Kiev Project Focused Regional Exploration Report

Commodity:	Vanadium
Mining District:	Dawson
Lat & Long:	centered on 66.762° N, 136.337° W
Project Operator:	Tao Song
Author:	Tao Song, GIT
Work period:	June 4, 2019 – Mar 5, 2020
Submit Date:	Mar 19, 2020

TABLE OF CONTENTS

LIS	T OF FI	GURES	II
LIS	T OF T	ABLES	111
SU	MMAR	Υ	IV
1	INTE		. 1
2	ΙΝΙΤ	AL REGIONAL PROSPECTING JUN 4-12, 2019	. 2
	2.1	Sampling Procedures and Preparation	
	2.1	SAMPLING PROCEDURES AND PREPARATION	
	2.2	Conclusions of the Initial Regional Prospecting	_
3	CLAI	M STAKING AND PROPERTY DESCRIPTION	
	3.1	CLAIM STAKING	
	3.2	PROPERTY LOCATION AND DESCRIPTION	6
4	ACC	ESSIBILITY, CLIMATE, INFRASTRUCTURE AND PHYSIOGRAPHY	9
	4.1	Accessibility	9
	4.2	Сымате	9
	4.3	LOCAL RESOURCES AND INFRASTRUCTURES	9
	4.4	Physiography	1
5	HIST	ORY1	12
6	GEO	LOGICAL SETTING AND MINERALIZATION 1	12
	6.1	REGIONAL GEOLOGY	12
	6.2	CANOL FORMATION AND VANADIUM VALUES AT TRAIL RIVER	13
	6.3	PROPERTY GEOLOGY AND MINERALIZATION	L4
7	DEP	OSIT TYPES	15
8	EXPI	ORATION AUG 14-26, 2019	L7
	8.1	MINERAL CLAIM STAKING	17
	8.2	ROCK SAMPLING AND XRF CALIBRATION	17
	8.3	ROCK RESULTS ON AND IN VICINITY OF THE PROPERTY	18
	8.4	ROCK SAMPLES AT GP02, GP03, GP04 AND AROUND EAGLE PLAINS AREA	
	8.5	XRF TESTING ON HISTORIC DRILL CORES AT CORE LIBRARY	26
	8.6	INTERPRETATION	27
9	MET	ALLURGY	<u>29</u>
	9.1	COMPOSITE	<u>29</u>
	9.2	MINERALOGY	29
	9.3	PRELIMINARY LEACHING TEST	31
10	CON	CLUSION & RECOMMENDATION	33
RE	FEREN	ES	34
ST	ATEME	NT OF QUALIFICATION	35

APPENDIX I - ELIGIBLE EXPENSES	36
APPENDIX II - SAMPLE DESCRIPTION OF INITIAL REGIONAL PROSPECTING JUN 4-12, 2019	37
APPENDIX III - ASSAY CERTIFICATE OF INITIAL REGIONAL PROSPECTING JUN 4-12, 2019	39
APPENDIX IV - SAMPLE DESCRIPTION AND XRF RESULTS - EXPLORATION AUG 14-26, 2019	53
APPENDIX V - ASSAY CERTIFICATE OF K04	59
APPENDIX VI - XRF RESULTS OF NIMO SUN AND FOX DRILL CORES	66
APPENDIX VII - MINERALOGY REPORT BY BUREAU VERITAS	68
APPENDIX VIII - ACID LEACHING RESULTS	78

LIST OF FIGURES

LIST OF TABLES

Table 1. V ₂ O ₅ Values of Samples	2
Table 2. KV Claims and Grant Numbers	6
Table 3. Sample Number and Location Summary	17
Table 4. Core Samples collected at the Bostock Core Library	26
Table 5. Mineralogy Sample Assays	29
Table 6. Acid Leaching Conditions	31

SUMMARY

The Kiev project was aimed to evaluate the regional potential of black shale vanadium on the Canol Formation in northern Yukon. Field work was performed during the period of June -August 2019. Metallurgical test work and mineralogy studies were conducted from November 2019 to March 2020.

Vanadium mineralization was identified on surface by rock sampling. Subsequently, twenty mineral claims were staked to cover the mineralization over 4 kilometers. The mineralization is 40-200 meters wide and grades between 0.3 -0.5%. The property is 60 kilometers by road from Eagle Plains and 470 kilometers by road from Dawson City.

Rock samples that were collected on surface were made into a composite. Five acid leaching tests were performed to determine the recovery rate. The best leaching recovery is achieved at 86.4% by using 1:3 sulphuric acid at 90°C for 2 hours.

The exploration expenditure eligible for the YMEP is \$31068.15 (Appendix I). It is recommended to conduct more exploration on surface and downdip to define vanadium resources and carry out more metallurgical test to improve vanadium extraction rates.

1 INTRODUCTION

Kiev project is a regional exploration project that is targeted to identify vanadium mineralization in northern Yukon. The target region is shown in Figure 1. Two phases of field work were performed in 2019: 1) Jun 4-12, 2) Aug 14-26. The project is subsidized by Yukon Mineral Exploration Program (YMEP) in the focus regional module. This report is prepared by Tao Song to describe the exploration program and is submitted to YMEP for approval.

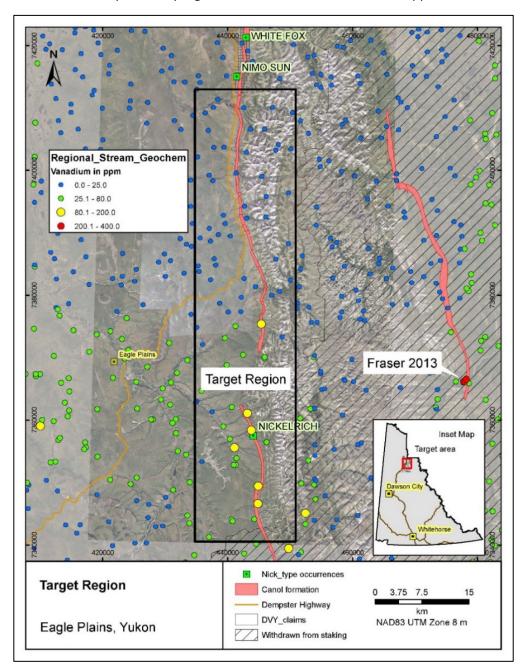


Figure 1. Vanadium Target Region

2 INITIAL REGIONAL PROSPECTING JUN 4-12, 2019

The initial regional prospecting was conducted during Jun 4-12, 2019. It was aimed to assess the vanadium mineralization on a regional scale and collect the local resources and infrastructure information for further planning. One-person crew travelled from Whitehorse to Eagle Plains which was then used as the daily base. The crew commutes by truck along Dempster Highway to the target region daily to perform the field work.

The prospecting program covers a strike length of 50 km with a focus on siliceous, noncalcareous, organic-rich black shale unit, which is known as Canol Formation. 34 rock samples and 6 soil samples were collected for chemical analyses.

2.1 Sampling Procedures and Preparation

The target region is largely covered by vegetations. Rock outcrops as mounds or at gravel pits. Rock chips are very angular, flaky to platy, in sizes of centimeters, common on mounds and interstitially exposed where vegetations are thin.

Rock samples were taken from gravel pits, road cuts, mounds or as floats. Each sample weighs about 0.5 kg and was placed into a labeled heavy-duty poly bag. Soil samples were taken from the near surface and are comprised of roughly 80% soil and 20% rock chips. Since the region has not undergone the glaciation, soil develops near its source rock and its assay results are considered representative of the geochemistry of local bedrocks. Therefore, soil samples were treated the same as rock samples. Sample locations were recorded by a handheld GPS. No samples were flagged in the field.

Samples were delivered by the crew to ALS Whitehorse for sample preparation using the code PREP-31. Samples were crushed to 70% less than 2mm, riffle split off 250 grams, and pulverized to 85% passing 75 microns. Prepared samples were sent to ALS Vancouver for chemical analyses using the 48-element four acid method ME-MS61.

2.2 Sample results

Samples returned V₂O₅ values in the range of 0.02% to 0.36%. Two rock samples have V₂O₅ values higher than 0.3% and four rock samples are between 0.2 and 0.3% V₂O₅ (Table 1).

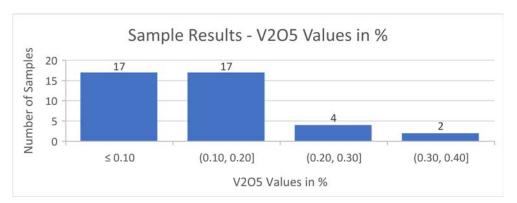


Table 1. V₂O₅ Values of Samples

Figure 3 and Figure 4 were plotted to display vanadium values over 50 km, namely Rock River North Section and Rock River South Section. Rock River North section hosts NiMo Sun and White Fox nickel occurrences. Rock River South section has two rock samples higher than 0.3% V₂O₅.

The soft flakey black shale was thought to contain high grade vanadium, but assay results disapprove it. Instead, a more competent deep black shale unit returned higher V₂O₅ numbers.

A chemical correlation analysis shows that Vanadium and Molybdenum have the best correlation.

Figure 2. S18 Sample Station - Flaky Shale

2.3 Conclusions of the Initial Regional Prospecting

Two higher grade rock samples (S16 and S17) were found on a mound south of Rock River. It became worthwhile to examine the vanadium occurrence in the next phase. In addition, in-field XRF testing should be conducted on samples to facilitate the identification of mineralized zones. Mineral claim staking shall be planned.

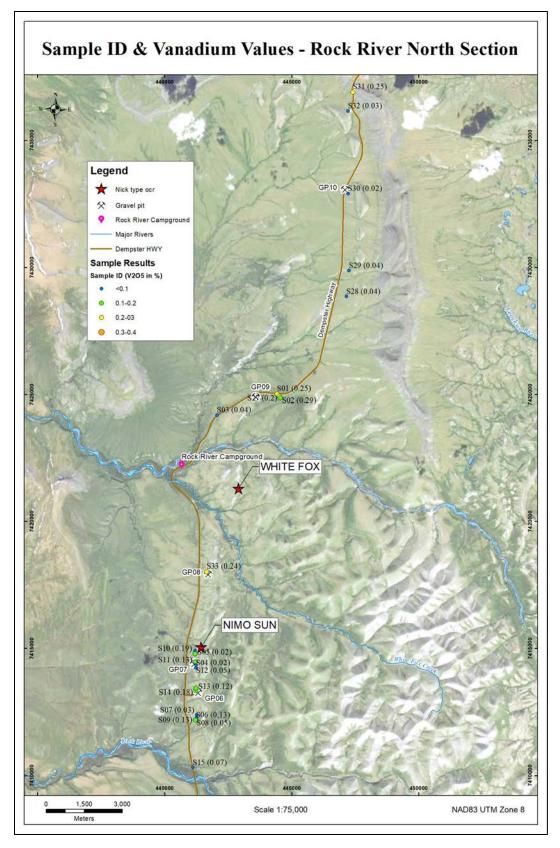


Figure 3. Sample Results in Rock River North Section

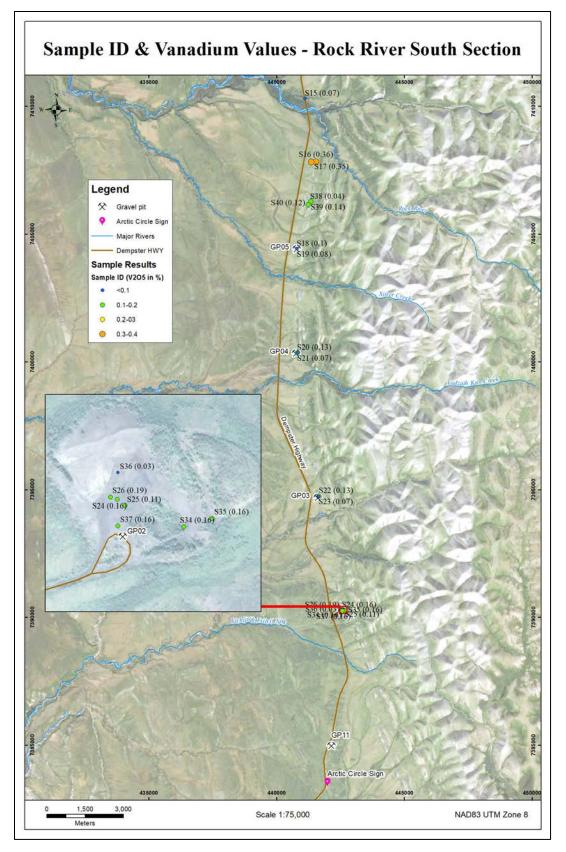


Figure 4. Figure 2. Sample Results in Rock River South Section

3 CLAIM STAKING AND PROPERTY DESCRIPTION

3.1 Claim Staking

Subsequent to the positive results of initial regional prospecting in June, 20 full-size contiguous mineral claims (KV19-KV38) were staked in August to cover the vanadium occurrence and mineralization extension (Table 2). These 20 mineral claims are collectively named the Kiev property, totalling 4.18 km² (Figure 6).

Claim staking was done by two-person crews. 20 mineral claims were staked. 18 of them were staked during Aug 18-19, 2019 and were recorded in the Dawson Mining Recorder office on Aug 21, 2019. 2 of them were staked on Aug 22, 2019 and were recorded in the Whitehorse Mining Recorder office on Aug 26, 2019.

3.2 Property Location and Description

Kiev property is located in northern Yukon, approximately 23 km by road north of the Arctic Circle Sign, 60 km by road north of Eagle Plains and 470 km by road north of Dawson City (Figure 5). The property is on the NTS map sheet 116I-16. The center of the property is at latitude 66°46′8″ N and longitude 136°20′7″ W in WGS 84 datum, equivalent to 441232 m Easting and 7406254 m Northing in NAD83 datum with UTM zone 8 projection.

The property is outside of the Class 1 notification area.

GRANT_NUM	TENURE	Claim Name	OWNER	EXPIRY_DAT
YF81679	Quartz	KV 19	Tao Song - 100%	2020-08-21
YF81680	Quartz	KV 20	Tao Song - 100%	2020-08-21
YF81681	Quartz	KV 21	Tao Song - 100%	2020-08-21
YF81682	Quartz	KV 22	Tao Song - 100%	2020-08-21
YF81683	Quartz	KV 23	Tao Song - 100%	2020-08-21
YF81684	Quartz	KV 24	Tao Song - 100%	2020-08-21
YF81685	Quartz	KV 25	Tao Song - 100%	2020-08-21
YF81686	Quartz	KV 26	Tao Song - 100%	2020-08-21
YF81687	Quartz	KV 27	Tao Song - 100%	2020-08-21
YF81688	Quartz	KV 28	Tao Song - 100%	2020-08-21
YF81689	Quartz	KV 29	Tao Song - 100%	2020-08-21
YF81690	Quartz	KV 30	Tao Song - 100%	2020-08-21
YF81691	Quartz	KV 31	Tao Song - 100%	2020-08-21
YF81692	Quartz	KV 32	Tao Song - 100%	2020-08-21
YF81693	Quartz	KV 33	Tao Song - 100%	2020-08-21
YF81694	Quartz	KV 34	Tao Song - 100%	2020-08-21
YF81695	Quartz	KV 35	Tao Song - 100%	2020-08-21
YF81696	Quartz	KV 36	Tao Song - 100%	2020-08-21
YF81697	Quartz	KV 37	Tao Song - 100%	2020-08-26
YF81698	Quartz	KV 38	Tao Song - 100%	2020-08-26

Table 2. KV Claims and Grant Numbers

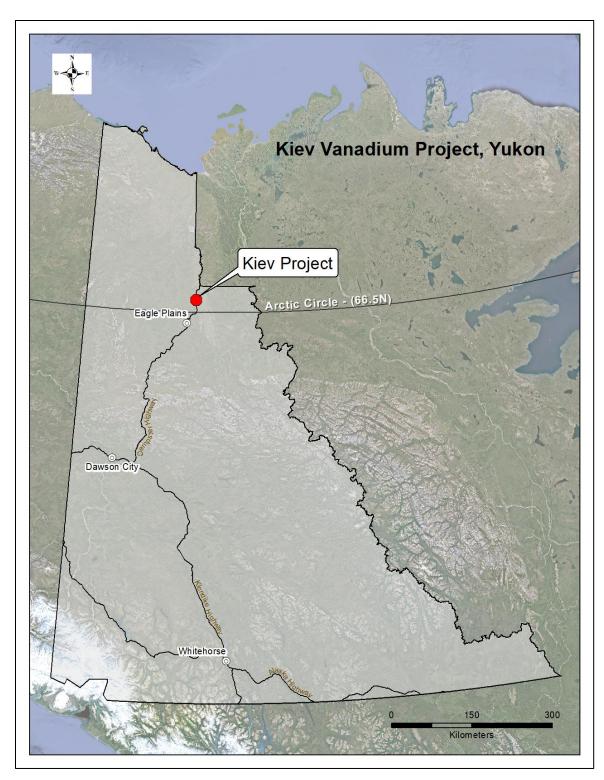


Figure 5. Kiev Property Location

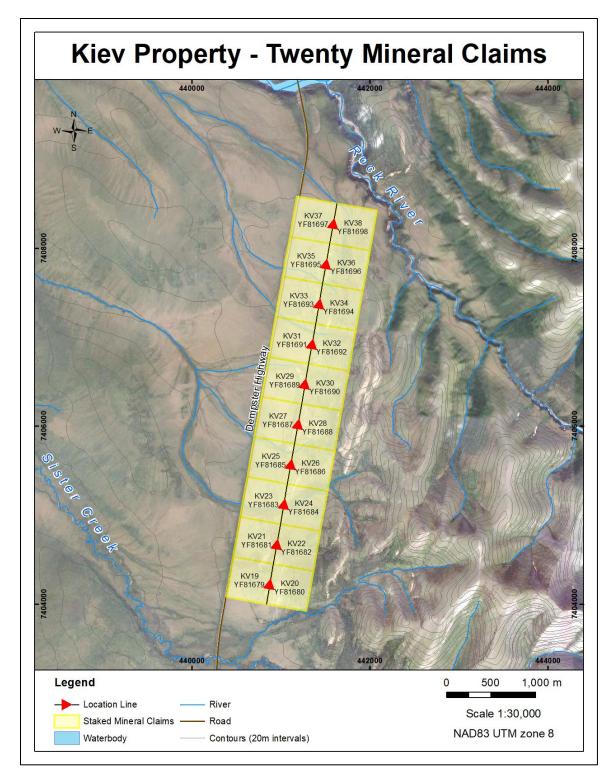


Figure 6. Kiev Mineral Claims

4 ACCESSIBILITY, CLIMATE, INFRASTRUCTURE AND PHYSIOGRAPHY

4.1 Accessibility

Dempster Highway runs along the entire length of the Kiev property. It is an all-weather yearround gravel road that connects the Canadian road network to Arctic Ocean. The entrance of Dempster Highway is near the Klondike Highway 674 km post and is 40 km east of Dawson City. Travel time from Dawson City to the Kiev property is approximately 6 hours over 470 km by road, and from Eagle Plains to the site is about 45 minutes over 60 km by road.

4.2 Climate

The mean annual temperature for the Eagle Plains area is -6.5°C with a summer mean of 10°C and a winter mean of -23.5°C. Mean annual precipitation ranges 400-450 mm.

4.3 Local Resources and Infrastructures

The closest supply station is Eagle Plains in Yukon, 60 km south of the property. It has a population of 10, and provides services of accommodation, restaurant, gas, car repairing and showing. The second closest supply station is Fort McPherson in NWT, on the east bank of Peel River. It has a population of 700, and has convenience stores, gas stations and accommodation facilities. Rock River Campground is 12 km north of the property.

Dawson City has a population of 1300-1400, the second largest town of Yukon. Two helicopter companies are based in Dawson. Dawson City is connected to the provincial power grids and is the northernmost that power grids extend.

Gravel pits are found along the highway. A total of eleven gravel pits from Eagle Plains to the Yukon border were numbered in the field for future reference.

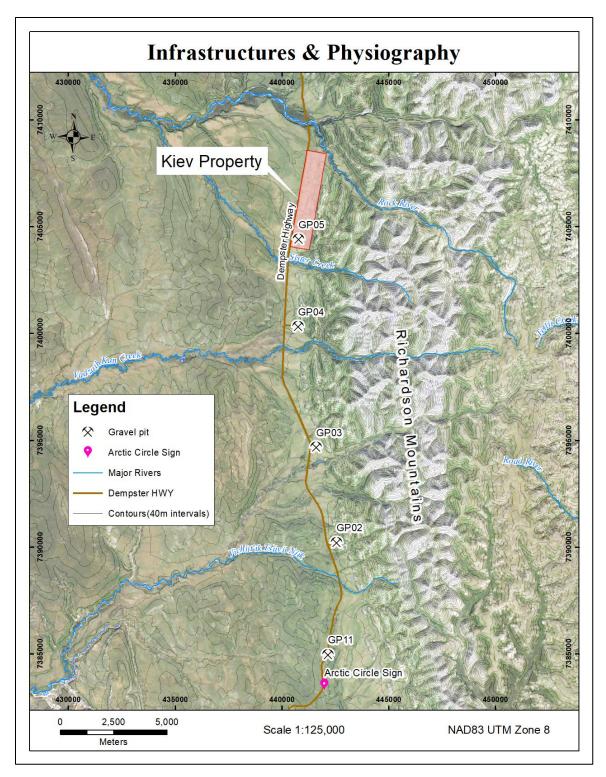


Figure 7. Infrastructure and Physiography

4.4 Physiography

The Kiev property is in the foothills of the western edge of Richardson Mountains. The main watercourses close to the property are Rock River to the north and Sister Creek to the south (Figure 7). The elevations on the property change mildly from 660 to 730 meters. A series of discontinuous mounds trending north was developed on the property and continue both north and south directions (Figure 8). To the east of the property, the elevation starts to gain from 700 to 1200 meters.

This region is classified as a high subarctic eco-climate. The vegetative cover of this ecoregion is subarctic forest. Open, often very stunted stands of black spruce and tamarack with secondary quantities of white spruce and ground cover of dwarf birch, willow, ericaceous shrubs, cotton grass, lichen, and moss, are predominant.

Figure 8. Discontinuous Mounds and Richardson Mountains

5 HISTORY

The Eagle Plains area was assessed for mineral potentials by Yukon Geological Survey in 1997 (Heon, 2006). One sample was taken on the Kiev property but returned low metal grades.

Shawn Ryan in 2005 explored for the Nick horizon in the vicinity of the property area. Fifteen soil samples north of Rock River returned V₂O₅ higher than 0.2%.

Strategic Metals staked the Fox and NiMo Sum property in 2006, 4 km north of the Kiev property. In 2007, seven diamond holes were drilled on NiMo Sun and White Fox showings to determine the downdip extension of the Nick horizon from surface. 50 samples were sent for analysis at ALS, and 30 of them contained more than $0.2\% V_2O_5$, the highest being 0.62%. Since Strategic Metals was focused on nickel and zinc, sampling was performed on the Nick horizon only. Vanadium was overlooked, and no samples were taken on high vanadium intervals.

NiMo Sun and White Fox claims expired in 2012 and Strategic Metals let them lapse. DVY196 staked these claims in 2018.

Oil was discovered in the Eagle Plain basin in 1959. Extensive exploration for petroleum was incurred in the 1960s, with 33 wells were drilled and hydrocarbon reserves defined (Osadetz, 2005). No production was made yet.

6 GEOLOGICAL SETTING AND MINERALIZATION

6.1 Regional Geology

The region is underlain by three lithological units: 1) Road River Group, 2) Canol Formation, 3) Imperial Formation. Canol Formation is a Middle-Upper Devonian dark grey to black, soft to very hard, non-calcareous black shale (Fraser, 2013). Imperial Formation is an Upper Devonian– Mississippian, marine, siliciclastic unit overlying the Canol Formation. Road River Group is a thick succession of calcareous shale unit underlying the Canol Formation (Fraser, 2013). The contact between the Canol Formation and Road River Group is marked by Ni-Zn-PGE mineralization, named Nick horizon.

The property lies along the western margin of the Richardson Mountains. Episodic reactivation of the Richardson Fault Array in Early and Middle Paleozoic formed a north- to northwest-trending intracratonic depression known as the Richardson Trough.

Richardson Mountains coincide with the location of the former early to middle Paleozoic Richardson trough (Lentz, 1972). The trough was a north-south oriented deep-water sedimentary basin flanked by carbonate shelves, Mackenzie Platform to the east and Porcupine Platform to the west (Jeletzky, 1962), that existed from Cambrian to Devonian time. The trough was inverted into a faulted, north-plunging anticlinorium by the reactivation of Paleozoic faults in Late Cretaceous and Tertiary time (Norris, 1997), resulting in the mountain range observed today.

6.2 Canol Formation and Vanadium Values at Trail River

Tiffani Fraser measured and analyzed a section of 261m along the Trail River in 2013. The returned results look appealing. Canol Formation outcrop is situated on the north bank of the Trail River, on the eastern flank of the Richardson Mountains.

The section starts from Road River Group, go to the Road River – Canol Transition zone, through the main body of the Canol Formation, into the Imperial Formation.

The Road River – Canol Transition zone is about 3 meters thick. It is known to contain the Nick horizon. Nick horizon is cherty, phosphorus, with elevated nickel and zinc. At the transition zone, vanadium content is elevated from 80 ppm to 600 ppm (Fraser, 2013). Highest vanadium values are found in the lower half of the Canol Formation and above the transition zone, 50-meter-thick averaging 0.22% V_2O_5 (Figure 9).

Road River Group and Imperial Formation contain vanadium values between 20 and 200ppm, significantly lower than Canol Formation, as shown in Figure 9.

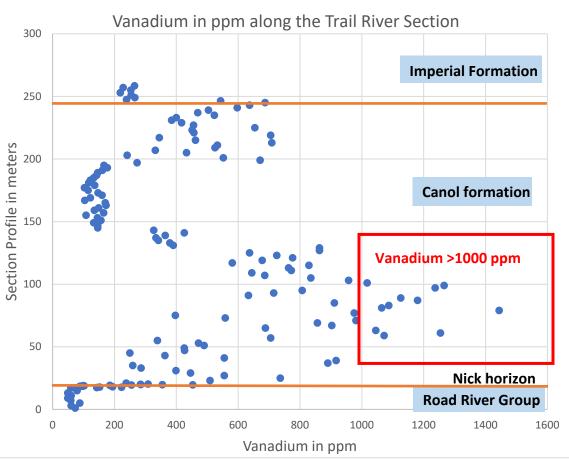


Figure 9. Vanadium Values along the Trail River Section

6.3 Property Geology and Mineralization

The property is underlain by Canol Formation that is characteristic of cherty organic rich noncalcareous black shale, dipping west 15-25°. Rocks are commonly sub-cropped on the ground and fragmented into centimeter scale angular platy pieces (Figure 10).

Cherty shale of the Canol Formation has varying silica content. The very bottom is almost grey to dark grey chert, containing vanadium lower than detection limit. It dips west at 60° and is

exposed on the north trending mountains to the east of the property. On top of the chert unit is dark grey to black organic rich cherty shale, hosting V_2O_5 in the range of 0.1 to 0.5%. When weathered, rock surface becomes light grey, with some dark grey color in background. Overlying the vanadium rich unit is cherty shale. This unit has a glass sound when it is dropped off on the ground hitting other rocks. This unit has high silica content and serves as a cap to protect the organic rich cherty shale unit. Discontinuous mounds are made of this competent unit, while the depression east of mounds is made of organic rich cherty shale, covered by vegetations. Nick horizon is stratigraphically a lower unit and was not found on the property. Figure 11 shows the sub-cropped dark grey cherty shale on discontinuous mounds (looking north).

Figure 10. Sub-cropped Cherty Shale

Within the organic rich cherty shale, vanadium values are high in the core and degrades upwards and downwards. This observation on the property is consistent analytical results at Trail River by Tiffani Fraser.

Figure 11. Dark Grey Cherty Shale (looking north)

7 DEPOSIT TYPES

There are four types of vanadium deposits identified in the world: 1) Ti-V magnetite, 2) sandstone hosted vanadium, 3) black shale hosted vanadium, and 4) vanadate.

Kiev prospect belongs to the category of black shale hosted vanadium. This type of deposits is also found in China, US, Australia, Sweden and Madagascar (Figure 12). China has a number of shale host vanadium projects in production.

Black shale vanadium deposits are believed to have formed by direct precipitation of vanadium from seawater. This method of mineralization is similar to the processes which form syngenetic copper or iron deposits. Typically, a restricted basin develops containing seawater, which was already enriched with vanadium. Over time, evaporation or deep-water stagnation enriches the vanadium content within a primarily reducing environment and the vanadium precipitates out as the siliceous sediments are deposited in a low energy environment. Vanadium is commonly bound with Fe or Mn oxides or with kerogen. Subsequent oxidation and remobilization of the vanadium can occur.

The vanadium is thought to have originally formed in a deep, restricted marine basin associated with the depositional environment of the western assemblage lithologies. It is interpreted that the vanadium was concentrated into laterally relatively continuous shale units by precipitation, absorption and evaporation processes as the restricted basin filled, evaporated and concentrated the seawater into salts.

The sedimentary environment was the primary control on mineralization. The mineralization is tabular, stratigraphically controlled and appears to follow the strike and dip of the host shale. The tabular body can be interpreted in two ways: 1) vanadium that leached out the host rock leads to a supergene zone, 2) vanadium deposition triggered by flourishing algae population as a result of significant phosphor supplies.

The vanadium-rich shale-hosted stratigraphic units are visually indistinguishable from the unmineralized shale units above and below. There do not appear to be any lithological or physical markers in the shale sequence which indicate areas of mineralization. All the mineralized zones shall be defined by chemical analysis.

Adsorption and precipitation under optimum environmental conditions must have been important in precipitating these constituents from sea water. Most of the anomalous organic shale deposits are marine. Some black shale contains multiple metals with elevated subeconomic to economic quantities. The majority of black shale in the world has no economically viable metal anomalies. The metals in black shale appear to have had little direct association or genetic affiliation with volcanism or hydrothermal processes. Much of the organic content is kerogen, and some shale bodies have been examined for hydrocarbon resources, such as Canol Formation and Road River Group. As far as known, anomalous organic or graphitic shale lithologies occur in every geologic era from the Precambrian to the Tertiary.

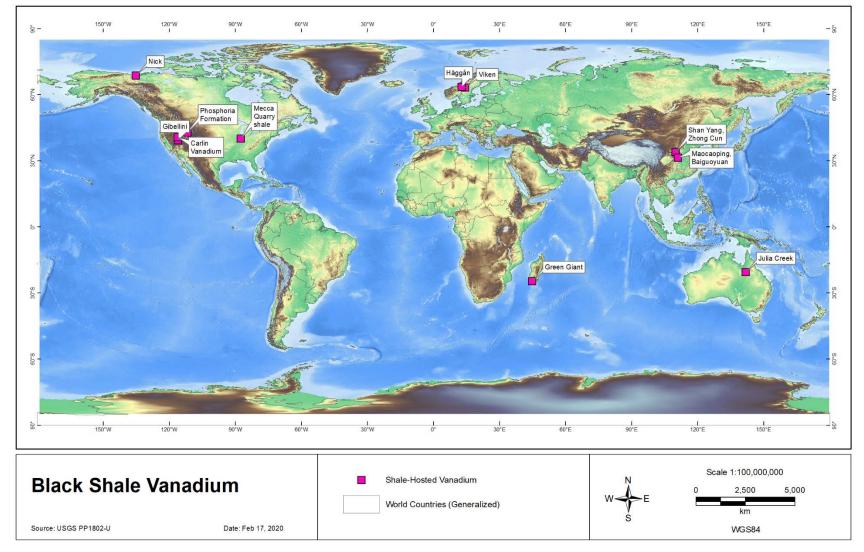


Figure 12. Black Shale Hosted Vanadium

8 EXPLORATION AUG 14-26, 2019

The second phase of exploration in the period of Aug 14-26, 2019 includes multiple activities: 1) claim staking, 2) prospecting and rock sampling, 3) geochemical analysis on drill cores by handheld XRF.

8.1 Mineral Claim Staking

Refer to Chapter 3.1 Claim Staking.

8.2 Rock Sampling and XRF Calibration

Samples were delivered by the crew to ALS Whitehorse for sample preparation using the code PREP-31. Samples were crushed to 70% less than 2mm, riffle split off 250 grams, and pulverized to 85% passing 75 microns. Prepared samples were sent to ALS Vancouver for chemical analyses using the 48-element four acid method ME-MS61.

A total of 124 rock samples were taken during the field work, as summarized in Table 3. Rock samples were placed into zip lock bags and were analyzed in the field by a handheld XRF for vanadium values. XRF was calibrated for vanadium by applying a formula, as described in chapter 8.3 XRF Calibration. Sample surface was cleaned for XRF reading. No crushing or grinding was applied to rock samples. Each sample received at least 2 readings, but only the first reading was recorded on the field book and Tyvek tag (Figure 13). Sample locations were recorded by a handheld GPS. No samples were flagged in the field.

Table 3. Sample Nu	mber and Location	Summary
--------------------	-------------------	---------

Location	Number of Samples
On property	98
Immediate to the property	17
Km away from property	27

Olympus Vanta XRF was hired to perform in-field geochemical analysis on rock samples. XRF is not a quantitative analysis, but when it is used properly, its values could be quantitative.

XRF calibration was performed on pulps from the 1st field trip in June. Pulps were prepared by ALS using the code Prep 31. V_2O_5 values from assay and XRF testing are plotted in Figure 14. A near perfect trend line is projected. No outliners exist. The formula y=1.6291x-11.554 is used to calibrate the XRF for field use.

The downside of XRF analysis is that it only reads on a small portion of rock and its values do not represent the whole rock. In the metallurgical test, surface rock samples were made into one composite returning $0.32\% V_2O_5$, 25% higher than that of the averaged XRF value of the same rocks ($0.254\% V_2O_5$). Even though XRF results are lower and less representative than those of four acid assaying, the immediate analytical results guide the exploration to the right direction.

Figure 13. Sample and Tyvek Tag with Vanadium Value

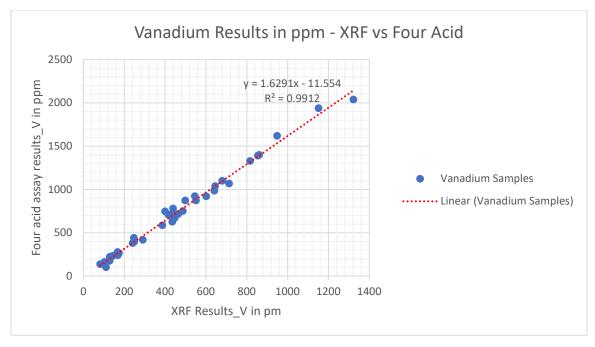


Figure 14. Vanadium Result Comparison - XRF vs Four Acid

8.3 Rock Results on and in vicinity of the Property

On the Kiev property, organic rich cherty shale that contains higher vanadium grades is largely weathered to form a low land valley. The valley is mostly covered by vegetations. Of 98 rock samples on property, 33 samples contain V_2O_5 between 0.2 and 0.3% and 9 samples contain V_2O_5 between 0.3 and 0.6% (Figure 15). High vanadium samples form a north trending line, fringed by lower grade more siliceous shale. The highest value is 0.55% V_2O_5 on the southern part of the property. Abundant rock samples that range from 0.2 to 0.4% are exposed on the northern part of the property, corresponding to subdued topography and well spread subcrop samples. Rock samples on the property or in the vicinity of the property was plotted in Figure 16.

Immediately to the east of the property is underlain by chert, returning vanadium values lower than detection limit. Immediately to the south of the property contains $V_2O_5 0.1$ -0.3% and is the continuation of the vanadium mineralization. High grade vanadium may be obscured by overburdens.

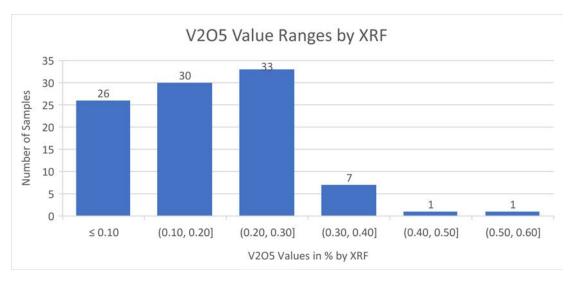
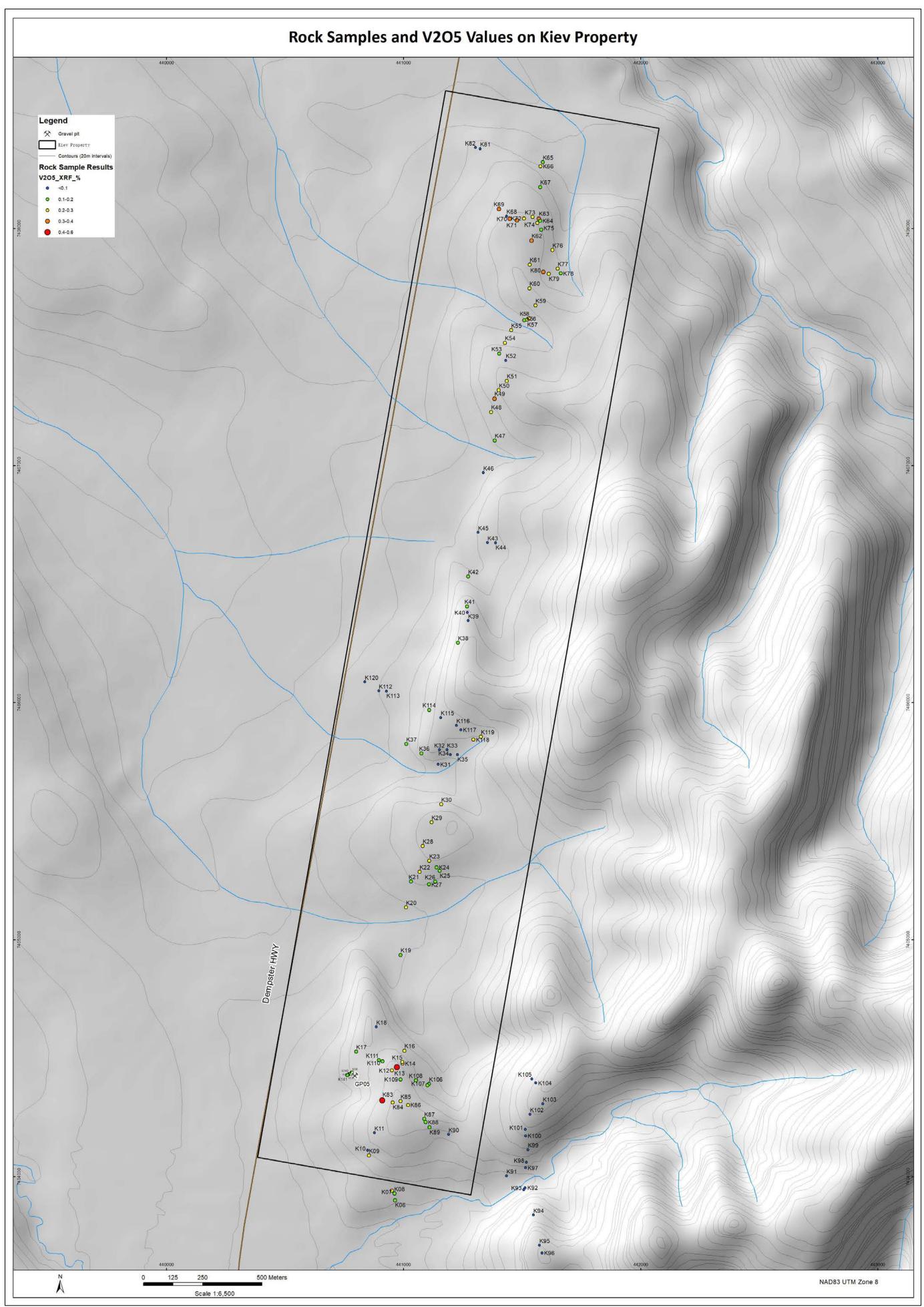



Figure 15. Vanadium Values of Rock Samples on Property by XRF

8.4 Rock Samples at GP02, GP03, GP04 and around Eagle Plains area During the regional prospecting, some rock samples were collected from the road cut, ground, or gravel pit. The results are generally low, with the highest values no more than 0.25% V₂O₅ at GP02. Sample locations and XRF results are plotted in Figure 17, Figure 18, Figure 19, Figure 20, and Figure 21, and are also available in Appendix IV.

One carbonate sample K04 returned 1856 ppm of Neodymium. Other carbonate samples returned a similar amount of Nd along with Ce, La, and Pr. K04 was sent to ALS Vancouver for rare earth analysis using lithium borate fusion (code ME-MS81) and whole rock analysis (code ME-ICP06). It is unfortunate that rare earth elements are less than 10 ppm (Appendix V). This rock is of sedimentary carbonate origin, instead of igneous carbonatite. This error originates from the inaccuracy of XRF testing.

Fgue16RatSamptsonPapertyardValues

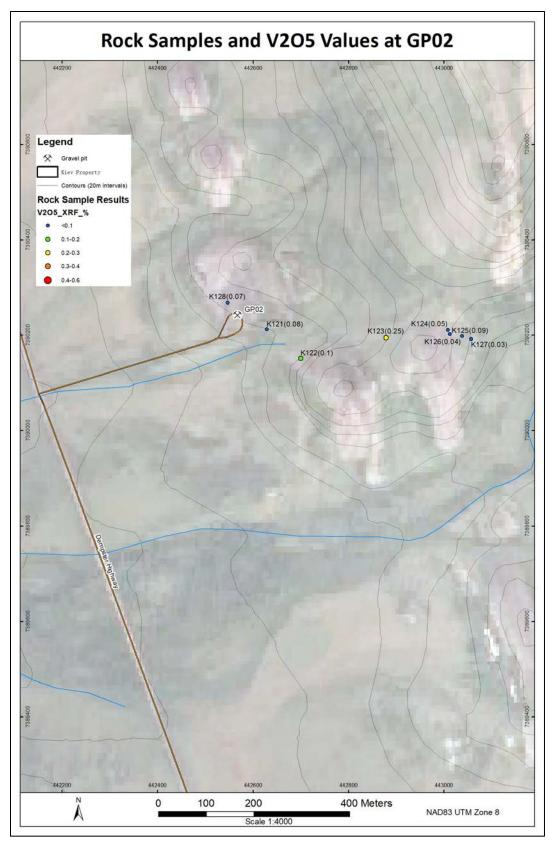


Figure 17. Rock Samples at GP02

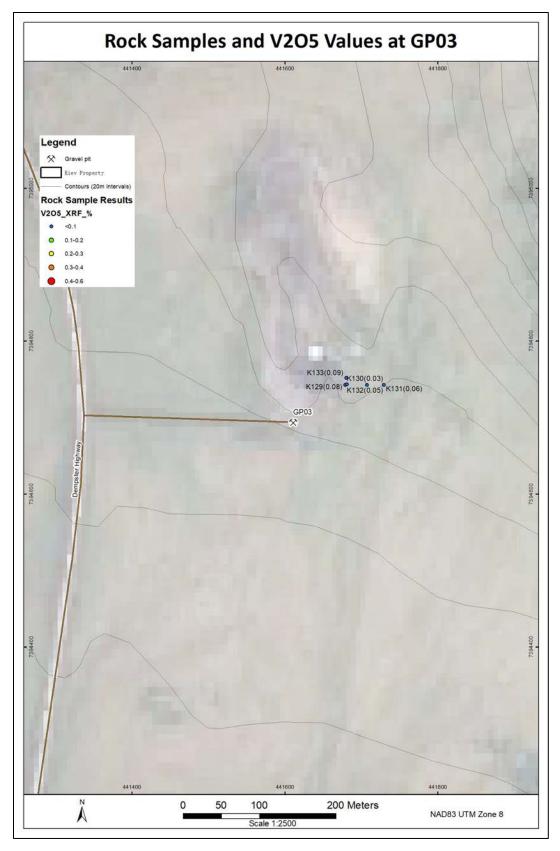


Figure 18. Rock Samples at GP03

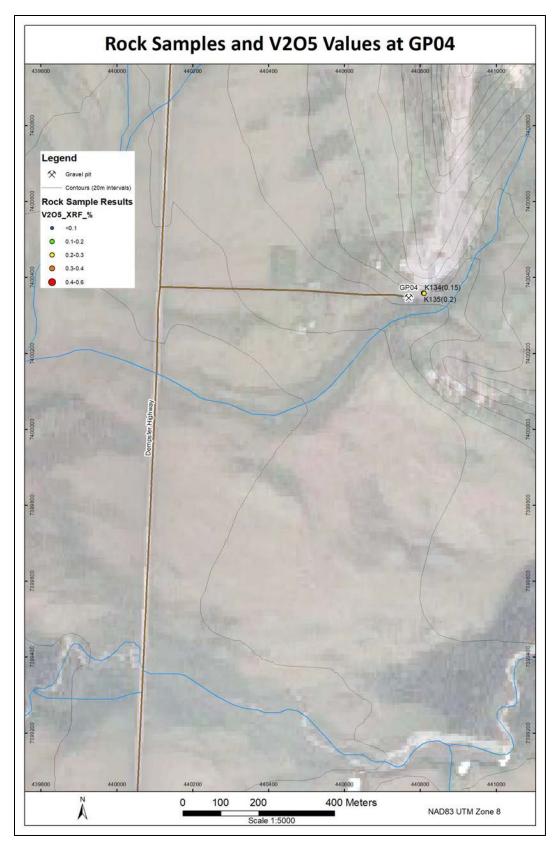


Figure 19. Rock Samples at GP04

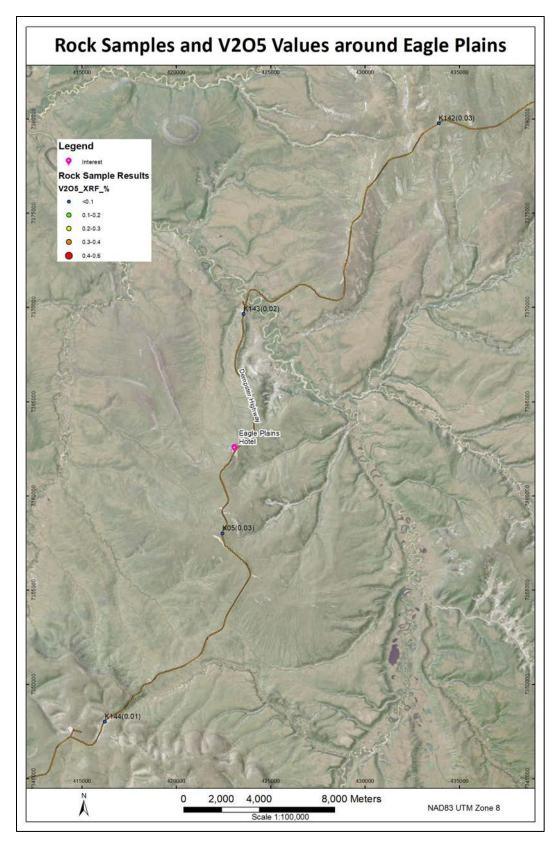


Figure 20. Rock Samples around Eagle Plains

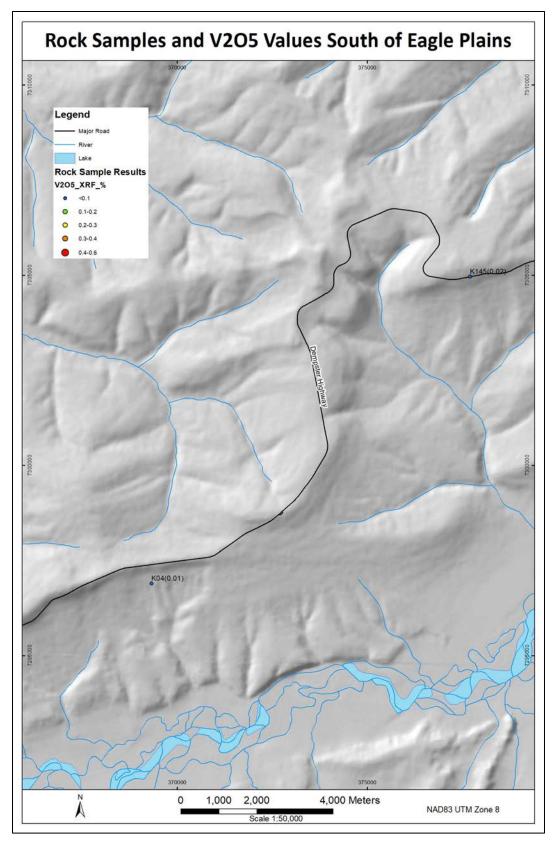


Figure 21. Rock Samples South of Eagle Plains

8.5 XRF Testing on Historic Drill Cores at Core Library

Cores from NiMo Sun and Fox properties were pulled out at the storage of the Bostock Core Library in Whitehorse. 57 boxes of drill core are available, of which the Fox property has 49 boxes and the Sun property only has 8 boxes. XRF testing was performed on each wood-blocked interval. XRF results are attached in Appendix VI.

In XRF testing, vanadium values of historic drill cores tend to be very inconsistent. Readings on the same piece of core but a few centimes away show vanadium values in a big difference. Six spot readings on the bedding plane returned V_2O_5 higher than 1%, but on the same piece of rock, spot reading on the core axis returned less than $0.1\% V_2O_5$. This sharp difference indicates high grade vanadium is located on beddings with softer rocks. Competent cherty units generally have much lower vanadium content. This also explains the reason that surface rock samples contain lower vanadium content than historic drill cores. Softer materials that are enriched in vanadium are more readily weathered away, making its vanadium values lower.

Five pieces of half core were collected from drill hole FX07-01. XRF readings gave quick vanadium values, one piece from BX2 returning the highest value at $1.95\% V_2O_5$ (Table 4). Half core samples from BX2 and BX4 were submitted for mineralogical studies.

Hole ID	From_m	To_m	Length	Box No.	$V_2O_5\%\ by\ XRF$
FX07-01	3.3	3.37	0.07	BX1	0.28
FX07-01	9	9.08	0.08	BX2	1.95
FX07-01	18.6	18.65	0.05	BX3	0.10
FX07-01	26.7	26.75	0.05	BX4	0.34
FX07-01	31.5	31.56	0.06	BX5	0.11

Table 4. Core Samples collected at the Bostock Core Library

8.6 Interpretation

Higher grade rock samples form a north trending linear structure, but due to its relative softness of organic rich cherty shale, they are found in a low land valley, covered by vegetations. Two high grade zones were defined by surface rock sampling on northern and southern parts of the property (Figure 22).

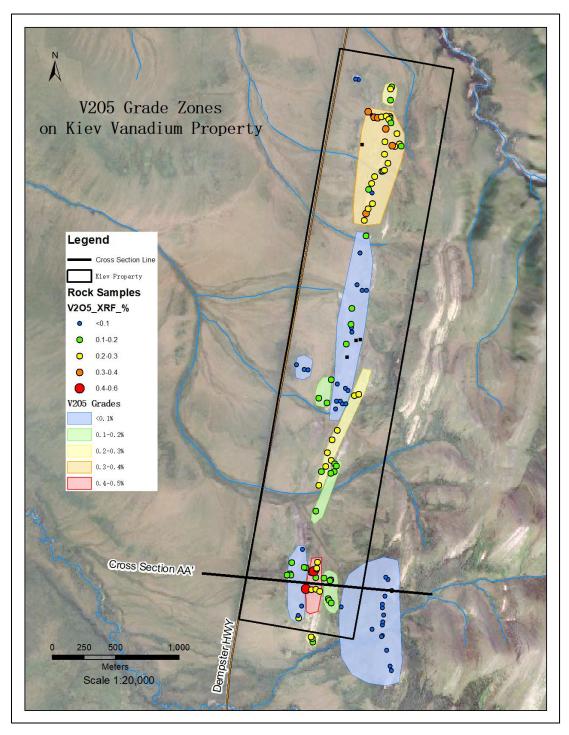


Figure 22. V₂O₅ Grade Zones

The averaged XRF spot values of 50 rock samples are 0.25% V₂O₅, about 25% lower than composited pulp values at Bureau Veritas (0.32%).

The vanadium enriched organic rich cherty shale unit forms a north trending core, about 40-200 meters wide, fringed by vanadium poor cherty unit on both sides, as illustrated in Figure 23.

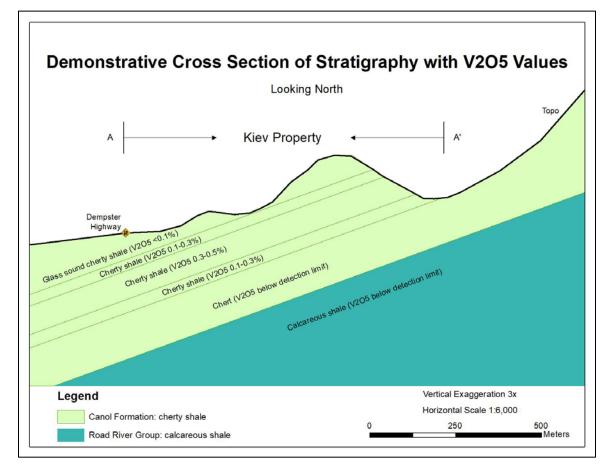


Figure 23. Demonstrative Cross Section of Stratigraphy and V_2O_5 Values

9 METALLURGY

Owing to the positive results from prospecting in August, preliminary metallurgical testwork was commissioned. Acid leaching test and mineralogical studies were undertaken by Bureau Veritas during the period of Nov 2019 to Mar 2020.

9.1 Composite

50 surface rock samples were submitted to Bureau Veritas for preliminary acid leaching test. They have V2O2 values from 0.14-0.55% and are weighed at about 7-8 kg. These samples were combined into one composite sample, crushed, and pulverized to 80% passing 42 microns. The composite was assayed at 0.32% V_2O_5 .

9.2 Mineralogy

Three samples were submitted for mineralogy studies, two samples (BX2 and BX4) from historic drill core (Table 4) and one sample from the composite of surface rock samples. Assays are shown in Table 5.

The composite represents rocks that are exposed on surface. BX2 was taken from drillhole FX07-01 at 9 meters down the hole. BX4 was taken from drillhole FX07-01 at 26.5 from the collar. Each sample represent a distinct oxidation state.

Sample ID	Al2O3	CaO	Fe2O3	MgO	SiO2	V2O5_%	ZnO
Composite	3.99	1.4	1.18	0.36	84.35	0.321	0.063
BX2	2.48	3.11	1.21	0.29	79.92	0.346	0.483
BX4	2.85	1.92	1.14	0.32	82.02	0.472	0.404

Table 5. Mineralogy Sample Assays

The Vanadium element of the composite is hosted in goethite, paramonoseite, alunite, muscovite, and tivanite in a decreasing order (Figure 24). In contrast, BX4 from greater depth has vanadium in alunite, tivanite, paramonoseite, muscovite and goethite in a decreasing order. Both BX2 and BX4 contain minor amount of vanadium in goethite, indicating a more reduced environment.

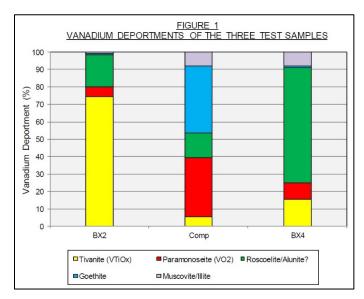


Figure 24. Vanadium Deportments

Organic matters are in similar amount in BX2 and BX4 at 7.36% and 6.07% respectively (Figure 25). The composite contains lesser amounts of organics at 3.32%, reflecting an oxidized situation.

TABLE 1 CHEMICAL AND MINERAL COMPOSITIONS OF THE THREE TEST SAMPLES										
MineralsBX2Composit eBX4MineralsBX2Composit eBX4										
Cu Sulphides	0.03	< <mark>0.01</mark>	<0.01	Quartz	79.4	<mark>83.6</mark>	<mark>81.0</mark>			
Galena	<0.01	<0.01	0.01	K-Feldspar	4.93	7.05	4.44			
Sphalerite	1.05	<0.01	0.83	Wollastonite	2.88	0.26	2.43			
Pyrite	0.27	0.04	1.37	Plagioclase Feldspar	0.47	0.99	0.82			
Tivanite (VTiOx)	0.41	0.01	0.02	Muscovite/IIIite	0.44	1.11	0.61			
Paramonoseite (VO2	0.01	0.03	<0.01	Calcite	1.44	1.35	1.18			
Roscoelite/Alunite?	0.22	0.09	0.27	Pyroxene/Amphibole	0.26	0.09	0.31			
Iron Oxides/Iron Meta	0.14	1.59	0.13	Apatite	0.20	0.13	0.09			
				Organic Carbon/Graphit	7.36	3.32	6.07			
Others 0.47 0.33										
Total	2.13	1.75	2.64	Total	97.9	98.2	97.4			

9.3 Preliminary Leaching Test

Acid leaching tests were done in three episodes: 1) L1 in November 2019, 2) L2&L3 in December 2019, 3) L4&L5 in February 2020. The material for leaching test is exclusively from the composite of 50 surface rocks.

Leaching conditions are summarized in Table 6. The best leaching recovery is achieved at 86.4% from L1 test by using 1:3 sulphuric acid at 90°C for 2 hours.

Test	Temperature	H2SO4	Acid	solids	Duration	V	Fe
ID	°C	dosage	Con	%	hour	Extraction	Extraction
		kg/t	%			%	%
L1	90	1000	33	23	2	86.4	93.7
L2	60	100	3.1	23	6	7.6	28.6
L3	90	100	3.1	23	6	11.9	50.8
L4	90	150	10	40	4	21.2	73
L5	90	300	20	40	4	45.7	77.3

Table 6. Acid Leaching Conditions

Vanadium extraction rate is proportional to acid concentration (Figure 26). Higher vanadium extraction ratios has greener colors in leachate (Figure 27 & Figure 29), while low vanadium extraction ratios have more yellowish colors (Figure 28).

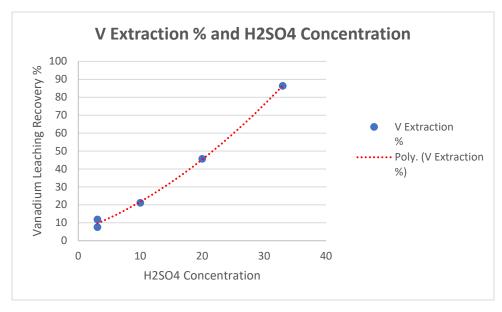


Figure 26. Vanadium Extraction Rate and Acid Concentration

Figure 27. L1 leachate Color

Figure 28. L2 & L3 leachate Color



Figure 29. L4 & L5 Leachate Color

10 CONCLUSION & RECOMMENDATION

Regional prospecting program generated a narrowed focus for next phase of exploration. 20 mineral claims were subsequently staked. Rock sampling program is successful in identifying the vanadium mineralization on surface. Mineralogy studies suggest vanadium is hosted in oxides and aluminum silicates. Preliminary acid leaching tests returned the best extraction rate of 86.4% by using high concentration of sulphuric acid at 90°C over 2 hours.

Rock sampling on property located two high grade vanadium zones in a north trending direction. The zones are 40-200 meters wide, dip shallowly west at 20 degrees, and may contain V_2O_5 at 0.3-0.5%.

It is recommended to conduct more exploration work to identify the vanadium mineralization below the surface and to the south of the property. Metallurgical work should be aimed to improve the extraction rate by using lower acid concentration with the help from reagent.

REFERENCES

- Dumala, M. (2007). *PROSPECTING, MAPPING, GEOCHEMICAL SAMPLING, GEOPHYSICAL SURVEYS AND DIAMOND DRILLING at the RICH PROPERTY.* Whitehorse: Archer, Cathro & Associates.
- Fraser, T. (2013). *Field descriptions of the Middle-Upper Devonian Canol Formation on Trail River.* Whitehorse: Yukon Geological Survey.
- Heon, D. (2006). Mineral Assessment of the Eagle Plain Study Area, Yukon. Yukon Geological Survey Open File 2006-3.
- Hulbert, L. (1992). Sedimentary Nickel, Zinc, and Platinum-group-element Mineralization in. *Exploration Mining Geology, Vol. 1, No.* 1, pp 39-62.
- Jeletzky, J. (1962). *Pre-Cretaceous Richardson Mountain trough: its place in the tectonic framework of Arctic Canada and its bearing on some geosynclinal concepts.* Royal Society of Canada.
- Lentz, A. (1972). Ordovician to Devonian history of northern Yukon and adjacent District of Mackenzie. *Bulletin of Canadian Petroleum Geology, 20*, 321-361.
- Norris, A. (1997). *The Geology, Mineral and Hydrocarbon Potential of Northern Yukon Territory and Northwestern District of Mackenzie,*. Geological Survey of Canada.
- Osadetz, K. (2005). Petroleum Resource Assessment, Eagle Plain Basin and Environs, Yukon. *Yukon Geological Survey Open File 2005-2*.
- Whitney, G. (1986). Vanadium Chlorite from a Sandstone-Hosted Vanadium-Uranium Deposit, Henry Basin, Utah. *Clays and Clay Minerals, Vol. 34*, P 488-495.

STATEMENT OF QUALIFICATION

I, Tao Song, submit the following information to support my competence that is required to carry out the field work and prepare for the assessment report on the Kamatash project.

Education

- Bachelor of Computer Engineering degree, specialized in database, Yanshan University, China, 2005
- Bachelor of Science degree in Geology, University of British Columbia, 2010

<u>Experience</u>

- 4 years of experience as a company geologist with Merit Mining, Vancouver
 - o Resource modeling
 - o Drill ready exploration projects and grassroot programs in Canada
 - Project evaluation from early stage to producing (Au, Cu, Pb, Zn)
 - Development of a global mining and geology database
- 3 years of experience as a consulting geologist, Vancouver
 - Drill program supervision
 - o Regional targeting
 - Project evaluation
 - o Resource evaluation

Professional Affiliations

- Geoscientist in Training with the Association of Professional Engineers and Geoscientists of the Province of British Columbia, Canada, System ID 164368, since February 2011.
- Member of AME BC
- Member of PDAC

APPENDIX I - ELIGIBLE EXPENSES

Exploration Work type	Comment	Days			Totals
Personnel (Name)* / Position	Field Days (list actual days)	Days	Rate	Subtotal*	
Tao/ geologist	June 4-12, 2019	9	\$400.00	\$3,600.00	
Tao/ geologist	Aug 14-26, 2019	13	\$400.00	\$5,200.00	
Ryan/ helper	Aug 14-20, 2019	7	\$250.00	\$1,750.00	
				\$10,550.00	\$10,550.00
Office Studies	List Personnel (note - Office o	only, do no	t include f	field days	
Report preparation	Тао	4.0	\$400.00	\$1,600.00	
				\$1,600.00	\$1,600.00
Geochemical Surveying	Number of Samples	No.	Rate	Subtotal	
Rock	ALS ME-MS 61	34.0	\$45.98	\$1,563.30	
Soil	ALS ME-MS 61	6.0	\$51.49	\$308.93	
Rock	ALS ME-MS 81 & ME-4ACD81	1.0	\$111.96	\$111.96	
SEM		3.0	\$525.00	\$1,575.00	
Leaching test		5.0	\$775.14	\$3,875.68	
				\$7,434.87	\$7,434.87
Transportation		No.	Rate	Subtotal	
truck rental	June 4-12, 2019	1.00	\$1,167.47	\$1,167.47	
truck rental	Aug 14-26, 2019	1.00	\$2,160.13	\$2,160.13	
fuel	June 4-12, 2019	1.00	\$386.59	\$386.59	
fuel	Aug 14-26, 2019	1.00	\$810.62	\$810.62	
				\$4,524.81	\$4,524.81
Accommodation & Food	Rates per day				
Field expense		29.00	\$100.00	\$2,900.00	
				\$2,900.00	\$2,900.00
Equipment Rentals					
Drone	Aug 14-26, 2019	7.00	\$50.00	\$350.00	
XRF	Aug 14-26, 2019	1.00	\$3,708.47	\$3,708.47	
				\$4,058.47	\$4,058.47
	-				+ + + + + + + + + + + + + + + + + + + +
TOTAL Eligible Expendit	tures				\$31,068.15

APPENDIX II - SAMPLE DESCRIPTION OF INITIAL REGIONAL PROSPECTING JUN 4-12, 2019

Sample	Easting	Northig	RL_	SampleID	Туре	Outcrop	Litho	Color	Slope	Carbonat	Silica	Carbon	V2O5_pc
Name			m							е			t
S01	444417	7425024	598	A0024551	Rock	Float	oil shale?	deep black	gentl e	no	mod	more	0.25
S02	444514	7424935	601	A0024552	Rock	Outcrop	oil shale?	black	cliff	yes	mod	more	0.29
S03	442060	7424202	550	A0024553	Rock	Outcrop	shaly chert	dark grey	flat	no	more	less	0.04
S04	441229	7414242	653	A0024554	Rock	Subcrop	shaly chert	dark grey	mod	no	more	less	0.02
S05	441195	7414908	673	A0024555	Rock	Subcrop	chert	black	mod	no	more	less	0.02
S06	441239	7412177	642	A0024556	Rock	Subcrop	shaly chert	black	mod	no	more	less	0.13
S07	441261	7412382	637	A0024557	Rock	Subcrop	chert	black	mod	no	more	less	0.03
S08	441261	7412282	641	A0024558	Rock	Subcrop	chert	black	mod	no	more	less	0.05
S09	441206	7412186	653	A0024559	Rock	Subcrop	shaly chert	black	mod	no	mod	more	0.13
S10	441188	7414796	662	A0024560	Rock	Subcrop	shaly chert	black	mod	no	mod	more	0.19
S11	441222	7414484	642	A0024561	Rock	Subcrop	shaly chert	black	mod	no	mod	more	0.13
S12	441231	7414360	634	A0024562	Rock	Subcrop	oil shale	deep black	mod	no	less	more	0.05
S13	441222	7413354	660	A0024563	Rock	Outcrop	oil shale	deep black	mod	no	less	more	0.12
S14	441228	7413439	661	A0024564	Rock	Outcrop	shaly chert	dark grey	cliff	no	more	less	0.18
S15	441106	7410312	560	A0024565	Rock	Float	chert	dark grey	flat	no	more	less	0.07
S16	441535	7407838	660	A0024566	Rock	Subcrop	shaly chert	dark grey	flat	no	more	less	0.36
S17	441353	7407821	650	A0024567	Rock	Subcrop	shaly chert	dark grey	flat	no	more	less	0.35
S18	440789	7404431	694	A0024568	Rock	Outcrop	oil shale	deep black	mod	no	less	more	0.1
S19	440795	7404429	696	A0024569	Soil	NA	NA	deep black	mod	no	less	more	0.08
S20	440807	7400360	666	A0024570	Rock	Outcrop	oil shale	deep black	steep	no	less	more	0.13
S21	440803	7400359	667	A0024571	Soil	NA	NA	dark black	steep	no	less	more	0.07
S22	441656	7394762	680	A0024572	Soil	NA	NA	deep black	steep	no	less	more	0.13
S23	441637	7394739	678	A0024573	Rock	Outcrop	chert	dark grey	steep	no	more	less	0.07
S24	442561	7390291	680	A0024574	Rock	Outcrop	chert	dark grey	mod	no	more	less	0.16
S25	442571	7390283	701	A0024575	Rock	Float	shaly chert	black	flat	no	more	less	0.11
S26	442552	7390294	703	A0024576	Rock	Outcrop	shaly chert	black	steep	no	more	less	0.19
S27	444549	7424870	609	A0024577	Rock	Outcrop	oil shale	black	cliff	no	less	more	0.2

S28	447148	7428867	726	A0024578	Rock	Subcrop	cherty	dark grey	flat	no	not	not	0.04
							shale				much	much	
S29	447258	7429883	741	A0024579	Rock	Outcrop	cherty	dark grey	steep	no	not	not	0.04
							shale				much	much	
S30	447213	7432915	737	A0024580	Rock	Subcrop	cherty	dark grey	gentl	no	not	not	0.02
							shale		е		much	much	
S31	447408	7436915	907	A0024581	Rock	Float	oil shale?	dark black	flat	no	less	more	0.25
S32	447219	7436165	851	A0024582	Rock	Subcrop	oil shale?	dark grey-	gentl	no	less	not	0.03
								black	e			much	
S33	441652	7418021	600	A0024583	Rock	Outcrop	oil shale	deep black	steep	no	less	more	0.24
S34	442648	7390255	706	A0024584	Soil	NA	NA	black	steep	no	less	more	0.16
S35	442685	7390266	717	A0024585	Rock	Subcrop	oil shale?	black	mod	no	less	not	0.16
												much	
S36	442562	7390326	709	A0024586	Soil	NA	NA	black	flat	no	less	more	0.03
S37	442562	7390256	701	A0024587	Rock	Float	oil shale?	black	flat	no	less	more	0.16
S38	441306	7406277	701	A0024588	Rock	Subcrop	shaly chert	dark grey	steep	no	more	less	0.04
S39	441342	7406285	691	A0024589	Soil	NA	NA	black	flat	no	less	more	0.14
S40	441237	7406146	712	A0024590	Rock	Subcrop	oil shale?	black	flat	no	not	not	0.12
											much	much	

APPENDIX III - ASSAY CERTIFICATE OF INITIAL REGIONAL PROSPECTING JUN 4-12, 2019

To: AKG EXPLORATION INC #1901 - 1188 WEST PENDER ST VANCOUVER BC V6E 0A2

Page: 1 Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 21-JUN-2019 Account: AKGEXP

CERTIFICATE WH19142408

Project: Kiev

This report is for 34 Rock samples submitted to our lab in Whitehorse, YT, Canada on 12-JUN-2019.

The following have access to data associated with this certificate:

TAO SONG

ALS CODE	DESCRIPTION
WEI-21	Received Sample Weight
LOG-21	Sample logging - ClientBarCode
CRU-31	Fine crushing - 70% <2mm
SPL-21	Split sample - riffle splitter
PUL-31	Pulverize split to 85% <75 um
CRU-QC	Crushing QC Test
PUL-QC	Pulverizing QC Test

ALS CODE DESCRIPTION ME-MS61 48 element four acid ICP-MS

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

To: AKG EXPLORATION INC #1901 - 1188 WEST PENDER ST VANCOUVER BC V6E 0A2

Page: 2 - A Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 21-JUN-2019 Account: AKGEXP

Project: Kiev

(ALS)								C	ERTIFIC	ATE O	F ANAL	YSIS	WH191	42408	
Sample Description	Method	WEI-21	ME-M961	ME-MS01	ME-M801	ME-MS61	ME-MS61	ME-M961	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-M961	ME-MS61	ME-MSØ1	ME-M801
	Analyte	Reovd Wt.	Ag	Al	As	Ba	Be	Bi	Ca	Cd	Ce	Co	Cr	Cs	Cu	Fe
	Units	kg	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%
	LOD	0.02	0.01	0.01	0.2	10	0.05	0.01	0.01	0.02	0.01	0.1	1	0.05	0.2	0.01
A0024551		0.61	0.92	2.60	25.6	1490	1.51	0.10	2.23	12.90	27.0	3.5	72	2.57	54.2	1.08
A0024552		0.49	1.24	2.57	38.1	4460	1.66	0.12	4.10	24.3	31.4	4.8	78	2.71	66.0	1.20
A0024553		0.74	0.12	1.10	2.7	2440	0.77	0.05	0.04	0.19	2.15	0.2	17	1.36	12.3	0.36
A0024554		0.53	0.09	0.71	5.4	1480	0.47	0.02	0.02	0.31	3.67	0.4	24	1.02	12.5	0.66
A0024555		0.56	0.08	0.70	4.5	1200	0.47	0.03	0.01	0.12	3.93	0.3	34	1.00	6.9	0.55
A0024556 A0024557 A0024558 A0024559 A0024559		0.22 0.55 0.29 0.30 0.33	0.29 0.09 0.13 0.35 0.25	1.73 0.68 0.76 2.00 2.03	12.3 4.1 3.8 6.3 9.8	2420 1290 1420 2880 3290	1.07 0.43 0.51 1.39 1.05	0.07 0.02 0.04 0.09 0.05	0.02 0.01 0.01 0.01 0.01	0.31 0.10 0.28 0.65 0.23	5.42 3.59 4.23 20.6 38.8	0.3 0.3 0.2 0.2	36 44 38 36 39	2.35 1.10 1.16 2.56 2.56	20.7 7.0 8.6 20.7 21.8	0.52 0.57 0.56 0.49 0.45
A0024561 A0024562 A0024563 A0024564 A0024565		0.38 0.39 0.32 0.44 0.72	0.15 0.21 0.37 0.58 0.16	1.26 1.76 1.36 1.72 1.21	4.0 4.2 1.8 7.4 4.5	1970 3860 1960 2300 1850	0.73 1.14 0.85 0.94 0.76	0.04 0.07 0.05 0.05	0.02 0.03 0.01 0.01 0.03	0.16 0.66 0.09 0.19 0.17	23.2 5.72 18.30 11.10 11.30	02 03 02 02 03	33 31 27 41 29	1.60 2.79 1.93 2.58 1.81	14.7 30.4 22.5 27.9 12.8	0.44 0.44 0.30 0.43 0.53
A0024566		0.41	1.91	1.92	17.9	2850	1.24	0.09	0.04	8.71	31.5	0.5	78	2.06	90.1	0.60
A0024567		0.39	1.42	1.43	63.3	2280	1.09	0.06	0.23	23.0	22.0	3.0	93	2.00	80.6	1.77
A0024568		0.46	0.24	1.80	2.6	2350	1.02	0.06	0.01	0.19	12.30	0.2	30	2.47	50.3	0.29
A0024570		0.58	0.54	2.34	2.4	1800	1.10	0.08	0.09	0.17	18.95	0.3	48	3.20	80.8	0.90
A0024573		0.88	0.18	0.86	4.7	780	0.61	0.04	0.01	0.23	8.04	0.3	36	0.99	50.2	0.55
A0024574		0.93	0.41	1.95	4.3	1590	0.84	0.06	0.02	0.06	16.75	0.2	44	2.14	14.0	0.35
A0024575		0.28	0.24	1.78	3.3	1590	0.98	0.05	0.02	0.07	14.65	0.3	36	1.97	6.9	0.28
A0024576		0.58	0.35	2.65	4.5	1890	1.29	0.10	0.01	0.03	19.10	0.2	41	3.20	16.6	0.26
A0024577		0.63	0.71	1.80	22.0	100	1.14	0.08	5.96	88.4	19.90	6.1	54	1.83	54.4	0.81
A0024578		0.32	0.14	7.80	17.4	1440	2.35	0.25	0.29	0.43	71.3	18.2	105	8.02	40.9	4.66
A0024579		0.93	0.12	8.05	13.1	780	2.15	0.26	0.99	0.17	71.8	21.7	110	7.59	37.3	5.03
A0024580		0.69	0.08	6.29	7.1	580	1.52	0.12	0.83	0.07	71.5	11.6	68	3.48	12.3	2.97
A0024581		0.45	0.81	2.14	15.2	1280	1.52	0.08	0.02	0.20	26.6	0.9	61	2.71	17.3	0.62
A0024582		0.61	0.07	8.72	8.9	540	2.09	0.24	0.25	0.09	76.3	14.7	96	5.99	24.9	4.82
A0024583		0.68	1.14	2.82	16.2	2510	1.33	0.09	0.01	1.14	11.25	0.3	65	4.39	42.4	0.58
A0024585		0.58	0.29	5.50	10,4	2040	1.96	0.14	0.14	3.66	37.0	22	72	6.84	18.3	0.75
A0024587		0.39	1.45	2.15	14,6	2170	0.99	0.08	0.05	0.82	21.8	04	50	2.65	56.7	0.55
A0024588		0.61	0.18	0.78	4,0	1140	0.48	0.04	0.01	0.26	6.28	04	34	1.05	56.2	0.44
A0024590		0.21	0.35	1.39	6,2	1800	0.82	0.06	0.12	0.54	9.06	03	36	1.70	96.1	0.46

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochernistry

To: AKG EXPLORATION INC #1901 - 1188 WEST PENDER ST VANCOUVER BC V6E 0A2

Page: 2 - B Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 21-JUN-2019 Account: AKGEXP

CERTIFICATE OF ANALYSIS WH19142408

Project: Kiev

Г

									0		ATEU		1010		42408	
Sample Description	Method Analyte Units LOD	ME-MS61 Ca ppm 0.05	ME-M961 Ce ppm 0.05	ME-MSØ1 Hf ppm 0.1	ME-MS61 In ppm 0.005	ME-MS61 K % 0.01	ME-MS61 La ppm 0.5	ME-M961 Li ppm 0.2	ME-MS61 Mg % 0.01	ME-MS61 Mn ppm 5	ME-M861 Mo ppm 0.05	ME-MS61 Na % 0.01	ME-MS61 Nb ppm 0.1	ME-MSØ1 Ni ppm 0.2	ME-MS61 P ppm 10	ME-MSØ1 Pb ppm 0.5
A0024551 A0024552 A0024553 A0024553 A0024554 A0024555		7.22 7.97 3.00 1.70 1.74	0.12 0.16 <0.05 0.05 <0.05	1.3 1.2 0.5 0.3 0.4	0.021 0.030 0.007 0.007 <0.005	1.08 1.01 0.36 0.21 0.22	17.5 21.3 1.2 2.2 2.4	8.4 9.5 2.9 3.8 4.8	0.68 0.95 0.10 0.04 0.04	61 92 30 54 45	76.6 85.9 6.88 21.4 23.0	0.08 0.09 0.02 0.03 0.03	6.7 5.7 2.2 1.5 1.6	219 287 22.4 19.5 17.6	220 300 30 130 30	8.6 10.7 4.5 1.6 2.2
A0024556 A0024557 A0024558 A0024559 A0024559		5.15 1.69 2.10 5.55 6.49	0.05 <0.05 <0.05 0.06 0.08	0.6 0.3 0.4 0.6 0.6	0.014 <0.005 0.007 0.013 0.012	0.58 0.20 0.25 0.67 0.64	3.8 2.2 3.1 15.9 22.4	3.8 2.7 3.3 4.1 3.6	0.11 0.04 0.05 0.13 0.14	34 48 50 20 24	16.40 16.20 15.05 21.5 26.2	0.03 0.03 0.03 0.03 0.03	3.0 1.3 1.6 3.2 2.9	19.8 15.5 20.9 19.7 15.3	90 40 40 70 70	5.1 2.1 2.5 5.9 6.0
A0024561 A0024562 A0024563 A0024564 A0024565		3.76 5.03 4.36 5.27 3.19	0.08 0.05 0.06 0.05 0.05	0.4 0.6 0.5 0.6 0.4	0.010 0.011 0.017 0.014 0.005	0.40 0.67 0.47 0.56 0.39	13.1 4.0 9.9 6.4 7.7	3.1 3.6 3.3 3.5 3.7	0.08 0.10 0.09 0.11 0.08	28 23 22 20 31	12.95 15.35 19.20 16.05 20.2	0.02 0.03 0.02 0.03 0.03	20 32 24 26 20	16.5 38.5 31.0 18.4 18.8	90 60 50 80 70	3.2 5.2 6.2 4.4 3.0
A0024566 A0024567 A0024568 A0024570 A0024573		5.92 5.10 4.94 6.57 2.50	0.09 0.08 0.05 0.06 0.05	0.7 0.6 0.8 0.3	0.024 0.020 0.013 0.013 0.008	0.68 0.50 0.64 0.78 0.28	24.0 22.6 9.0 12.7 5.1	6.0 3.9 3.2 8.1 14.1	0.11 0.11 0.16 0.05	23 76 18 21 43	32.7 61.3 30.7 13.85 15.75	0.09 0.02 0.02 0.03 0.03	24 21 29 39 1.6	32.0 112.5 25.6 40.7 29.5	190 480 110 80 90	9.8 7.9 4.0 3.7 2.6
A0024574 A0024575 A0024576 A0024577 A0024578		5.44 4.81 7.26 5.34 19.90	0.05 0.06 0.06 0.17 0.14	0.6 0.5 0.9 1.0 2.9	0.013 0.008 0.011 0.024 0.084	0.67 0.62 0.92 0.77 2.24	11.1 9.9 12.7 11.6 35.0	15.0 4.6 4.2 5.7 65.5	0.13 0.11 0.17 0.92 1.06	21 24 14 94 220	14.85 15.90 17.45 66.4 1.25	0.02 0.03 0.03 0.03 0.03 0.67	2.8 2.6 4.1 5.7 13.9	20.8 25.4 23.1 310 61.3	90 80 90 220 1120	4.2 3.7 5.0 7.0 13.7
A0024579 A0024580 A0024581 A0024582 A0024583		20.2 14.65 5.99 21.1 8.31	0.11 0.10 0.09 0.11 0.07	3.0 2.8 1.0 2.8 1.0	0.081 0.045 0.013 0.079 0.029	2.28 1.75 0.88 2.23 0.99	35.4 34.3 17.9 36.2 9.7	72.5 48.8 10.2 89.9 4.6	1.50 0.93 0.22 0.80 0.19	937 222 20 211 16	0.95 0.47 50.6 0.70 23.9	0.73 1.29 0.04 0.89 0.03	14.4 13.8 5.2 16.2 4.8	58.7 28.7 99.9 42.3 29.8	1240 610 120 670 90	15.9 12.4 7.0 17.3 7.4
A0024585 A0024587 A0024588 A0024590		14.90 7.34 2.03 3.68	0.07 0.10 0.08 0.12	1.8 0.8 0.3 0.6	0.032 0.021 0.008 0.008	1.87 0.76 0.24 0.43	23.0 12.9 3.8 6.7	8.6 7.0 3.8 8.6	0.42 0.14 0.05 0.09	25 34 36	12.00 41.9 19.65 13.70	0.05 0.03 0.02 0.03	8.8 3.7 1.5 2.3	34.3 28.1 23.5 18.5	120 260 30 120	9.1 7.1 3.7 4.1

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver 8C V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochernistry

To: AKG EXPLORATION INC #1901 - 1188 WEST PENDER ST VANCOUVER BC V6E 0A2

Page: 2 - C Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 21-JUN-2019 Account: AKGEXP

CERTIFICATE OF ANALYSIS WH19142408

Project: Kiev

Г

											ATEU	/ / / / /			42400	
Sample Description	Method	ME-MS61	ME-M961	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-M961	ME-MSØ1	ME-MS61	ME-M861	ME-MS61	ME-M961	ME-MS61	ME-MS61	ME-MS61
	Analyte	Rb	Re	8	Sb	Sc	Se	Sn	Sr	Ta	Te	Th	Ti	T1	U	V
	Units	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
	LOD	0.1	0.002	0.01	0.05	0.1	1	0.2	0.2	0.05	0.05	0.01	0.005	0.02	0.1	1
A0024551		59.9	0.079	0.28	10.40	5.1	15	0.9	233	0.37	0.12	3.62	0.142	2.58	15.2	1390
A0024552		59.2	0.068	0.19	13.45	6.0	24	1.2	353	0.36	0.15	3.79	0.143	4.40	14.6	1620
A0024553		22.1	0.115	0.20	0.82	2.7	1	0.4	25.3	0.13	0.07	1.17	0.059	0.47	4.5	234
A0024554		11.1	0.026	0.16	1.64	1.7	6	0.2	75.9	0.09	0.06	0.80	0.035	0.93	6.6	138
A0024555		12.3	0.022	0.14	1.49	1.5	3	0.2	18.3	0.09	≼0.05	0.82	0.041	0.49	3.5	139
A0024556		33.6	0.071	0.20	3.04	3.6	9	0.5	49.1	0.19	0.07	1.71	0.094	1.34	7.0	718
A0024557		11.5	0.025	0.12	1.54	1.3	3	0.2	28.8	0.07	<0.05	0.70	0.035	0.42	3.2	164
A0024558		14.5	0.041	0.13	2.88	1.4	2	0.4	34.0	0.10	0.05	0.89	0.045	0.43	2.9	279
A0024559		40.8	0.092	0.23	6.09	4.0	4	0.4	40.8	0.19	0.10	2.25	0.097	0.66	5.5	725
A0024560		41.1	0.050	0.23	6.27	4.2	4	0.6	30.0	0.17	0.08	2.30	0.094	0.73	5.3	1040
A0024561 A0024562 A0024563 A0024564 A0024565		24.2 36.8 27.8 35.5 23.2	0.059 0.070 0.059 0.051 0.033	0.18 0.24 0.15 0.21 0.17	3.23 4.70 6.65 10.70 2.43	2.7 4.0 3.2 3.7 2.6	9 3 4 9 11	0.4 0.4 0.5 0.4	29.6 72.9 25.4 46.1 32.2	0.12 0.20 0.15 0.18 0.12	0.05 0.05 0.08 0.08 0.05	1.40 1.92 2.05 1.62 1.37	0.062 0.093 0.074 0.085 0.058	0.58 1.50 1.43 1.27 0.77	5.6 9.4 7.0 4.3 4.4	711 266 673 987 397
A0024566		38.5	0.181	0.27	8.56	4.1	6	0.6	50.5	0.17	0.12	2.56	0.085	1.42	10.4	2040
A0024567		28.8	0.164	0.18	36.2	4.2	10	0.5	69.1	0.13	0.13	1.83	0.072	1.08	6.0	1940
A0024568		36.5	0.045	0.20	6.57	3.7	4	0.4	49.1	0.18	0.05	1.84	0.089	1.79	5.8	588
A0024570		46.1	0.043	0.19	8.35	4.8	4	0.7	32.4	0.23	0.16	2.22	0.116	1.45	24.7	751
A0024573		16.1	0.043	0.17	3.42	2.2	3	0.3	38.5	0.09	0.05	0.90	0.044	1.10	5.1	383
A0024574 A0024575 A0024576 A0024577 A0024577		39.5 36.7 55.1 42.5 120.0	0.046 0.042 0.040 0.046 0.003	0.19 0.20 0.26 2.14 0.06	13.80 5.67 13.55 7.66 0.80	3.8 3.2 4.7 5.2 18.4	6 6 9 2	0.6 0.5 0.8 0.9 2.2	36.9 36.0 34.6 358 113.5	0.19 0.16 0.25 0.22 0.83	0.09 0.05 0.07 0.08 0.12	1.97 1.70 2.47 2.52 8.60	0.096 0.082 0.129 0.102 0.466	1.44 1.20 1.52 2.76 0.58	4.8 3.6 4.3 17.9 2.6	922 627 1070 1100 222
A0024579 A0024580 A0024581 A0024582 A0024583		118.0 75.7 51.1 107.0 60.3	0.002 <0.002 0.064 0.003 0.060	0.09 0.44 0.29 0.02 0.33	0.82 0.34 4.56 0.45 22.4	18.8 9.9 3.2 16.5 5.7	1 1 7 1	21 1.5 0.9 2.1 1.2	91.7 138.0 32.3 113.0 48.4	0.86 0.82 0.32 0.99 0.31	0.11 0.09 0.11 0.16 0.21	9.32 7.96 3.15 10.60 3.22	0.496 0.420 0.125 0.501 0.156	0.60 0.35 1.87 0.48 1.63	2.8 2.2 14.9 2.3 14.2	224 104 1400 154 1330
A0024585		117.5	0.039	0.16	3.81	8.9	4	1.9	59.9	0.54	0.07	5.51	0.284	5.21	4.1	923
A0024587		44.1	0.057	0.25	17.70	4.7	18	0.8	103.0	0.24	0.17	2.74	0.119	2.36	11.0	874
A0024588		12.4	0.034	0.15	2.52	1.7	4	0.2	20.2	0.08	<0.05	0.85	0.040	0.64	6.4	241
A0024590		24.2	0.019	0.08	7.55	3.4	5	0.4	49.8	0.14	0.09	1.38	0.069	1.41	13.8	672

To: AKG EXPLORATION INC #1901 - 1188 WEST PENDER ST VANCOUVER BC V6E 0A2

Page: 2 - D Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 21-JUN-2019 Account: AKGEXP

Project: Kiev

CERTIFICATE OF ANALYSIS WH19142408

Sample Description	Method Analyte Units LOD	ME-MS61 W ppm 0.1	ME-M961 Y ppm 0.1	ME-MSØ1 Zn ppm 2	ME-MSØ1 Zr ppm 0.5	
A0024551 A0024552 A0024553 A0024554 A0024555		0.8 0.9 0.2 0.2 0.2	25.3 41.4 4.6 4.2 3.1	763 1540 10 10 5	63.8 62.7 21.0 15.7 15.9	
A0024556 A0024557 A0024558 A0024559 A0024560		0.3 0.2 0.4 0.4	6.0 2.9 5.5 6.5 6.8	25 8 26 33 7	30.8 14.2 17.1 30.3 28.6	
A0024561 A0024562 A0024563 A0024564 A0024565		0.3 0.4 0.3 0.3 0.3	5.6 7.9 9.6 6.2 4.4	6 65 4 6 8	21.4 31.0 27.9 26.9 19.4	
A0024566 A0024567 A0024568 A0024570 A0024573		0.4 0.4 0.5 0.6 0.2	25.4 19.3 5.3 9.6 7.2	122 835 6 49 9	30.9 28.9 28.4 37.0 25.6	
A0024574 A0024575 A0024576 A0024577 A0024578		0.4 0.4 0.5 0.5 1.4	7.3 6.1 8.2 34.2 23.8	8 11 8 2170 175	27.4 25.7 40.1 50.3 119.5	
A0024579 A0024580 A0024581 A0024582 A0024582		1.4 1.1 0.6 1.3 0.6	24.0 19.5 13.6 18.6 10.9	154 88 152 115 28	119.5 114.5 51.2 109.5 45.1	
A0024585 A0024587 A0024588 A0024590		0.9 0.5 0.2 0.3	11.8 8.2 3.8 5.2	212 53 12 20	66.5 37.4 15.0 27.1	

To: AKG EXPLORATION INC #1901 - 1188 WEST PENDER ST VANCOUVER BC V6E 0A2

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 21-JUN-2019 Account: AKGEXP

Project: Kiev

CERTIFICATE OF ANALYSIS WH19142408

	CERTIFICATE COM	IMENTS
Applies to Method:	ANALY REE's may not be totally soluble in this method. ME-MS61	TICAL COMMENTS
Applies to Method:	Processed at ALS Whitehorse located at 78 Mt. Sima Rd, Whiteh CRU-31 CRU-QC	LOG-21 PUL-31
Applies to Method:	PUL-QC SPL-21 Processed at ALS Vancouver located at 2103 Dollarton Hwy, No ME-MS61	WEI-21 orth Vancouver, BC, Canada.

To: AKG EXPLORATION INC #1901 - 1188 WEST PENDER ST VANCOUVER BC V6E 0A2

Page: 1 Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 21-JUN-2019 Account: AKGEXP

CERTIFICATE WH19142411

Project: Kiev

This report is for 6 Soil samples submitted to our lab in Whitehorse, YT, Canada on 12-JUN-2019.

The following have access to data associated with this certificate:

TAO SONG

ALS CODE	DESCRIPTION
WEI-21	Received Sample Weight
LOG-22	Sample login - Rod w/o BarCode
CRU-QC	Crushing QC Test
PUL-QC	Pulverizing QC Test
CRU-31	Fine crushing - 70% <2mm
SPL-21	Split sample - riffle splitter
PUL-31	Pulverize split to 85% <75 um

ANALYTICAL PROCEDURES

ALS CODE DESCRIPTION ME-MS61 48 element four acid ICP-MS

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

- ar Signature:

Colin Ramshaw, Vancouver Laboratory Manager

To: AKG EXPLORATION INC #1901 - 1188 WEST PENDER ST VANCOUVER BC V6E 0A2

Page: 2 - A Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 21-JUN-2019 Account: AKGEXP

CERTIFICATE OF ANALYSIS WH191/2/11

Project: Kiev

Г

									u	EKTIFIC	AIEO	F ANAL	1313	WH19	42411	
Sample Description	Method	WEI-21	ME-M961	ME-M561	ME-MSØ1	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-M561	ME-MS61	ME-M981	ME-MS61	ME-MSØ1	ME-M561
	Analyte	Reavd Wt.	Ag	Al	As	Ba	Be	Bi	Ca	Cd	Ce	Co	Cr	Cs	Cu	Fe
	Units	kg	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%
	LOD	0.02	0.01	0.01	0.2	10	0.05	0.01	0.01	0.02	0.01	0.1	1	0.03	0.2	0.01
A0024569		0.40	1.66	2.65	25.1	260	1.72	0.21	0.04	0.29	33.2	0.4	43	3.53	120.5	1.44
A0024571		0.58	4.08	4.21	9.3	1440	2.34	0.39	0.09	0.30	50.2	0.5	71	5.70	199.0	0.64
A0024572		0.61	0.27	4.84	17.0	480	1.79	0.14	1.57	3.76	39.5	9.4	65	5.54	41.5	1.86
A0024584		0.78	0.30	5.13	33.7	2920	1.94	0.15	0.46	9.15	38.6	6.7	70	6.15	58.8	2.42
A0024586		0.43	0.71	1.87	20.9	390	1.16	0.13	0.14	1.29	21.2	0.3	27	2.00	89.1	2.04
A0024589		0.75	0.26	5.02	29.8	2410	1.52	0.13	0.20	1.95	45.0	5.4	65	5.54	42.5	3.10

To: AKG EXPLORATION INC #1901 - 1188 WEST PENDER ST VANCOUVER BC V6E 0A2

Page: 2 - B Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 21-JUN-2019 Account: AKGEXP

CERTIFICATE OF ANALYSIS WH191/2/11

Project: Kiev

Г

									C	EKTIFIC	AIEO	F ANAL	.1515	WH19	42411	
	Method Analyte Units LOD	ME-MS61 Ca ppm 0.05	ME-M961 Ce ppm 0.05	ME-MS61 Hf ppm 0.1	ME-MS61 In ppm 0.005	ME-MS61 K % 0.01	ME-MS61 La ppm 0.5	ME-MS61 Li ppm 0.2	ME-MS61 Mg % 0.01	ME-MS61 Mn ppm 5	ME-MS61 Mo ppm 0.05	ME-MS61 Na % 0.01	ME-M961 Nb ppm 0.1	ME-MS61 Ní ppm 0.2	ME-MS61 P ppm 10	ME-MS61 Pb ppm 0.5
A0024569 A0024571 A0024572 A0024584 A0024586		6.48 10.75 10.80 12.15 4.68	0.13 0.19 0.16 0.15 0.14	1.5 2.2 1.5 1.5 0.8	0.019 0.032 0.033 0.044 0.020	1.07 1.47 1.38 1.69 0.71	22.1 34.2 26.1 24.1 11.5	8.9 10.2 7.5 12.9 19.0	0.16 0.29 0.38 0.48 0.12	20 18 75 89 16	35.7 14.05 30.5 36.8 33.8	0.03 0.04 0.06 0.06 0.03	6.7 8.5 6.7 3.6	18.9 32.8 156.0 153.0 32.4	470 140 610 370 320	13.1 33.5 9.4 10.7 7.4
A0024589		11.90	0.13	1.5	0.045	1.52	29.3	8.8	0.36	51	40.0	0.07	7.2	124.5	330	92

To: AKG EXPLORATION INC #1901 - 1188 WEST PENDER ST VANCOUVER BC V6E 0A2

Page: 2 - C Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 21-JUN-2019 Account: AKGEXP

Project: Kiev Г

ALS	,								C	ERTIFIC	CATE O	F ANAL	YSIS	WH191	42411	
Sample Description	Method	ME-MS61	ME-M961	ME-M561	ME-MSØ1	ME-MS61	ME-MS61	ME-MS61	ME-MSØ1	ME-MS61	ME-MS61	ME-MS61	ME-M961	ME-M561	ME-MSØ1	ME-MSØ1
	Analyte	Rb	Re	S	Sb	So	Se	Sn	Sr	Ta	Te	Th	Ti	T1	U	V
	Units	ppm	ppm	N	ppm	%	ppm	ppm	ppm							
	LOD	0.1	0.002	0.01	0.03	0.1	1	0.2	0.2	0.05	0.05	0.01	0.005	0.02	0.1	1
A0024569		51.5	0.094	0.67	58.7	6.7	9	0.7	116.0	0.38	0.26	4.20	0.167	6.41	15.5	443
A0024571		77.3	0.107	0.37	31.0	11.9	7	1.4	49.1	0.49	0.49	6.35	0.235	3.03	73.2	420
A0024572		80.3	0.030	1.11	6.37	8.5	6	1.3	136.0	0.42	0.08	5.07	0.235	3.08	5.4	747
A0024584		91.2	0.059	0.25	9.10	9.1	14	1.5	139.0	0.43	0.12	5.49	0.239	4.28	7.1	873
A0024586		36.2	0.120	0.35	11.65	4.7	21	0.5	127.5	0.19	0.13	2.20	0.105	4.05	8.4	177
A0024589		91.5	0.027	0.28	12.00	9.3	8	14	117.0	0.46	0.10	5.64	0.250	3.34	7.5	781

To: AKG EXPLORATION INC #1901 - 1188 WEST PENDER ST VANCOUVER BC V6E 0A2

Page: 2 - D Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 21-JUN-2019 Account: AKGEXP

Project: Kiev

CERTIFICATE OF ANALYSIS WH19142411

Analyte Sample Description LOD	W ppm 0.1	Y ppm 0.1	Zn ppm 2	2r ppm 0.5	
A0024569	0.9	14.8	16	78.1	
A0024571	2.1	21.9	49	111.0	
A0024572 A0024584	0.7	27.4	372	59.1	
A0024586	0.8	18.8 11.5	794 312	58.9 36.0	
A0024589	0.8	17.3	513	59.2	

To: AKG EXPLORATION INC #1901 - 1188 WEST PENDER ST VANCOUVER BC V6E 0A2

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 21-JUN-2019 Account: AKGEXP

Project: Kiev

CERTIFICATE OF ANALYSIS WH19142411

	CERTIFICATE COM	IMENTS	
Applies to Method:	REE's may not be totally soluble in this method.	TICAL COMMENTS	
Applies to Method:	Processed at ALS Whitehorse located at 78 Mt. Sima Rd, Whiteh	ATORY ADDRESSES Iorse, YT, Canada. LOG-22 WEI-21	PUL-31
Applies to Method:	Processed at ALS Vancouver located at 2103 Dollarton Hwy, No ME-MS61	rth Vancouver, BC, Canada.	

Samplel	Easting_UTM	Northing_UTM	Elev_	SampleType	Bedrock	Color	Litho	V2O5_XRF_pc
D	8	8	m		Туре			t
К04	369329	7296894	521	Rock	Subcrop	dark grey	calcareous shale	0.01
K05	422439	7358022	722	Rock chips and soil	Subcrop	dark grey	shale	0.03
К06	440964	7403900	692	Rock	Subcrop	dark grey	shale	0.16
К07	440962	7403929	685	Rock	Subcrop	dark grey	shale	0.18
К08	440951	7403941	686	Rock	Subcrop	dark grey	shale	0.21
К09	440854	7404089	700	Rock	Subcrop	black	shale	0.21
K10	440849	7404111	704	Rock	Subcrop	black	cherty shale	0.06
К100	441515	7404172	750	Rock	Subcrop	black	cherty shale	0.02
K101	441514	7404199	752	Rock	Subcrop	black	cherty shale	0.04
K102	441534	7404263	764	Rock	Subcrop	black	cherty shale	0.02
K103	441587	7404307	782	Rock	Outcrop	black	chert	0.01
К104	441558	7404395	770	Rock	Subcrop	black	cherty shale	0.02
K105	441541	7404412	762	Rock	Subcrop	black	cherty shale	0.01
K106	441108	7404391	702	Rock	Float	black	cherty shale	0.12
K107	441101	7404385	704	Rock	Float	black	cherty shale	0.16
K108	441053	7404406	713	Rock	Float	black	cherty shale	0.14
K109	440988	7404410	718	Rock	Float	black	cherty shale	0.19
K11	440877	7404185	720	Rock	Subcrop	black	shale	0.04
K110	440912	7404487	715	Rock	Subcrop	black	cherty shale	0.19
K111	440896	7404491	711	Rock	Float	deep black	oil shale	0.12

K112	440896	7406050	643	Rock	Float	deep black	oil shale	0.07
K113	440928	7406048	646	Rock	Subcrop	deep black	oil shale	0.04
K114	441109	7405969	668	Rock	Float	deep black	shale	0.13
K115	441157	7405937	680	Rock	Outcrop	black	shale	0.09
K116	441223	7405904	679	Rock	Outcrop	black	cherty shale	0.02
K117	441242	7405885	678	Rock	Float	black	shale	0.04
K118	441295	7405844	676	Rock	Float	black	shale	0.25
K119	441327	7405856	677	Rock	Float	black	shale	0.29
K12	440951	7404448	719	Rock	Subcrop	black	shale	0.21
K120	440837	7406087	640	Rock	Float	black	cherty shale	0.09
K121	442629	7390212	696	Rock	Float	black	cherty shale	0.08
K122	442700	7390151	704	Rock	Subcrop	black	cherty shale	0.10
K123	442879	7390195	730	Rock	Subcrop	black	cherty shale	0.25
K124	443008	7390211	747	Rock	Subcrop	black	chert	0.05
K125	443012	7390202	746	Rock	Float	deep black	shale	0.09
K126	443038	7390198	746	Rock	Float	deep black	shale	0.04
K127	443057	7390192	739	Rock	Float	deep black	shale	0.03
K128	442547	7390268	688	Rock	Float	black	cherty shale	0.07
К129	441679	7394743	679	Rock	Float	black	shale	0.08
К13	440972	7404461	722	Rock	Subcrop	black	shale	0.55
К130	441681	7394744	679	Rock	Float	black	shale	0.03
K131	441729	7394743	676	Rock	Float	black	shale	0.06
K132	441707	7394743	678	Rock	Float	black	shale	0.05

K133	441680	7394752	681	Rock	Subcrop	black	oil shale	0.09
K134	440808	7400359	659	Rock	Outcrop	black	oil shale	0.15
K135	440810	7400358	660	Rock	Outcrop	black	oil shale	0.20
K136	440772	7404433	687	Rock	Outcrop	black	oil shale	0.12
K137	440779	7404440	690	Rock	Outcrop	black	cherty shale	0.08
K138	440784	7404439	690	Rock	Outcrop	black	cherty shale	0.18
K139	440791	7404430	687	Rock	Outcrop	black	oil shale	0.16
K14	440996	7404477	719	Rock	Subcrop	black	shale	0.24
K140	440768	7404432	686	Rock	Outcrop	black	cherty shale	0.07
K141	440763	7404428	687	Rock	Outcrop	black	cherty shale	0.17
K142	433897	7379768	678	Rock	Outcrop	black	shale	0.03
K143	423561	7369648	366	Rock	Outcrop	black	shale	0.02
K144	416203	7348018	669	Rock	Outcrop	black	shale	0.01
K145	377703	7304963	870	Rock	Outcrop	black	shale	0.02
K15	440995	7404483	718	Rock	Subcrop	black	shale	0.24
K16	441004	7404531	701	Rock	Subcrop	black	shale	0.29
K17	440800	7404527	710	Rock	Subcrop	black	shale	0.13
K18	440885	7404632	707	Rock	Subcrop	black	shale	0.06
К19	440988	7404935	665	Rock	Float	black	shale	0.15
К20	441011	7405136	667	Rock	Subcrop	black	shale	0.27
K21	441032	7405245	675	Rock	Subcrop	black	shale	0.19
K22	441068	7405286	678	Rock	Subcrop	black	shale	0.21
K23	441109	7405332	681	Rock	Subcrop	black	shale	0.27
К24	441139	7405305	682	Rock	Subcrop	black	shale	0.15
K25	441153	7405290	680	Rock	Subcrop	black	shale	0.17
К26	441134	7405244	675	Rock	Subcrop	black	shale	0.13
K27	441107	7405233	675	Rock	Subcrop	black	shale	0.14

K28	441081	7405395	684	Rock	Subcrop	black	shale	0.21
К29	441118	7405495	687	Rock	Subcrop	black	shale	0.29
К30	441159	7405571	674	Rock	Subcrop	black	shale	0.30
K31	441146	7405739	662	Rock	Subcrop	black	shale	0.08
К32	441152	7405801	662	Rock	Subcrop	black	shale	0.02
К33	441183	7405801	670	Rock	Subcrop	black	shale	0.02
К34	441198	7405780	665	Rock	Float	black	shale	0.06
K35	441227	7405780	665	Rock	Float	black	shale	0.03
K36	441076	7405786	660	Rock	Float	black	shale	0.12
K37	441012	7405825	650	Rock	Float	black	shale	0.12
K38	441230	7406252	689	Rock	Subcrop	black	shale	0.15
К39	441273	7406346	692	Rock	Subcrop	black	shale	0.05
К40	441269	7406380	688	Rock	Subcrop	black	shale	0.05
K41	441268	7406406	686	Rock	Subcrop	black	shale	0.10
K42	441273	7406532	662	Rock	Subcrop	black	shale	0.11
K43	441354	7406675	656	Rock	Float	black	shale	0.06
К44	441388	7406674	660	Rock	Subcrop	black	shale	0.09
K45	441315	7406718	653	Rock	Float	black	shale	0.07
К46	441336	7406970	644	Rock	Float	black	shale	0.06
К47	441385	7407106	646	Rock	Float	black	shale	0.13
К48	441370	7407226	652	Rock	Float	black	shale	0.22
К49	441384	7407282	662	Rock	Subcrop	black	shale	0.37
К50	441402	7407318	667	Rock	Subcrop	black	shale	0.29
K51	441436	7407357	669	Rock	Subcrop	black	shale	0.21
K52	441431	7407444	667	Rock	Subcrop	black	shale	0.10
K53	441404	7407472	668	Rock	Subcrop	black	shale	0.19
К54	441428	7407518	661	Rock	Subcrop	black	shale	0.28

K55	441454	7407571	650	Rock	Subcrop	black	shale	0.23
K56	441509	7407613	648	Rock	Subcrop	black	shale	0.14
K57	441521	7407615	649	Rock	Subcrop	black	shale	0.25
K58	441530	7407622	650	Rock	Subcrop	black	shale	0.22
К59	441557	7407676	656	Rock	Subcrop	black	shale	0.23
К60	441531	7407748	658	Rock	Subcrop	black	shale	0.24
K61	441533	7407848	655	Rock	Subcrop	black	shale	0.20
K62	441540	7407949	652	Rock	Subcrop	black	shale	0.40
K63	441571	7408042	647	Rock	Subcrop	black	shale	0.31
К64	441576	7408033	645	Rock	Subcrop	black	shale	0.17
K65	441587	7408280	616	Rock	Float	black	shale	0.19
K66	441578	7408263	617	Rock	Float	black	shale	0.21
K67	441577	7408175	628	Rock	Float	black	shale	0.17
K68	441435	7408053	647	Rock	Subcrop	black	shale	0.07
K69	441403	7408082	641	Rock	Subcrop	black	shale	0.38
К70	441448	7408041	650	Rock	Subcrop	black	cherty shale	0.38
K71	441478	7408035	653	Rock	Subcrop	dark grey	cherty shale	0.31
K72	441508	7408043	652	Rock	Subcrop	dark grey	cherty shale	0.22
К73	441545	7408049	650	Rock	Subcrop	black	shale	0.29
К74	441564	7408024	649	Rock	Subcrop	black	shale	0.26
K75	441581	7407995	644	Rock	Subcrop	black	shale	0.18
K76	441628	7407909	636	Rock	Float	deep black	shale	0.28
K77	441650	7407831	641	Rock	Float	deep black	shale	0.20
K78	441663	7407811	640	Rock	Float	deep black	shale	0.16

К79	441613	7407809	648	Rock	Float	deep black	shale	0.26
K80	441590	7407817	652	Rock	Float	deep black	shale	0.32
K81	441323	7408337	621	Rock	Subcrop	dark grey	cherty shale	0.03
К82	441303	7408342	622	Rock	Subcrop	dark grey	cherty shale	0.05
K83	440911	7404322	707	Rock	Subcrop	black	cherty shale	0.40
К84	440955	7404313	714	Rock	Subcrop	black	cherty shale	0.30
К85	440988	7404318	716	Rock	Subcrop	black	cherty shale	0.21
К86	441019	7404302	719	Rock	Subcrop	black	shale	0.29
K87	441088	7404243	723	Rock	Subcrop	black	shale	0.11
K88	441093	7404230	722	Rock	Subcrop	black	shale	0.12
К89	441110	7404208	716	Rock	Subcrop	black	shale	0.16
К90	441190	7404178	708	Rock	Float	black	shale	0.04
К91	441434	7404003	696	Rock	Float	black	cherty shale	0.02
К92	441513	7403953	701	Rock	Subcrop	black	cherty shale	0.02
К93	441507	7403945	707	Rock	Subcrop	black	cherty shale	0.01
К94	441548	7403838	757	Rock	Outcrop	black	cherty shale	0.01
К95	441573	7403710	798	Rock	Outcrop	black	cherty shale	0.02
К96	441584	7403678	792	Rock	Outcrop	black	cherty shale	0.01
К97	441515	7404037	707	Rock	Subcrop	black	cherty shale	0.01
К98	441518	7404061	715	Rock	Subcrop	black	cherty shale	0.02
К99	441525	7404114	732	Rock	Subcrop	black	cherty shale	0.03

APPENDIX V - ASSAY CERTIFICATE OF K04

To: AKG EXPLORATION INC #1901 - 1188 WEST PENDER ST VANCOUVER BC V6E 0A2 Page: 1 Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 26-OCT-2019 This copy reported on 28-OCT-2019 Account: AKGEXP

CERTIFICATE VA19248758

Project: Kiev

This report is for 1 Rock sample submitted to our lab in Vancouver, BC, Canada on 3-OCT-2019.

The following have access to data associated with this certificate:

SAMPLE PREPARATION								
ALS CODE	DESCRIPTION							
WEI-21	Received Sample Weight							
LOG-22	Sample login - Rcd w/o BarCode							
CRU-31	Fine crushing - 70% <2mm							
SPL-21	Split sample - riffle splitter							
PUL-31	Pulverize up to 250g 85% <75 um							
	ANALYTICAL PROCEDURES							
ALS CODE	DESCRIPTION	INSTRUMENT						

	ANALITICALINOCLOU	125
ALS CODE	DESCRIPTION	INSTRUMENT
ME-4ACD81	Base Metals by 4-acid dig.	ICP-AES
ME-ICP06	Whole Rock Package - ICP-AES	ICP-AES
OA-GRA05	Loss on Ignition at 1000C	WST-SEQ
ME-MS81	Lithium Borate Fusion ICP-MS	ICP-MS
TOT-ICP06	Total Calculation for ICP06	

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release. ##### See Appendix Page for comments regarding this certificate #####

Signature: UN Saa Traxler, General Manager, North Vancouver

ALS		AlS Canada Ltd. 2103 Dollarton Hwy North Vancouver 8C V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochernistry						To: AKG EXPLORATION INC #1901 - 1188 WEST PENDER ST VANCOUVER BC V6E 0A2						Page: 2 - A Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 26-OCT-2019 Account: AKGEXP			
ALS)							Proj	ect: Kiev	ERTIFI	CATEO	Ε ΔΝΔ		VA192	48758		
Sample Description	Method Analyte Units LOD	WEI-21 Recwd Wt. kg 0.02	ME-M381 Ba ppm 0.5	ME-M581 Ce ppm 0.1	ME-M581 Cr ppm 10	ME-M881 Cs ppm 0.01	ME-M581 Dy ppm 0.05	ME-M381 Er ppm 0.03	ME-M581 Eu ppm 0.03	ME-MS&1 Ca ppm 0.1	ME-M881 Cd ppm 0.05	ME-M381 Hr ppm 0.2	ME-M881 Ho ppm 0.01	ME-M581 La ppm 0.1	ME-M581 Lu ppm 0.01	ME-M881 Nb ppm 0.2	

ALS		ALS Canada Ltd. To: AKC EXPLORATION INC 2103 Dollarton Hwy #1901 - 1188 WEST PENDER ST North Vancouver 8C V7H 0A7 VANCOUVER BC V6E 0A2 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry							Page: 2 - B Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 26-OCT-2019 Account: AKGEXP							
(ALS)							Proj	ect: Kiev C	ERTIFI	CATE O	F ANA	LYSIS	VA192	48758	
Sample Description	Method Analyte Units LOD	ME-M581 Nd ppm 0.1	ME-M8\$1 Pr ppm 0.03	ME-M581 Rb ppm 0.2	ME-M581 8m ppm 0.03	ME-MS81 Sn ppm 1	ME-MS\$1 Sr ppm 0.1	ME-MS81 Ta ppm 0.1	ME-M581 Tb ppm 0.01	ME-MS&1 Th ppm 0.05	ME-M881 Tm ppm 0.01	ME-MS\$1 U ppm 0.05	ME-M881 V ppm 5	ME-M581 W ppm 1	ME-M581 Y ppm 0.1	ME-M881 Yb ppm 0.03
K04		3.4	0.89	4.9	0.80	ব	1940	0.1	0.08	1.13	0.06	1.78	33	1	4.1	0.29

ALS		ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver 8C V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochernistry						To: AKG EXPLORATION INC #1901 - 1188 WEST PENDER ST VANCOUVER BC V6E 0A2						Page: 2 - C Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 26-OCT-2019 Account: AKGEXP			
(ALS))							Proje	ect: Kiev C	ERTIFIC	CATE O	F ANA	LYSIS	VA192	48758		
Sample Description	Method Analyte Units LOD	ME-M581 Zr ppm 2	ME-ICF06 SIO2 % 0.01	ME-ICP06 Al2O3 % 0.01	ME-ICP06 Fe2O3 % 0.01	ME-ICP06 CaD % 0.01	ME-ICP06 MgD % 0.01	ME-ICP06 Na20 % 0.01	ME-ICP06 K2O % 0.01	ME-ICP06 Cr2O3 % 0.002	ME-ICP06 TiO2 % 0.01	ME-ICP06 MinD % 0.01	ME-ICF06 F2O5 % 0.01	ME-ICP06 SrO % 0.01	ME-ICP06 BaD % 0.01	0.4-CR405 LOI % 0.01	
K04		16	5.6B	1.01	0.79	52.5	0.78	0.38	0.09	0.002	0.05	<0.01	0.12	0.23	0.06	40.2	

ALS		Als Canada Ltd. 2103 Dollarton Hwy North Venoouver 8C V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochernistry							#1901 - 1188 WEST PENDER ST VANCOUVER BC V6E 0A2						Fages: 2 · D Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 26-OCT-2019 Account: AKCEXP		
ALS)							Ľ		ERTIFI	CATE O	F ANA	LYSIS	VA192	48758		
Sample Description	Method Analyte Units LOD	TOT-ICP06 Total % 0.01	ME-4ACD\$1 Ag ppm 0.5	ME-4ACD61 As ppm 3	ME-4ACD61 Cd ppm 0.5	ME-4ACD81 Co ppm 1	ME-4ACD\$1 Cu ppm 1	ME-4ACD81 Li ppm 10	ME-4ACD61 Mo ppm 1	ME-4ACD\$1 Ni ppm 1	ME-4ACD61 Pb ppm 2	ME-4ACD81 So ppm 1	ME-4ACD&1 TI ppm 10	ME-4ACD81 Zn ppm 2			
(04		101.89	<0.5	<5	<0.5	4	4	<10	1	15	<2	1	<10	17			

ALS Canada Ltd.

To: AKG EXPLORATION INC #1901 - 1188 WEST PENDER ST

Page: 2 - D Total # Pages: 2 (A - D)

To: AKG EXPLORATION INC #1901 - 1188 WEST PENDER ST VANCOUVER BC V6E 0A2 Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 26-OCT-2019 Account: AKGEXP

Project: Kiev CERTIFICATE OF ANALYSIS VA19248758

	E COMMENTS	CERTIFICA						
	Processed at /							
ME-ICP06 SPL-21	ME-4ACD81 PUL-31	ALS Vancouver located at 2103 Dollarto LOG-22 OA-CRA05 WEI-21	pplies to Method: CRU-31 ME-MS81 TOT-ICP06	Applies to Metho				

APPENDIX VI - XRF RESULTS OF NIMO SUN AND FOX DRILL CORES

HoleID	From_m	V2O5_pct	Description
FX07-01	10	1.05	
FX07-01	14	1.39	
FX07-01	22	0.69	
FX07-01	29	1.53	
FX07-01	32	0.74	
FX07-02	15	0.12	soft flaky shale
FX07-02	18	0.13	
FX07-02	25.5	0.09	soft clayish shale
FX07-02	28	0.13	yellow staining
FX07-02	31	0.09	soft flaky shale
FX07-02	38.6	0.16	soft flaky shale
FX07-02	45.7	0.38	hard
FX07-02	47	0.52	soft flaky shale
FX07-02	48.5	0.22	has a label "Canol Litho 6"
FX07-02	54	0.04	
FX07-02	58.5	0.18	
FX07-02	72.5	0.29	
FX07-02	80	0.18	
FX07-02	84	0.20	
FX07-02	88	0.15	
FX07-02	105	0.29	
FX07-03	16	0.06	medium grey
FX07-03	20	0.02	almost vanadium zone, black to dark grey
FX07-03	22	0.29	black
FX07-03	29	1.04	
FX07-03	36	0.68	
FX07-03	40	1.58	
FX07-03	46.5	0.09	
FX07-03	49	1.28	
FX07-03	55	0.09	
FX07-03	60	0.33	
FX07-03	64	0.24	
FX07-03	70	0.19	
FX07-03	75	0.25	
FX07-03	78.53	0.47	
FX07-03	87	0.38	

	04.0	0.00	
FX07-03	91.8	0.29	
FX07-03	96.3	0.36	
FX07-03	105	0.11	
FX07-03	111	0.20	
FX07-03	113.6	0.24	
FX07-03	121	0.04	
FX07-03	125	0.14	Ca 7.8%
FX07-03	128	0.11	Ca 7.36%
FX07-03	137	0.26	
FX07-03	186	0.09	
FX07-04	31	0.46	
FX07-04	59	0.23	
FX07-04	66	0.20	
SN07-01	62.63	0.24	assay is 2500, some narrow qtz vein (2 phases)
SN07-01	64	0.28	
SN07-01	97.5	0.13	
SN07-03	81.48	0.18	
SN07-03	82.93	0.03	f.g. py minor amount
SN07-03	98	0.14	
SN07-03	99.64	0.12	
SN07-03	104.82	0.11	

APPENDIX VII - MINERALOGY REPORT BY BUREAU VERITAS

BV Minerals - Metallurgical Division Bureau Veritas Commodities Canada Ltd. 11620 Horseshoe Way, Richmond, BC V7A 4V5 Canada Tel: +1(604) 272-8110 Fax: +1(604) 272-0851 Email: wendy.ma@ca.bureauveritas.com

February 13, 2020

Mr. Tao Song #1901-1188 West Pender Street, Vancouver BC, Canada V6E 0A2

Re: Mineralogical Assessment of the Three Test Samples Project No. MM1900410

Dear Mr. Song,

We have completed the mineralogical assessment on the three test samples that you provided. These three test samples, labeled as BX2, BX4 and Composite, were representative of the feeds of the ongoing metallurgical tests at BV Minerals – Metallurgical Division.

The principal objective of this study was to identify and quantify the mineral abundances of the provided test samples. To achieve the program, the standard chemical analysis and QEMSCAN Bulk Mineral Analysis (BMA) protocols were conducted on each of the unsized test samples as received. All the information produced by this study are shown in three appendices attached at the end of this letter:

Appendix I – Sample Origin and Methodology; Appendix II – QEMSCAN Particle Mineral Analysis (PMA) Data. The data, in terms of the mineral composition and vanadium deportments' by the bearing minerals, of the three test samples are summarized in Table 1 and Figure 1 on the following page of this letter.

Thank you for inviting BV Minerals – Metallurgical Division to participate in this mineralogical testing program. If you have any questions regarding this study or our assessment of the data, please do not hesitate to contact us.

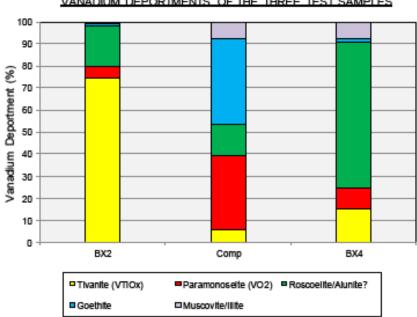
Kind regards,

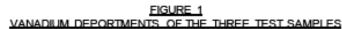
Wendy Ma, M.Sc. P. Geo. Mineralogy Manager

^{*} The concentrations of vanadium in goethite and muscovite was based on the spectra data generated from EDS detectors. To achieve the accurate vanadium concentrations in these minerals, the microprobe analysis will be required.

MINERALOGICAL ASSESSMENTS OF THREE TEST SAMPLES

APPENDIX I


SAMPLE ORIGIN AND METHDOLOGY


FEBRUARY 13, 2020

Minerals	EX2	Composit e	BX4	Minerals	BX2	Composit e	BX4
Cu Sulphides	0.03	<0.01	<0.01	Quartz	79.4	83.6	81.0
Galena	<0.01	<0.01	0.01	K-Feldspar	4.93	7.05	4.44
Sphalerite	1.05	<0.01	0.83	Wollastonite	2.88	0.26	2.43
Pyrite	0.27	0.04	1.37	Plagioclase Feldspar	0.47	0.99	0.82
Tivanite (VTiOx)	0.41	0.01	0.02	Muscovite/Illite	0.44	1.11	0.61
Paramonoseite (VO2	0.01	0.03	<0.01	Calcite	1.44	1.35	1.18
Roscoelite/Alunite?	0.22	0.09	0.27	Pyroxene/Amphibole	0.26	0.09	0.31
Iron Oxides/Iron Meta	0.14	1.59	0.13	Apatite	0.20	0.13	0.09
				Organic Carbon/Graphit	7.36	3.32	6.07
				Others	0.47	0.33	0.46
Total	2.13	1.75	2.64	Total	97.9	98.2	97.4

TABLE 1 CHEMICAL AND MINERAL COMPOSITIONS OF THE THREE TEST SAMPLES

Notes: 1) Iron Oxides include Geothite, Limontie, limentite, Magnetite and Iron Metal. 2) Feldspar Group includes Plaglociase, Albite, Anorthite, Orthociase and Sanidine/Obsidian. 3) Others include trace amounts of Rutile, Epidote, Sphene, and unresolved mineral species. See Appendix II for details. The mineral contents w ere measured in mass%.

MINERALOGICAL ASSESSMENTS OF THREE TEST SAMPLES

APPENDIX I

SAMPLE ORIGIN AND METHDOLOGY

FEBRUARY 13, 2020

1. Sample Origin and Methodology:

Three test samples were submitted for the mineralogical assessment at the BV Minerals - Metallurgical Division in Canada on October 10 and November 28, 2019, respectively. These three test samples, including BX2, BX4 and Composite, represented the feeds of the ongoing metallurgical tests at BV minerals-metallurgical Division.

Upon receipt of the samples, the representative cuts were taken from each of the three test samples for the chemical analysis and mineralogical studies. The standard chemical analysis protocols were performed on each of the test samples as received, to assist the calibrations of QEMSCAN analysis.

Each of the unsized samples as received was mounted into the 30mm blocks using epoxy. During the mounting, graphite was also added into each sample block in order to decrease the particle touching and the settlement of mineral particles with relatively high specific gravity. The mounted sample blocks were ground, polished and carbon coated using the standard QEMSCAN sample preparation procedures.

Following the sample preparation, the QEMSCAN Bulk Mineral Analysis (BMA) was conducted on each of the unsized samples. The SIP (Specific Identification Protocols) was particularly developed for these three test samples, to identify and quantify the mineral compositions of these three test samples. The data generated using QEMSCAN Particle Mineral Analysis (PMA) can be located in Appendix II.

MINERALOGICAL ASSESSMENTS OF THREE TEST SAMPLES

APPENDIX II

QEMSCAN BULK MINERAL ANALYSIS (BMA) DATA

FEBRUARY 13, 2020

Minerals	BX2	Comp	BX4
Cu Sulphides	0.03	<0.01	0.00
Galena	<0.01	<0.01	0.01
Sphalerite	1.05	<0.01	0.88
Pyrite	0.27	0.04	1.46
Tivanite (VTiOx)	0.41	0.01	0.02
Paramonoseite (VO2)	0.01	0.03	0.00
Roscoelite/Alunite?	0.22	0.09	0.29
Goethite	0.08	1.53	0.06
Iron Metal	0.07	0.05	0.09
Quartz	79.4	83.6	86.2
K-Feldspar	4.93	7.05	4.73
Wollastonite	2.88	0.26	2.59
Plagioclase Feldspar	0.47	0.99	0.87
Muscovite/Illite	0.44	1.11	0.62
Calcite	1.44	1.35	1.25
Pyroxene/Amphibole	0.26	0.09	0.33
Apatite	0.20	0.13	0.03
Rutile/Anatase	0.09	0.12	0.09
Edingtonite Ba(AlSi)Ox	0.12	0.07	0.10
Zircon	0.01	0.01	0.04
Barite	<0.01	0.02	0.06
Organic Carbon/Graphite	7.36	3.32	0.00
Others	0.21	0.11	0.27
Total	100.0	100.0	100.0

TABLE 1A MINERAL COMPOSITION OF THE THREE COMPOSITE SAMPLES MM1900410

Note: 1) Copper Sulphides Include Chaicopyrite and Tetrahedrite. 2) Iron Oxides Include Geothite, Hematite and Imonite. 3) Muscovite/Illite Includes trace amounts of Kaoiinite and Chiorite. 4) The mineral contents were measured in mass%.

TABLE 1B VANADIUM DISTRIBUTION BY VANADIUM BEARING MINERALS MM1900410

Mineral	BX2	Comp	BX4
Tivanite (VTiOx)	74.5	5.5	15.2
Paramonoseite (VO2)	5.6	33.7	9.6
Roscoelite/Alunite?	18.3	14.4	66.1
Goethite	0.8	38.5	1.3
Muscovite/Illite	0.8	7.9	7.9
Total	100.0	100.0	100.0

APPENDIX VIII - ACID LEACHING RESULTS

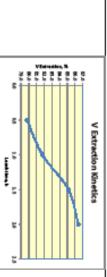
LEACH RESULTS SUMMARY

Client: Song Tao Test: L1 Sample: Composite Date: 6-Nov-19 Project: 1902410

Objective: Sulphuric acid leach of vanadium from composite sample

Test	Sample	Leach Temp.	Lee	ach	Extraction				
id	id	°c	Sulphuric acid	% solids	٧,%	Fe,%			
L1	Composite	90-95	1:3	23	86.4	93.7			

ACID LEACH TEST REPORT


Olanti Sang Tao Twati Li Bunplei: Composile	
Data: 6 Alor-19 Project: 1902410	

Objetive: Supratoedd las dr o' vanadium from composite surple

Scitistered gift 12H H2SOK Wr. N. Soat Temperatros Terrperatros Territo entites	TEST COMPRISHE
2005 2015 2018 2018 2018 2018 2018 2018 2018 2018	
composite sample polyntrad to 80% passing 40 µm a charad to 20% socials with 13% an Marth and 20.00°°C abury sample laten at 20, 20, 20 minute suite at the and of leaching abury Bared, volume and weight of FLC roomited and asseyed cate was bed incertimes at the water of extractions are used in water	TENT DESCRIPTION

HEADGRACE V Orkulad: 0.17% Hearned 0.19% LEACH TENT DATA

	-	_		-					-		
Total	Head	Resi du e	dal in edu	20	5	5	ŝ	•	Tour I		The
			tion	બ	8	8	ğ	8	•	Temp	
		105.6		451	510	505	8		8	We ig Hz	0 Latry
				1.200	1.200	1.303	1.26		92 ,g/ml	Bolution	
				276	802	302	8		ĉ	Vol.	Boutten
					5	5	5		ĉ	A say V ol.	
	0.15	0.007		6143	500.4	5393, 3	516.2		(mg/L, %)	4	
		29.0	100	8	8	179	7		t g		
	0.55	0.053		2112	5	1021	бa fi		(ma) (ma)է %) 4mp((ma)է %) (ma) (ma)է %) (ma) (ma)է %) (ma)է %) (ma)է %) (ma)է %)	,	
		8,6	990	8	8	1014	ő		8		
	211			1528	CONC'E	1905	2000		(mg/L %)	2	Amery
		1,000	1117	1117	1077	1025	ţ		8		ſ
	0.74	0.52		ģ	8	8	ផ		ing/L %)	×	
		-	014	314	ä	200	ë		8		
	200	8		95	5	507	9 0		(ingit, Si)	ŧ	
		2	208	8	ş	15	ŝ		8		L
100.0		10.0	88.4	84	ß	01.0	792		2	۲	
100.0		5	907	90.7	546	960	9		2	,	
100.0		88.1	44.9	44.9	È	41.0	10.2		3	2	Recovery
100.0		97.9	8.4	26.4	ji S	302. B	g		3	×	
100.0		227	77.0	773	767	742	733		2	ł	

NAME AND ADDRESS OF A DRESS OF A D

Client: Song Tao Sample: L1 PLS as per ID

Date: 6-Nov-19 Project: 1902410

			Sam	ole ID			
Analyte	Unit	L1 30' Pis	L1 60' Pis	L1 90' Pls	L1 Final PLS	LDL	Method
AI	mg/L	2888.0	3051.0	3269.0	3528.0	0.08	ICPH2O
As	mg/L	9.4	10.3	9.8	10.2	0.2	ICPH2O
в	mg/L	7.73	11.81	9.05	9.57	0.06	ICPH2O
Ba	mg/L	0.007	0.019	0.014	0.025	0.003	ICPH2O
Ca	mg/L	64.10	86.93	79.77	78.17	0.05	ICPH2O
Cd	mg/L	5.31	5.82	5.88	6.03	0.01	ICPH2O
6	mg/L	<0.03	0.20	0.13	0.17	0.03	ICPH2O
Cr	mg/L	35.11	35.19	36.54	38.48	0.03	ICPH2O
Cu	mg/L	25.54	24.49	24.56	24.89	0.04	ICPH2O
Fe	mg/L	3057.0	3021.0	3040.0	3118.0	0.02	ICPH2O
к	mg/L	767.0	843.0	933.0	994.0	0.4	ICPH2O
Li	mg/L	0.09	0.90	0.70	0.99	0.02	ICPH2O
Mg	mg/L	578.10	586.70	617.80	644.60	0.05	ICPH2O
Mn	mg/L	23.40	23.60	22.66	23.05	0.01	ICPH2O
Mo	mg/L	10.22	10.85	10.92	11.16	0.05	ICPH2O
Na	mg/L	23.0	51.0	25.0	24.0	0.1	ICPH2O
Ni	mg/L	21.45	23.46	23.25	23.70	0.06	ICPH2O
Р	mg/L	126.5	137.1	137.8	140.6	0.2	ICPH2O
РЬ	mg/L	<0.2	<0.2	<0.2	<0.2	0.2	ICPH2O
s	mg/L	186900	179400	180400	186800.0	0.3	ICPH2O
Sb	mg/L	<0.2	<0.2	<0.2	<0.2	0.2	ICPH2O
Se	mg/L	<0.4	0.4	<0.4	<0.4	0.4	ICPH2O
Si	mg/L	0.3	2.8	1.3	2.1	0.2	ICPH2O
Sr	mg/L	1.321	1.548	1.398	1.444	0.002	ICPH2O
т	mg/L	<2	<2	<2	<2	2	ICPH2O
v	mg/L	520.40	539.30	580.40	618.90	0.06	ICPH2O
Zn	mg/L	193.80	196.30	192.10	175.80	0.02	ICPH2O

RESIDUE ASSAY REPORT

Client: Song Tao Sample: L1 Solids as per ID Date: 6-Nov-19 Project: 1902410

			Sam	pie ID			
Analyte	Unit	L1 0.5h Solids	L1 1h Solids	L1 1.5h Solids	L1 Final Residue	LDL	Method
LOI	%	5	5.4	5.2	6.1		XF701
A12O3	%	2.77	2.68	2.6	2.45	0.01	XF701
BaO	%	0.42	0.42	0.42	0.42	0.01	XF701
CaO	%	0.08	0.25	0.16	0.87	0.01	XF701
Cr2O3	%	0.008	0.007	0.014	0.008	0.004	XF701
Fe2O3	%	0.12	0.1	0.1	0.09	0.01	XF701
к20	%	0.68	0.66	0.65	0.63	0.01	XF701
MgO	%	0.13	0.11	0.1	0.10	0.01	XF701
MnO	%	<0.01	<0.01	<0.01	<0.01	0.01	XF701
Na2O	%	0.12	0.11	0.11	0.115	0.01	XF701
P205	%	0.005	0.005	0.005	0.006	0.001	XF701
SO3	%	0.56	0.79	0.6	1.59	0.01	XF701
SiO2	%	88.71	88.62	88.64	88.20	0.01	XF701
TiO2	%	0.17	0.16	0.17	0.17	0.01	XF701
V2O5	%	0.096	0.081	0.067	0.050	0.002	X F701
ZnO	%	0.003	0.003	0.003	0.004	0.002	XF701
ZrO2	%	<0.01	<0.01	<0.01	<0.01	0.01	XF701

LEACH RESULTS SUMMARY

Client: Song Tao Test: L2, L3 Sample: Composite Date: 11-Dec-19 Project: 1902410

Objective: Temperature effect on V leach at the sulphuric acid dosage of 100kg/t and leach at 23% w/w solids

Test	Sample	Leach Temp.	Leach co	onditions	Extraction			
id	id	°C	Sulphuric acid dosage	% solids	V.%	Fe,%		
L2	Composite	60	100kg/t	23	7.6	28.6		
L3	Composite	90	100kg/t	23	11.9	50.8		

Chene (1) regit: control	ł	F .	. 3	,	Tot								L			Ē	Ð						18	e	I		Þ
Image: Property of the solution of the soluti		Total			ul in solu	8	g	ŝ	g	20	5	8 o	NU15		Time	ACH TES	AD GRAC	;	d →				TCOND	Notive:		Client Test Bamplet	ŝ
O'C # 25 Swive alls Example grant to DN, posity 4, the function of a convergence interval of the other and the standard function of a convergence interval of the other and the standard function of a convergence interval of the other and the standard function of a convergence interval of the other and the standard function of a convergence interval of the other and the standard function of a convergence interval of the other and the standard function of a convergence interval of the other and the standard function of a convergence interval of the other and the standard function of the other and t		form field from			tio n	8	8	8	8	8	8	ន ន	°	Tomp		r data	Ke Calculated: Measured	MaipHt	emperature:	auny Wt% Solit	HISOK	child is workin he	ITIONS	Dosege of 1		Sang Tieo L2 Camposite	LEAC
O'C # 25 Swive alls Example grant to DN, posity 4, the function of a convergence interval of the other and the standard function of a convergence interval of the other and the standard function of a convergence interval of the other and the standard function of a convergence interval of the other and the standard function of a convergence interval of the other and the standard function of a convergence interval of the other and the standard function of a convergence interval of the other and the standard function of a convergence interval of the other and the standard function of the other and t		ł	0.120			(49)	1.41	ŝ	107	1397	(180)	1,414	60	Weight	Aung		0.0 8 4	0.99	.8	1 1 1 1	8	102.0		ndres (Digo			HTES
O'C # 25 Swive alls Example grant to DN, posity 4, the function of a convergence interval of the other and the standard function of a convergence interval of the other and the standard function of a convergence interval of the other and the standard function of a convergence interval of the other and the standard function of a convergence interval of the other and the standard function of a convergence interval of the other and the standard function of a convergence interval of the other and the standard function of a convergence interval of the other and the standard function of the other and t						1.016	1016	1.016	1.016	1.015	1018	1,010	80, g/ml	u contros			**		d	20	đ,			aric odd ond			T REP
Charaction (A)n means and and stand and and and and and and and and and						(08) (08)	高	1,000	1080	1089	1085	1,012	(mL)	Val.	Solution			-dried residu	-duny filter	-duny samp	-edusted to		TEST DESK	leachat 60 Y			ORT
Charaction (A)n means and and stand and and and and and and and and and							75	75	75	7	4	4	(Jan)	Assay Vol				ie weigheide	d, volume or	te taken at 0	23% solds		NOLLARS	C of 23 % w/w			
Crucination of the bits Number of the bits Nu		ļ	0.18	2		40.4	¥.	2	ž	¥,	8.K	25	(moll %)	<				nd assessyed	ad weight of P	0;12;3;4;5e	n glassa resucti	ed to 100% pee		radikta			
Crucination of the bits Number of the bits Nu			04790	5	\$	8	t	ß	8	4	8	÷	(ma)						LS NOON								
Numerical resonance			083	2		791	ä	ä	8	ŝ	ĩ	â	(mgl., %)	3					bed en de see	eeding		3					
Dame: 11-Dame: 11-Dame: <t< td=""><td>Extra</td><td></td><td>416</td><td></td><td>873</td><td>873</td><td>ŝ</td><td>8</td><td>7%</td><td>88</td><td>5</td><td>490</td><td>(the</td><td></td><td></td><td></td><td></td><td></td><td>a.</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Extra		416		873	873	ŝ	8	7%	88	5	490	(the						a.								
Dame: 11-Dame: 11-Dame: <t< td=""><td>ction Nin</td><td></td><td>2.11</td><td>ì</td><td></td><td>302</td><td>823</td><td>810</td><td>ŝ</td><td>ŝ</td><td>8</td><td>ŝ</td><td>(mol. %)</td><td>v</td><td>Ass</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	ction Nin		2.11	ì		302	823	810	ŝ	ŝ	8	ŝ	(mol. %)	v	Ass												
Mg V Pregloct: 1902.010 Mg V Pregloct: 1902.010 2004 2017 202 202 2005 2020 5.5 10.0 2005 2020 5.5 10.0 2005 2020 5.5 10.0 2005 2020 7.5 20.1 2005 2020 7.5 20.1 2005 202 7.6 20.2 100.0 100.0 100.0 100.0	etics	•	cre v		567	8	84	972	81 1	83	910	808			w.		Plot:		5	4	-	ł	2				
Mg V Pregloct: 1902.010 Mg V Pregloct: 1902.010 2004 2017 202 202 2005 2020 5.5 10.0 2005 2020 5.5 10.0 2005 2020 5.5 10.0 2005 2020 7.5 20.1 2005 2020 7.5 20.1 2005 202 7.6 20.2 100.0 100.0 100.0 100.0	4		074	}		8	3	8	贷	8	ŝ	8	(mg/L %)	×			Overhead a		Í		-						
Mg V Pregloct: 1902.010 Mg V Pregloct: 1902.010 2004 2017 202 202 2005 2020 5.5 10.0 2005 2020 5.5 10.0 2005 2020 5.5 10.0 2005 2020 7.5 20.1 2005 2020 7.5 20.1 2005 202 7.6 20.2 100.0 100.0 100.0 100.0			1,900	i	72	ಶ	8	a	8	8	8	8	(mo)				glation la		1	22							
Datis: 11-Dato 19 Project: 1902 400 Impl 2000 1			0.22	2		206	5	29.01	241	247	247	20	(mg& %)	5M			å										
10000 At 115000 10 At 115000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 100000 10000 100000 10000 100000 1000000			į	5	262	28	E E	N	260	12	12	273		-													
		1000	8 7.6	2	8.1	7.6	75	7.0	65	62	ä	5 i2	8	<												Dute: Project	
Bacovery N N 173 173 173 173 173 173 173 173 173 173		1000		!	9.82	20.6	27.6	8	23.4	21.7	10.0	18,1	(%)	3												11-Deo 19 1902 410	
		1000	0.76	3	0.8	0.0	0 A	8	7,6	77	73	73	8	2	Recovery												
1000 94.5 32.5 32.5 32.5 32.5 32.5 32.5 32.5 32		1000	0.16	:	3.5	35	2	5	2.7	2.6	24	2.6	8	×													
NG 1000 1000 1000		100.0	94.0		37.0	37.0	176	17.0 0	38.7	97.9	37.0	9.0C	8	ВW													

	8	6 1	1.02 5 5					
ł	5		1		ł			
00 tepos philosoft	ĩ			r		l		V EXUS
	5			ł		ł		EXTROUCT NINE UCS
ļ	5			ł		l		ALLE OK
	ĩ						ł	ø
	5					ŀ		
	ii -							

ACID LEACH TEST REPORT

Client: Song Tao Text: L3 Sample: Composite	Date: 11-Deo-19 Project: 1902410
Objective: Dowage of 100 kgA subpluto acid and leach at 80 °C at 22% w/weakas	Header at all C at 2 2% where has been
TIST CONDITIONS	TEST DESCRIPTION

IBT CONDITIONS		TEST DESCRIPTION
Solitis weight:	332.0 g	-composite sample ground to 60 % passing 4 3µm -adjusted to 2 3% solids in gass reactor
Sturry: Wt % Solid:	1,413 g 23 %	-agits ted leach in heating martel for 6 hours at 60 °C -skury sample taken at 0.0, 1,2,3,45 and 6h of leaching
Temperature:	0,08	-stury filtered, volume and weight of PL Sneconded and asserted
Test Duration:	6 hours	-Califor was sheed three times with water
2+dimmi	960	Diek protection in the political management of the protection of t

HEAD GRADE Calculated : Nonsured: LEACH TEST DATA 0.17 % 0.18 %

0.01 1,844 0.14
85
8
8
76 80 277
3
74
ž
8
(mg/L,%) (mg) (mg/L,%) (mg)
K. M.

Note: Leads solutions lightbrown od or; slightly dinter from 12 leads solutions

Pic 2 L2 and L3 solutions color

Client: Song Tao Sample: L2 PLS as per ID Date: 11-Dec-19 Project: 1902410

					Sample ID					
Analyte	Unit	L2 0.5h Pis	L2 1h Pis	L2 2h Pis	L2 3h Pis	L2 4h Pis	L2 5h Pis	L2 Gh Pis	LDL	Method
AI	mg/L	467.00	480.00	496.40	493.60	518.70	523.00	501.90	0.08	ICPH20
As	mg/L	2.3	2.4	2.4	2.4	2.7	2.8	2.8	0.2	ICPH2O
в	mg/L	2.61	2.29	2.35	2.57	2.54	2.68	2.29	0.06	ICPH2O
Ba	mg/L	0.062	0.054	0.044	0.049	0.050	0.046	0.050	0.003	ICPH2O
Ca	mg/L	888.90	917.40	867.80	900.30	894.10	881.80	858.70	0.05	ICPH2O
Cd	mg/L	6.24	5.67	5.56	4.80	5.31	5.30	5.25	0.01	ICPH20
Co	mg/L	0.57	0.57	0.57	0.52	0.58	0.58	0.59	0.03	ICPH20
Cr	mg/L	5.84	6.06	6.52	6.79	7.17	7.42	7.70	0.03	ICPH20
Cu	mg/L	11.70	10.29	10.46	10.35	10.83	10.85	11.06	0.04	ICPH2O
Fe	mg/L	455.40	541.80	619.00	668.40	717.20	757.10	790.80	0.02	ICPH2O
к	mg/L	49.0	46.0	49.0	52.0	58.0	61.0	65.0	0.4	ICPH20
U	mg/L	0.06	0.06	0.07	0.09	0.08	0.08	0.09	0.02	ICPH2O
Mg	mg/L	252.80	247.00	246.80	240.50	245.40	244.70	235.80	0.05	ICPH20
Mn	mg/L	18.35	16.59	16.61	16.02	16.07	15.92	15.75	0.01	ICPH2O
Mo	mg/L	0.25	0.26	0.30	0.35	0.44	0.49	0.56	0.05	ICPH20
Na	mg/L	12.0	9.0	9.0	9.0	10.0	10.0	10.0	0.1	ICPH2O
N	mg/L	9.23	10.23	11.08	11.39	12.16	12.51	13.03	0.06	ICPH2O
Р	mg/L	80.7	79.6	78.8	75.3	74.8	72.7	72.6	0.2	ICPH20
Pb	mg/L	0.3	⊲0.2	⊲0.2	<0.2	<0.2	<0.2	⊲0.2	0.2	ICPH20
s	mg/L	8062.0	7824.0	7668.0	7455.0	7322.0	7170.0	7105.0	0.3	ICPH20
Sb	mg/L	⊲0.2	⊲0.2	⊲0.2	<0.2	0.2	0.3	0.2	0.2	ICPH2O
Se	mg/L	0.6	⊲0.4	⊲0.4	<0.4	<0.4	<0.4	⊲0.4	0.4	ICPH20
SI	mg/L	112.1	129.3	140.4	147.9	155.6	161.1	166.4	0.2	ICPH2O
Sr	mg/L	4.623	3.803	3.522	3.389	3.402	3.223	3.149	0.002	ICPH2O
п	mg/L	<2	<2	~2	<2	<2	<2	<2	2	ICPH2O
v	mg/L	28.25	31.49	34.32	35.75	37.69	39.15	40.39	0.06	ICPH2O
Zn	mg/L	96.90	100.20	103.70	103.90	106.30	106.90	108.90	0.02	ICPH2O

Date: 11-Dec-19 Project: 1902410

Client: Song Tao Sample: L3 PLS as per ID

					Sample ID					
Analyte	Unit	L3 0.5h Pis	L3 1h Pis	L3 2h Pis	L3 3h Pis	L3 4h Pis	L3 5h Pis	L3 Gh Pis	LDL	Method
AI	mg/L	579.70	600.10	675.30	704.80	727.50	725.00	691.70	0.08	ICPH20
As	mg/L	3.6	2.6	4.5	5.0	2.1	5.4	5.4	0.2	ICPH2O
в	mg/L	3.11	3.25	2.99	3.14	3.26	3.64	3.40	0.06	ICPH2O
Ba	mg/L	0.049	0.050	0.055	0.050	0.038	0.049	0.054	0.003	ICPH2O
Ca	mg/L	1064.00	1129.00	1129.00	1060.00	1013.00	1072.00	1015.00	0.05	ICPH2O
Cd	mg/L	5.92	3.84	5.81	5.84	2.39	5.68	5.48	0.01	ICPH2O
Co	mg/L	0.68	0.48	0.74	0.77	0.33	0.79	0.77	0.03	ICPH2O
Cr	mg/L	8.81	9.51	10.30	11.09	11.38	11.56	11.33	0.03	ICPH2O
Cu	mg/L	12.41	12.88	13.08	13.25	13.28	13.66	13.26	0.04	ICPH2O
Fe	mg/L	952.80	1097.00	1264.00	1411.00	1450.00	1459.00	1435.00	0.02	ICPH2O
к	mg/L	60.0	68.0	71.0	73.0	76.0	81.0	81.0	0.4	ICPH2O
u	mg/L	0.10	0.12	0.13	0.14	0.15	0.17	0.17	0.02	ICPH2O
Mg	mg/L	266.30	261.00	272.50	279.00	277.20	273.30	261.70	0.05	ICPH2O
Mn	mg/L	17.88	17.67	17.96	18.15	17.87	17.60	17.09	0.01	ICPH2O
Mo	mg/L	0.76	0.78	1.63	2.00	0.95	2.40	2.44	0.05	ICPH2O
Na	mg/L	11.0	12.0	11.0	12.0	12.0	14.0	13.0	0.1	ICPH2O
N	mg/L	15.74	17.88	20.59	22.42	22.78	23.00	22.93	0.06	ICPH2O
Р	mg/L	80.9	78.7	80.4	81.8	79.7	77.0	74.1	0.2	ICPH2O
Pb	mg/L	⊲0.2	⊲0.2	<0.2	<0.2	<0.2	⊲0.2	⊲0.2	0.2	ICPH2O
s	mg/L	8039.0	7816.0	7855.0	7974.0	7711.0	7643.0	7379.0	0.3	ICPH2O
Sb	mg/L	0.3	<0.2	0.3	0.3	<0.2	0.4	0.3	0.2	ICPH2O
Se	mg/L	⊲0.4	0.4	0.9	1.0	0.5	1.2	1.3	0.4	ICPH2O
SI	mg/L	193.5	225.5	253.2	274.2	276.9	275.2	270.5	0.2	ICPH2O
Sr	mg/L	3.876	3.582	3.289	3.066	2.904	2.914	2.833	0.002	ICPH2O
п	mg/L	<2	<2	~2	<2	<2	<2	<2	2	ICPH2O
v	mg/L	48.12	53.16	59.16	64.19	65.49	65.99	65.13	0.06	ICPH2O
Zn	mg/L	126.70	134.50	146.40	155.20	155.40	154.90	151.80	0.02	ICPH20

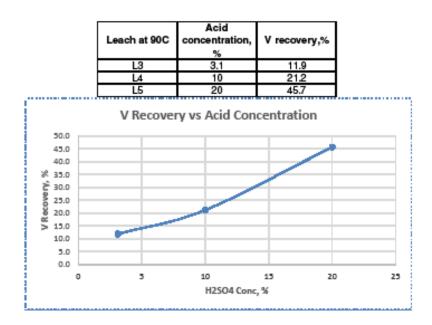
RESIDUE ASSAY REPORT

Client: Song Tao

Sample: L2, L3 Final Solids as per ID

Date: 11-Dec-19 Project: 1902410

		Samp	le ID		
Analyte	Unit	L2 6h Solids	L3 6h Solids	LDL	Method
LOI	%	6.6	6.2		XF701
AI2O3	%	3.76	3.68	0.01	XF701
BaO	%	0.41	0.4	0.01	XF701
CaO	%	0.91	0.64	0.01	XF701
Cr2O3	%	0.06	0.059	0.004	XF701
Fe2O3	%	0.97	0.66	0.01	XF701
K2O	%	0.87	0.86	0.01	XF701
MgO	%	0.23	0.23	0.01	XF701
MnO	%	<0.01	<0.01	0.01	XF701
Na2O	%	0.11	0.1	0.01	XF701
P2O5	%	0.033	0.033	0.001	XF701
SO3	%	1.67	1.28	0.01	XF701
SiO2	%	84.88	85.37	0.01	XF701
TiO2	%	0.18	0.18	0.01	XF701
V2O5	%	0.304	0.288	0.002	XF701
ZnO	%	0.022	0.008	0.002	XF701
ZrO2	%	<0.01	<0.01	0.01	XF701

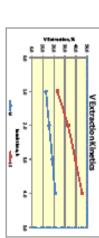

LEACH RESULTS SUMMARY

Client: Song Tao Test: L4, L5 Sample: Composite Date: 6-Feb-20 Project: 1902410

Objective: Sulphuric dosage effect on V leach at 40% w/w solids

Test	Sample	Leach Temp.	Leach co	onditions	Extra	action
id	id	°c	Sulphuric acid dosage	% solids	V,%	Fe,%
L4	Composite	90	150kg/t	40	21.2	73.0
L5	Composite	90	300kg/t	40	45.7	77.3

ACID LEACH TEST REPORT


Ghati Song Tao Thati K Bunyè: Compania
Dobi: Sfub30 Project: 1002410

Objective: Douage of 150kg/t ad physic add and leach at 90 °C at 40% wire adds.

Ten posture Test Duration:	HIRON BARRY	TEST CONSTITUTES
	2	500.0 g
-stary (Borod, votarso and we get of PLS accorded and assayed code washed these firms with water -sthe doubte, we ghod and as mayout	-signed 5 40% solids is gless mador -signed back is banks much lord when algo"0 -down sectorization of 10 % and back to back	-corporate service of the Soft possing -Chan

HBAD GAADE V Distated: 0.10 % Measured: 0.10 % LEACH TEOF DATA

									etia	V Extraction Kinetics	VExtra		ŧ					1	Heb; is als as hit is a little to the call	Herbit in state of
ŧ	ŧ	ŧ	ŧ	ŧ										ļ						Tetal
56.5	49.2	88.8	27.0	760	8	0.02	6, 929	0.70	800,8	1.90	1,004	020	880.2	0.15				476.0		Re aidue It ad
40.5		18.2	78.0	212	494		242		1070		0010		Ĩ						len.	To bill in solu
10 S	6,0	13,2	770,0	212	ţ	8	242	Sł.	1373	2,062	196	5007	5	302.2		8	1,005	1,183	8	đ
ŝ	\$	12.5	201	£	ŝ	82	202	104	100	1936	2006	680	8	2001	70	8		9	8	8
÷ц.	5,5	11 2	72.7	158	ŧ	8	192	2002	1164	8	1000	5	5	100.0	7.1	8		1,207	8	20
40.8	\$	10.2	71.2	100	â	5	ų	22	1061	1490	36.72	ł,	15	113	ŝ	712		1 250	2	5
																			8	٥
2	2	15	151	2	in al	not invitsi (not host si host invit inst si (not invitsi (not si (not))	Ĩ.	Ins/L Si	ing)	inal. Si		mai Si	Ē	Ins/L S1	n Li	Inti	00, g'ml	61	•	1010
Mg	×	N	2	٨	-	6 M		×	-	v	-	2		٨	Array Vol.	1eA	Belution	Weight	-	
		Reco very							W.	Annal						Bolution		Aurya		Time

ACID LEACH TEST REPORT

Gliant: 12-eg Tao Teat: L5 Sample : 02 mposile	
Data: 6 Not-20 Projest: 1902-410	

Objective : Datage of 200kgit sulphunc add and leach at 90 "C at 40% wive solids

Solida wedgit H2SOH With Solds Torip omlane Total Duration: Fall pit	TEST CONDITIONS
8 40 4 8 40 8 100 8 10 100 8 10 10 10 10 10 10 10 10 10 10 10 10 10	
-composite sample ground to 50% peesing 45 pm -composite to 50% social is given exaction -cating test to 50% social to 4 key exaction 20% -charge sample televen at 12,2 and 4 of test charge -charge sample televen at 12,2 and 4.5 a contribution -cating test of the sample sample test of the sample -cating test of the sample sample test of the sample -cating test of the sample sample test of the sample sample -cating test of the sample	TEST DESCRIPTION

HEADO RADE Calculated Massured: LEACH TEST DATA

0.10 V V 7 N

2h1 100 201 2006 2,016 1.97 304 34.6 65.0 44.0 20.2 4202 300 2,013 1000 2,011 1000 304 34.6 65.0 44.0 20.2 30.4 34.6 65.0 44.0 20.2 30.4 34.6 65.0 44.0 20.2 30.3<	100	ŧ	1111	ŧ																Total
21h3 100 21h 2006 2,016 1.97 304 400 400 20.0 1.00 400 20.0 1.00 400 20.0 1.00 400 20.0 1.00 400 20.0 1.00 400 20.0 1.01 400 20.0 1.01 400 20.0 1.01 400 20.0 1.01 400 20.0 1.01 400 20.0 1.01 400 20.0 1.01 400 400 20.0 1.01 400 400 20.0 1.01 400	a.	79.7	227	64.0	â	0.10	8,001	055	21.02	1.70	1,084	0.20	ŝ	010				471.2		Politz
2H1 160 201 2006 2,016 1.95 204 346 660 440 23.2 7.52 13.4 2H3 180 2,01 1.95 204 346 660 440 23.2 7.52 13.4 4.00 200 560 2.011 1600 504 346 620 440 23.2 7.52 13.4 4.02 200 200 1.01 500 370 430 20.3 7.16 17.3 4.02 200 200 524 1.04 500 7.97 480 20.3 7.16 17.3 4.02 200 2.001 2.000 603 460 7.04 546 46.7 7.13 20.3	 127	0.02	17.0	46.7	640		480		2050		0000		880						atten	Total in sol
3H 1 100 201 200 2,016 135 304 340 620 400 201 100 50 3H 2 100 201 200 2,016 135 304 340 620 440 23.2 7.62 13.4 420 200 664 3719 2,001 1600 504 316 7.90 433 32.3 7.78 16.3 422 326 1218 2,640 1.514 500 320 7.97 433 32.5 7.66 17.7	127	8	773	Γ	ŝ	764	đ	8	2000	2,921	2000	88	8	5000	9	8	1.142		9	40
100. 100. <th< th=""><td>10</td><td>77</td><td>756</td><td></td><td>8</td><td>걸</td><td>8</td><td>8</td><td>1014</td><td>2,645</td><td>3135</td><td>8</td><td>ŝ</td><td>22</td><td>υ</td><td>8</td><td></td><td>ís S</td><td>8</td><td>g</td></th<>	10	77	756		8	걸	8	8	1014	2,645	3135	8	ŝ	22	υ	8		ís S	8	g
2h1 190 201 200 2,016 125 204 348 650 449 22.2 752 13.4	95	16.3	778		È	700	5	ş	80	2,501	81,18	55.63	2000	430.6	6	88			3	20
	70	12.4	752		ŧ	653	ž	ž	i i i i	2,016	3626	9	8	2013	ø	682		1250	2	1.0
																			8	0
	8	8	8	2	(ing)	(mar) \$1		(mail - Si)	E.	ing(L_S)	(ma)	imit Si	(ins)	inal Si	Ē			8	•	
	×	2		۷		ş		×	-	×	-	7			Arrey Vol.	Vel.	Bolu the	Weight	Temp	
Assay Resource y		Recovery							1	Ann						Bolution		Gurry		Three

Hab footh mid any see

Client: Song Tao

Sample: L4 PLS as per ID							1902410
Analyte	Unit	L4 1h Pis	L4 2h Pls	L4 3h Pls	L4 4h Pis	LDL	Method
AI	mg/L	1490.00	1654.00	1926.00	2062.00	0.08	ICPH20
As	mg/L	19.3	19.5	19.2	19.7	0.2	ICPH20
в	mg/L	4.90	4.78	4.94	5.36	0.06	ICPH20
Ba	mg/L	0.059	0.091	0.088	0.098	0.003	ICPH20
Ca	mg/L	632.50	620.90	613.40	634.30	0.05	ICPH20
Cd	mg/L	12.97	13.06	12.81	12.96	0.01	ICPH20
Co	mg/L	1.92	1.98	1.93	2.01	0.03	ICPH20
Cr	mg/L	29.04	34.44	38.29	41,48	0.03	ICPH20
Cu	mg/L	37.87	39.09	38.87	39.22	0.04	ICPH20
Fe	mg/L	4947.00	5111.00	5360.00	5407.00	0.02	ICPH2O
к	mg/L	220.5	282.3	323.6	364.3	0.4	ICPH20
Li	mg/L	0.40	0.53	0.71	0.78	0.02	ICPH20
Mg	mg/L	611.20	629.60	678.10	694.90	0.05	ICPH20
Mn	mg/L	43.06	42.96	43.67	44.32	0.01	ICPH20
Mo	mg/L	14.52	15.08	14.55	14.77	0.05	ICPH20
Na	mg/L	21.1	21.3	21.8	23.2	0.1	ICPH20
Ni	mg/L	51.96	53.96	54.56	56.21	0.06	ICPH20
Р	mg/L	247.2	252.9	250.0	256.4	0.2	ICPH20
РЬ	mg/L	<0.2	⊲0.2	<0.2	⊲0.2	0.2	ICPH20
s	mg/L	27300.0	27120.0	27790.0	27830.0	0.3	ICPH20
Sb	mg/L	0.3	0.2	0.5	0.9	0.2	ICPH2O
Se	mg/L	5.6	6.3	6.4	5.9	0.4	ICPH20
Si	mg/L	282.1	294.0	294.7	285.7	0.2	ICPH20
Sr	mg/L	6.719	6.501	5.997	5.743	0.002	ICPH20
т	mg/L	<2	<2	<2	<2	2	ICPH20
v	mg/L	161.10	198.90	246.10	282.20	0.06	ICPH2O
Zn	mg/L	359.50	363.60	396.60	384.40	0.02	ICPH20

Date: 5-Feb-20

Client:	Song Tao
Sample:	L5 PLS as per ID

Date:	5-Feb-20
Project:	1902410

Analyte	Unit	L5 th Pis	L5 2h Pls	L5 3h Pls	L5 4h Pis	LDL	Method
AI	mg/L	2016.00	2501.00	2648.00	2921.00	0.08	ICPH20
As	mg/L	18.3	19.4	18.6	17.9	0.2	ICPH20
в	mg/L	5.71	6.36	7.04	7.82	0.06	ICPH20
Ba	mg/L	0.148	0.128	0.119	0.145	0.003	ICPH20
Ca	mg/L	523.50	484.90	492.60	495.20	0.05	ICPH20
Cd	mg/L	11.69	12.26	11.74	11.23	0.01	ICPH2O
Co	mg/L	1.90	1.99	1.88	1.83	0.03	ICPH20
Cr	mg/L	38.15	49.29	53.84	56.79	0.03	ICPH20
Cu	mg/L	40.95	43.37	42.15	40.73	0.04	ICPH20
Fe	mg/L	5273.00	5563.00	5253.00	5151.00	0.02	ICPH2O
к	mg/L	364.3	503.5	579.5	632.8	0.4	ICPH20
Li	mg/L	0.71	0.98	1.08	1.25	0.02	ICPH2O
Mg	mg/L	659.10	737.50	737.10	764.10	0.05	ICPH2O
Mn	mg/L	39.62	41.79	40.22	38.96	0.01	ICPH2O
Mo	mg/L	16.87	17.61	16.49	15.94	0.05	ICPH20
Na	mg/L	21.1	22.3	22.5	22.3	0.1	ICPH20
Ni	mg/L	49.82	54.52	53.61	52.29	0.06	ICPH20
Р	mg/L	244.4	258.8	248.2	236.3	0.2	ICPH20
Рь	mg/L	<0.2	⊲0.2	<0.2	⊲0.2	0.2	ICPH2O
s	mg/L	55980.0	59150.0	55030.0	54330.0	0.3	ICPH2O
Sb	mg/L	a.0	0.7	0.7	0.7	0.2	ICPH20
Se	mg/L	6.1	6.3	5.9	5.9	0.4	ICPH20
Si	mg/L	137.2	148.6	132.9	164.2	0.2	ICPH20
Sr	mg/L	5.142	5.065	4.077	4.092	0.002	ICPH20
т	mg/L	<2	<2	<2	<2	2	ICPH20
v	mg/L	291.30	420.60	492.20	550.00	0.06	ICPH20
Zn	mg/L	355.60	348.90	328.30	316.50	0.02	ICPH20

RESIDUE ASSAY REPORT

Client: Song Tao Sample: L4, L5 Final Solids as per ID

Date: 6-Feb-20 Project: 1902410

		Samp	le ID		
Analyte	Unit	L4 4h Solids	L5 4h Solids	LDL	Method
LOI	%	6.1	5.9		XF701
AI2O3	%	3.58	3.27	0.01	XF701
BaO	%	0.42	0.42	0.01	XF701
CaO	%	0.92	0.8	0.01	XF701
Cr2O3	%	0.061	0.057	0.004	XF701
Fe2O3	%	0.4	0.33	0.01	XF701
к20	%	0.84	0.79	0.01	XF701
MgO	%	0.21	0.17	0.01	XF701
MnO	%	<0.01	<0.01	0.01	XF701
Na2O	%	0.13	0.12	0.01	XF701
P2O5	%	0.012	0.008	0.001	XF701
SO3	%	1.66	1.55	0.01	XF701
SiO2	%	86.21	86.99	0.01	XF701
TiO2	%	0.18	0.18	0.01	XF701
V2O5	%	0.261	0.176	0.002	XF701
ZnO	%	0.003	0.002	0.002	XF701
ZrO2	%	<0.01	<0.01	0.01	XF701