FINAL REPORT

YUKON MINERAL EXPLORATION PROGRAM

GRANT NUMBER YMEP19-038

Keystone Creek

MAYO MINING DISTRICT, YUKON TERRITORY

For

Earth & Iron Inc.

By

William LeBarge Geoplacer Exploration Ltd.

> Selena Magel Earth & Iron Inc.

Location: 63°49'20.0" N to 63°51'31" N; 135°03'18" W to 135°09'22" W NTS: 105M14 Mining District: Mayo Date: May 7, 2020

Table of Contents

Executive Summary1
Introduction2
Location and Access
Placer Mineral Tenure
Quartz Mineral Tenure
Permitting7
Regional Bedrock Geology7
Mineral Occurrences
Local Bedrock Geology
Quaternary History
Surficial Geology
Placer Exploration and Mining History15
2016 Placer Exploration Program
2017 and 2018 Placer Exploration Programs
2019 Placer Exploration Program
Overview
Results
Conclusions and Recommendations
Statements of Qualifications
Statement of Costs – 2019 Exploration 41
References
Appendix 1 – Keystone Creek Placer Claims, Earth & Iron Inc. and affiliates
Appendix 2 – 2019 Keystone Creek Drill Logs 48
Appendix 3 – Drone Imagery 62

List of Figures

Figure 1 - General Location of Keystone Creek Placer Project, Yukon3
Figure 2 - Geological Map of Yukon, showing major bedrock terranes and structural elements. Modified
after Yukon Geological Survey, 2018
Figure 3– Location of the Keystone Creek placer property held by Earth & Iron Inc
Figure 4 - Bedrock geology and mineral occurrences of Keystone Creek, Lightning Creek and Granite
Creek areas, Mayo Mining District, after Yukon Geological Survey, 2018. Mineralized vein-faults digitized
from Wengzynowski, 2008 (EMR Assessment report 095613)6
Figure 5 – 1:25 000 scale map of bedrock geology of Keystone Creek, (Yukon Geological Survey, 2018). 10
Figure 6 – 1: 100 000 scale map of glacial limits and ice-flow directions, Mayo Lake area, Mayo Mining
District (after Bond, 1999)
Figure 7 – 1: 25 000 scale map of surficial geology, Keystone creek, Mayo Mining District (after Bond,
1998)
Figure 8 - Location of 2016 GPR lines and corresponding resistivity lines on upper Granite Creek and
upper Keystone Creek18
Figure 9 – On left, GPR line 1 interpretation, showing proposed bedrock contact. Topographic profile of
valley surface also shown
Figure 10 - GPR line 7, shown with the interpreted bedrock contact. The upper profile is resistivity line
GRCRES16-07 which was surveyed by Groundtruth Exploration Inc. at the same location. For reference,
the GPR bedrock profile is superimposed
Figure 11 - Surficial geology map of Keystone Creek and upper Granite Creek, showing 2017 and 2018
resistivity lines and R/C drill holes
Figure 12 - Resistivity profile RES18-KEY1-01 shows an undulating bedrock contact which was drilled by
drill hole KEY17-03 in 2017. The bedrock is up to 30 metres in depth. A drill target (K1) has been chosen
in a potential paleochannel
Figure 13 - Resistivity profile RES17-KNB-01 shows an undulating bedrock contact which was drilled
nearby by drill hole KEY17-05 in 2017. The bedrock is up to 25 metres in depth25
Figure 14 - Resistivity profile RES18-KEST32-01 shows an undulating bedrock contact which was drilled
nearby by drill hole KEY17-05 in 2017. The bedrock is up to 34 metres in depth. A drill target (K2) has
been chosen in a potential paleochannel26
Figure 15 - Resistivity profile RES17-KEST31-01 shows an undulating bedrock contact which was drilled
by drill hole KEY17-04 in 2017. The bedrock is up to 31 metres in depth27
Figure 16 - Resistivity profile RES18-KEST31-01 shows an undulating bedrock contact. The bedrock is up
to 30 metres in depth. A drill target (K3) has been chosen in a potential paleochannel
Figure 17 - Resistivity profile RES18-KEST30-01 shows an undulating bedrock contact which was drilled
nearby by drill hole KEY17-06 in 2017. The bedrock is up to 30 metres in depth. A drill target (K4) has
29
Figure 18 - Compilation map showing surficial geology, 2019 R/C drill holes, resistivity geophysical
surveys, drill targets and drone survey area
Figure 19 - RES19-KES115-02 is surveyed NW to SW and has an undulating bedrock profile interpreted.
There is a drill target chosen on the right limit with a target depth of 16m

Figure 20 - RES19-KEST14-01 is surveyed NW to SE and has an undulating bedrock profile interpreted.	
There are two drill targets chosen on this profile with depths of 18m and 16m deep. Drill hole KEY19-	05
was drilled and hit bedrock at 13m	.34
Figure 21 - RES19-KEST15-01 is surveyed along the valley and has 2 drill targets identified. The targets	
are 18m and 19m deep and within deep undulations in the center of the valley	.35
Figure 22 – RES19-KEST19-01 is surveyed SE to NW and has a bedrock profile generally following	
topography. However, there is a deep undulation identified on the right limit at 22m. This has been	
identified as a drill target	.36
Figure 23 - RES19-KEST23-01 is surveyed along the valley. The bedrock profile appears undulating in th	nis
location with two drill targets identified at 14m and 10m	.37
Figure 24 - Surficial geology and glacial limits (Bond, 1998), showing 2019 resistivity lines, 2019 drill	
targets, and proposed new resistivity surveys. Area of exploration includes the Taylor claims	
downstream. Also shown are the trend of possible placer paystreaks	.39
Figure 25 - Sample taken from 28-29m of KEY19-01	.51
Figure 26 - Samples taken from 21-23m of KEY19-02.	.53
Figure 27 - Samples taken from KEY19-03 from 21-25m	.56

List of Tables

Table 1 – Selected Mineral Occurrences, Keno Hill and Upper Duncan area, from MINFILE (Yukon
Geological Survey, 2016)8
Table 2 - Placer gold production from reported gold royalties, Mayo Mining District. Figures are in crude
(raw) ounces
Table 3 - Length and depth to bedrock of ground penetrating radar lines surveyed on Keystone and
upper Granite Creek in 201617
Table 4 - Coordinates and elevations of endpoints of GPR lines surveyed on Keystone and upper Granite
Creek in 2016
Table 5 - Coordinates of 2017 Keystone Creek drill holes
Table 6 - Coordinates, claim location and lengths of resistivity lines on Keystone Creek in 201721
Table 7 - Coordinates, claim location and lengths of resistivity lines on Keystone Creek in 201822
Table 8 - Drill Targets on Keystone Bench, from 2017 and 2018 geophysical surveys22
Table 9 - Table showing locations and length of resistivity geophysics lines on the Keystone 2019
property
Table 10 – 2019 Drill Target Coordinates, Keystone Creek
Table 11 - 2019 R/C Drill hole coordinates, Keystone Creek
Table 12 – 2019 Placer Exploration Expenses, Keystone Creek41

Executive Summary

The following is the final report on exploration of the Keystone Creek property conducted under grant number YMEP19-038 of the Yukon Mineral Exploration Program (YMEP), Placer Module. The Keystone property is located in central Yukon approximately 480 km by road from Whitehorse. Access is gained from Whitehorse via Stewart Crossing on the Klondike Highway (353 km), followed by a distance of 52 km east on the Silver Trail to Mayo. The turnoff to the Duncan creek road is approximately 17 km from Mayo along the Silver trail towards Keno City. The road then runs 29 km to the north (left) turnoff near the Mayo dam. The new access road runs a further 21 km, along the north shore of Mayo Lake, then along Keystone Creek from its mouth to the joint headwaters of Granite and Keystone creeks.

Earth & Iron Inc. currently holds two active Type B Water Use Licences on Keystone Creek, PM17-014 (expiry June 6, 2027) and PM16-081 (expiry March 1, 2027).

The Mount Hinton gold deposit (MINFILE 105M052) consists of a series of mineralized vein-faults hosted in both the Triassic Galena Suite Gabbro and the Carboniferous Keno Hill Quartzite. It lies at the headwaters of several major drainages including Upper Duncan Creek, Keystone Creek, Granite Creek, McNeil Gulch, McMillan Gulch and Allen Creek. On the upper reaches of Granite Creek on the east side of Mount Hinton, coarse nuggets of placer gold have been mined from a sequence of glacial tills. Nearly 9000 crude ounces of gold have been reported from this location in the last five years.

The results of the 2017 and 2018 exploration programs narrowed the focus to a right limit bench area of Keystone Creek, where resistivity profiles appeared to show a paleochannel and promising gold results were found in two drill holes.

The 2019 exploration program consisted of 1.115 km of geophysical surveys, 1.7 creek-miles of drone imagery, and 172.5m of reverse circulation (R/C) drilling on the claims. Seven new exploration targets were proposed, and two of targets were subsequently drilled. There were good correlations of anticipated bedrock depths. The drill samples yielded prospective amounts of placer gold from various lithologies including gravel, till and bedrock. Most of the gold was found in layers near bedrock, however sometimes higher level sediments had significant values of placer gold recovered in drill samples.

The drill targets and resistivity surveys appear to outline a right-limit paleochannel, which may be a pre-McConnell age interglacial gravel which escaped erosion as it was outside of both the McConnell alpine glacial limits, and the McConnell regional glacial limit.

Further exploration is warranted throughout the entirety of the claims in Keystone Creek. The main focus should be determining the size, extent and placer gold values within the right-limit paleochannel. Since the claims downstream of the main Keystone claim group (owned by Frank Taylor) have recently been acquired, exploration should include this area as well.

For the 2020 season, a program of drone aerial surveys, resistivity geophysical surveys, reverse circulation drilling and excavator test pitting should be conducted.

Introduction

The following is the final report on exploration of the Keystone Creek property conducted under grant number YMEP19-038 of the Yukon Mineral Exploration Program (YMEP), Placer Module. The 2019 exploration program included drone surveys, resistivity geophysical surveys, reverse circulation (R/C) drilling and excavator test-pitting/bulk sampling.

Location and Access

The Keystone Creek property is located in central Yukon approximately 480 km by road from Whitehorse. Access is gained from Whitehorse via Stewart Crossing on the Klondike Highway (353 km), followed by a distance of 52 km east on the Silver Trail to Mayo. The turnoff to the Duncan creek road is approximately 17 km from Mayo along the Silver trail towards Keno City. The road then runs 29 km to the north (left) turnoff near the Mayo dam. The new access road runs a further 21 km, along the north shore of Mayo Lake, then along Keystone Creek from its mouth to the joint headwaters of Granite and Keystone creeks.

Placer Mineral Tenure

Appendix 1 details the 104 placer claims held by Earth & Iron Inc. and associates in the Keystone Creek drainage. The area encompassed by the claims is shown in Figure 3.

Quartz Mineral Tenure

Active quartz claims are held by several owners including Archer, Cathro & Associates (1981) Limited, Taku Gold Corp. and Shawn Ryan. Earth & Iron Inc. and its affiliates hold no quartz tenure in the area.

Figure 1 - General Location of Keystone Creek Placer Project, Yukon.

Figure 2 - Geological Map of Yukon, showing major bedrock terranes and structural elements. Modified after Yukon Geological Survey, 2018.

Figure 3– Location of the Keystone Creek placer property held by Earth & Iron Inc.

Figure 4 - Bedrock geology and mineral occurrences of Keystone Creek, Lightning Creek and Granite Creek areas, Mayo Mining District, after Yukon Geological Survey, 2018. Mineralized vein-faults digitized from Wengzynowski, 2008 (EMR Assessment report 095613).

Permitting

Earth & Iron Inc. currently holds two active Type B Water Use Licences on Keystone Creek; PM17-014 (expiry June 6, 2027), and PM16-081 (expiry March 1, 2027).

Regional Bedrock Geology

Murphy (1997) and Roots (1997a, 1997b) mapped and described the McQuesten and Keno Hill area, and various researchers (Stephens et al., 2004; Hart et. al., 2002; Colpron and Ryan, 2010) have described the tectonic setting and mineral deposits throughout the region.

Figure 2 is a geological map of Yukon, showing major bedrock terranes and structural elements. The Earth & Iron Inc. properties in the Keno Hill district lie east of the Tintina Fault, within Ancestral North America in the *Nab* (North American basinal) terrane. In that part of the western Selwyn basin, dominantly clastic sedimentary rocks were deposited in an off-shelf setting in a period from the latest Neoproterozoic to the Carboniferous (Stephens et al., 2004).

The Keno Hill district is part of the Tombstone Gold Belt (Stephens et al, 2004), a subset of the Tintina Gold Province (Hart et al., 2002). This area is characterized by a northerly-directed, fold-and-thrust belt which developed in the Late Jurassic to Early Cretaceous (Roots, 1997a, 1997b; Murphy, 1997). The Dawson, Tombstone and Robert Service thrusts are the products of this deformation across the northern part of the basin (Murphy and Roots, 1996; Roots, 1997a).

The Robert Service Thrust sheet contains Hyland Group (Late Proterozoic to Cambrian) sandstone and grit with rare limestone and minor maroon argillite, overlain by a Cambrian to Middle Devonian succession of dark coloured siltstone, limestone and chert. These strata, a component of the regional Selwyn Basin, are unconformably overlain by Upper Devonian Earn Group argillite, chert and chert pebble conglomerate (Murphy, 1997; Roots, 1997a, 1997b). To the north, the Tombstone Thrust sheet consists of highly strained Earn Group carbonaceous phyllite, felsic meta-tuff and metaclastic rocks, succeeded by Carboniferous Keno Hill guartzite that is thickened by internal recumbent folds or thrusts in the north central part of the map area. These units host the Ag-Pb-Zn veins of the Elsa-Keno Hill camp and the Au veins of the Mount Hinton area (Roots, 1997a, 1997b). Jurassic (?) and Cretaceous contraction produced regionally developed penetrative fabrics and folds of various scales as well as thrust faulting. A domain of intensely-developed foliation and lineation underlies the northern half of the map area, imparted during two or more phases of movement on the Tombstone Thrust (Roots, 1997a, 1997b). Two main intrusive suites of rock were emplaced into the western Selwyn basin after the regional deformation; the McQuesten Intrusive Suite, and the Tombstone Plutonic Suite (Murphy, 1997). The Tombstone Suite was emplaced around 92 Ma, and its rocks are associated with the Tombstone Gold Belt deposits in Yukon (Brewery Creek, Dublin Gulch, Scheelite Dome and Clear Creek) as well as the Pogo, Fort Knox and Donlin Creek deposits in Alaska (Hart et al., 2002).

Mineral Occurrences

The Roop Lakes batholith, which outcrops in the eastern part of the project area, is a late Cretaceous granite, quartz monzonite and granodiorite intrusion of the Tombstone Suite. It is widely-held to be the probable heat source for epi- and meso-thermal veins of the Elsa-Keno Hill mining camp (Roots, 1997a, 1997b).

Table 1 lists YUKON MINFILE (Yukon Geological Survey, 2018) mineral occurrences in the Upper Duncan/Keno Hill district. Most of these occurrences are polymetallic veins, consisting of silver, lead and zinc with various amounts of accessory gold. The host rock is mainly the Carboniferous Keno Hill Quartzite, however some veins are hosted in carbonaceous phyllite, felsic meta-tuff and metaclastic rocks of the Devonian Earn Group. A few mineralized polymetallic veins are hosted in the metaclastic rocks of the Late Proterozoic to Cambrian Hyland Group.

MINFILE NUMBER	DEPOSIT TYPE	STATUS
105M 001 KENO HILL - HISTORIC (Pb-Ag-Zn-	Vein Polymetallic Ag-Pb-Zn+/-Au	Past Producer
Cd-Au-Sn)		
105M 002 FAITH (Au-Zn-Ag-Pb)	Vein Polymetallic Ag-Pb-Zn+/-Au	Showing
105M 003 DUNCAN (Pb-Ag)	Vein Polymetallic Ag-Pb-Zn+/-Au	Past Producer
105M 004 GOLDEN QUEEN (Sb-Ag-Pb)	Vein Polymetallic Ag-Pb-Zn+/-Au	Drilled Prospect
105M 005 SILVER BASIN (Ag-Pb-Au)	Vein Polymetallic Ag-Pb-Zn+/-Au	Prospect
105M 006 NABOB (Au-Ag-Pb)	Vein Polymetallic Ag-Pb-Zn+/-Au	Showing
105M 007 MONUMENT (Pb-Ag)	Vein Polymetallic Ag-Pb-Zn+/-Au	Showing
105M 008 COMSTOCK (Pb-Zn-Ag)	Vein Polymetallic Ag-Pb-Zn+/-Au	Past Producer
105M 009 APEX (Pb-Zn-Ag)	Vein Polymetallic Ag-Pb-Zn+/-Au	Showing
105M 010 VANGUARD (Pb-Ag)	Vein Polymetallic Ag-Pb-Zn+/-Au	Past Producer
105M 011 HOMESTAKE (Au-Zn-Ag-Pb)	Vein Polymetallic Ag-Pb-Zn+/-Au	Drilled Prospect
105M 012 CHRISTINE (Pb-Ag)	Vein Polymetallic Ag-Pb-Zn+/-Au	Prospect
105M 013 MO (Au-Ag-Pb)	Vein Polymetallic Ag-Pb-Zn+/-Au	Showing
105M 014 MAYBRUN (Ag-Pb)	Vein Polymetallic Ag-Pb-Zn+/-Au	Past Producer
105M 015 HOGAN (Pb-Ag)	Vein Polymetallic Ag-Pb-Zn+/-Au	Showing
105M 016 RUNER (Pb-Zn-Au-Ag)	Vein Polymetallic Ag-Pb-Zn+/-Au	Past Producer
105M 017 WERNECKE (Au-Zn-Ag-Pb)	Vein Polymetallic Ag-Pb-Zn+/-Au	Drilled Prospect
105M 018 FORMO (Pb-Zn-Ag)	Vein Polymetallic Ag-Pb-Zn+/-Au	Past Producer
105M 020 PADDY (Pb-Ag-Zn-Au)	Vein Polymetallic Ag-Pb-Zn+/-Au	Past Producer
105M 021 EAGLE (Pb-Zn-Ag)	Vein Polymetallic Ag-Pb-Zn+/-Au	Drilled Prospect
105M 022 FISHER (Au-Zn-Ag-Pb)	Vein Polymetallic Ag-Pb-Zn+/-Au	Anomaly
105M 023 PARENT	Unknown	Anomaly
105M 024 CREAM AND JEAN (Pb-Zn-Cu-Ag)	Vein Polymetallic Ag-Pb-Zn+/-Au	Past Producer
105M 025 NORD (As-Zn-Ag-Pb-Au)	Vein Polymetallic Ag-Pb-Zn+/-Au	Drilled Prospect

Table 1 – Selected Mineral Occurrences, Keno Hill and Upper Duncan area, from MINFILE (Yukon Geological Survey, 2016).

MINFILE NUMBER	DEPOSIT TYPE	STATUS
105M 047 MT ALBERT (Pb-Ag)	Vein Polymetallic Ag-Pb-Zn+/-Au	Showing
105M 050 NERO (Pb-Ag)	Vein Polymetallic Ag-Pb-Zn+/-Au	Showing
105M 052 MT HINTON (Au-Ag)	Vein Polymetallic Ag-Pb-Zn+/-Au	Drilled Prospect
105M 053 AVENUE	Vein Polymetallic Ag-Pb-Zn+/-Au	Showing
105M 055 YONO (Pb-Ag)	Vein Polymetallic Ag-Pb-Zn+/-Au	Showing
105M 061 CHRISTAL (Pb-Zn-Ag)	Vein Polymetallic Ag-Pb-Zn+/-Au	Showing
105M 062 SEGSWORTH (Pb-Ag)	Vein Polymetallic Ag-Pb-Zn+/-Au	Past Producer
105M 063 IRON CLAD	Vein Polymetallic Ag-Pb-Zn+/-Au	Drilled Prospect
105M 069 GAMBLER (Pb-Zn-Ag)	Vein Polymetallic Ag-Pb-Zn+/-Au	Past Producer
105M 070 HAVRENAK (Au-Ag-Pb)	Vein Polymetallic Ag-Pb-Zn+/-Au	Drilled Prospect
105M 073 BEMA (Au-Ag)	Vein Polymetallic Ag-Pb-Zn+/-Au	Showing
105M 082 BELLEKENO (Pb-Ag-Zn-Au-Sn-Cd)	Vein Polymetallic Ag-Pb-Zn+/-Au	Producer
105M 084 ONEK (Ag-Pb-Au-Zn-In)	Vein Polymetallic Ag-Pb-Zn+/-Au	Deposit
105M 085 LUCKY QUEEN (Ag-Pb-Zn-Au)	Vein Polymetallic Ag-Pb-Zn+/-Au	Deposit
105M 087 FLAME & MOTH (Au-Ag-Pb-Zn)	Vein Polymetallic Ag-Pb-Zn+/-Au	Deposit

Local Bedrock Geology

Figure 4 shows the bedrock geology and mineral occurrences of the Keystone Creek, Lightning Creek and Granite Creek areas, modified from Roots, 1997b and Yukon Geological Survey, 2018. Mineralized vein/faults have been added from Wengzynowski, (2008).

Figure 5 shows the bedrock of Keystone Creek area in more detail. Central to the project area is the Carboniferous to Permian Keno Hill Quartzite (map unit CT2). At the headwaters of Keystone and Granite Creeks are northwest-trending outcrops of the Triassic Galena Suite hornblende diorite and gabbro (map unit TrG). The Roop Lakes batholith (map unit mKqM) outcrops on the eastern extent of the field area in the downstream reaches of Granite Creek. Hyland Group metasediments (map unit PCH1) outcrop on the downstream reaches of Keystone Creek and are separated from the Keno Hill Quartzite by the Robert Service thrust fault.

The closest mineral occurrences include the Mt. Albert lead-silver vein (MINFILE 105M047), the Mount Hinton gold-silver veins (MINFILE 105M 052) and the Havrenak gold-silver lead veins (MINFILE 105M070).

Figure 5 – 1:25 000 scale map of bedrock geology of Keystone Creek, (Yukon Geological Survey, 2018).

Quaternary History

In the Mayo area, a minimum of four regional glaciations and two interglacial periods have influenced the deposition and erosion of sediments over the last 2.5 million years (Duk-Rodkin et. al., 2010; LeBarge et. al., 2002; Bond, 1996, 1997; Jackson et al., 2001). Glaciations include the pre-Reid (multiple early to mid-Pleistocene glaciations), Reid (130,000 years), and McConnell (14,000 -29,600 years). Warm, interglacial periods are indicated by relict paleosols such as the pre-Reid Wounded Moose paleosol (Tarnocai and Schweger, 1991) and the Reid Diversion Creek paleosol (Bond and Lipovsky, 2010).

During their maximum extent, pre-Reid ice sheets completely covered the Mayo/Keno Hill area. Undifferentiated pre-Reid surficial materials (moraine, glaciofluvial and glaciolacustrine deposits) are thick in the lowlands of Klondike Plateau and Tintina Trench, especially in areas proximal to the terminus of the pre-Reid glaciations.

During the subsequent Reid glaciation, glacial ice advanced from cirques formed in topographic highs such as Mount Hinton and Mt. Haldane, and coalesced with Cordilleran ice lobes which were advancing up-valley into the alpine areas. This resulted in a complex overlap assemblage of local alpine glacial sediments and more regionally-derived glacial sediments.

During the most recent (McConnell) glaciation, ice once again advanced from cirques in mountainous centres, however their advance was much less extensive than during previous glaciations. In most cases, McConnell ice advanced only short distances down-valley from their origins in the valley heads, depositing terminal moraines in the upper reaches of most valleys.

Figure 6 shows glacial limits and ice-flow directions for the Reid and McConnell glaciations in the Mayo area, after Bond (1999). It is evident that McConnell alpine ice and regionally-derived glacial ice were advancing in opposing directions on upper Granite Creek. Bond (2017, pers. comm.) has indicated that the timing of the alpine versus regional ice advances in upper Granite Creek is problematic, however geomorphologic evidence suggests that some of the regional ice advanced over retreating alpine ice in the divide between Keystone and Granite Creeks.

Figure 6 – 1: 100 000 scale map of glacial limits and ice-flow directions, Mayo Lake area, Mayo Mining District (after Bond, 1999).

Figure 7 – 1: 25 000 scale map of surficial geology, Keystone creek, Mayo Mining District (after Bond, 1998).

Surficial Geology

Figure 7 is a 1:25,000 scale surficial map of the Keystone Creek drainage (modified after Bond, 1998). Unconsolidated sediments in the Gustavus Range and the surrounding plateaus consist mainly of deposits from Cordilleran valley glaciers (continental ice sheet), alpine glaciers (local montane glaciers), colluvium, and minor alluvium. The surficial geology of the project area is complex, which is a result of the multiple glacial events that have occurred there over the last 1.5 million years.

The hills above the main drainages of Duncan, Upper Duncan, Lightning and Granite creeks are mantled with colluvial deposits (veneers, blankets and aprons), while glacial erratics are found in the ridge tops and uppermost slopes. These were deposited when the pre-Reid glacial ice overtopped the hills in the region (LeBarge et.al., 2002; Bond, 1998).

Within and below the Reid glacial limit (shown as the red line in Figure 7), remnant deposits of Reid-age till line the valley bottoms and edges, and Reid glaciofluvial outwash channels lie along valley edges and on intervalley divides between third and fourth order drainages. In the lower reaches of Upper Duncan Creek, Reid-age till lies at the surface and confines the extent of the modern alluvial plain.

McConnell-age alpine till forms moraines in the headwaters of most local drainages including Upper Duncan Creek (Mount Hinton), Lightning Creek-McMillan Gulch, Allen Creek, Keystone Creek and Granite Creek. Regionally-derived till blankets of McConnell age cover the slopes and lower reaches of both Keystone Creek and Granite Creek, reaching as far as the headwaters that Granite Creek shares with Keystone Creek.

Deposits of McConnell glaciofluvial outwash lie as terraces along the valleys of Lightning Creek, Upper Duncan Creek and the upper to middle reaches of Granite Creek.

McConnell-age and younger alluvial and periglacial fans occur along the margins and at the mouths of Keystone and Granite Creek, most of which smaller than the scale of current mapping. These merge indistinctly with thin, discontinuous McConnell to modern age alluvial complexes which lie adjacent to modern stream courses.

Notably, a lacustrine deposit of McConnell age lies along Keystone Creek about 4 km from its mouth. Interglacial (pre-McConnell) paleochannels may be preserved beneath lake sediments in this area, and in areas upstream where they are likely covered in colluvium.

Placer Exploration and Mining History

The discovery of placer gold in the Mayo district began on the Stewart River in 1883, when a party of prospectors worked from the mouth of the Stewart River to the McQuesten River. Between 1885 and 1886, it is estimated that up to 14,500 fine ounces (451 000 g) was recovered by hand (Mayo Historical Society, 1990).

In 1892, Ray Stewart discovered gold on the McQuesten River, and in 1895 placer gold was noted on Haggart Creek. Discovery claims were recorded on Johnson and Haggart Creeks in 1898, and around then a Swedish trio named Gustavson were hand mining at the canyon on Duncan Creek, approximately 15 km upstream from its confluence with the Mayo River. The Gustavsons mined the canyon deposit however had avoided recording their claim for fear of initiating another stampede. In 1901, some Dawson stampeders discovered their camp and the Gustavson trio lost their ground (Mayo Historical Society, 1990).

Soon the entire length of Duncan Creek was staked. Exploration in surrounding regions began shortly thereafter, and discoveries were posted on creeks flowing into Mayo Lake and in the Minto Creek region in 1903. Highet Creek was found to contain a significant quantity of gold. Rudolph Rosmusen and partners acquired an area of the bench opposite Rudolph Gulch and found the richest bench ground on the creek, yielding upwards of US\$140 000 or 6773 fine ounces (210 664 g) of gold at US\$20.67 per ounce. The amounts on these claims alone surpassed the total gold taken out of Duncan Creek in its first 14 years.

In 1920 the Highet Creek Dredging Co. attempted to dredge Highet Creek, however, this lasted only a year and a half due to the inability of the dredge to handle large boulders. Intermittent activity continued until an upsurge of mining occurred following the dramatic rise in the price of gold in the late 1970's and early 80's.

Modern methods of mining, utilizing large bulldozers and excavators have become prevalent, especially in areas that were once considered to be too deeply buried by barren glacial overburden. Although most modern mining is still concentrated on the creeks which were initially mined at the turn of the century, some new ground has been explored and mined on a few non-traditional creeks.

Historical records do not show any significant mining and exploration activity on either Keystone or Granite creeks, however lower Keystone Creek has been held for over 20 years by Frank Taylor. Granite Creek has had an active mining operation on its upper reaches since 2014 (Davies), with an active water license since 2012 (Van Loon and Bond, 2014).

Government placer gold royalty records prior to 1978 are incomplete, however more detail can be found in subsequent years, which are given in Table 2. This table shows that over 181,000 crude ounces have been recorded in the Mayo Mining District between 1978 and 2019. Granite Creek alone has recorded royalties of nearly 9000 ounces of gold since 2015.

 Table 2 - Placer gold production from reported gold royalties, Mayo Mining District. Figures are in crude (raw) ounces.

STREAM or RIVER	Tributary to	2015	2016	2017	2018	2019	1978-2019
Anderson	Mayo Lake						938
Bear (Van Bibber)	McQuesten						1448
Bennett	Minto		2.88				3
Carlson	Minto						105
Davidson	Mayo River	912.53	147.63		103.17	60.74	4921
Dawn	Mayo Lake		20.77				36
Dirksen	Mayo Lake						31
Dublin Gulch	Haggart						13099
Duncan	Mayo River	413.44	253.41	400.28	77.85	506.26	36089
Empire	No Gold						1012
Fifteen	Haggart			1.1			1
Gem	Sprague						428
Goodman	South McQuesten						37
Granite Creek	Mayo Lake	1249.16	1902.14	1418.13	1052.51	3277.56	8900
Haggart	McQuesten	3.79			18.88		24528
Highet	Minto	95.86	154.56	61.25	37		40769
Hope Gulch	Lightning						8
Jarvis	Minto						17
Johnson	McQuesten		71.95	350	208.98	289.36	6357
Ledge	Mayo Lake						5815
Lightning	Duncan	0.83					11624
McQuesten	Stewart	9.24					114
Minto	Mayo River	199.42	594.05	406.22	474.65	753.46	3775
Morrison	Seattle			3.29	71.65	30.86	122
Murphy's Pup	South McQuesten		3.18	13.8	26.72		202
Owl	Mayo Lake				12.18		3654
Ross	South McQuesten				3.5	28.88	32
Russell	Macmillan						287
Seattle	McQuesten	83.6	136.11	217.73		22.22	668
Secret	Swede	41.52	4.11		45.79	72.69	836
Steep	Mayo Lake						709
Stewart	Yukon						872
Swede	Haggart		28.53		12.24	1.69	4389
Thunder	Lightning	508.06	547.28	333.58	332.84	333.26	6553
Upper Duncan	Duncan		109.02	105.42		107.88	322
Vancouver	McQuesten		13.95	16.09		124.07	1082
Various Mayo Creeks			7.92	111.93			1709
Total Mayo District		3517.45	3997.49	3438.82	2477.96	5608.93	181492

2016 Placer Exploration Program

In November 2016, as part of a larger program, two Ground Penetrating Radar (GPR) geophysical surveys were conducted at the headwaters of Granite Creek and Keystone Creek (LeBarge and Logutov, 2016). The GPR surveys were conducted on the Key 1 placer claim (Earth & Iron Inc.) and across placer claims P509045 and P513697 (owned by Jim Davies). One of the lines (GPR Line7) overlapped a previous resistivity profile which had been conducted by Groundtruth Exploration.

The traces of these profiles are shown on Figure 8, and the interpreted profiles are shown in Figures 9 and 10. Table 3 shows the lengths of the lines and maximum depth of bedrock encountered in the surveys, and Table 4 shows the coordinates and elevations of the survey lines endpoints.

Table 3 - Length and depth to bedrock of ground penetrating radar lines surveyed on Keystone and upper Granite Creek in2016.

Line number	Elevation of centre (m)	Length (m)	Maximum Depth to Bedrock (m)
GPR Line 1	1233	246.73	24
GPR Line 7	1226	232.29	32

Table 4 - Coordinates and elevations of endpoints of GPR lines surveyed on Keystone and upper Granite Creek in 2016.

Endpoint	Zone	UTM Northing	UTM Easting	Latitude	Longitude	Elevation (m)
GPR Line 1 start	8N	7079779	496744.2939	63.84531	-135.06620	1242
GPR Line 1 end	8N	7079559	496783.5781	63.84334	-135.06539	1238
GPR Line 7 start	8N	7079643	497106.9393	63.84410	-135.05882	1225
GPR Line 7 end	8N	7079725	497324.2752	63.84484	-135.05440	1217

Figure 8 - Location of 2016 GPR lines and corresponding resistivity lines on upper Granite Creek and upper Keystone Creek.

Line GPR-01

Ground penetrating radar profile Line GPR-01 was surveyed on the Key 1 placer claim, perpendicular to the trend of the upper Keystone Creek valley. Surficial mapping by Bond (1998) indicates that this area is underlain by wetland or bog sediments, superimposed on a glaciofluvial complex of McConnell age. The stratigraphy that would be expected would likely consist of a progression from fine silt, to gravel (coarsening with depth), to possibly a boulder clay (till), and finally bedrock. Figure 10 below shows the interpreted GPR profile. The bedrock is undulating and interpreted as between 7m and 24m in depth. There are several bedrock depressions which could represent paleochannels. These are located (in distances from the start) at 40m, 60m and 150m. Drilling is recommended for these targets.

Figure 9 – On left, GPR line 1 interpretation, showing proposed bedrock contact. Topographic profile of valley surface also shown.

Line GPR-07

Ground penetrating radar profile Line GPR-07 was surveyed on Granite Creek at the same location as resistivity profile GRCRES16-07, which was done by Groundtruth Exploration Inc. in Sept 2016. Surficial mapping by Bond (1998) indicates that this area is underlain by a glaciofluvial complex of McConnell age. The stratigraphy that would be expected would likely consist of a progression of gravel (coarsening with depth), to possibly a boulder clay (till), and finally bedrock. Figure 11 below shows the interpreted GPR profile relative to the interpreted resistivity profile along the same line. The bedrock contacts on both figures bear a strong resemblance, with a few notable differences. It is apparent from the profiles that the bedrock profile is undulating and varies between 10m and 32m in depth. There are several bedrock depressions which could represent paleochannels. These are located (in distances from the start) at 60m, 100m, and 120m. In addition, there are pockets of distinctive sediments at 120m, 150m and 225m. These may be remnant alluvial paleochannel sediments.

Figure 10 - GPR line 7, shown with the interpreted bedrock contact. The upper profile is resistivity line GRCRES16-07 which was surveyed by Groundtruth Exploration Inc. at the same location. For reference, the GPR bedrock profile is superimposed.

2017 and 2018 Placer Exploration Programs

In 2017, the exploration program included reverse circulation (R/C) drilling totalling 139 metres in six drill holes. Table 5 details the coordinates and depths of the drill holes.

Drill hole	Claim Location	Latitude	Longitude	Depth (m)
KEY17-01	KEY 1	63.84405209	-135.0657017	15
KEY17-02	KEY 1	63.84541134	-135.0665413	25
KEY17-03	KEY 2	63.84812327	-135.0688816	30
KEY17-04	KEY RIGHT 21	63.847634	-135.0716213	31
KEY17-05	KEY RIGHT 22	63.84852976	-135.0704541	21
KEY17-06	KEYSTONE 30	63.84525967	-135.0745541	17

Table 5 - Coordinates of 2017 Keystone Creek drill holes.

A total of 18 resistivity lines totalling 4778 metres were surveyed on Keystone Creek in 2017. Table 6 shows the coordinates, claim locations and lengths of the survey lines. The profile traces are plotted on Figure 11.

Table 6 - Coordinates, claim location and lengths of resistivity lines on Keystone Creek in 2017.

Survey Name	Claim Location	Start Point		End Point		Length (m)
		Latitude	Longitude	Latitude	Longitude	
RES17-KNB-01	KEY RIGHT 21, 22	63.8473546	-135.070078	63.8493089	-135.0721	272
RES17-KEY3-01	KEY 3	63.8412635	-135.065383	63.8379768	-135.0656	372
RES17-KEY1-03	KEY 1	63.8428143	-135.065305	63.8397056	-135.06533	362
RES17-KEY1-02	KEY 1	63.8452099	-135.066811	63.8451938	-135.0744	376
RES17-KEY1-01	KEY 1	63.8452216	-135.066439	63.8427154	-135.06532	289
RES17-KEST31-01	KEYSTONE 31	63.845294	-135.07148	63.8482021	-135.07186	337
RES17-KEST30-02	KEYSTONE 30	63.845183	-135.073858	63.8445073	-135.08112	378
RES17-KEST30-01	KEYSTONE 30	63.8451499	-135.075757	63.8430738	-135.07469	273
RES17-KEST29-01	KEYSTONE 29	63.8446655	-135.079308	63.8435967	-135.08615	370
RES17-KEST27-01	KEYSTONE 27	63.8436513	-135.085474	63.8429554	-135.09318	398
RES17-KEST26-01	KEYSTONE 26	63.8442577	-135.086666	63.8429072	-135.08646	179
RES17-KEST25-01	KEYSTONE 25	63.8438269	-135.089829	63.8424023	-135.08961	175
RES17-KEST24-01	KEYSTONE 24	63.8427756	-135.093643	63.8407122	-135.09199	269
RES17-KEST21-01	KEYSTONE 21	63.8411268	-135.101027	63.8409315	-135.10076	28
RES17-KEST20-01	KEYSTONE 20	63.8409776	-135.104414	63.839858	-135.10263	164
RES17-KEST19-01	KEYSTONE 19	63.8401839	-135.107417	63.8395937	-135.11097	203
RES17-KEST17-01	KEYSTONE 17	63.8385237	-135.111823	63.8394425	-135.11239	122
RES17-KEST13-01	KEYSTONE 13	63.8357266	-135.125316	63.8345766	-135.12288	209

In 2018, 15 resistivity surveys totalling 3665 m were conducted. Details are shown in Table 7. The profile traces are plotted on Figure 11.

Survey Name	Claim Location	Start Point		End Point		Length (m)
		Latitude	Longitude	Latitude	Longitude	
RES18-KEY6-01	KEY 6	63.843981	-135.063177	63.842075	-135.06258	230
RES18-KEY1-01	KEY 1	63.84613	-135.068705	63.849309	-135.0693	370
RES18-KEST8-01	KEYSTONE 8	63.830798	-135.135936	63.829929	-135.13398	138
RES18-KEST7-01	KEYSTONE 7	63.830337	-135.137475	63.829097	-135.13485	248
RES18-KEST32-03	KEYSTONE 32	63.843399	-135.068447	63.840835	-135.06804	293
RES18-KEST32-02	KEYSTONE 32	63.840889	-135.067994	63.839292	-135.06746	184
RES18-KEST31-02	KEYSTONE 31	63.844218	-135.071071	63.841737	-135.07009	359
RES18-KEST32-01	KEYSTONE 32	63.845276	-135.07009	63.848518	-135.07094	391
RES18-KEST31-01	KEYSTONE 31	63.846051	-135.072438	63.848711	-135.0729	318
RES18-KEST30-02	KEYSTONE 30	63.843974	-135.073387	63.842312	-135.07294	180
RES18-KEST30-01	KEYSTONE 30	63.845363	-135.074241	63.848469	-135.07528	364
RES18-KEST12-01	KEYSTONE 12	63.834367	-135.126419	63.833166	-135.12984	228
RES18-KEST11-03	KEYSTONE 11	63.833759	-135.129554	63.832167	-135.12848	219
RES18-KEST11-02	KEYSTONE 11	63.833607	-135.128117	63.833953	-135.12896	61
RES18-KEST11-01	KEYSTONE 11	63.834005	-135.12725	63.834573	-135.12799	82

Table 7 - Coordinates	, claim location	and lengths of	resistivity lines	on Keystone	Creek in 2018.
-----------------------	------------------	----------------	-------------------	-------------	----------------

The results of the 2017 and 2018 programs narrowed the focus of the exploration to a right limit bench area of Keystone Creek. This is due in part to promising gold results found in drill holes KEY 17-3 and KEY 17-4.

Several of the resistivity profiles from 2017 and 2018 also appeared to show a paleochannel crossing along the right limit of Keystone Creek in this area. The relevant profiles are shown as Figures 12 to 17. Four drill targets were chosen from the profiles, and these are shown in Table 8.

 Table 8 - Drill Targets on Keystone Bench, from 2017 and 2018 geophysical surveys.

Target Name	Latitude	Longitude	Resistivity Line	Claim Location
К1	63.848233	-135.068642	RES18-KEY1-01	KEY 2
К2	63.847545	-135.070947	RES18-KEST32-01	KEY RIGHT 21
К3	63.84785	-135.073128	RES18-KEST31-01	KEY RIGHT 21
К4	63.847547	-135.074812	RES18-KEST30-01	KEY RIGHT 20

RES18-KEY1-01

Ν

Figure 12 - Resistivity profile RES18-KEY1-01 shows an undulating bedrock contact which was drilled by drill hole KEY17-03 in 2017. The bedrock is up to 30 metres in depth. A drill target (K1) has been chosen in a potential paleochannel.

S

RES17-KNB-01

Figure 13 - Resistivity profile RES17-KNB-01 shows an undulating bedrock contact which was drilled nearby by drill hole KEY17-05 in 2017. The bedrock is up to 25 metres in depth.

S

Figure 14 - Resistivity profile RES18-KEST32-01 shows an undulating bedrock contact which was drilled nearby by drill hole KEY17-05 in 2017. The bedrock is up to 34 metres in depth. A drill target (K2) has been chosen in a potential paleochannel.

Ν

RES17-KEST31-01

Figure 15 - Resistivity profile RES17-KEST31-01 shows an undulating bedrock contact which was drilled by drill hole KEY17-04 in 2017. The bedrock is up to 31 metres in depth.

RES18-KEST31-01

Figure 16 - Resistivity profile RES18-KEST31-01 shows an undulating bedrock contact. The bedrock is up to 30 metres in depth. A drill target (K3) has been chosen in a potential paleochannel.

Ν

Figure 17 - Resistivity profile RES18-KEST30-01 shows an undulating bedrock contact which was drilled nearby by drill hole KEY17-06 in 2017. The bedrock is up to 30 metres in depth. A drill target (K4) has been chosen in a potential paleochannel.

2019 Placer Exploration Program

Overview

The 2019 program included drone aerial surveys, resistivity geophysics and R/C drilling. For logistical and access reasons, the 2019 program extended farther downstream than was originally planned at the end of the 2018 season.

A total of 1.7 creek-miles of drone surveys were flown in the target area. Eight R/C drill holes totalling 172.5m were completed between claim Keystone 32 upstream and claim Keystone 11 downstream. Resistivity geophysics totalling 1.115 km was also conducted in the target area.

Results

The drone surveys were useful in additional geological interpretation, and also provided imagery that aided in planning resistivity survey locations and drill holes.

The areas of the drone surveys are outlined in Figure 18, and images are included in Appendix 3.

Table 9 outlines the lengths and locations of the resistivity surveys. Figure 18 shows the locations of the surveys, and Figures 19-23 show the resistivity profiles and their interpreted bedrock depths. A total of 7 drill targets were identified on the resistivity profiles, and these are plotted on Figure 18 and shown in Table 10. The targets are generally picked in low areas of the bedrock profile that could be interpreted as paleochannels.

Eight R/C drill holes were completed in the target area, for a total of 172.5m of drilling. The drill holes are plotted on Figure 18, and the coordinates of the drill holes are shown in Table 11. Two of the drill holes (KEY19-05 and KEY19-06) were collared on or near to targets identified in the resistivity surveys. Anticipated depths from the resistivity surveys correlated well with the depths to bedrock encountered during the R/C drilling.

Resistivity Line	Start Point		End	End Point		
	Latitude	Longitude	Latitude	Longitude		
RES19-KEST14-01	63.83726177	-135.1211177	63.83550034	-135.1177517	275	
RES19-KEST15-01	63.83693047	-135.1190683	63.83565628	-135.1232106	263	
RES19-KEST15-02	63.83798278	-135.119085	63.83689635	-135.1170365	182	
RES19-KEST19-01	63.83939303	-135.1078485	63.84061939	-135.1084903	154	
RES19-KEST23-01	63.84243405	-135.095687	63.84215021	-135.0982324	139	

Table 9 - Table showing locations and length of resistivity geophysics lines on the Keystone 2019 property.

Target Name	Claim Location	Resistivity Line	Target Depth (m)	Latitude	Longitude
2019-K10	KEYSTONE 14	RES19-KEST14-01	16	63.83617433	-135.1191418
2019-K11	KEYSTONE 14	RES19-KEST14-01	18	63.83646593	-135.1199377
2019-K12	KEYSTONE 15	RES19-KEST15-01	19	63.83617612	-135.1208738
2019-К9	KEYSTONE 15	RES19-KEST15-02	16	63.83729145	-135.1179995
2019-К8	KEYSTONE 19	RES19-KEST19-01	22	63.84013214	-135.1083037
2019-K7	KEYSTONE 23	RES19-KEST23-01	10	63.84219226	-135.0975862
2019-К6	KEYSTONE 23	RES19-KEST23-01	14	63.84236859	-135.0964069

Table 10 – 2019 Drill Target Coordinates, Keystone Creek.

Table 11 - 2019 R/C Drill hole coordinates, Keystone Creek

Drill Hole	Depth (m)	Claim location	Target Name	Resistivity Line	Latitude	Longitude
WW19	39.5	KEYSTONE 32	N/A	RES18-KEY1-01	63.84628435	-135.0690664
KEY19-01	29	KEYSTONE 26	N/A	N/A	63.84396602	-135.0866726
KEY19-02	23	KEYSTONE 20	N/A	N/A	63.84072904	-135.1048473
KEY19-03	25	KEYSTONE 20	N/A	N/A	63.84050695	-135.105744
KEY19-04	21	KEYSTONE 26	N/A	N/A	63.84361198	-135.0863749
KEY19-05	13	KEYSTONE 14	2019-K11	RES19-KEST14-01	63.83650298	-135.1200462
KEY19-06	11	KEYSTONE 15	2019-К9	RES19-KEST15-02	63.83732126	-135.1180779
KEY19-07	11	KEYSTONE 11	N/A	RES18-KEST12-01	63.83383057	-135.1282661

Figure 18 - Compilation map showing surficial geology, 2019 R/C drill holes, resistivity geophysical surveys, drill targets and drone survey area.

First electrode is located at 0.0 m.

Last electrode is located at 157.8 m. Unit Electrode Spacing = 2.02 m.

Figure 19 - RES19-KEST15-02 is surveyed NW to SW and has an undulating bedrock profile interpreted. There is a drill target chosen on the right limit with a target depth of 16m.

RES19-KEST15-02 Looking Upstream

Figure 20 - RES19-KEST14-01 is surveyed NW to SE and has an undulating bedrock profile interpreted. There are two drill targets chosen on this profile with depths of 18m and 16m deep. Drill hole KEY19-05 was drilled and hit bedrock at 13m.

RES19-KEST15-01

SW

Figure 21 - RES19-KEST15-01 is surveyed along the valley and has 2 drill targets identified. The targets are 18m and 19m deep and within deep undulations in the center of the valley.

Figure 22 – RES19-KEST19-01 is surveyed SE to NW and has a bedrock profile generally following topography. However, there is a deep undulation identified on the right limit at 22m. This has been identified as a drill target.

RES19-KEST23-01

Figure 23 - RES19-KEST23-01 is surveyed along the valley. The bedrock profile appears undulating in this location with two drill targets identified at 14m and 10m.

Conclusions and Recommendations

The combination of areal imagery from drone surveys, resistivity geophysical surveys, R/C drilling and sampling of sediments for placer gold content has provided an initial framework for further placer exploration of Keystone Creek.

Throughout the resistivity surveys, high resistivity values corresponded with interpreted till, permafrost areas or colluvial blankets. Low surface resistivity units were associated with surface water or water saturated ground surrounding the creeks in the region. The resistivity values in the medium range are interpreted as possible paleochannel material such as sands or gravel.

A total of 7 drill targets were chosen on the profile locations which may be paleochannels, or depressions in the bedrock with placer gold potential. The interpreted depths of these targets vary between 10m and 22m. Two of the targets (2019-K9 and 2019-K11) were subsequently drilled (KEY19-05 and KEY19-06), and the drill holes correlated well with the anticipated bedrock depths interpreted from the resistivity geophysical surveys.

The drill samples yielded prospective amounts of placer gold, from various lithologies including gravel, till and bedrock. Most of the gold was found in layers near bedrock, however sometimes higher level sediments had significant values of placer gold recovered in drill samples.

The drill targets and resistivity surveys appear to outline a right-limit paleochannel, which may be a pre-McConnell age interglacial gravel which escaped erosion as it was outside of both the McConnell alpine glacial limits, and the McConnell regional glacial limit.

Further exploration is warranted throughout the entirety of the claims in Keystone Creek. The main focus should be determining the size, extent and placer gold values within the right-limit paleochannel. Since the claims downstream of the main Keystone claim group (owned by Frank Taylor) have recently been acquired, exploration should include this area as well.

For the 2020 season, a program of drone aerial surveys, resistivity geophysical surveys, reverse circulation drilling and excavator test pitting should be conducted.

Figure 24 shows the proposed resistivity surveys and initial drill targets. Further drill targets and excavator test pits will be chosen on the basis of the results of the initial 2020 geophysical surveys.

Figure 24 - Surficial geology and glacial limits (Bond, 1998), showing 2019 resistivity lines, 2019 drill targets, and proposed new resistivity surveys. Area of exploration includes the Taylor claims downstream. Also shown are the trend of possible placer paystreaks.

Statements of Qualifications

William LeBarge

I, William LeBarge, of 13 Tigereye Crescent, Whitehorse, Yukon, Canada, DO HEREBY CERTIFY THAT:

- 1. I am a Consulting Geologist with current address at 13 Tigereye Crescent, Whitehorse, Yukon, Canada, Y1A 6G6.
- 2. I am a graduate of the University of Alberta (B.Sc., 1985, Geology) and the University of Calgary (M.Sc., 1993, Geology Sedimentology)
- 3. I am a Practicing Member in Good Standing (#37932) of the Association of Professional Engineers and Geoscientists of British Columbia (APEGBC).
- 4. I have practiced my Profession as a Geologist continuously since 1985.
- 5. I am President and sole shareholder of Geoplacer Exploration Ltd., a Yukon Registered Company.

Dated this 7th day of May, 2020

William LeBarge, P. Geo.

William LeBarge

Selena Magel

I, Selena Magel, of 10-35 Normandy Road N, Whitehorse, Yukon, Canada, DO HEREBY CERTIFY THAT:

- 1. I am a Geologist in Training, registered with APEGA with current address at 10-35 Normandy Road N, Whitehorse, Yukon, Y1A0L4
- 2. I am a graduate of the University of Calgary (B.Sc., 2017, Geology).
- 3. I have practiced Geology since May 2017.
- 4. I have conducted and interpreted over 70 km of resistivity surveys since the summer of 2017.

Dated this 7th day of May, 2020

Selena Magel, G. I. T.

Selen Magel

Statement of Costs – 2019 Exploration

 Table 12 – 2019 Placer Exploration Expenses, Keystone Creek.

2019 Placer Exploration Program Expenses Keystone Creek	Rate	Subtotal	GST	Total
Drone survey of field area (4 surveys 300m x 300m)	1.7 miles @\$1000/mile	\$1,700.00	\$85.00	\$1,785.00
Access construction Caterpillar Bulldozer D-6R	12 hours@\$220/hr	\$2,640.00	\$132.00	\$2,772.00
Access construction Caterpillar Excavator 345B	12 hours@\$275/hr	\$3,300.00	\$165.00	\$3,465.00
Drilling, Reverse Circulation of 2017 and 2018 targets 8 holes	173m @\$250/m	\$43,250.00	\$2,162.50	\$45,412.50
Drill Rig Moves	10 hr @\$250/hr	\$2,500.00	\$125.00	\$2,625.00
Processing of drill samples for placer gold	2 people x 4 days @\$400/day	\$3,200.00	\$160.00	\$3,360.00
Resistivity geophysical surveys - contractor rates for 2 days	1.2km @\$12,000/line km	\$14,400.00	\$720.00	\$15,120.00
Geoplacer Exploration Ltd Geological mapping, targeting and supervision of drilling and geophysical program, report writing	12 days@\$550/day	\$6,600.00	\$330.00	\$6,930.00
Camp costs (YMEP rates)	60 person days@\$100/day	\$6,000.00	\$300.00	\$6,300.00
Report Writing	2 people x 3 days @ \$400/day	\$2,400.00	\$120.00	\$2,520.00
Total Cost		\$85,990.00	\$4,299.50	\$90,289.50

References

Bond, J.D., 1998. Surficial Geology of Keno Hill, Central Yukon, NTS 105M14. Exploration and Geological Services Division, Indian and Northern Affairs, Canada, Geoscience Map 1998-4, 1:50,000 scale map

Bond, J.D., 1999. Glacial Limits and Ice-Flow Map, Mayo Area, Central Yukon. Indian & Northern Affairs Canada/Department of Indian & Northern Development: Exploration & Geological Services Division, Open File 1999-13.

Duk-Rodkin, A., Barendregt, R., and White, J.M., 2010. An extensive late Cenozoic terrestrial record of multiple glaciations preserved in the Tintina Trench of west-central Yukon: Stratigraphy, Paleomagnetism, Paleosols, and Pollen. Canadian Journal of Earth Sciences, Volume 47, p. 1003–1028.

Eyles, N., and Koscis, S.P., 1989. Sedimentological controls on gold distribution in Pleistocene placer deposits of the Cariboo Mining District, British Columbia. Report on Geological Fieldwork, British Columbia Ministry of Energy, Mines and Petroleum Resources, Paper 1989-1, p. 377-385.

Hart, C.J.R., McCoy, D.T., Goldfarb, R.J., Smith, M., Roberts, P., Hulstein, R., Bakke, A.A., Bundtzen, T.K., 2002. Geology, exploration, and discovery in the Tintina Gold Province, Alaska and Yukon. Society of Economic Geologists Special Publication 9, 241–274.

Jackson, L.E., Jr., Shimamura, K. and Huscroft, C.A., 2001. Late Cenozoic geology, Ancient Pacific Margin NATMAP Project, Report 3: A re-evaluation of glacial limits in the Stewart River basin of Stewart River map area, Yukon Territory. Geological Survey of Canada, Current Research 2001-A3, 8 p.

LeBarge, W.P., 1995. Sedimentology of placer gravels near Mt. Nansen, central Yukon Territory. Indian and Northern Affairs Canada, Exploration and Geological Services Division, Yukon Region, Indian and Northern Affairs Canada, Bulletin 4, 155 p.

LeBarge, W.P., Bond, J.D. and Hein, F.J., 2002. Placer gold deposits of the Mayo area, central Yukon. Exploration and Geological Services Division, Yukon Region, Indian and Northern Affairs Canada, Bulletin 13, 209 p.

LeBarge, W.P., 2007. Yukon Placer Database–Geology and mining activity of placer occurrences, Yukon Geological Survey, 2 CD-ROMs.

LeBarge, W.P., and Logutov, B., 2016. Geophysical and Geological Report on Upper Duncan Creek and Upper Granite Creek, Mayo Mining District, Yukon Territory for Earth and Iron Inc. Unpublished report, 39 p.

Mayo Historical Society, 1990. Gold and Galena: A history of the Mayo District, Mayo Historical Society, L.E.T. MacDonald and L.R. Bleiler (compilers), 502 p.

Murphy, D.C., and Roots, C.F., 1996. Geological map of Keno Hill area, central Yukon (105M/14). Exploration and Geological Services Division, Indian and Northern Affairs, Canada. Geoscience Map 1996-1, 1:50,000 scale map.

Murphy, Donald. C., 1997. Geology of the McQuesten River Region, Northern McQuesten and Mayo Map Areas, Yukon Territory (115P/14, 15, 16; 105M/13, 14). Exploration and Geological Services Division, Bulletin 6, 122 p.

Roots, C.F., 1997a. Geology of the Mayo Map area, Yukon, Territory, (105M). Exploration and Geological Services Division, Yukon, Indian and Northern Affairs, Canada, Bulletin 7.

Roots, C.F., 1997b. Bedrock geology of Mayo map area, central Yukon (NTS 105M), Exploration and Geological Services Division, Indian and Northern Affairs Canada, Geoscience Map 1997-1.

Stephens, J.R., Mair, J.L., Oliver, N.H.S., Hart, C.J.R, Baker, T. 2004. Structural and mechanical controls on intrusion-related deposits of the Tombstone Gold Belt, Yukon, Canada, with comparisons to other vein-hosted ore-deposit types. Journal of Structural Geology, Vol. 26, p. 1025-1041.

Tarnocai, C., and Schweger, C.E., 1991. Late Tertiary and Early Pleistocene Paleosols in Northwestern Canada, Arctic, Vol. 44, No. 1, p. 1-11.

Van Loon, S. and Bond, J.D. 2014. Yukon Placer Mining Industry, 2010-2014. Yukon Geological Survey, 230 p.

Wengzynowski, W.A., 2008. Assessment report describing VTEM geophysical surveys at the Mount Hinton property, prepared by Archer, Cathro & Associates (1981) Limited for Yukon Gold Corporation Inc. EMR Assessment Report number 095613, 47 p.

Yukon Geological Survey, 2018. Digital Bedrock, Mineral Occurrence and Surficial Geology Compilations, available at http://data.geology.yk.ca

Grant Number	Tenure Status	Claim Name	Owner Name	Staking Date	Recorded Date	Expiry Date
P 513954	Active	CoDisc 1	Earth & Iron Mines Inc 100%	7/21/2017	7/24/2017	11/30/2020
P 513955	Active	CoDisc 2	Earth & Iron Mines Inc 100%	7/21/2017	7/24/2017	11/30/2020
P 513776	Active	Key 1	Earth & Iron Mines Inc 100%	11/1/2016	11/4/2016	11/30/2020
P 513777	Active	Key 2	Earth & Iron Mines Inc 100%	11/1/2016	11/4/2016	11/30/2020
P 513778	Active	Кеу З	Earth & Iron Mines Inc 100%	11/1/2016	11/4/2016	11/30/2020
P 513779	Active	Key 4	Earth & Iron Mines Inc 100%	11/1/2016	11/4/2016	11/30/2020
P 513780	Active	Key 5	Earth & Iron Mines Inc 100%	11/1/2016	11/4/2016	11/30/2020
P 513781	Active	Key 6	Earth & Iron Mines Inc 100%	11/1/2016	11/4/2016	11/30/2020
P 513966	Active	Key Left 1	Earth & Iron Mines Inc 100%	7/20/2017	7/24/2017	11/30/2020
P 513967	Active	Key Left 2	Earth & Iron Mines Inc 100%	7/20/2017	7/24/2017	11/30/2020
P 513968	Active	Key Left 3	Earth & Iron Mines Inc 100%	7/20/2017	7/24/2017	11/30/2020
P 513969	Active	Key Left 4	Earth & Iron Mines Inc 100%	7/20/2017	7/24/2017	11/30/2020
P 513970	Active	Key Left 5	Earth & Iron Mines Inc 100%	7/20/2017	7/24/2017	11/30/2020
P 513971	Active	Key Left 6	Earth & Iron Mines Inc 100%	7/20/2017	7/24/2017	11/30/2020
P 513972	Active	Key Left 7	Earth & Iron Mines Inc 100%	7/20/2017	7/24/2017	11/30/2020
P 513973	Active	Key Left 8	Earth & Iron Mines Inc 100%	7/20/2017	7/24/2017	11/30/2020
P 513974	Active	Key Left 9	Earth & Iron Mines Inc 100%	7/20/2017	7/24/2017	11/30/2020
P 513975	Active	Key Left 10	Earth & Iron Mines Inc 100%	7/20/2017	7/24/2017	11/30/2020
P 513976	Active	Key Left 11	Earth & Iron Mines Inc 100%	7/20/2017	7/24/2017	11/30/2020
P 513977	Active	Key Left 12	Earth & Iron Mines Inc 100%	7/20/2017	7/24/2017	11/30/2020
P 513978	Active	Key Left 13	Earth & Iron Mines Inc 100%	7/20/2017	7/24/2017	11/30/2020
P 513979	Active	Key Left 14	Earth & Iron Mines Inc 100%	7/20/2017	7/24/2017	11/30/2020
P 513980	Active	Key Left 15	Earth & Iron Mines Inc 100%	7/20/2017	7/24/2017	11/30/2020
P 513981	Active	Key Left 16	Earth & Iron Mines Inc 100%	7/20/2017	7/24/2017	11/30/2020
P 513982	Active	Key Left 17	Earth & Iron Mines Inc 100%	7/20/2017	7/24/2017	11/30/2020

Appendix 1 – Keystone Creek Placer Claims, Earth & Iron Inc. and affiliates.

Grant Number	Tenure Status	Claim Name	Owner Name	Staking Date	Recorded Date	Expiry Date
P 513983	Active	Key Left 18	Earth & Iron Mines Inc 100%	7/20/2017	7/24/2017	11/30/2020
P 513984	Active	Key Left 19	Earth & Iron Mines Inc 100%	7/20/2017	7/24/2017	11/30/2020
P 513985	Active	Key Left 20	Earth & Iron Mines Inc 100%	7/20/2017	7/24/2017	11/30/2020
P 513986	Active	Key Left 21	Earth & Iron Mines Inc 100%	7/20/2017	7/24/2017	11/30/2020
P 513987	Active	Key Left 22	Earth & Iron Mines Inc 100%	7/20/2017	7/24/2017	11/30/2020
P 513988	Active	Key Right 1	Earth & Iron Mines Inc 100%	7/21/2017	7/24/2017	11/30/2020
P 513989	Active	Key Right 2	Earth & Iron Mines Inc 100%	7/21/2017	7/24/2017	11/30/2020
P 513990	Active	Key Right 3	Earth & Iron Mines Inc 100%	7/21/2017	7/24/2017	11/30/2020
P 513991	Active	Key Right 4	Earth & Iron Mines Inc 100%	7/21/2017	7/24/2017	11/30/2020
P 513992	Active	Key Right 5	Earth & Iron Mines Inc 100%	7/21/2017	7/24/2017	11/30/2020
P 513993	Active	Key Right 6	Earth & Iron Mines Inc 100%	7/21/2017	7/24/2017	11/30/2020
P 513994	Active	Key Right 7	Earth & Iron Mines Inc 100%	7/21/2017	7/24/2017	11/30/2020
P 513995	Active	Key Right 8	Earth & Iron Mines Inc 100%	7/21/2017	7/24/2017	11/30/2020
P 513996	Active	Key Right 9	Earth & Iron Mines Inc 100%	7/21/2017	7/24/2017	11/30/2020
P 513997	Active	Key Right 10	Earth & Iron Mines Inc 100%	7/21/2017	7/24/2017	11/30/2020
P 513998	Active	Key Right 11	Earth & Iron Mines Inc 100%	7/21/2017	7/24/2017	11/30/2020
P 513999	Active	Key Right 12	Earth & Iron Mines Inc 100%	7/21/2017	7/24/2017	11/30/2020
P 514000	Active	Key Right 13	Earth & Iron Mines Inc 100%	7/21/2017	7/24/2017	11/30/2020
P 524001	Active	Key Right 14	Earth & Iron Mines Inc 100%	7/21/2017	7/24/2017	11/30/2020
P 524002	Active	Key Right 15	Earth & Iron Mines Inc 100%	7/21/2017	7/24/2017	11/30/2020
P 524003	Active	Key Right 16	Earth & Iron Mines Inc 100%	7/21/2017	7/24/2017	11/30/2020
P 524004	Active	Key Right 17	Earth & Iron Mines Inc 100%	7/21/2017	7/24/2017	11/30/2020
P 524005	Active	Key Right 18	Earth & Iron Mines Inc 100%	7/21/2017	7/24/2017	11/30/2020
P 524006	Active	Key Right 19	Earth & Iron Mines Inc 100%	7/21/2017	7/24/2017	11/30/2020
P 524007	Active	Key Right 20	Earth & Iron Mines Inc 100%	7/21/2017	7/24/2017	11/30/2020
P 524008	Active	Key Right 21	Earth & Iron Mines Inc 100%	7/21/2017	7/24/2017	11/30/2020
P 524009	Active	Key Right 22	Earth & Iron Mines Inc 100%	7/21/2017	7/24/2017	11/30/2020
P 514863	Active	Keystone 1	Earth & Iron Mines Inc 100%	6/8/2016	6/10/2016	11/30/2020
P 514864	Active	Keystone 2	Earth & Iron Mines Inc 100%	6/8/2016	6/10/2016	11/30/2020

Grant Number	Tenure Status	Claim Name	Owner Name	Staking Date	Recorded Date	Expiry Date
P 514865	Active	Keystone 3	Earth & Iron Mines Inc 100%	6/8/2016	6/10/2016	11/30/2020
P 514866	Active	Keystone 4	Earth & Iron Mines Inc 100%	6/8/2016	6/10/2016	11/30/2020
P 514867	Active	Keystone 5	Earth & Iron Mines Inc 100%	6/8/2016	6/10/2016	11/30/2020
P 514868	Active	Keystone 6	Earth & Iron Mines Inc 100%	6/8/2016	6/10/2016	11/30/2020
P 514869	Active	Keystone 7	Earth & Iron Mines Inc 100%	6/8/2016	6/10/2016	11/30/2020
P 514870	Active	Keystone 8	Earth & Iron Mines Inc 100%	6/8/2016	6/10/2016	11/30/2020
P 514871	Active	Keystone 9	Earth & Iron Mines Inc 100%	6/8/2016	6/10/2016	11/30/2020
P 514872	Active	Keystone 10	Earth & Iron Mines Inc 100%	6/8/2016	6/10/2016	11/30/2020
P 514873	Active	Keystone 11	Earth & Iron Mines Inc 100%	6/8/2016	6/10/2016	11/30/2020
P 514874	Active	Keystone 12	Earth & Iron Mines Inc 100%	6/8/2016	6/10/2016	11/30/2020
P 514875	Active	Keystone 13	Earth & Iron Mines Inc 100%	6/8/2016	6/10/2016	11/30/2020
P 514876	Active	Keystone 14	Earth & Iron Mines Inc 100%	6/8/2016	6/10/2016	11/30/2020
P 514877	Active	Keystone 15	Earth & Iron Mines Inc 100%	6/8/2016	6/10/2016	11/30/2020
P 514878	Active	Keystone 16	Earth & Iron Mines Inc 100%	6/8/2016	6/10/2016	11/30/2020
P 514879	Active	Keystone 17	Earth & Iron Mines Inc 100%	6/8/2016	6/10/2016	11/30/2020
P 514880	Active	Keystone 18	Earth & Iron Mines Inc 100%	6/8/2016	6/10/2016	11/30/2020
P 514881	Active	Keystone 19	Earth & Iron Mines Inc 100%	6/8/2016	6/10/2016	11/30/2020
P 514882	Active	Keystone 20	Earth & Iron Mines Inc 100%	6/9/2016	6/10/2016	11/30/2020
P 514883	Active	Keystone 21	Earth & Iron Mines Inc 100%	6/9/2016	6/10/2016	11/30/2020
P 514884	Active	Keystone 22	Earth & Iron Mines Inc 100%	6/9/2016	6/10/2016	11/30/2020
P 514885	Active	Keystone 23	Earth & Iron Mines Inc 100%	6/9/2016	6/10/2016	11/30/2020
P 514886	Active	Keystone 24	Earth & Iron Mines Inc 100%	6/9/2016	6/10/2016	11/30/2020
P 514887	Active	Keystone 25	Earth & Iron Mines Inc 100%	6/9/2016	6/10/2016	11/30/2020
P 514888	Active	Keystone 26	Earth & Iron Mines Inc 100%	6/9/2016	6/10/2016	11/30/2020
P 514889	Active	Keystone 27	Earth & Iron Mines Inc 100%	6/9/2016	6/10/2016	11/30/2020
P 514890	Active	Keystone 28	Earth & Iron Mines Inc 100%	6/9/2016	6/10/2016	11/30/2020
P 514891	Active	Keystone 29	Earth & Iron Mines Inc 100%	6/9/2016	6/10/2016	11/30/2020
P 514892	Active	Keystone 30	Earth & Iron Mines Inc 100%	6/9/2016	6/10/2016	11/30/2020
P 514893	Active	Keystone 31	Earth & Iron Mines Inc 100%	6/9/2016	6/10/2016	11/30/2020

Grant Number	Tenure Status	Claim Name	Owner Name	Staking Date	Recorded Date	Expiry Date
P 514894	Active	Keystone 32	Earth & Iron Mines Inc 100%	6/9/2016	6/10/2016	11/30/2020
P 524422	Active	Lake 1	Stuart Gray - 100%	5/19/2018	5/29/2018	5/29/2023
P 524423	Active	Lake 2	Earth & Iron Inc 100%	5/19/2018	5/29/2018	5/29/2023
P 524088	Active	Τ1	Earth & Iron Mines Inc 100%	7/14/2017	7/18/2017	11/30/2020
P 524089	Active	Т 2	Earth & Iron Mines Inc 100%	7/14/2017	7/18/2017	11/30/2020
P 524090	Active	Т3	Earth & Iron Mines Inc 100%	7/14/2017	7/18/2017	11/30/2020
P 524091	Active	Т4	Earth & Iron Mines Inc 100%	7/14/2017	7/18/2017	11/30/2020
P 524092	Active	Т 5	Earth & Iron Mines Inc 100%	7/14/2017	7/18/2017	11/30/2020
P 524093	Active	Т6	Earth & Iron Mines Inc 100%	7/14/2017	7/18/2017	11/30/2020
P 524094	Active	Т7	Earth & Iron Mines Inc 100%	7/14/2017	7/18/2017	11/30/2020
P 524095	Active	Т8	Earth & Iron Mines Inc 100%	7/14/2017	7/18/2017	11/30/2020
P 524096	Active	Т9	Earth & Iron Mines Inc 100%	7/14/2017	7/18/2017	11/30/2020
P 524097	Active	Т 10	Earth & Iron Mines Inc 100%	7/14/2017	7/18/2017	11/30/2020
P 524098	Active	T 11	Earth & Iron Mines Inc 100%	7/14/2017	7/18/2017	11/30/2020
P 524099	Active	T 12	Earth & Iron Mines Inc 100%	7/14/2017	7/18/2017	11/30/2020
P 524100	Active	T 13	Earth & Iron Mines Inc 100%	7/14/2017	7/18/2017	11/30/2020
P 524101	Active	T 14	Earth & Iron Mines Inc 100%	7/14/2017	7/18/2017	11/30/2020
P 524102	Active	T 15	Earth & Iron Mines Inc 100%	7/14/2017	7/18/2017	11/30/2020
P 524103	Active	Т 16	Earth & Iron Mines Inc 100%	7/14/2017	7/18/2017	11/30/2020
P 524104	Active	T 17	Earth & Iron Mines Inc 100%	7/14/2017	7/18/2017	11/30/2020
P 524105	Active	T 18	Earth & Iron Mines Inc 100%	7/14/2017	7/18/2017	11/30/2020

		DRILL SAMPLE PROCES	SING LOG		
CLAIM NAME	32	-	DRILL HOLE NAME	WW19	
DATE DRILLED DRILLER	May-23 Mark Bayne	TOTAL DEPTH REACHED	39.5m 115mm	DATE PROCESSED COMPLETED BY	May-24 Mark
HELPER	Allan Dutchak	TYPE OF DRILL	RC	METHOD	LeTrap
DEPTH (m)	SAMPLE SIZE	LITHOLOGY DESCRIPTION	FINAL CONCENTRATE DESCRIPTION GOLD DESCRIPTION	COMMENTS	SAMPLE ON FILE (Y/N)
9-10	30L	grey sand	3MC, 5FC	-	Y
10-11	40L	grey gravel	no gold		N
11-12	20L	grey sand	2FC	-	Y
12-13	40L	dark grey sand	no gold		N
13-14	40L	grey sand	no gold	-	N
14-15	20L	grey sand	no gold		N
15-16	60L	grey sand	1MC, 1FC		Y
16-17	40L	yellow sandy gravel	1MC, 1FC	-	Y
17-18	20L	grey light brown sand	no gold	-	N
18-19	20L	yellow gray sand	no gold	-	N
19-20	20L	light gray sand gravel	no gold	-	N
20-21	20L	light grey sand gravel	no gold	-	N
21-22	20L	dark red tan sand and gravel	no gold	-	N
22-23	10L	dark red sand and gravel	1MC, 5FC	-	Y
23-24	30L	light brown sand	no gold		N

Appendix 2 – 2019 Keystone Creek Drill Logs

24-25	40L	yellow sand, lots of gravel	1MC		Y
25-26	20L	yellow sand lots of gravel	1CC, 2FC		Y
26-27	20L	yellow sand gravel	no gold		N
27-28	10L	yellow sand and gravel	1GG, medium amount of fines	0.032g	Y
28-29	10L	yellow sand	medium amount of fines		Y
29-30	10L	yellow sand and lots of gravel	small amount of fines	0.006g	Y
30-31	20L	grey sand and gravel	1Med. Flake, 10CC, small amount of fines	0.027g	Y
31-32	20L	grey sand and gravel	3CC, 5MC, small fines	0.007g	Y
32-33	20L	grey sand	1MC, 1FC, small amount of fines		Y
33-34	40L	find grey sand and silt	no gold		N
34-35	20L	grey fine sand silt small gravel	1CC		Y
35-36	40L	grey fine sand silt small gravel	1MC		Y
36-37	40L	grey sand	no gold		N
37-38	40L	grey sand	no gold		N
38-39.5	40L	grey sand	no gold		N

DRILL SAMPLE PROCESSING LOG						
			DRILL HOLE			
	Keystone 26	-	NAME	KEY19-01	-	
				DATE		
DATE DRILLED	21-Jun-19	TOTAL DEPTH REACHED	29 m	PROCESSED	01-Jun-24	
				COMPLETED	Mark and	
	Mark Bayne		115mm	BY	Allan	
HELPER	Allan Dutchak		FINAL	METHOD	Leirap	
			CONCENTRATE			
DEPTH (m)	SAMPLE SIZE	LITHOLOGY DESCRIPTION	DESCRIPTION	COMMENTS	FILE (Y/N)	
			GOLD			
		Brown and grey sand	no gold			
0-5	40L	with topsoil			N	
		· · ·	no gold			
5-6	20L	Grey sand and gravel			N	
			no gold			
6-7	20L	Grey sand and gravel		-	N	
			no gold			
7-8	20L	Grey sand and gravel			N	
			no gold			
8-9	10L	Yellow and grey sand		-	N	
		dark brown sand and	no gold			
9-10	20L	gravels		-	N	
			no gold			
10-11	30L	yellow sand		-	N	
44.42	201		no gold			
11-12	20L	yellow sand			N	
12.12	201	yellow and light grey	no gold		N	
12-13	20L	sand and gravel		-	IN	
12.14	201	vellow grov cond	no gold		N	
13-14	201	yellow grey sand			IN	
1/-15	201	vellow grey cand	no gold		N	
14-13	201				IN	
15-16	401	vellow grey sand	no gold	-	N	
15 10	401	yenow grey sand				
16-17	201	vellow grev sand	no gold	-	N	
	202					
17-18	201	Light Grev sand	no gold	-	N	
18-19	20L	Light Grey sand	1LC, 4FC	-	Y	
		<u> </u>				
19-20	20L	light grey sand	1FC	-	Y	

20-21	20L	light grey sand	no gold		N
21-22	20L	light grey sand	1SC, 3FC	-	Y
22-23	30L	yellow sand	1MC, 1SC	_	Y
23-24	20L	yellow sand	1FC	_	Y
24-25	40L	yellow sand and gravel	7FC		Y
25-26	40L	yellow sand and gravel	6SC, 3FC		Y
26-27	40L	yellow sand and gravel	2LC, 3MC, 2SC	0.001g	Y
27-28	30L	yellow sand and gravel	4SC, 4FC	-	Y
28-29	20L	yellow sand and gravel	1LG, 11LC, 2MC,6FC	0.046g	Y

Figure 25 - Sample taken from 28-29m of KEY19-01.

	DRILL SAMPLE PROCESSING LOG				
CLAIM NAME	Keystone 20		DRILL HOLE NAME	KEY19-02	-
DATE DRILLED	23-Jun-19	TOTAL DEPTH REACHED	23m	DATE PROCESSED	24-Jun-19
DRILLER	Mark Bayne	INSIDE DIAMETER OF DRILL	115mm	COMPLETED BY	Mark and Allan
HELPER	Allan Dutchak	TYPE OF DRILL	RC	METHOD	LeTrap
DEPTH (m)	SAMPLE SIZE	LITHOLOGY DESCRIPTION	FINAL CONCENTRATE DESCRIPTION GOLD DESCRIPTION	COMMENTS	SAMPLE ON FILE (Y/N)
0-4	20L	Topsoil and gravel	no gold		N
4-5	20L	Gravel with some light grey sand	no gold		N
5-6	20L	Gravel with some light grey sand	no gold		N
6-7	10L	Gravel with some light grey sand	no gold		N
7-8	10L	Gravel with small amount of light grey sand	no gold		N
8-9	10L	Gravel with small amount of light grey sand	no gold		Ν
9-10	10L	Gravel with small amount of light grey sand	no gold		N
10-11	10L	Gravel with small amount of light grey sand	no gold		Ν
11-12	10L	Gravel with small amount of light grey sand	no gold		N
12-13	10L	Gravel with small amount of light grey sand	no gold		N
13-14	20L	Gravel with small amount of light grey sand	no gold		N
14-15	10L	Gravel with small amount of light grey sand	no gold		N
15-16	10L	Gravel with small amount of light grey sand	2SC, 5VFC		Y
16-17	10L	Gravel with small amount of light grey sand	No gold		N
17-18	10L	Yellowish and grey sand some gravel	1FC		Y
18-19	10L	Yellow/grey sand with small amount of gravel	1LC		Y

19-20	15L	Grey sand and gravel	1FC		Y
20-21	10L	Grey sand and gravel	1FC		Y
21-22	10L	Grey sand and gravel	20FC, 30VFC	0.007g	Y
22-23	10L	Grey sand with gravel, Pyrite present	3 Grains, 2LC, 100+VFC	0.047g	Y

KEY19-02 (22-23m)

Figure 26 - Samples taken from 21-23m of KEY19-02.

DRILL SAMPLE PROCESSING LOG					
CLAIM NAME	Keystone 20		DRILL HOLE NAME	KEY19-03	
DATE DRILLED	25-Jun-19	TOTAL DEPTH REACHED	25m	DATE PROCESSED	26-Jun-19
DRILLER	Mark Bayne	INSIDE DIAMETER OF DRILL	115mm	COMPLETED BY	Geos
	Allan	-		-	
HELPER	Dutchak	TYPE OF DRILL	RC	METHOD	Le Trap
DEPTH (m)	SAMPLE SIZE	LITHOLOGY DESCRIPTION	CONCENTRATE	COMMENTS	SAMPLE ON FILE
			GOLD DESCRIPTION		(Y/N)
		Tan Eine sand shrounded	scheelite		
0-2	18L	gravel with small gravel	1FC		N
			scheelite		
2-3	13L	Tan Fine sand, sbrounded gravel with small gravel	no gold		N
		Grey Fine sand ang gravel	scheelite		
3-4	11L		no gold	-	N
4 5	01	sub ang- subround	scheelite garnet		N
4-5	91	pebbles with fine sand	no gold		IN
5-6	71	sub ang- subround	scheelite		N
	, -	pebbles with fine sand	1 FC		
6-7	6L	Sbrndd-rounded pebble	scheelite		N
		gravel with fine sand	no gold		
7-8	4L	ang gravel pebble with	scheelite	-	N
			scheelite		
8-9	4L	Pebble gravel some silt	no gold	-	N
		small gravel nebble fine	scheelite		
9-10	8L	silty sand	no gold		N
10.11	4.01		scheelite, pyrite		
10-11	19L	Ang gravel and slity grey	1MC		Y
		comi roundod graval	scheelite, pyrite,		
11-12	18L	pebbles with some silt	Hem		N
			no gold		
12-13	18L	silty sand with semi rounded gravel	scheelite, pyrite	some magnetite	N

			no gold		
13-14	12L	pebbly sandy grey	scheelite, pyrite, garnet no gold	some magnetite	Ν
14-15	10L	grey pebbles with silty sand	scheelite		N
15-16	18L	grey brown pebbles with gravel and some sand	scheelite	-	N
16-17	19L	grey pebble to gravel with sand and some silt	pyrite, hem, magnetite and scheelite	some magnetite	Y
17-18	19L	grey pebble with powdery silty sand	pyrite, scheelite 1MC, 20 VFC	some magnetite	Y
18-19	23L	grey pebble to gravel with silty sand	pyrite, scheelite	some magnetite	Y
19-20	30L	Grey pebble gravel with silty sand	pyrite, scheelite 1MC		Y
20-21	19L	grey ang gravel with silty sand	pyrite, scheelite 100 VFC	-	Y
21-22	23L	grey ang pebble gravel with silty sand	pyrite, scheelite 1MC, 5FC	0.006g	Y
22-23	25L	ang gravel to pebble and silty. Dry and grey	pyrite, scheelite 60-80 FC	little bit of magnetite 0.004 g	Y
23-24	50L	ang pebble to gravel, grey.	pyrite, scheelite 4MC, 15FC	little bit of magnetite 0.005g	Y
24-25	5L	Grey large gravel and pebble. Bedrock	pyrite, magnetite +100 FC	0.034g	Y

Figure 27 - Samples taken from KEY19-03 from 21-25m.

DRILL SAMPLE PROCESSING LOG					
CLAIM NAME	Keystone 26		DRILL HOLE NAME	KEY19-04	_
DATE DRILLED	27-Jun-19	TOTAL DEPTH REACHED	21m	DATE PROCESSED	27-Jun-19
DRILLER	Mark Bayne	INSIDE DIAMETER OF DRILL	115mm	COMPLETED BY	Geos
	Allan				
HELPER	Dutchak	TYPE OF DRILL	RC	METHOD	Le Trap
DEPTH (m)	SAMPLE SIZE	LITHOLOGY DESCRIPTION	CONCENTRATE DESCRIPTION	COMMENTS	SAMPLE ON FILE (Y/N)
			GOLD DESCRIPTION		(1/11)
0-2	10L	Tan silty sand with subroubded gravel/pebbles	pyrite, scheelite, magnetite		Y
2-3	19L	Tan-grey silty fine sand with rounded gravel	scheelite, rutile, garnet,magnetite		Y
3-4	10L	Yellow-tan sand with sbrndd gravels	scheelite, pyrite, magnetite		N
4-5	9L	Brown fine sand with rounded gravel	scheelite, pyrite, magnetite no gold		Y
5-6	30L	Brown fine sand (some clay) with sbrndd gravel	scheelite, pyrite, magnetite no gold		N
6-7	18L	Brown fine sand with some gravel	scheelite, pyrite, magnetite, garnet, Hem no gold		N
7-8	22L	Brown fine sand with small amount gravel	Pyrite, scheelite, magnetite , hem no gold		N
8-9	12L	Tan some clay with silty sand and small gravel	Pyrite, scheelite, magnetite , hem no gold		N
9-10	19L	Tan some clay with silty sand and small gravel	Pyrite, garnet, magnetite , hem no gold		N
10-11	26L	Reddish brown pebbly silty sand	Pyrite, garnet, magnetite , hem no gold		N

11-12	10L	Grey pebble with silty sand and some clay	garnet, pyrite, course xtalline magnetite 1MC	Y
12-13	6L	Dark black clay- little to no gravel	Course magnetite, garnet, rutile, Hem, ilmenite	Y
13-14	13L	Dark black clay- little to no gravel	no gold ilmenite, pyrite, rutile, zircon, garnet, Mt	N
14-15	38L	Dark grey subrounded gravel with silty sand	ilmenite, hem, pyrite, rutile, garnet, magnetite no gold	N
15-16	18L	Dark grey subrounded gravel with silty sand	pyrite, magnetite, ilmenite, scheelite 2FC	Ν
16-17	32L	Dark grey subrounded gravel with silty sand	magnetite, ilmenite, rutile 2MC	Y
17-18	30L	Grey gravel with silty sand	magnetite, ilmenite, rutile 2MC, 1FC	Y
18-19	39L	Grey gravel with silty sand	pyrite, magnetite 2MC, 1FC	Y
19-20	30L	Grey fine sand with ang gravel	lots of pyrite, little bit of magnetite 1MC, 2FC	Y
20-21	25L	Grey fine sand with ang gravel, bedrock	lots of pyrite 2MC, 4FC, 8VF	Y

DRILL SAMPLE PROCESSING LOG						
	Keystone 14		DRILL HOLE	KFY19-05		
			NAME		-	
DATE					Aug 28	
DRILLED	Aug 28/19	TOTAL DEPTH REACHED	13m	DATE PROCESSED	2019	
DRILLER	Mark Bayne	INSIDE DIAMETER OF DRILL	115mm	COMPLETED BY	Exploration	
	Allan					
HELPER	Dutchak	TYPE OF DRILL	RC	METHOD	Leirap	
			CONCENTRATE		SAMPLE	
DEPTH (m)	SAMPLE SIZE	LITHOLOGY DESCRIPTION	DESCRIPTION	COMMENTS	ON FILE	
			GOLD		(Y/N)	
		grey sand with silt and	DESCRIPTION			
0-3	38	gravel	no gold	-	N	
3-4	37	grey gravely coarse	no gold	-	N	
		Saliu				
4-5	34	brown grey silty gravel		-	N	
			1MC			
5-6	36	brown grey silty gravel		-		
			no gold			
6-7	29	brown sand with gravel		-	N	
	_		1FC			
7-8	28	reddish brown gravely		grainy colour	Y	
		clay and coarse sand	1MC, 3FC	Brainy coroan		
8-9	28	reddish brown gravely			N	
	20	clay and coarse sand	1FC			
		brown gravely coarse				
9-10	38	sand with gravel	1wire, 2FC,		Y	
			2MC			
10-11	32	brown gravely sand	pyrite		N	
10-11	52	with gravel	no gold		IN .	
11_17	29	brown gravel with	pyrite		v	
11-12	30	coarse sand	1MC, 4FC		T	
12.12	27	brown tan coarse sand	mag, pyrite		N	
12-13	37	with gravel	5VFC		N	

DRILL SAMPLE PROCESSING LOG					
CLAIM NAME	Keystone 15		DRILL HOLE NAME	KEY19-06	-
DATE DRILLED	Aug-24	TOTAL DEPTH REACHED	11m	DATE PROCESSED	Aug-28
DRILLER	Mark Bayne	INSIDE DIAMETER OF DRILL	115mm	COMPLETED BY	Exploration
	Allan	-		-	
HELPER	Dutchak	TYPE OF DRILL	RC	METHOD	Letrap
DEPTH (m)	SAMPLE SIZE	LITHOLOGY DESCRIPTION	CONCENTRATE DESCRIPTION	COMMENTS	SAMPLE ON FILE
			GOLD DESCRIPTION		(Y/N)
0-2	9	brown small gravel with			N
02	5	coarse sand	1FC		
2-3	18	tan small gravel in silty			N
2.5	10	sand	3VCF		
		grey sandy silt with	mag		
3-4	26	gravel, with some brown sand	6VFC		N
		grev candy silt not	py, mag		
4-5	10	much gravel	1grain. 1sm grain, 3FC	very black	Y
ГС	20	grey sandy silt with not	py, mag	late of purita black	N
5-0	29	much gravel	1FC	iots of pyrite, black	IN
6.7	20	grey silty sand with lots	py, mag		N
0-7	58	of gravel	1FC		IN
7_8	25	powdery grey silty	mag		N
7-0		gravel	no gold		IN
8-9	20	nowdery grey silt	pyrite	graphite? Quartz	v
8-5	50	powdery grey site	no gold	chunks lots of py	1
9-10	20	black silty silvery no	pyrite		N
5 10	50	gravel	no gold		1 1
10-11	30	black silty silvery no	pyrite	lots of pyrite black	N
10-11	30	gravel	no gold		IN

DRILL SAMPLE PROCESSING LOG					
	Koustono 11			KEV10 07	
	Reystone 11		NAIVIE	KE119-07	-
				DATE	Sept 1
DATE DRILLED	Sept 1 2019	TOTAL DEPTH REACHED	11m	PROCESSED	2019
DRILLER	Mark Bayne	INSIDE DIAMETER OF DRILL	115mm	COMPLETED BY	Exploration
HELPER	Allan Dutchak	TYPE OF DRILL	RC	METHOD	LeTrap
DEPTH (m)	SAMPLE SIZE	LITHOLOGY DESCRIPTION	FINAL CONCENTRATE DESCRIPTION GOLD DESCRIPTION	COMMENTS	SAMPLE ON FILE (Y/N)
0-2	5	Brown gravel	no gold		N
2-3	10	Grey gravel	no gold	-	N
3-4	9	brown gravel	3FC		N
4-5	20	brown grey gravel	1VFC		N
5-6	30	Grey gravel	mag no gold	_	N
6-7	25	Grey gravel	3FC		N
7-8	30	Brown gravel with silt	mag, pyrite 1FC	-	N
8-9	36	Brown gravel with silt	pyrite 1FC, 20VFC		Y
9-10	30	grey gravely with silt, schist	mag 7FC, lots of VFC		Y
10-11	25	grey silt with quartzite bedrock	mag 1CC, 6MC, lots of VFC	-	Y

Appendix 3 – Drone Imagery

