

TECHNICAL REPORT on the GOLDEN CULVERT and LITTLE HYLAND PROPERTIES,

WATSON LAKE MINING DISTRICT, YUKON TERRITORY

Submitted in Support of YMEP Agreement 20-008

Submitted by: R. Kim Tyler, P.Geo. Stratabound Minerals Corp.

Date submitted: April 9, 2021

Program Module: Target Evaluation

Projects Name: Golden Culvert, Little Hyland, and Rubus. Contiguous claim blocks grouped under certificate HL12555

Proposed Budget: \$294,000

Actual Expenditure: \$69,645

Funding Sought: \$40,000

SUMMARY

This Technical Report is submitted in support of YMEP Agreement 20-008 towards funding of Target Evaluation work on the Golden Culvert, Little Hyland and Rubus claim blocks, (the "Property"). The Property is located in the upper Little Hyland River valley of the southeastern Yukon Territory in the Watson Lake Mining District that in total cover 84 square kilometres and span 24 kilometres of strike highly prospective for gold. The Property is centred at 61° 57' N latitude and 128° 25' W longitude on NTS map sheet 105H/16.

The majority of historic exploration work has centred around the Main Discovery outcrop located in the centre of the Golden Culvert claim block where an outcrop hosting gold-bearing quartz veins discovered in 2008 yielded chip samples grading between 7.7 to 22.8 gpt gold. The Main Discovery outcrop rests at the approximate centre of a 3km by 250m wide +30 ppb gold-in-soil anomaly that remains open-ended in both directions and virtually unexplored to the full 24-kilometre Property strike length. Stratabound Minerals Corp. performed detailed and close-spaced trenching, diamond drilling and geological mapping across 530 metres of the Main Discovery area during its 2018 and 2019 programs to determine the controls to mineralization such that they can be applied to the larger Property potential.

Past and recent work has also identified a number of other exploration targets on the remaining 24kilometre Property strike length that follow the structural trends identified in that recent Stratabound work. The 2020 work program described herein evaluated six of these other targets identified for similar gold potential as found at the Golden Culvert Main Discover area, as well as more work completed to extend knowledge at the Main Discovery Area itself.

As sufficient funds to complete the original work program planned of \$294,000 were not available at the time, a more modest program totalling \$69,645 (Appendix A), was conducted instead, consisting of soils

sampling, prospecting, rock geochemistry, and ground geophysics. The work program reported on herein occurred between July 8, 2020 and August 1, 2020 and consisted of a 3-person party totalling 67 persondays.

The 2020 YMEP program consisted of;

1) A total of 114 soil samples collected. (Appendix B), (Assay Certificates in Appendix E)

2) A total of 156 rock samples including 93 samples collected along mineralized float trains at the Main Golden Culvert Zone. (Appendix C), (Assay Certificates in Appendix E)

3) A total of 4.2 line-km of VLF and magnetic ground geophysical surveys. (Appendix D)

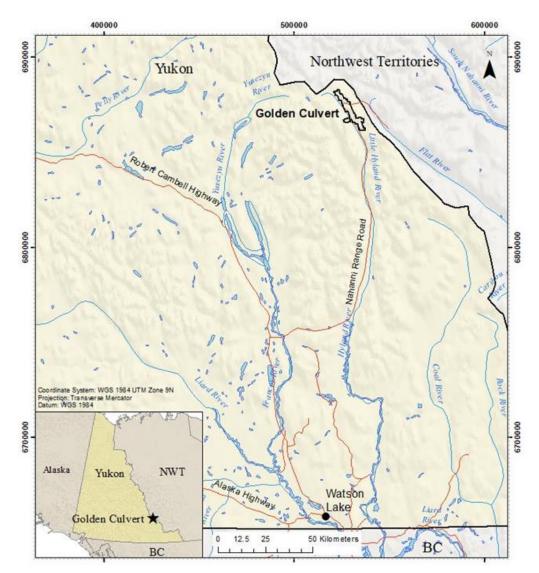


Figure 1. Golden Culvert Location Map

CLAIMS DESCRIPTION, ACCESS AND PERMIT STATUS

The Property consists of 431 quartz mining claims that are jointly-owned by Mr. Gary Lee and Mr. Robert Scott, both of Whitehorse, Yukon in the case of the Golden Culvert and Rubus claim groups and additionally by Mr. Ron Stack in the case of the Little Hyland north and south claim groups. The Property is optioned to Stratabound Minerals Corp. under two option acquisition agreements respectively. It is located in the Watson Lake Mining Division approximately 205 kilometres north of the community of Watson Lake (Figure 1) and 10 kilometres west of the mining community of Tungsten in the Northwest Territories. Access to the site is provided by the all-season Highway 10 (Nahanni Range Road) which runs right through and along the claim group. A 4.6 km of access road and trails were constructed in 2018 and 2019 to access the Main Discovery area directly.

The Property is centred at 61° 57' N latitude and 128° 25' W longitude on NTS map sheet 105H/16 in the Little Hyland River valley. The central Golden Culvert claim group has an approved 10-year Class 3 Quartz Mining Land Use Approval LQ00456 dated November 15, 2017 that has subsequently been transferred to Stratabound Minerals Corp. which allows for road construction, trenching and diamond drilling until 2026. The Rubus and Little Hyland blocks will require a class 1 notification for exploration work. The Property is not located on settlement lands.

Access route and method of transportation to the project area

The Property is accessed via the all-season, gravel surface, Nahanni Range Road from kilometre 110 of the Robert Campbell Highway. The Property straddles the Nahanni Range Road, and at kilometre 165 a 2.5-kilometre 4WD road accesses the project main showing work site. (Figure 2.) Work sites were accessed by 4WD pick-up trucks along the Nahanni Range Road/Highway 10, by ATV along existing trails and by foot otherwise. No roads or trails construction were required.

Details of camp location

A temporary exploration camp has been established as described and located in the approved Class 3 Quartz Mining Land Use Approval situated 3 kilometres north of the ATV trail in a road maintenance gravel pit on the east side of the Nahanni Range Road at kilometre 168.1. The camp has received approval through the Yukon Environmental & Socio-economic Assessment Act Decision Document, YESAB File Number 2016-0092. The area is an out-of-use gravel pit that has level ground. Allowance is for up to 15 people.

GEOLOGICAL DESCRIPTION: REGIONAL

The Property lies within the Selwyn Basin and is underlain by two main lithological formations of the Hyland Group. The eastern part of the Property is underlain by the Upper Proterozoic to Lower Cambrian Vampire Formation whereas the western part of the Property is underlain by Upper Proterozoic to Lower Cambrian Narchilla Formation. The Narchilla is underlain by the Yusezyu formation further west. Intrusive rocks are exposed at some places north and south of the Property belonging to the mid-Cretaceous Tungsten Suite. The Property has not been mapped in any detail. Prospecting samples include phyllites, schists and argillites.

GEOLOGICAL DESCRIPTION: LOCAL

Stratabound is primarily exploring for orogenic- or lode-type gold mineralization similar to the veinhosted, high-grade, gold mineralization found within Hyland Group sediments at Golden Predator Mining Corp.'s ("Golden Predator") "3 Aces" project, located 20km south of the Property, and at Goldstrike Resources Ltd.'s Plateau project located 315km northwest of the Property. Exploration for this type of gold mineralization is focussed on structures such as folds, shears, faults, stockworks and extensional fractures that are secondary or adjacent to major fault zones.

Stratabound Minerals Corp. concluded an option agreement to acquire 100% of the entire block in October 2017 and proceeded to complete close-spaced trenching, diamond drilling and detailed mapping in the 2018 and 2019 field programs to better understand the controls to mineralization over a short range of distance. The work concluded that gold mineralization was structurally controlled along multiple, parallel quartz shear-vein corridors and associated breccia that in turn are controlled by exploiting cleavage structure perpendicular to regional fold antiforms that strike at approximately 300-320 degrees. Values of 0.51 gpt Au over 9.5m up to 60 gpt gold over 0.9m within 2.33 gpt over 33m in drilling and 95 gpt gold over 1.5m within 24.4 gpt gold over 6m in trenching have been realized in last two seasons of detailed work.

Gold mineralization within the quartz structures was found consistently over at least 530m of strike in the area studied to date, however the quartz veins themselves appear to propagate much further, what appears to be many kilometres beyond the detailed study area, where past work indicates gold mineralization to be recurring in what is observed to be individual repetitive, recurring zones upon the same, or parallel structures.

PREVIOUS WORK

							Geod	hemisti	γ		Geophy	/sics km	
year	Claim group	operator	Road	Diamond	Trenching	No.	No.	No.	No.	No.	Mag	VLF	total expense
			building	Drilling	(metres)	soils	streams	rock	trench	core			
*	•	•	(km 👻	(metre 🝷	•	•	•	-	•	•	*	-	-
2007	Golden Culvert	Owners				5	23						\$5,469.78
2008	Golden Culvert	Owners				29	15	44					\$42,113.88
2009	Golden Culvert	Owners				73		21			19.4	18.5	\$94,529.89
2010	Little Hyland	Owners				46	40	23			0.8	0.8	\$29,486.35
2011	Golden Culvert	Stakeholder				1,768							\$112,879.70
2011	Little Hyland	Commander				1,369		159					\$252,269.07
2012	Little Hyland	Commander				401	10	15					\$57,154.83
2013	Little Hyland, Rubus	Owners				119	14	13					\$20,675.65
2017	Golden Culvert	Stratabound						14					\$16,412.27
2018	Golden Culvert	Stratabound	3.2	1,350	1,140			60	151	738			\$699,043.91
2019	Golden Culvert	Stratabound	1.2		629			39	291				\$159,528.26
		Total:	4.4	1,350	1,769	3,810	102	388	442	738	20.14	19.21	\$1,489,563.59

Table 1. below summarizes past assessment work completed on the Property;

Table 1. Historic Assessment Work Completed

Prior to Stratabound's work in 2018 and 2019, previous work specific to the central Golden Culvert block had outlined a northerly trending, 3 kilometre by 250 metre, +30 ppb Au up to 791 ppb Au, gold-in-soil anomaly that remains open at both ends on the Main Discovery area on the Golden Culvert Block. The soil anomaly is centred around the partially exposed Golden Culvert showing that consists of primary gold-bearing quartz veins and complimentary gold bearing quartz vein stockwork within a larger silicified,

altered, sulphide and gold-bearing phyllite host rock. Historical grab samples from the quartz-carbonate veins have returned values no less than 7.7gpt Au and up to 22.8gpt Au in quartz veins and nil up to 2.58 gpt Au in the wall rock phyllites. The gold is related to pyrite, pyrrhotite and arsenopyrite mineralization. Figure 2. below detail the results of the 2018 and 2019 exploration campaigns.

In summary, the work to date confirms the following:

- Multiple gold-bearing zones are observed to be controlled by quartz vein and breccia structures with strike and near vertical dip orientations that parallel the regional structural geology.
- The zones define a structural corridor of about 130 metres wide, 570 metres long, are open ended and strike between 300-320 degrees consistent with regional cleavage and antiform structures.
- Gold mineralization is uninterrupted across the full 570 metres of strike length explored to date through trenching and drilling, and is open beyond in both directions and below the 150m vertical depth explored to date.
- Quartz vein and breccia structures hosting the gold mineralization extend beyond said mineralization to at least a kilometre or more and remain unevaluated.
- The Main Discovery showing is at least 1-2 kilometres stratigraphically above 3 Aces, Plateau and Justin showings.
- Soil geochemical anomalies continue for at least 2.5 km to the north, 0.5 km to the south, and remain unevaluated.
- Soil survey coverage, prospecting and grab sampling in the Property's 24 km length is only 20% complete along the key prospective strike/trend direction. Past work, though limited, has shown several unevaluated gold-bearing targets lie along this strike/trend path.

The exploration potential therefore remains excellent along strike beyond the Main Discovery area.

PROJECT RATIONALE:

Past filed assessment reports and recent work have identified a number of gold exploration targets on the 24-kilometre Property strike length that follow the structural, geochemical and geophysical trends and lineaments that host the Main Golden Culvert discovery at about the centre of the group (Figure 2.). Additionally, high quality advanced gold projects such as Aben Resources' Justin and Golden Predators' 3 Aces projects lie either along, or parallel, to these same structures and lineaments.

The majority of exploration work to date has centred around the Main Discovery outcrop located in the centre of the Golden Culvert claim block where an outcrop hosting gold-bearing quartz veins discovered in 2008 yielded chip samples grading between 7.7 to 22.8 gpt gold. The Main Discovery outcrop rests at the approximate centre of a 3km by 250m wide +30 ppb gold-in-soil anomaly that remains open-ended in both directions and virtually unexplored to the full 24-kilometre Property strike length. Stratabound Minerals Corp. performed detailed and close-spaced trenching, diamond drilling and geological mapping across 530 metres of the Main Discovery area during its 2018 and 2019 programs to determine the controls to mineralization such that they can be applied to the larger Property potential.

The objectives for 2020 were to further evaluate the open strike extensions of the main Discovery zones as well as other targets across the 24 kilometre Property length indicated by the new 2019 vein discovery 7.1 km to the north as well as soil anomalies, rock geochemistry, and geophysical targets reported in past filed assessment reports.

PROJECT MANAGEMENT AND PERSONNEL:

The work was managed and supervised by R. Kim Tyler, P.Geo. a Qualified Person and Professional Geoscientist registered both in Ontario and British Columbia. Mr. Tyler was assisted by Mr. Brian Atkinson, P. Geo (Ontario) and Mr. Gary Lee, a licenced prospector in the Yukon Territory.

EXPLORATION TARGETS:

Six specific targets were selected from past recommendations for detailed target evaluation as shown in the following figures and described in more detail below.

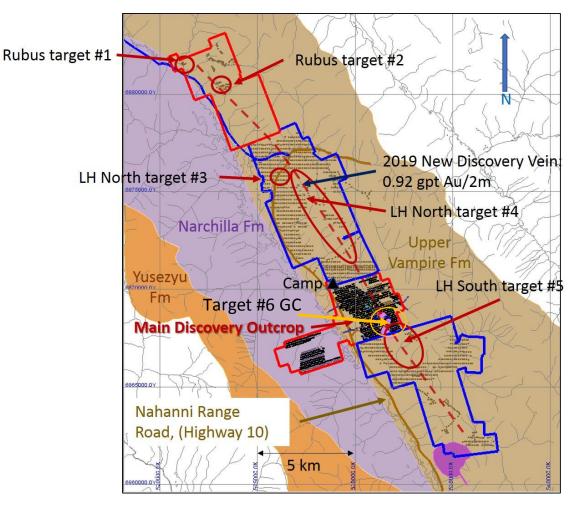


Figure 2. Golden Culvert-L. Hyland claim map showing access, historic soil sampling sites (dots), camp site and 2020 target evaluation sites

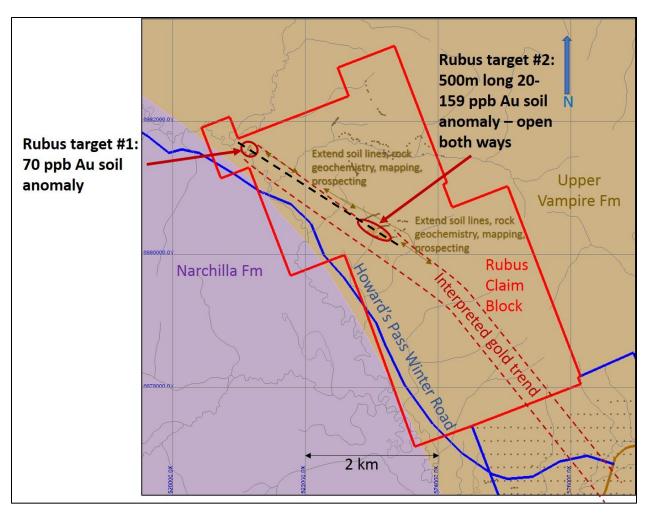


Figure 3. Rubus block. Details of gold-in-soil anomaly targets #1 and #2 and proposed workplan

Rubus Target #1 (Figure 3.)

Site investigation of the anomalous 70ppb Au soil sample at the Rubus Target #1 revealed that it occurred in the middle of a broad fluvial plain likely derived by the Little Hyland River, not by a local source and therefore no follow-up work was conducted.

Rubus Target #2: (Figure 3.)

Work was conducted the Rubus #2 target to follow-up on a 500m long 20ppb to 159ppb soil anomaly taken in 2013.

Geophysics:

A ground magnetic geophysical survey was performed on two lines 200m apart and readings taken at 10m intervals for 1.05 line-km total. Mr. G. Lee performed the survey using the same Scintrex MF-2 fluxgate magnetometer used in the previous 2009-10 Golden Culvert survey that identified magnetic contrast and VLF conductors coincident with the gold mineralization encountered there. The area is covered by low buckbrush and no line cutting was required. The resulting magnetic trend follows a northwesterly-southeasterly direction coincident with regional trends. (Figure 4.) Hand-drawn plans are attached as Appendix D.

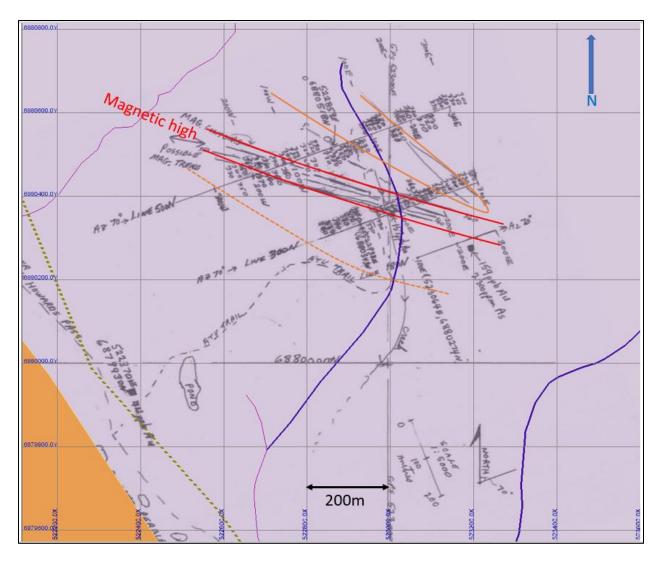
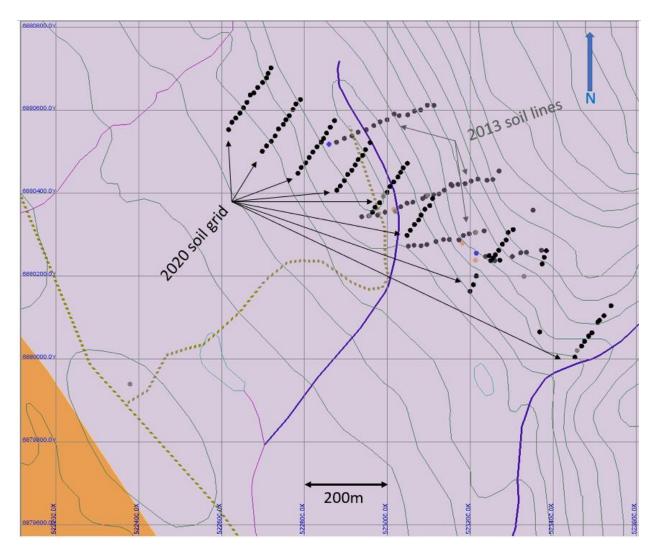
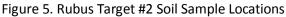




Figure 4. Rubus Target #2 Ground Magnetic Survey

Soil Sampling:

Ninety-eight soil samples were collected on a 1 kilometre by 180 metre grid. Cross lines were spaced 100 metres apart and sample intervals averaged every 15 metres on each cross line. No anomalous values were received on any of the samples collected (Figure 5).

Little Hyland (LH) North Targets #3 and #4

Past Work:

The "Road" zone reported in the 2010 filed assessment report yielded float values of 0.44 and 0.74 gpt Au and is here described as the LH Target #3. An open gold-in-soil anomaly was reported in the in the 2013 filed assessment report dubbed the "Camp" Zone, here described as the LH Target #4, with values up to 106 ppb Au. Past outcrop and float sampling reported values of 0.924, 1.485 and 1.60 gpt Au in the area as well. A brief one-hour follow-up visit in 2019 identified an arsenopyrite and gold-bearing quartz vein in outcrop exposed approximately 85m upslope that average 0.92 gpt Au over 2m wide and extended for at least 16m before the exposure was covered.

2020 Geophysical Surveys:

Three lines of ground magnetic and VLF-EM geophysical surveys were performed on Target #3 spaced at 300m intervals across strike and 400m wide for a total of 1.0-line km. The magnetic trend and VLF conductor axis both strike in a more northerly direction as opposed to the gold mineralization trend (Az.320). (Appendix D). Consequently, these two trends are independent of each other, the former

interpreted to be post-mineralization cross-structures. Between Lines 1 & 2 there are anomalous gold, arsenic and lead values contained in stringers of quartz pebble conglomerate recorded in previous assessment reports. No geophysical survey was completed on Target #4.

2020 Geochemical surveys:

A traverse up the steep slope towards Target #4, ("Camp Zone") included two soil samples, both of which were anomalous in gold up to 510 ppb Au as well as silver, arsenic, bismuth, cobalt, iron, manganese, molybdenum, lead, sulphur, antimony, strontium and zinc, (Table 1). The results confirmed the highly anomalous results reported in soils surveys completed in 2011 and 2012. The 510-ppb Au result was curious given that it was taken adjacent to an old, unrecorded sample site with an undecipherable tag.

Figure 6. Little Hyland Targets #3 and #4 – 2020 Soil Sample Results

Eleven rock samples were collected, six of which were surface float, and five were either taken from outcrop or subcrop. All but two of the samples yielded above detection limits of 0.01 g/t (ppm) Au. Five samples were taken within the Target #4 soil anomaly outline yielding between <0.01 to 0.36 ppm Au.

			Au	Ag	As	Bi	Со	Cu	Fe	Mn	Mo	Pb	S	Sb	Sr	Zn
Sample No. 🖵	UTM N	UTM E	ppl▼	ppr 🔻	ppr	ppr💌	ppr 🔻	ppr💌	% 🔻	ppr▼	ppr 🔻	ppr 🔻	% 🔻	ppr 🔻	ppr 🔻	ppr
LHNSK01	526658	6875308	45.9	0.623	2890	0.968	41.1	87.8	6.81	1920	0.94	151.5	0.03	1.35	27.2	211
OLD SOIL	526757	6875308	510.0	0.575	9250	1.24	55.1	116.5	9.87	1255	2.19	128.5	0.05	5.28	48.2	249

Table 1. Target #4 2020 Soil Sample Results

New 2019 Vein Discovery extended:

The most significant results yielding 0.03 to 1.16 g/t Au were taken from the same quartz vein and quartz breccia structure identified in 2019 related to, and lying uphill along the eastern edge of, the Target #3 soil anomaly in outcrop, subcrop and float. The 2020 program extended this structure from 16 metres to 380 metres of strike. (Figure 7)

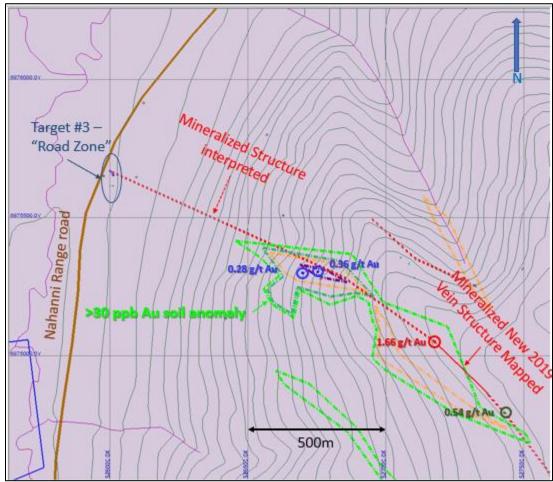


Figure 7. Little Hyland North Block. 2020 Rock Geochemistry Samples

Little Hyland (LH) South Target #5 (Figure 6.)

Past Work:

The 3km long x 250m wide >30ppb gold-in-soils anomaly identified in the Golden Culvert assessment report of 2011 remains open to the south where it projects onto the Little Hyland South Block. Further, the geophysics work completed in 2009 only covered the northern 1.6km of the anomaly strike, this prior to the soil's anomaly being identified afterward. The magnetic contrast and EM-VLF in-phase trends compared well with the soils anomaly and appear to provide very good correlation.

2020 Geochemistry Work:

Nineteen soil samples on two 100m apart cross lines were completed on the Little Hyland claim group extending the survey 200m off the south end of the adjoining 2012 Golden Culvert work. Two anomalous results of 32.2 and 23.0 ppb Au were obtained.

Three rock samples were also collected. Sample R322542 was taken from a 0.5m wide white quartz vein in outcrop with a gold value anomalously above detection limits of 0.09 g/t Au but also had an arsenic value >10,000 ppm, so was re-assayed by the +/- metallics screen method wherein it yielded 0.140 g/t Au. The vein strikes approximately 300 degrees and lines up with a 790.7 ppb soil sample 410m to the north collected in 2012. Intervening soil samples taken were however insignificant.

Golden Culvert Main Zone Target #6 (Figure 8.)

Previous Work:

The majority of past exploration work has centred around the Main Discovery outcrop located in the centre of the Golden Culvert claim block where an outcrop hosting gold-bearing quartz veins discovered in 2008 yielded chip samples grading between 7.7 to 22.8 g/t gold. The Main Discovery outcrop rests at the approximate centre of a 3km by 250m wide +30 ppb gold-in-soil anomaly that remains open-ended in both directions and virtually unexplored to the full 24-kilometre Property strike length. Stratabound Minerals Corp. performed detailed and close-spaced trenching, diamond drilling and geological mapping across 530 metres of the Main Discovery area during its 2018 and 2019 programs to determine the controls to mineralization such that they can be applied to the larger Property potential.

2020 Geophysics Surveys:

Five lines of ground magnetic and VLF-EM geophysical surveys were performed on Target #6 on approximate 100m crosslines for a total of 2.125-line km. Interpretation of results is taken from G. Lee's notes, "The VLF conductor axes here, are interpreted to represent faults or topography and should not be followed up without supporting gold anomalies either in rocks or soils. The magnetic contours to the southwest roughly parallels the gold mineralization. This confirms the trend on the Government airborne map which also parallels the gold mineralization making it an excellent exploration tool. This ground survey was conducted with an old-fashioned fluxgate mag. using the looping method of field survey. This unfortunately made final magnet corrections uncertain especially on days with excessive diurnal. Any future ground mag. surveys should be done using Proton Magnetometers employing a base station or an airborne survey. This could result in a more accurate trace of the hidden gold mineralization. It could also help to trace the lateral offset (cross fault) that appears to be occurring between Lines 170 North and Line 0." A map of the survey is appended (Appendix D)

2020 Geochemical Survey:

Though minimal, past sampling of surface float along strike in and around mineralized outcrop at the main showing reported high gold values up to 10.6 g/t (Stratabound 2019 Assessment Report). It had also been observed that multiple parallel surface quartz boulder float-trains linked quartz veins exposed on outcrop. Given that this region of North America had seen little, if any, continental glaciation a systematic surface program of sampling was conducted

A total of 143 surface samples were collected; 16 of these samples were collected from quartz boulder float-trains along strike to the north of the Main showing; 127 samples along strike to the south, of which 93 samples outlined a 1 km long by up to 100 m wide gold-mineralized boulder field of surface float-trains linking likewise gold-mineralized quartz vein structures exposed in outcrop, subcrop and trenching in previous programs either side of the Main Discovery outcrop.

The top 10% highest grade samples were distributed across 670 metres of strike, 290 metres of vertical relief and included:

• 320.0 g/t, 155.0 g/t, 147.0 g/t, 118.0 g/t (with visible gold), 92.9 g/t (with visible gold), 41.8 g/t, 26.6 g/t, 25.2 g/t,17.10 g/t, and 16.55 g/t gold

All 93 surface samples averaged 13.27 g/t gold uncapped, (8.82 g/t Au capped*), and ranged between <0.01 g/t to 320 g/t gold. Sixty-five, (70%), of the samples ranging between 0.25 g/t to 320 g/t gold averaged 18.96 g/t gold uncapped, (11.48 g/t gold capped*). Visible gold was identified in two of the samples that assayed 118.0 and 92.9 g/t gold respectively and only two samples in the group were below assay detection limits of <0.01 g/t Au. Sampling was done selectively on sulphide-bearing quartz float-trains along strike of the known exposed vein outcrops and subcrops, (see Figures 3 and 4), and may not represent the true grade or style of mineralization.

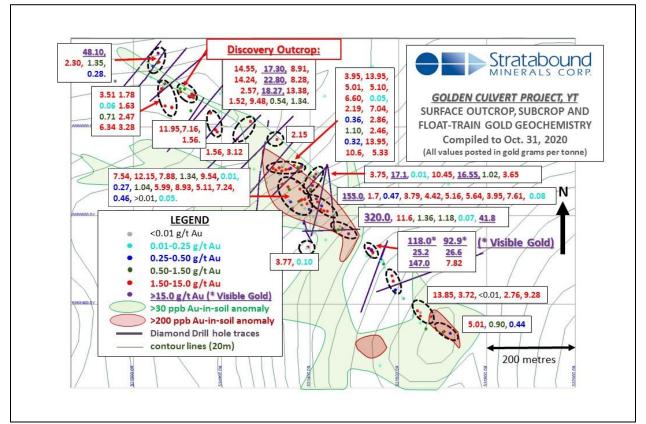


Figure 8. Target #6 Golden Culvert Surface Float Train and Outcrop Sampling

* A capping grade of 83.8 g/t Au calculated as double the standard deviation of the 93-sample population was applied to all values greater than 83.8 g/t Au.

R322551: 155 g/t Au, 5.7 g/t Ag R322565: 7.88 g/t Au, 0.58 g/t Ag

Figure 9. Golden Culvert Mineralized Quartz and Quartz Breccia Surface Float Samples

The mineralized float-trains link up and connect gold mineralization exposed in surface trenches reported in previous reports including trench TR1923-B which yielded 24.41 g/t Au over 6.0m including of 95.0 g/t Au over 1.5m, (Stratabound press release Oct. 23, 2019) and overlie similar gold mineralization reported in past diamond drilling up to 60.1 g/t Au over 0.9m within a larger interval of 2.3 g/t Au over 33.1m in drill hole GC1803, (Stratabound press release Oct. 10, 2018).

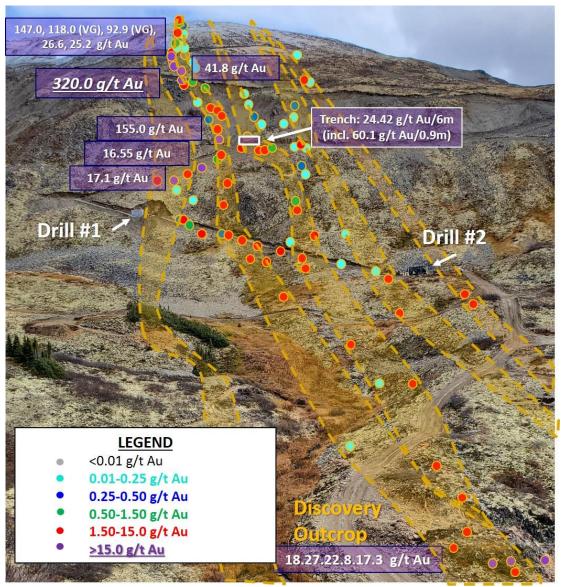


Figure 10. Golden Culvert Float-Train Sample Distribution with Diamond Drills in Operation: View South-east across 290m Vertical Face Exposure; Gold-bearing Structural Zones Overprinted in Yellow

Quality Assurance/Quality Control

The samples referenced in this report were collected and hand-delivered by Stratabound personnel to the ALS Canada laboratory in Whitehorse, YT where they were crushed to 70% less than 2mm. A riffle split of 250 grams was then taken and pulverized to an 85% passing 75 microns pulp sub-sample. The pulps were then shipped by ALS Canada to its Vancouver laboratory for gold and multi-element analyses. The ME-AA26 gold assaying procedure used is a standard fire assay with AA finish technique on a 50-gram sub-sample taken from the 250-gram pulp split. Samples that exceeded the 100 g/t Au upper detection limit of this method were re-assayed by a by the Au-GRA22 Ore Grade procedure on a 50-gram pulp fire assayed and gravimetric finish analyses.

Forty-one of the samples with the highest values were duplicated by the Au-SCR24 Metallic Screening method on 1 kg pulps derived from the original coarse rejects. The pulps were then screened on a +/- 100-micron screen with duplicate assays done on 50g each of the under-size fraction and assaying of the entire over-size fraction. Results are compared and summarized in Table 1 below.

The samples were also tested for 51 other elements using the ME-MS41 Ultra Trace Aqua Regia ICP-MS method. ALS uses a procedure of standards, blanks and duplicates inserted into the sample stream results for which all fell within satisfactory confidence limits. ALS is an independent internationally recognized and ISO/IEC 17025:2017 accredited chemical analysis company.

Conclusions and Recommendations:

The poor 2020 results on the Rubus Targets #1 and #2 effectively eliminated the two for further followup work. A large portion of the Rubus Claims have not been explored however and it is recommended that wide spaced systematic soils sampling be done over the rest of the claim group as known mineralization trends do project onto the ground.

The geophysical results in the Little Hyland #3 would assist in the structural understanding of this specific target. More detailed work including mapping and perhaps trenching are recommended to vector in to the source of the historic anomalous samples. The outcropping of the quartz pebble conglomerate unit, as it may be mapped and understood, will give valuable lithological information as a marker unit and its possible analogy to the 3 Aces quartz pebble conglomerate unit as a control to gold mineralization there.

The Little Hyland Target #4 remains an interesting area for further work. The 2020 program successfully confirmed the gold anomaly and extended the 16m of gold-mineralized quartz vein structure to 380m in a gap of ground that remains untested to the east. Filling in the gap of unsampled soil sampling here is recommended as well as trenching across the new vein.

The Little Hyland South Extension of the Golden Culvert soil anomaly Target #5 was not very successful in extending the soil anomaly further south, however only two lines were completed and it is recommended to continue soils and other geochemistry, perhaps airborne geophysics, to further explore to the south. Even so, the structures were observed to continue as evidenced by the one outcropping quartz vein sample, though barely anomalous in gold, was above laboratory threshold limits >10,000 ppm arsenic. Arsenic being a more ubiquitous key indicator for gold mineralization.

Gold mineralization in these types of deposits commonly occur in favourable shoots and lenses where conditions for gold deposition are more optimal than others. The key is in following the structures whether they are mineralized or not.

The most significant component of the 2020 program was the quartz boulder float-train sampling program over the Main Discovery area in the central Golden Culvert Target #6 confirming past drilling and trenching work. The method is seen as an efficient and very effective tool as noted above. Good quality orthophotos of the terrain would be most helpful to guide prospecting by this method in the future.

Respectfully submitted,

8

. . . .

R. Kim Tyler, P.Geo. President and CEO Stratabound Minerals Corp.

Appendix A:

Statement of Expenditures

YM9P Expense Claim - Client 7 opy

		project			applicant	
YMEP no:		name:			name:	
expense		program			program	
claim no:		type:			, module:	
date						
submitted:		phone:			email:	
address:						
start/end da	ates of field	work for			no. of field	
this claim:			ata d	and	days/this	
eligible	Plaasa ra	for to rate ou	start idelines Prov	end /ide photocopy of	claim: f receints	
expenses	1 16836 16	ner to rate gu	idennes. I Tol			total
item				unit/days	rate	total
daily field expenses						
expenses	Nie wee de la suit		4	()	\$100/day	
	Name (sup	oply statemen	t of qualificat	ions)		
_						
personnel						
equipment (rental)			private or commercial	unit/days	rate	total
. ,						
					-	
other			Please provi	ide details.		
				То	tal this claim:	

<u>Appendix B:</u>

Soil Sampling Data

			-	Au	Ag	As	Cu	Pb	Zn
UTM N	UTM E	Lab cert.	Description						
				ppb	ppm	ppm	ppm	ppm	ppm
			steep ridge slope, rubble, poor						
532381	6867699	WH20165168	quality	0.8	0.062	157.5	80.9	47	103
532364	6867663	WH20165168	steep ridge slope, rubble, poor quality	0.7	0.059	210	72.7	44.8	131
552504	0007003	WH20103100		0.7	0.055	210	72.7	0	151
532319	6867615	WH20165168	steep ridge slope, rubble, poor quality	1.0	0.132	92.7	38.2	82.4	88
532271	6867596	WH20165168	steep ridge slope, rubble, poor quality	1.8	0.08	35.2	36.8	47.5	108. 5
532229	6867566	WH20165168	steep ridge slope, rubble, poor quality	0.8	0.254	30.4	44.7	78.8	113. 5
			steep ridge slope, rubble, poor						
532229	6867566	WH20165168	quality	0.3	0.648	25.5	36.4	67.9	84.7
			steep ridge slope, rubble, poor quality						
532334	6867797	WH20165168		1.3	0.069	25	22.4	27.3	56.2
532286	6867782	WH20165168	steep ridge slope, rubble, poor quality	32.2	0.127	114	44.8	113	109. 5
532240	6867769	WH20165168	steep ridge slope, rubble, poor quality	0.9	0.117	51	29.6	49.4	70.5
			steep ridge slope, rubble, poor						
532190	6867750	WH20165168	quality	0.4	0.087	31.4	43.9	39.8	129
532145	6867738	WH20165168	steep ridge slope, rubble, poor quality	0.3	0.08	25.8	37.3	41.7	127. 5
532094	6867721	WH20165168	steep ridge slope, rubble, poor quality	0.7	0.183	25.7	66.4	180.5	128
JJ2094	0007721	VVIIZ0103108		0.7	0.183	23.7	00.4	190.2	120
532051	6867710	WH20165168	steep ridge slope, rubble, poor quality	0.8	0.171	18.45	50.9	87.4	139
531998	6867687	WH20165168	steep ridge slope, rubble, poor quality	0.5	0.105	15.35	31.6	27.3	85.7
			steep ridge slope, rubble, poor quality						110.
531950	6867680	WH20165168		1.3	0.132	18.55	38	47	5

524007	6067664	W/U2046E460	steep ridge slope, rubble, poor quality		0.402	26.4	54	F2 7	122
531907	6867661	WH20165168		0.8	0.193	26.1	54	52.7	122
531864	6867646	WH20165168	steep ridge slope, rubble, poor quality	1.1	0.097	26.8	32.3	26.4	92.5
			steep ridge slope, rubble, poor						
524042	6067642	N/11204 (54 CO	quality	45.0	0.400	125	75.6	25.5	402
531813	6867642	WH20165168		15.0	0.186	135	75.6	35.5	193
531763	6867620	WH20165168	steep ridge slope, rubble, poor quality	23.0	0.342	247	175.5	38	366
522958	6880522	WH20165168	B horizon	1.3	0.311	229	25.7	29.4	61.2
522947	6880505	WH20165168	B horizon	0.2	0.076	72.7	13.85	23.1	47.1
522940	6880491	WH20165168	B horizon	0.3	0.138	22.7	11.5	12.7	27.8
522929	6880481	WH20165168	B horizon	<0.02	0.049	66.1	9.71	20.7	40.5
522922	6880468	WH20165168	B horizon	0.2	0.125	33.2	8.12	14.55	27.8
522914	6880455	WH20165168	B horizon	0.3	0.263	62.9	12.7	17.05	49.5
522904	6880445	WH20165168	B horizon	0.2	0.197	55.9	14.8	17.45	50.9
522896	6880430	WH20165168	B horizon	0.2	0.131	41.3	13.15	12.35	40
522886	6880417	WH20165168	B horizon	2.8	0.258	113.5	31.5	17.55	59.8
522878	6880407	WH20165168	B horizon	0.2	0.142	43.7	12.1	18.3	48.3
522964	6880354	WH20165168	B horizon	2.4	0.193	191.5	25.8	77	70
522970	6880366	WH20165168	B horizon	2.8	0.283	70.3	13.15	20.6	57.3
522981	6880377	WH20165168	B horizon	<0.02	0.127	59	15.9	23.5	45.3
522990	6880392	WH20165168	B horizon	0.2	0.05	45.8	12.9	16	60.3
522999	6880402	WH20165168	B horizon	1.0	0.117	46.6	27.9	23.2	82.8
523006	6880416	WH20165168	B horizon	1.0	0.046	49.7	27.7	24.4	78.4
523015	6880427	WH20165168	B horizon	0.2	0.209	24.5	24.2	17.55	44.2
523025	6880439	WH20165168	B horizon	2.1	0.054	122	21.9	19.45	75.8
523031.5	6880450	WH20165168	B horizon	0.7	0.074	73.8	18.25	17.5	56
523038	6880461	WH20165168	B horizon	0.5	0.225	109	19.9	15.75	64.8
523048	6880472	WH20165168	B horizon	0.9	0.073	91.9	21.1	19.85	69.7
523109	6880387	WH20165168	brown med	0.4	0.084	61.3	11.05	15.8	46.3
523102	6880370	WH20165168	brown med	0.4	0.133	154.5	16.25	17.9	54.1
523090	6880361	WH20165168	brown med	1.1	0.147	180	17.2	23.3	54.1
			RE-SAMPLE OF C1-480E, 44 PPB						
522379	6879939	WH20165168	AU, GLACIAL BOULDER TILL	1.1	0.019	19.35	38.8	19.55	84.7
523081	6880347	WH20165168	brown med	16.4	0.046	66.7	14.1	16.7	39.4
523075	6880335	WH20165168	brown med	0.3	0.126	50.2	11.4	14.5	27.7
523065	6880324	WH20165168	brown med	1.2	0.1	59.5	27.4	24	87.9
523055	6880310	WH20165168	rusty, extreme	1.3	0.396	53	19.6	26.7	48
523047	6880298	WH20165168	brown	0.3	0.087	84.2	17.95	27.6	62.4

523367	6880065	WH20165168	brown	1.6	0.317	48.9	11.75	21.5	43.1
523452	6880004	WH20165168	brown	1.6	0.152	87.5	18	20	64.3
523468	6880031	WH20165168	doubled up sample ID, should be RUSK33	3.3	0.048	90	37.8	27.6	95.6
523475	6880042	WH20165168	rusty	2.2	0.098	93.2	27.8	23.5	82.3
523485	6880055	WH20165168	rusty	1.4	0.203	78.4	19.1	19.95	54.8
523493	6880063	WH20165168	rusty	2.8	0.117	54.4	14.5	16.25	45.4
523507	6880088	WH20165168	rusty, extreme	0.5	0.262	205	20.4	19.25	68.1
523511	6880093	WH20165168	rusty, extreme	0.2	0.273	94.2	24.3	21.8	75
523522	6880104	WH20165168	rusty	0.3	0.349	58.2	20	26	68.3
523539	6880128	WH20165168	rusty	<0.02	0.145	51.2	20.2	21.8	57.9
526658	6875308	WH20165168	check on old soil sample	45.9	0.623	2890	87.8	151.5	211
526757	6875308	WH20165168	check on old soil sample	510.0	0.575	9250	116.5	128.5	249
522872	6880575	WH20165168	SOIL SAMPLE TALUS	1.7	0.061	54.5	14.2	17.95	58.2
522862	6880559	WH20165168	SOIL SAMPLE TALUS	0.2	0.202	64.8	16.7	28.3	66.7
522853	6880545	WH20165168	SOIL SAMPLE TALUS	0.2	0.225	53.8	16.9	18.45	74.2
522846	6880532	WH20165168	SOIL SAMPLE TALUS	1.6	0.037	34.3	11.1	12.95	40.7
522840	6880523	WH20165168	SOIL SAMPLE TALUS	<0.02	0.043	10.8	6.52	6.52	13.8
522830	6880512	WH20165168	SOIL SAMPLE TALUS	0.3	0.038	52.3	17.85	17.05	75.3
522820	6880499	WH20165168	SOIL SAMPLE TALUS	0.2	0.064	32.4	10.1	16.45	44.7
522811	6880486	WH20165168	SOIL SAMPLE TALUS	<0.02	0.155	39.6	12.95	16	52.6
522803	6880473	WH20165168	SOIL SAMPLE TALUS	0.2	0.107	39.9	14.45	16.95	45.9
522792	6880462	WH20165168	SOIL SAMPLE TALUS	0.5	0.078	51.6	18.6	17.45	82
522784	6880448	WH20165168	SOIL SAMPLE TALUS	0.3	0.057	39.7	15.75	15.25	72.9
522698	6880501	WH20165168	SOIL SAMPLE TALUS	0.5	0.042	48.9	32.4	21.9	80.5
522708	6880514	WH20165168	SOIL SAMPLE TALUS	0.4	0.026	40.1	28.3	18.75	85
522720	6880525	WH20165168	SOIL SAMPLE TALUS	0.5	0.098	41.3	15.3	14.05	69.3
522729	6880538	WH20165168	SOIL SAMPLE TALUS	1.0	0.163	61.8	29.7	26.3	88.7
522737	6880555	WH20165168	SOIL SAMPLE TALUS	0.9	0.128	62.6	20.7	17.95	106. 5
522749	6880566	WH20165168	SOIL SAMPLE TALUS	0.9	0.391	60.3	27.7	30.8	95

				1 1	ĺ				
522755	6880577	WH20165168	SOIL SAMPLE TALUS	0.4	0.05	72.7	26	15.85	93.8
522763	6880587	WH20165168	SOIL SAMPLE TALUS	0.2	0.095	27.7	9.79	14.75	41.7
522772	6880602	WH20165168	SOIL SAMPLE TALUS	0.4	0.183	45.6	16.65	22.7	60.6
522779	6880615	WH20165168	SOIL SAMPLE TALUS	0.3	0.194	40.9	15.8	34.3	62.1
522790	6880626	WH20165168	SOIL SAMPLE TALUS	0.4	0.133	53.7	21	18.85	84.2
522719	6880702	WH20165168	SOIL SAMPLE TALUS	<0.02	0.078	37.6	13.75	14.95	63.3
522712	6880689	WH20165168	SOIL SAMPLE TALUS	0.4	0.049	46.8	21.7	16.35	78.9
522708	6880678	WH20165168	SOIL SAMPLE TALUS	0.2	0.139	35.4	13.2	23	54.3
522699	6880667	WH20165168	SOIL SAMPLE TALUS	0.4	0.118	46.6	20.8	16.7	84.1
522687	6880655	WH20165168	SOIL SAMPLE TALUS	0.3	0.215	50.7	23.8	16.3	83
522678	6880642	WH20165168	SOIL SAMPLE TALUS	<0.02	0.18	28.5	11.25	14.15	47.9
522669	6880637		SOIL SAMPLE TALUS	0.2	0.077	40.1	15.95		64.9
		WH20165168						17.75	
522661	6880619	WH20165168	SOIL SAMPLE TALUS	<0.02	0.127	29.1	9.69	13.15	54.4
522653	6880606	WH20165168	SOIL SAMPLE TALUS	0.8	0.074	34.2	19.1	17.5	76.3
522644	6880593	WH20165168	SOIL SAMPLE TALUS	0.7	0.028	37.8	22.6	17.75	85.3
522634	6880581	WH20165168	SOIL SAMPLE TALUS	1.4	0.02	40.6	21	17.45	91.2
522625	6880571	WH20165168	SOIL SAMPLE TALUS	0.6	0.152	14.4	8.25	10.35	38.5
522617	6880553	WH20165168	SOIL SAMPLE TALUS	0.4	0.047	0.74	1.86	2.21	2.8
523199	6880163	WH20165168	SOIL SAMPLE TALUS	2.3	0.224	70.2	33.6	29.5	67.7
523207	6880179	WH20165168	SOIL SAMPLE TALUS	0.6	0.315	88.3	13.95	25.4	37.8
523214	6880200	WH20165168	SOIL SAMPLE TALUS	0.5	0.046	31.9	14.15	35.8	37.9
523271	6880238	WH20165168	SOIL SAMPLE TALUS	3.1	0.168	55.1	65.7	63.3	133
523255	6880244	WH20165168	SOIL SAMPLE TALUS	3.1	0.341	41.5	50.4	43.3	87.5
523249	6880237	WH20165168	SOIL SAMPLE TALUS	9.8	0.293	202	84.1	66.8	145
523245	6880249	WH20165168	SOIL SAMPLE TALUS	2.7	0.106	235	43.9	36.2	75.1
523260	6880251	WH20165168	SOIL SAMPLE TALUS	8.1	0.187	70.9	56.7	42.8	96
523268	6880262	WH20165168	SOIL SAMPLE TALUS	1.1	0.304	33.2	32.8	33.9	71.2

523277	6880277	WH20165168	SOIL SAMPLE TALUS	0.5	0.218	37.2	20.1	22.5	57.8
523286	6880287	WH20165168	SOIL SAMPLE TALUS	0.7	0.453	70.9	29.2	26.7	68.3
523291	6880305	WH20165168	SOIL SAMPLE TALUS	0.6	0.167	46.9	16.35	19.2	48.8
523303	6880312	WH20165168	SOIL SAMPLE TALUS	1.0	0.095	21.2	14.7	17.2	60.3
523383	6880261	WH20165168	SOIL SAMPLE TALUS	1.3	0.099	88	26.7	23.7	98.1
523378	6880245	WH20165168	SOIL SAMPLE TALUS	2.2	0.084	81.8	34.1	31.3	97.7
523373	6880229	WH20165168	SOIL SAMPLE TALUS	1.5	0.237	69.4	26.3	31.9	75.1
531793	6867860	WH20165168	SOIL SAMPLE TALUS	1.1	0.209	32.4	33.3	34.9	94.2
521606	C0C70C7	MU20165160	SOIL DOWNSLOPE & NW OF	10.4	0.054	F0 C	40.1	10 5	126.
531696	6867867	WH20165168	X833056	19.4	0.054	59.6	40.1	19.5	5 158.
531721	6867817	WH20165168	RE-SAMPLE OF Breakaway sample	4.5	0.315	42	117	103	5

Appendix C:

Rock Sampling Data

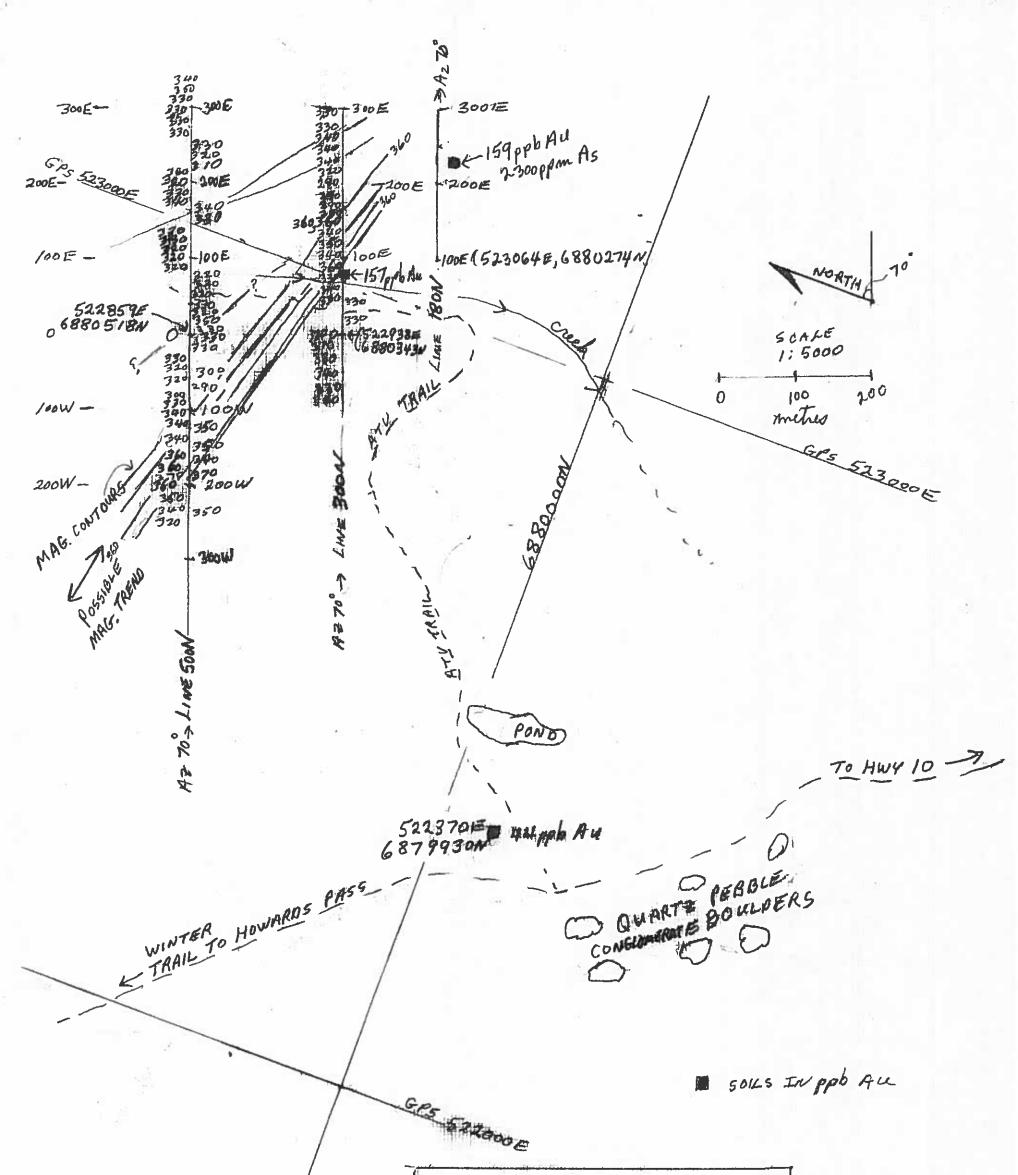
Area ID	Sample No.	UTM E	UTM N	Lab cert.	host rock	Description	ppm	ppm	ppm	ppm	ppm
							Au-	ME-	ME-	ME-	ME-
							AA26	MS41	MS41	MS41	MS41
							Au	Ag	Cu	Pb	Zn
GC_S	2020BTA	531584	6868464	WH20165151	phyl	B. Atkinson specimen for post-analysis					
GC_N	R322501	530616	6869287	WH20165151	phyl	qtz w 5% chlor in rusty phyl shear zone @320 deg on strike with Main zone?	<0.0 1	0.02	13.9	5.1	86
GC_N	R322502	530615	6869288	WH20165151	phyl	qtz-(bull) in rusty shear as above w 10% chlor	0.01	0.03	27.1	10.3	61
GC_N	R322503	530254	6869529	WH20165151	phyl	qtz vein - ribbon and boudined 10m long 5% chlor	<0.0 1	0.02	11.7	3.6	125
GC_N	R322504	530134	6869677	WH20165151	phyl	qtz vein	<0.0 1	0.61	19.5	52.7	84
GC_N	R322505	530499	6869772	WH20165151	phyl	qtz float train	<0.0 1	0.17	6	16.8	237
GC_N	R322506	530522	6869254	WH20165151	phyl	quartz float train subcropping, scorodite?	0.04	1.19	40.7	88.5	322
GC_N	R322507	530522	6869254	WH20165151	phyl	quartz float train, south end	<0.0 1	0.02	11.2	3.2	62
GC_N	R322508	530133	6869603	WH20165151	phyl	qtz vein, RS42 resample - high scorodite	0.01	0.13	21.2	15.6	22
GC_N	R322509	530136	6869593	WH20165151	phyl	qtz vein, east of RS42 resample - high scorodite	<0.0 1	0.07	75.2	5.7	134
GC_N	R322510	530133	6869603	WH20165151	phyl	qtz vein, east of RS42 resample - high scorodite	<0.0 1	0.05	44.3	37.2	71
GC_N	R322511	530132	6869689	WH20165151	phyl	qtz vein, bull white	<0.0 1	0.08	20.3	17.4	68
GC_N	R322512	530236	6869723	WH20165151	phyl	qtz float, cubic pyr, sheared	<0.0 1	0.06	56.6	12.1	212
GC_N	R322513	530269	6869700	WH20165151	phyl	qtz/qtz bx&banded float train, 5% chlor	<0.0 1	0.29	200	18.8	403
GC_N	R322514	529875	6869822	WH20165151	phyl	qtz/qtz bx&banded float train, 5% chlor	<0.0 1	0.11	23.6	11.2	35

GC_N	R322515	529746	6870151	WH20165151	phyl	qv's - bull white multiple 0.25m w in corridor at cliff east of camp	<0.0 1	0.02	11.7	4	40
GC_N	R322516	529940	6869945	WH20165151	phyl	qtz/qtz bx minor scorodite? Near anomolous soil sample	<0.0 1	0.02	1.4	6.7	95
GC_S	R322517	531609	6868414	WH20165151			0.04	0.41	82.3	21.7	118
GC_S	R322518	531588	6868452	WH20165151	dyke	Main Vein? Float train, aspy+pyr, Resample of RS66 (3.74 g/t Au)	2.32	1.05	26.7	33.5	92
GC_S	R322519	531649	6868357	WH20165151	phyl	qtz bx, scorodite? Qtz xtal rhombs	0.17	0.43	155	18.4	77
GC_S	R322520	531662	6868344	WH20165151	phyl	qtz float train, qbx, highly silicified	1.17	0.44	66	9.5	116
GC_S	R322521	531633	6868374	WH20165151	phyl	qtz float train, qbx, highly silicified, fine 2% pyr	0.02	0.15	45.3	10	129
GC_S	R322522	531593	6868432	WH20165151	phyl	qtz float train (dyke?) qbx, highly silicified, fine 2% pyr	0.26	0.3	92.5	15.4	154
GC_S	R322523	531585	6868464	WH20165151	phyl	qtz float train (dyke?) qbx, highly silicified, 5% aspy, scorodite. Beside old unmarked ribbon	12.2 0	0.81	34.4	37.8	72
GC_S	R322524	531487	6868559	WH20165151	phyl	qtz float train (dyke?) qbx, highly silicified, 5% aspy, scorodite.	45.7 0	1.03	87.9	8.3	25
GC_S	R322525	531359	6868616	WH20165151	phyl	qtz float train	1.51	0.76	98.2	30.4	184
GC_S	R322526	531378	6868604	WH20165151	dyke	dyke- mineralized, cubic+fine pyrite	0.08	0.13	80.6	6.7	142
GC_S	R322527	531376	6868594	WH20165151	phyl	qtz bx	0.02	0.09	88	8.6	210
GC_S	R322528	531386	6868583	WH20165151	phyl	qtz bx	0.43	0.14	83.6	6.4	84
GC_S	R322529	531468	6868574	WH20165151	dyke	dyke w scorodite?	11.6 0	0.61	16.7	101	9
GC_S	R322530	531532	6868526	WH20165151	phyl	qtz w/aspy, scorodite and VG	78.0 0	2.52	21.8	4.5	21
GC_S	R322531	531539	6868521	WH20165151	phyl	qtz w/aspy, scorodite	26.1 0	0.83	52.2	43.3	64
GC_S	R322532	531540	6868520	WH20165151	phyl	qtz w/aspy, scorodite	>100	4.81	71	25.3	27

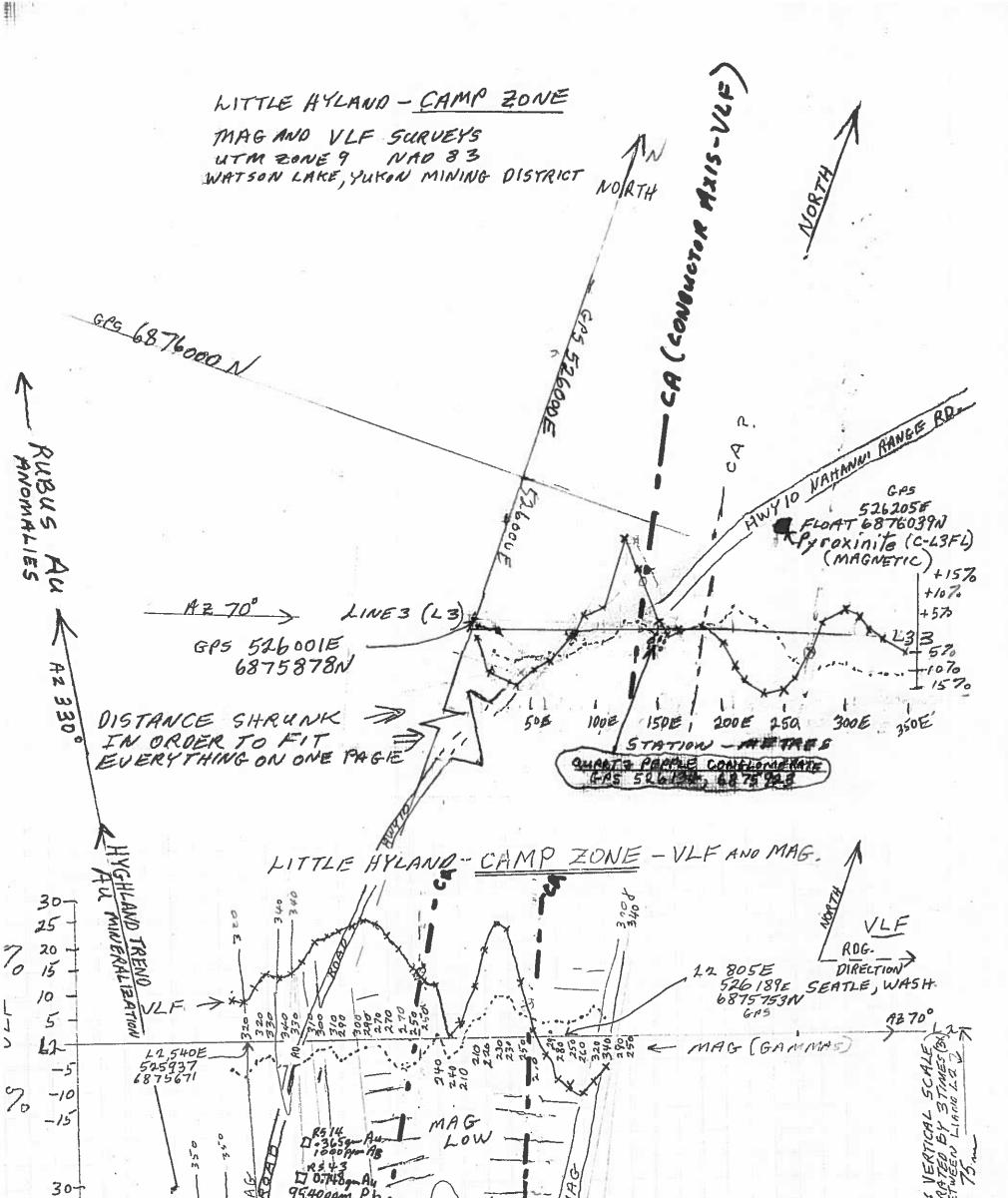
GC_S	R322533	531563	6868501	WH20165151	phyl	qtz bx	0.11	0.32	82.9	9.2	274
GC_S	R322534	531561	6868497	WH20165151	phyl	qtz bx sheared (4)w/aspy, scorodite	0.86	0.5	48.1	28.7	50
GC_S	R322535	531561	6868497	WH20165151	phyl	qtz bx sheared (4)w/aspy, scorodite	0.05	0.34	36.2	19.8	170
GC_S	R322536	531563	6868495	WH20165151	dyke	dyke+qtz bx	0.24	0.08	45.8	5.9	142
GC_S	R322537	531566	6868491	WH20165151	phyl	qtz bx	0.50	0.24	68.1	16.9	114
GC_S	R322538	531528	6868509	WH20165151	qtz	West vein, qtz bx w/ scorodite	0.03	0.38	64.6	39.5	183
GC_S	R322539	531538	6868506	WH20165151	dyke	w. vein, dyke w scorodite?	<0.0 1	0.1	41.7	8.1	165
LH_S	R322540	532314	6867630	WH20165151	phyl shear	shear zone parallel to fol'n, limonitic, qtz stringers	<0.0 1	0.03	25.4	25.8	86
LH_S	R322541	532194	6867513	WH20165151	phyl	qv, chloritic, unmineralised	<0.0 1	0.11	41.4	11.7	71
LH_S	R322542	532084	6867567	WH20165151	phyl	qv, bull white, unmineralised	0.09	0.72	46.4	35.4	22
GC_S	R322543	531453	6868605	WH20165151	phyl	seds wc?	0.08	0.16	24	25.3	90
GC_S	R322544	531439	6868610	WH20165151	phyl	phyl	3.95	0.29	40.9	7.6	90
GC_S	R322545	531439	6868610	WH20165151	dyke	100% highly altered, bleached dyke w pyr	7.61	0.71	30.9	58.1	86
GC_S	R322546	531431	6868611	WH20165151	qtz	qtz float	5.64	0.5	13.4	13.7	37
GC_S	R322547	531424	6868614	WH20165151	qtz	phyllite, no qtz, oxidized w scorodite	3.79	0.14	17.9	7.7	85
GC_S	R322548	531424	6868614	WH20165151	qtz	qtz float	6.79	0.14	4.1	4.3	31
GC_S	R322549	531426	6868622	WH20165151	qtz	qtz float	0.47	0.08	20.9	4	24
GC_S	R322550	531417	6868631	WH20165151	qtz	qtz float	1.80	0.14	6.4	4.4	35
GC_S	R322551	531414	6868638	WH20165151	qtz	qtz float - smokey qtz, vf aspy	>100	5.73	7.9	42.8	14
GC_S	R322552	531401	6868656	WH20165151	qtz-bx	qtz-bx float- smokey qtz, vf aspy	3.02	0.2	41.6	7.2	39
GC_S	R322553	531413	6868694	WH20165151	qtz	qtz-bx float - smokey qtz, vf aspy	2.73	0.27	30.7	3.8	15
GC_S	R322554	531409	6868687	WH20165151	qtz	qtz float - smokey qtz, vf aspy	18.9 0	0.96	32.3	4.8	3
GC_S	R322555	531407	6868677	WH20165151	qtz	qtz float - smokey qtz, vf aspy	11.4 0	0.47	17.3	5.4	13
GC_S	R322556	531405	6868668	WH20165151	qtz	qtz float - smokey qtz, vf aspy	17.3 5	0.89	19.1	5.9	4
GC_S	R322557	531401	6868659	WH20165151	qtz	qtz float - smokey qtz- coarse aspy xtals, prisms	1.06	0.09	40.8	3.1	7

GC_S	R322558	531388	6868637	WH20165151	qtz	qtz float - smokey qtz- coarse aspy xtals, prisms	5.27	0.34	21.7	15.1	35
GC_S	R322559	531378	6868634	WH20165151	qtz	qtz float - main vein w chlor	7.68	0.8	68	21.3	57
GC_S	R322560	531381	6868636	WH20165151	qtz	qtz float, smoky - main vein, no chlor	7.44	0.75	42.5	8.4	11
GC_S	R322561	531354	6868615	WH20165151	qtz	qtz float, chloritic 5% west vein?	0.05	0.05	21.8	4.9	26
GC_S	R322562	531361	6868619	WH20165151	qbx	qtz-bx float- smokey qtz, vf aspy	0.01	0.06	17.9	3	9
GC_S	R322563	531374	6868632	WH20165151	qtz	qtz, rusty no scorodite	1.04	0.07	21.5	3.6	49
GC_S	R322564	531389	6868685	WH20165151	phyllite	altered phyllite	0.04	0.02	8.7	2	49
GC_S	R322565	531370	6868676	WH20165151	qbx	qtz breccia w/ high v.f.g. aspy banded	8.44	0.89	22	308	27
GC_S	R322566	531377	6868660	WH20165151	qbx	qtz breccia w/ high v.f.g. aspy banded	9.33	0.72	25.2	8.4	6
GC_S	R322567	531353	6868659	WH20165151	qbx	qtz breccia w/ high v.f.g. aspy banded	1.34	0.08	21.4	5.9	36
GC_S	R322568	531350	6868665	WH20165151	qbx	qtz breccia w/ high v.f.g. aspy banded	12.1 5	0.62	7.7	6.8	27
GC_S	R322569	531337	6868671	WH20165151	qbx	qtz breccia w/ v.f.g. aspy banded big 1m boulder	6.56	0.38	15.2	11.5	34
GC_S	R322570	531331	6868693	WH20165151	qtz	large qtz boulder, whit w/scor @ phyl contact	0.22	0.17	30.8	7	43
RU_S	R322571	522918	6880601	WH20165151	qtz veinlet	qtz float pyr & chlor, Gary sample	<0.0 1	0.02	3.5	28.1	132
RU_S	R322572	522961	6880353	WH20165151	QV	qtz vein outcrop. Coarse xtls, tr pyr, scor?	<0.0 1	0.01	15.9	8.8	38
GC_S	R322573	531395	6868529	WH20165151	QBX FLT	QBX FLT, near vein	3.77	0.27	44.1	18.5	36
GC_S	R322574	531392	6868526	WH20165151	QV	qtz vein	0.01	0.28	101	10.7	140
GC_S	R322575	531380	6868711	WH20165151	qtz		0.32	0.13	7	12.4	14
GC_S	R322576	531378	6868709	WH20165151			2.46	0.09	4.6	8	17
GC_S	R322577	531372	6868709	WH20165151			1.10	0.21	5.4	10.4	35
GC_S	R322578	531364	6868714	WH20165151			2.84	1.53	11	5.1	15
GC_S	R322579	531356	6868707	WH20165151			0.36	0.07	19.1	7.8	78
GC_S	R322580	531352	6868705	WH20165151	ak		6.92	0.35	24.5	9.5	26
GC_S	R322581	531345	6868704	WH20165151	qbx	outros du st	2.24	0.28	27.7	12.9	41
GC_S	R322582	531336	6868701	WH20165151	phy	extremely si altered phyllite	5.10	0.53	26.1	40.2	37

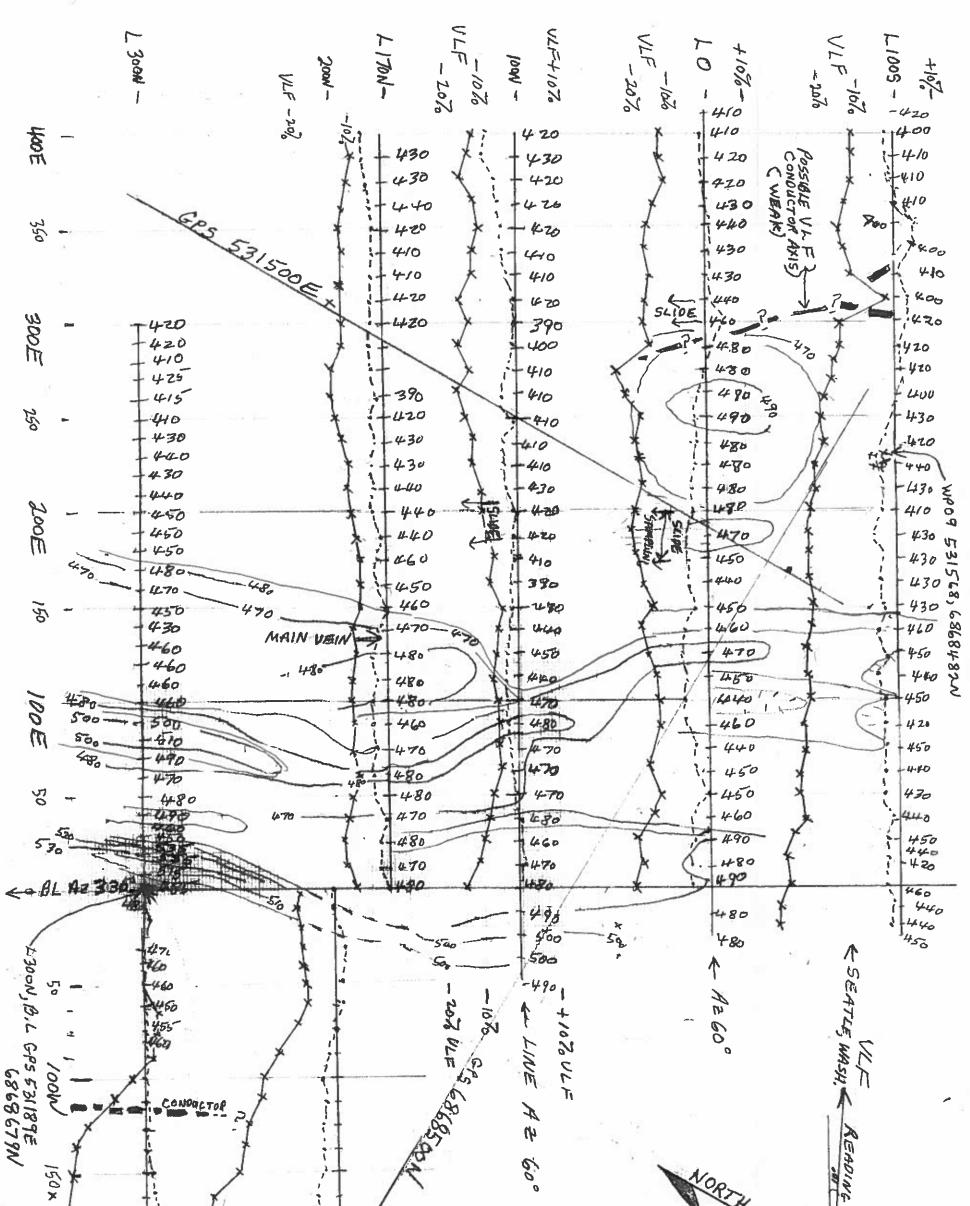
GC_S	R322583	531322	6868703	WH20165151	qbx		13.6 5	0.43	36.4	7.4	9
GC_S	R322584	531316	6868707	WH20165151	qbx		4.17	0.21	28.9	7.1	11
GC_S	R322585	531338	6868711	WH20165151	qtz	duplicate of older float sample	6.66	0.7	14.9	5.1	5
GC_S	R322586	531339	6868712	WH20165151	qtz	same as R322586	0.05	0.13	7.2	25.2	28
GC_S	R322587	531472	6868571	WH20165151	qtz+ph y			9.79	2.7	75	9
GC_S	R322588	531464	6868568	WH20165151	phy		1.36	0.18	18.9	7.9	71
GC_S	R322589	531454	6868570	WH20165151	phy		1.18	0.05	7.2	8.1	49
GC_S	R322590	531289	6868704	WH20165151	phy-bx		0.11	0.05	16.3	3.1	27
GC_S	R322591	531273	6868705	WH20165151			0.06	0.26	164	5.9	69
LHN	R322592	526699	6875300	WH20165151	phy	SHR D70W S342 BOUDINED, SEE PHOTO	0.28	0.11	37	41.4	68
LHN	R322593	526847	6875285	WH20165151	qtz	qtz float on talus slide, no scorodite	0.04	0.04	10.3	11.9	27
LHN	R322594	527090	6875334	WH20165151	phy+qt z	phyllite + qtz veining large pyr cubes	0.02	0.04	14	33.1	38
LHN	R322595	527170	6875066	WH20165151	qtz	qtz w crackle bx, scorodite?	0.03	0.05	7.5	16.6	29
LHN	R322596	527188	6875039	WH20165151	qv+qbx	qv + qbx	0.15	0.07	17.5	12.1	35
LHN	R322597	527431	6874793	WH20165151		qbx in rubble slide	0.54	0.14	16.7	8.5	85
GC_S	R322598	531701	6868337	WH20165151			0.90	0.3	42	52.2	30
GC_S	R322599	531703	6868338	WH20165151			5.07	0.44	39.4	10.9	55
GC_S	R322600	532220	6868318	WH20165151			<0.0 1	0.07	4.3	25.3	7
GC_S	R322601	530192	6869943	WH20165151	qtz	qtz, 1' wide bull white -	<0.0 1	<0.01	0.4	<0.2	3
GC_S	R322602	531558	6868261	WH20165151	phyl	float w pyr, rusty qtz	0.01	1.11	166	66.8	154
GC_S	R322603	531576	6868453	WH20165151	phyl	sil'd aspy, pyr bearing altered phyllite	0.12	0.49	66.9	30.1	252
GC_S	R322604	531381	6868624	WH20165151	phyl	white quartz with yellow oxide	<0.0 1	0.01	4.5	0.6	8
GC_S	R322605	531388	6868616	WH20165151	phyl	rust stained quartz	0.05	0.07	21.5	5.8	40
GC_S	R322606	531398	6868614	WH20165151	phyl	rust stained quartz	0.46	0.07	7	6.4	58
GC_S	R322607	531407	6868597	WH20165151	phyl	10 cm wide white quartz vein	0.05	0.06	33.4	4.1	15
GC_S	R322608	531414	6868583	WH20165151	phyl	quartz vein with phyllite fragments	0.03	0.13	50.4	7	265
GC_S	R322609	531468	6868573	WH20165151	phyl	silicified phyllite + dike/scorodite	0.07	0.04	30	3.2	215
GC_S	R322610	531539	6868523	WH20165151	phyl	qtz vein, 2ndary silicification,Aspy , py	25.9 0	1.85	201	23.5	29

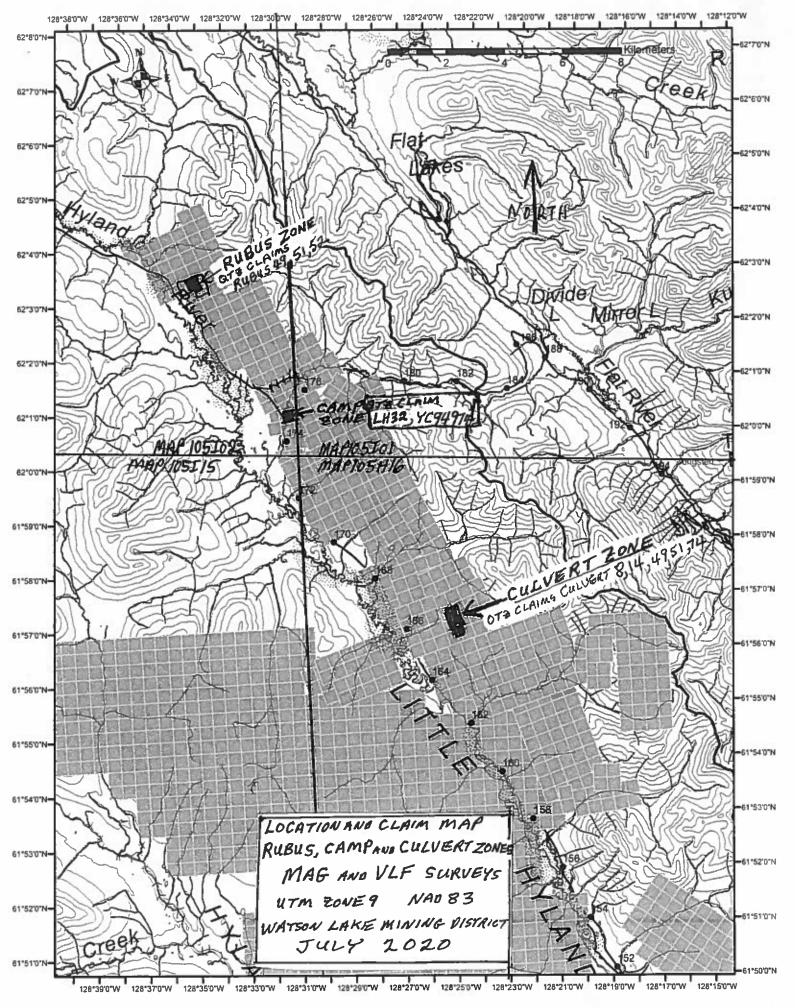

GC_S	R322611	531542	6868516	WH20165151	phyl	qtz vein with 1/2 cm seam py	10.0 0	1.33	15.3	15.9	15
GC_S	R322612	531560	6868500	WH20165151	phyl	qtz vein with 1/2 cm seam py	0.40	0.67	105	33.7	130
GC_S	R322613	531592	6868424	WH20165151	phyl	qtz vein, altered phyllite, py	0.01	0.05	22.4	2.9	75
GC_S	R322614	531530	6868509	WH20165151	phyl	qtz vein greenish, py	0.05	1.07	49.8	83.5	191
GC_S	R322615	531356	6868631	WH20165151	phyl	quartz vein with phyllite fragments	0.27	0.1	20.4	8.6	48
GC_S	R322616	531352	6868634	WH20165151	phyl	qtz vein, Fe hydroxides stained	0.01	0.06	32.5	2.7	76
GC_S	R322617	531288	6868594	WH20165151	phyl	qtz vein, Fe hydroxides stained	<0.0 1	0.02	1.6	2.3	60
GC_S	R322618	531271	6868585	WH20165151	phyl	quartz vein with phyllite fragments	0.02	0.01	8.6	2.7	52
GC_S	R322619	531266	6868582	WH20165151	phyl	qtz vein, sugary, py, Mn stained	<0.0 1	0.03	26.5	2.7	151
GC_S	R322620	531302	6868675	WH20165151	phyl	qtz vein, sugary, py	0.01	0.01	4.2	0.8	27
GC_S	R322621	531404	6868690	WH20165151	phyl	qtz vein, 2ndary silicification, py	0.01	0.1	38.8	7	201
GC_S	R322622	531330	6868708	WH20165151	phyl	qtz vein, scorodite, rust	5.01	0.11	7.5	15.5	4
GC_S	R322623	531533	6868526	WH20165151	qtz	MV, silicified, scorodite, VG - 5 specks	>100	5.61	8.9	5.3	27
GC_S	R322624	531196	6868876	WH20165151	qtz	QTZ VEIN + PHYLLITE 60% QTZ 1% PY	0.03	0.32	14.5	118	49
GC_S	R322625	531194	6868834	WH20165151	qtz	QTZ 90% GREEN CHLORITE FLOAT	0.13	0.07	161	9.6	45
GC_S	R322626	531325	6868772	WH20165151	qtz	RUSTY QTZVEIN FLOAT TRAIN	2.15	0.14	15.5	7.7	19
GC_S	R322627	531379	6868740	WH20165151	qtz	QTZ 60% DARK GREEN CHLORITE 4% PY	0.03	0.12	90.9	11.6	119
GC_S	R322628	531467	6868837	WH20165151	qtz	QTZ VEIN SUGARY IRON OXIDE FRACTURES	<0.0 1	0.06	2.1	5.5	7
GC_S	R322629	523185	6880287	WH20165151	black slate	qv <2% pyrite	0.05	0.22	2.3	53.1	4
GC_S	R322630	531058	6868947	WH20165151	qbx	silicified qbx w/pyr+aspy	2.3	0.18	4.2	20	33
GC_S	R322631	531054	6868945	WH20165151	sili'd	silicified qbx w/pyr+aspy	1.35	0.06	45.6	8.1	73
GC_S	R322632	531056	6868967	WH20165151	qbx	qbx East 2 vein	48.1	1.32	20	41.2	24
GC_S	R322633	530981	6869022	WH20165151	qtz	QTZ VEIN FLOAT +95% QTZ 1% PY	0.09	0.01	10.3	0.8	8

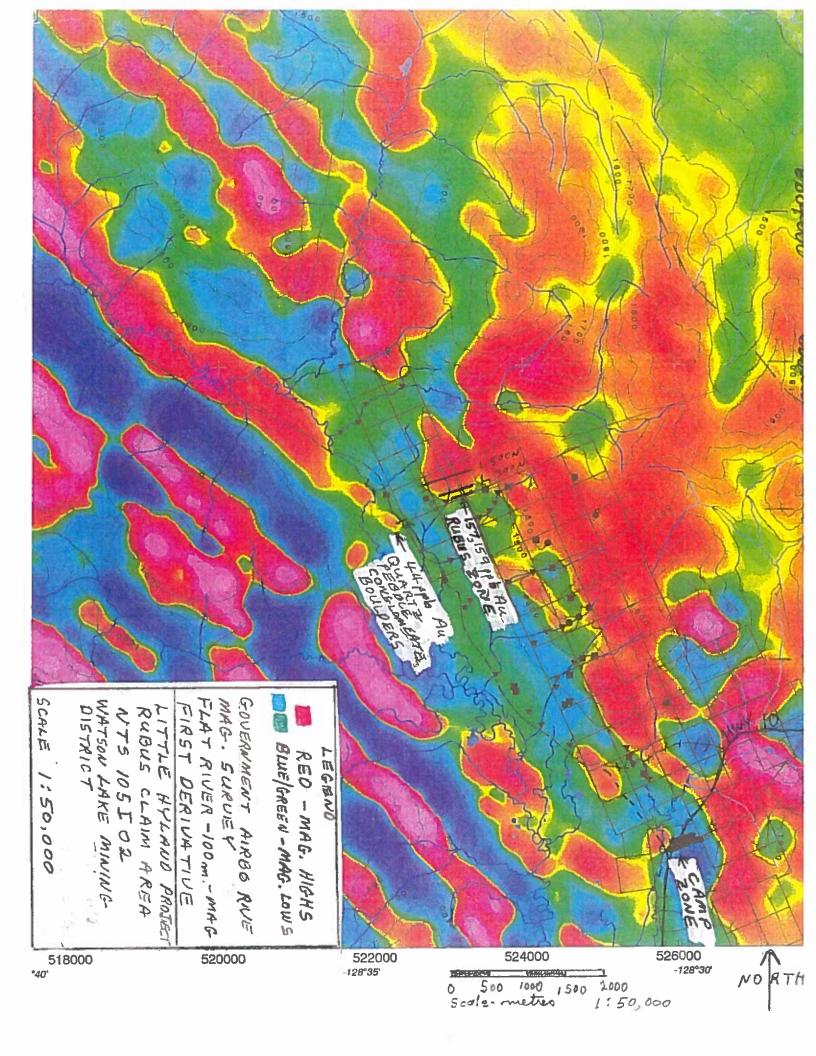
GC_S	R322634	531139	6869077	WH20165151	qtz	QTZFLOAT TRAIN 50CM BOULDERS 95% QTZ MINOR CHLORIE	0.14	<0.01	1.3	0.3	2
GC_S	R322635	531118	6869112	WH20165151	phyl	O/C GREEN PHYLLITE FOL 318/90	<0.0 1	0.01	9.6	2.9	75
GC_S	R322636	531112	6869105	WH20165151	dyke	10 CM BOUDIN? DIKE SILICEOUS 1% PY	0.02	0.09	86.9	30.7	162
GC_S	R322637	531105	6869092	WH20165151	phyl	green phyllite, bx'd minor qv, silicified	<0.0 1	0.01	14.2	2.9	83
GC_S	R322638	530980	6869084	WH20165151	qtz	QTZ FLOAT +95% QTZ <1% PY	<0.0 1	0.41	85.6	30.5	395
GC_S	R322639	530987	6869110	WH20165151	qtz	QTZ VEIN FLOAT TRAIN 95%QTZ TRACE SPHALERITE	<0.0 1	0.07	3.8	5.2	126
GC_S	R322640	530640	6869085	WH20165151	qtz	QTZ ROLL DOWN FROM ROAD CUT 95% QTZ 3%LIMONITE	<0.0 1	0.02	4.8	3.2	39
GC_S	R322641	530651	6869092	WH20165151	qtz	QTZ FLOAT FROM ROAD CUT 95% QTZ 3% LIMONITE CRACK seal	<0.0 1	0.01	7	0.8	2
LHN	R322642	526629	6875508	WH20165151	qv	QUARTZ VEIN O/C 10CM BLED IN PHYLLITE FOL 294/35E	<0.0 1	0.03	2.7	13.7	23
LHN	R322643	526765	6875278	WH20165151	qtz	QTZFLOAT ARSENO ? 95% QTZ 3% LIMONITE	<0.0 1	<0.01	0.9	0.3	3
LHN	R322644	526752	6875304	WH20165151	qtz	QTZ FLOAT 95% QTZ 1% ARSENO?	0.02	0.03	4.5	3.6	29
LHN	R322645	526754	6875304	WH20165151	qtz	QTZ FLOAT 2 % PY, TRACE SPHALERITE	0.33	0.97	5.2	216	5
LHN	R322646	527178	6875050	WH20165151	qbx	QTZ BRECCIA FLOAT BY Y628425	1.66	0.11	18.5	36.9	51
GC_S	R322647	531717	6868334	WH20165151	qbx	FLOAT 50% QTZ TRACE PY	0.44	0.28	26.4	24	180
GC_S	R322648	531991	6867996	WH20165151	qv	QTZ VEIN SUBCROP HOST GREY PHYLLITE	<0.0 1	0.04	2.8	29.6	9
GC_S	R322649	531921	6867959	WH20165151	qv	SUBCROP 97% WHITE GLASSY QTZ VEIN	0.01	0.02	2.9	2.4	7
GC_S	R322751 A	531993	6868002	WH20165151			<0.0 1	0.06	8.9	12.1	59
GC_S	R322752	531927	6867984	WH20165151			<0.0 1	0.94	23.4	2350	81

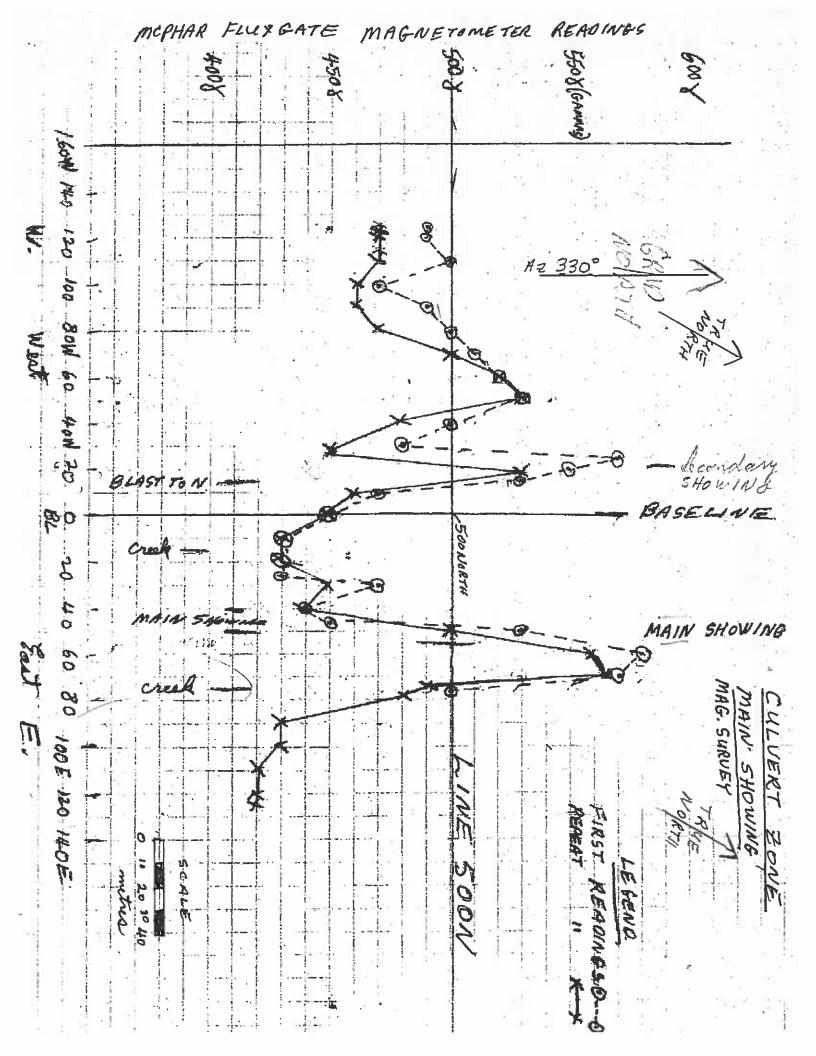

GC_	_S	R322753	531900	6867939	WH20165151	OC PHY1 F D38E S325 B D64W S310	0.02	0.07	11.6	15.7	58
GC_	S	R322754	531803	6867913	WH20165151		0.01	0.09	32.3	14.8	53
GC_	S	R322755	531742	6867815	WH20165151		0.01	0.21	102	17	129
GC_	S	R322756	531733	6867793	WH20165151		0.01	0.12	51.7	5.7	175
		R322757			WH20165151		4.35	0.22	26.9	7.5	14

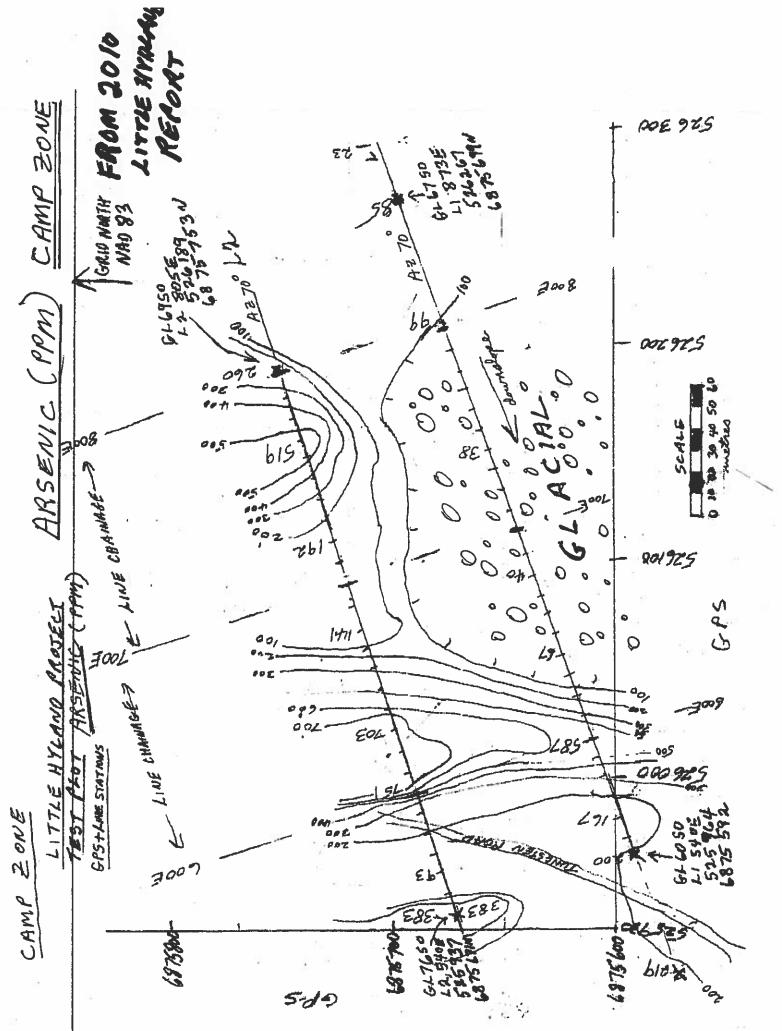
Appendix D:


G. Lee Geophysical Report


6880000 RUBUS ZONE MAG SURVEY UTM ZONE 9 NAO 83 NTS 105 IO2 JULY 2020 GPS




EN A 9540ppm Pb 25 ** EVLF 20 % 15 LEGEND 10 SE BOMAG. READINIGS 242 200 00 200 00 200 00 5 21 E-MAG (GAMMAS) 610 VLF XX In phase -5 07 -10 LI 873E VLF . QUAD 0 526267E 0. 340 Ø -15 · VLF CONDUCTOR AXIS(CA 6875699N GPS 0 0 C đ \mathfrak{O} 0 0 G 0 4000 HORIZONTAL SCALE J) O_{22} \mathcal{O}_{o} 0 U Ø U 1:30.00 0 0 200 S, 000 0 000 DIPPING WESTERLY STATION -L STATION - METRES Æ

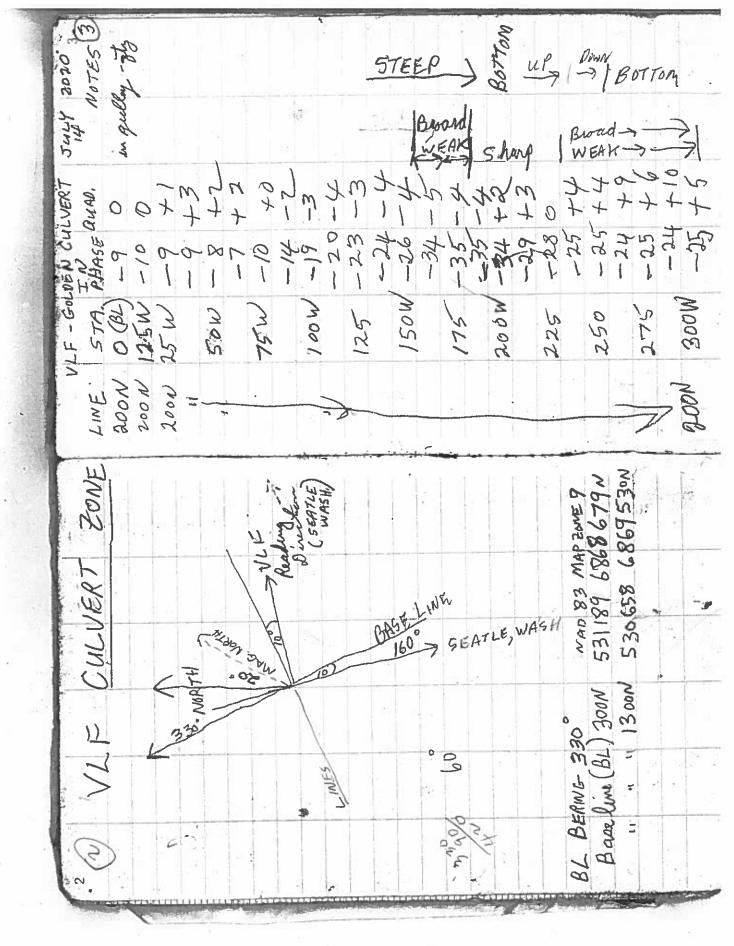


NORT ×05 0 NE DIR. BL = AZ 330° 2000 420 0 11 440 3 460 MAG. AND VLF SURVEY 40 480 SCALE JULY 2020 MAP 105 H16 ZONE9 C4905 TA F MAG. READINES CULVERT ZONE LEGENO metros 250W VLF CONDUCTOR AXI VLF QUADATURE 60 MAG CONTOURS 00 1. +10% 1:2000 300W 200 -10% VLF -20% -20% VLF . L200N O LINE200 -+10% TIT

claim Line 290 290 310 -310 260 3 20 Cond may 300 3000 MAG -300 -210 2790 2790 Mag 640E TOOF 7.80 the JIN17 Beed 54 An ROAD break Base put 320 320 Mag. @ Km 175 Tuny Cerd MAG (320) 500 - 240 560 -220 570 -220 -220 -230 6201-300 -300 cerd 540-220 560 -220 -230 -230 -240 -240 -240 -240 mag 600E 6 10 6 480E 7009 TV IJNIT

6.75m N.E. (160) Jon 19 22 bage Service Services 1.11 Rad Car Reg 144 6504-330 -320 -320 -320 620--320 -310 610 4-310 -310 Con Con スソ MAG MAG HLS. L2 6005 Der 6.80 回たの C INE Z BATT bare sta 320-20 Cg-TE Datek N 213.14 CARD CoR. Mag. 290 280 -330 -320 COR m mm. m (ł 560 -MAG 635 620 620 574 860 700E 6 00 E , 6008 Ŧ. K3 3NIT JN17

- sorlo 380 MAG. BASE CAMP > Long heck. (320) SKAVA 224 SO OK Y O 60 310 320 380 300 920 300 300 590 320 380 282 -250 -250 -250 -320 -340 002 MAG. 6201240 -239 -310 -30 -3/0 200 Campo free 18:14 600 +22 Bfee > t 1 5300 630 06 660 SSOV 1500 × mille 840 620 Ó 620 610 580 560 650 4101 590 079 610 ZONE Camp 168.1K CANP Jean 168.14 11.891 Noo H 20 Aug 28 L7620E 2000 17 -X5L1 2000 17 C1 600E -1600E L'ALOOE 11 9 LI 600K LI 600E 1 るの 4 Cam イン 47 1Y CARP No Line arring rhave 6 270 290 Con May 270 230 2.50 22000 22000 340 250 200 230 230 238 210 -310 310 10100 5 630660 4 5-70 630 580 othes 580 590 620 560 009 600 570 520 540 580 600 560 550 540 580 510 07820 0685E8 700 1 10th 03 10039 MAME 780E 094 1800 720 -046 660 8206 840 089 TINE OT 8004 760 10 -3NIT 4 6 7


- September Point ? +1. GL6550 GL.68 2 - QUADATURE 77 イン 0 + 0 - 17 +30 +26 +25 +13 +10 410 エン GPS +13 n +12 P7 + + 3005 8605 760 180 8 80E 9006 907E 120 N 820 J 840 3ni-1 7 IP- IN PHASE west eide of F GL6\$50 UNBSTEN ection Print 00 d n den , 64 62 1 May of 01 6 +2 5 42 +2+ e) 3 77 J 76 400 120 + 20 49 +12 418 + 20 + 4-0 十周 5 + 11 +17 H 1+ + 1+ + SOOE 280 280 211 600E ZL 540. 520 560 -1001-6602 620 .680 640 548 S. 17 3m

S) N4 F CA ZONE t CAMP STA IP +22 780 A + 760 820E 840 SOOE KEN 20 CROSB 9617190 GL76504 GL1550 75 m N.E. (160' LF @ HIGH ARSENI +1154 422 814 5 3 12 580E 田009 JU40E 7001 530 550E 680 620 940 1080E 220 STA Zann

Condante 13 Conductor b < Robo -2+12 LIVE BRG. 70 AR # 700 Cudud LF+CAMP ZONE July 2.5 Ø CAGAS 526134 6875923 >645 52600, 6875 878 イン 2 2 9 ما 1 2 lor II. * 5 ļ I 1 7 5 +20 0/1 1/3 112 0 and Ż 1 ĩ 1 43 l 0 1 4 1] - O toon 12.54 SON 162N 125N 150N 1001 75 22.5W 200N 15 T 3 3 NLA VLA 1.24 Í, 67 5 14 23 ŝe. e, 2

13 1 t ÷ 14 73 đ 稅 Conductor . Morthe Ruly 25/20 - CAMP ZONE 4 186-52.89 ield N 2 52631 1 Little Hyland -12 -15 5 42 -4 44 N) 325N 7 3500 2500 275 300N EMAIN 00 m è 14

J

SW びど 52/05 4805 Ó DUAD 1 1- Jury 16/ 20 20 0 0 1/0 و (51 ଷ୍ଡ ୪ TR Ī l (200 8 25E 100 12 SOE 7515 LION OBL 574 225 300E 150 175 275 250 2.5 July 14/20 20 Lella. Botton R dI-> R ZONE -20 -25 - 27 -Do -24 - 26 -25 -19 24 0 250W-21 ſ 225W 275W 25W SOW 0 81 514 150W CULVERT 129 MOON 75 3004 200 W 75 ALINE LINE -300N 300N

		T.		
1- 11-	- 1-	507		E- 01- 5- 01- 527
0 0C- E- 81-	556			
2- 07-	790	· · · · · · · · · · · · · · · · · · ·		8-11- 11-11- 050
5-58-				2 - 51-
5- 50-	MGR	Com		f- 51- 512
0 6-	780	NOLIT		fi- EI- ZIOOE
2-11-		19 - 25/1		1-51-
2-21-	32	· · · · · · · · · · · · · · · · · · ·		8-81-528
. 77- 01-				E-21- E- E-1055
J- 6-			Ø	E- 21-0-SE Fi- 21-
2- 5-	52			5-01- 519
	1001	· · · · · · · · · · · · · · · · · · ·		9-11- =100th
18-01		NOLIT		6-41-30-77
	941			01- E1- 0 E1 - C.C
E- 91- 0 L-	05/	a in the second	2 (9-51-562
· - 2 - L -			25:20	1-01-055
32 2- 8	541			E- ZI-
	300%	JOLI7	·	2-01-228
SELON O dT.	815 -5	ANT-1	SZIION	AUND of this
· (2) 2/7/	חרא ור	C L	3102	

		POST POST OF			
	ti-tre-	-Chi			
	9- 172- ti- 52-	IJE JODE	50017		17 91- 17 51- 548 27 91-
BOJM	-53 -17 -35 -22 -39 -5	5ere		Jula	1+ 51- 1- tre- 562
	+ 02- 0 41- 1 + 91-	52°		200 mons	2-22-2
	1+ 51- E+ 91- E+ 1-	390E	50017	7/117dWUS	H- 81- 522 E- 81- H- 61- 2008
	1+21- 5+41- 41+51-	57E 05E	· · · · · · · · · · · · · · · · · · ·		9- 02- 5-81- 521 5-61-
	0 71- 1- 11-	548	3 - 1		E-hl- 2051 L-L1- L-91- 981
	2- 11- <u>7- 11-</u> 1- 21-	HOOF	50017	2124 Rapor 44-	9- 71- 3001
	1- 21- 0 21- 0 71-	548	07		$9 - \frac{1}{71 - 91 - 5L}$ $7 - \frac{1}{71 - 5L}$
BALEN ANOR LAM	17.51- 0470 dT no 02/910/00	209E, +15	07	I. J. M. M. S. M.	2- 51- 305 0000 JT 415 1270 1. 1716

					3					Sec. 2
			and a special		·	2.1.1.2.2.4.4		1		
				2 2 3	7			4	0.0	
				1						
· · ·					_					
- e ²				-	- 1					
				÷		<u> </u>				
					-			an a		8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
				1.54				ang manalan 1920 (ka di sa		
										I shand-to-participation
x				er Sinner				8-	-28-	MGT
				÷	-	•	1000/e .	-2-	18	
		-	8 + 1 pri mini			*			729	780
	·	- 22 12				J			02-	6.0
	s a l	14.4	÷.	- "-	- 1			2-	\$2- 52-	52
6 C 1					- <u>-</u>			ガラ	75-	09
	8								76-	
1 Tra	-7-								54	356
= 71	210	OZ J	LYZ	กาทว			•		5-2-	2001
								5-	12-	JUUT
		ominin 1-11 1		1					-52-	581
	1+	2-1	VPO+C	87				5-	22-	
	1									and the second
		maring	1 707		V	6111	20.	AT-	22-	7051

Appendix E:

Assay Certificates

(Attached Separately)