1.01 2.65 2.05	
M895756 M895757 M895758 M895759 M895760		2.37 2.74 0.754 0.989 0.909	0.022 0.013 0.005 0.012 0.002	0.069 0.082 0.037 0.103 0.059	0.437 0.581 0.182 0.386 0.209	50.7 52.9 91.8 92.2 62.0	0.130 0.145 0.081 0.121 0.099	13.90 15.60 13.40 13.10 12.10	55.4 69.7 78.0 105.0 70.4	3.33 3.11 1.87 1.77 1.59	
M895701 M895702 M895703 M895704 M895705		0.860 1.645 1.300 0.820 0.910	0.006 0.021 0.021 0.004 0.004	0.141 0.104 0.113 0.083 0.180	0.230 0.511 0.325 0.513 0.288	67.2 63.0 59.1 69.1 74.3	0.113 0.138 0.361 0.164 0.073	14.85 15.70 11.05 14.25 14.45	92.8 63.8 59.5 103.5 108.5	2.48 2.72 2.62 1.62 2.07	
M895706 M895707 M895708 M895709 M895710		1.235 0.682 0.847 0.756 0.647	0.004 0.006 0.004 0.020 0.014	0.093 0.091 0.075 0.278 0.190	0.173 0.245 0.324 0.287 0.301	83.7 73.0 88.7 53.3 46.9	0.112 0.127 0.124 0.134 0.289	19.70 15.65 14.30 15.05 15.00	74.5 95.6 97.6 92.6 110.5	2.45 2.96 1.95 2.73 1.99	
M895711 M895712 M895713 M895714		0.974 0.961 1.820 0.966	0.004 0.001 0.024 0.017	0.090 0.078 0.162 0.105	0.444 0.398 0.239 0.344	85.7 62.0 49.5 49.8	0.254 0.129 0.144 0.086	15.00 11.75 11.60 11.40	120.0 99.1 43.4 79.3	1.33 0.96 2.22 3.39	

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: HULSTEIN, ROGER 106 WILSON DR. WHITEHORSE YT Y1A 5R2

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 19- SEP- 2018 Account: HULROG

Project: Teslin Mtn

	CERTIFICATE COMMENTS								
Applies to Method:	ANALYTICAL COMMENTS Gold determinations by this method are semi- quantitative due to the small sample weight used (0.5g). ME- MS41L								
Applies to Method:	LABORATORY ADDRESSES Processed at ALS Whitehorse located at 78 Mt. Sima Rd, Whitehorse, YT, Canada. LOG- 21 SCR- 41 WEI- 21								
Applies to Method:	Processed at ALS Vancouver located at 2103 Dollarton Hwy, North Vancouver, BC, Canada. ME- MS41L								