REPORT ON SUMMER, 2020, STREAM SEDIMENT & ROCK SAMPLING IN THE SWIFT RIVER AREA, SOUTHERN YUKON

Field Work & Report By:

William C. Hood Beausejour, Manitoba

Field Work: July 12 – 25 incl, 2020 Report Completed December 1, 2020

Summary of Reported Work:

Mining District: Watson Lake Geographic Area: Swift River, NTS 105B-02&03, 131°05'W/60°02'N Target Commodity: tantalum Stream Sediment Samples: 13 samples Boulder Samples: 47 samples Bedrock Samples: 13 samples Report Software: Microsoft Office Word, Paint

TABLE OF CONTENTS

Title Page	1
Table of Contents	2
Summary	3
Introduction	5
Location, Access & Physiography	5
Geology	7
Work Program; Summer, 2020	11
Conclusions & Recommendations	20
Certificate	21
Appendix I. Sample Locations & Descriptions	22
Appendix II. Analytical Data	30
Appendix III. Photographs	49

LIST OF FIGURES

Fig. 1. Location Map	6
Fig. 2. Yukon Geology	8
Fig. 3. Regional Geology	9
Fig. 4. Project Area Geology	10
Fig. 5. Field Work Area	12
Fig. 6. Sample Locations; Seagull Creek Area	13
Fig. 7. Sample Locations; East of Seagull Creek	14
Fig. 8. Sample Locations; Hwy #1/Swift River Bridge Area	15
Fig. 9. Sample Locations; Swift River/Pine Lake Area	16
Fig. 10. Sample Locations; Hwy #1/Rancheria River Bridge Area	17

Page

SUMMARY

The southern Yukon and northern British Columbia is prospective for tin (Sn) and related lithophile mineralization in the area of the Cassiar Batholith, and especially around the nearby Seagull Batholith in south-central Yukon. A large regional Sn anomaly occurs in this area, with high values occurring in stream sediments around the Seagull Batholith. This reflects the erosional unroofing of this batholith.

Tantalum (Ta) is a rare metal which is closely associated with Sn, but is much less abundant and much higher in price. Tantalum is used in electronics to miniaturize electrolytic capacitors, and for a variety of alloy applications. Tantalum is geochemically associated with tin, lithium, rubidium, cesium and fluorine, hence the obvious interest in the fractionated Seagull Batholith The author undertook reconnaissance stream sediment sampling for tantalum in 2019, returning anomalous values between Swift River and Rancheria.

This report describes the results of a followup program of stream sediment, boulder and bedrock sampling undertaken during July, 2020, mainly in the area northeast of Swift River, where ground access was possible. A total of 73 samples, including 13 stream sediments, 47 boulders and 13 bedrock samples, were shipped to Activation Laboratories in Ancaster, Ontario. All samples were analyzed for 54 elements by ICP, plus fluorine (F).

The basic exploration hypothesis of this project was that an unexposed or subcropping cupola of the Seagull Batholith may be preserved east or southeast of its outcropping extent. It is well established that tantalum (Ta) mineralization occurs in the upper, most fractionated, portions of granitic magma systems. When a fractionated granitic intrusion is well exposed over a wide area, such as the Seagull Batholith is, it can be reasonably assumed that any significant Ta mineralization has already been eroded away. Since the Seagull Batholith shows increasing fractionation trends toward its east and southeast end, the best place to explore for a preserved cupola which might host a primary Ta deposit, would be to the southeast.

A general threshold for success in this project was set at about 100 ppm Ta. If analyses returned results greater than 100 ppm Ta, it would be worthwhile to

continue the project, but if results were less than 100 ppm, it could probably be concluded that Precambrian pegmatites offered much better Ta exploration targets than Cordilleran Cretaceous granites, at least in this area.

Results from this work program were generally disappointing, with the highest Ta in a stream sediment being 5.6 ppm, and the highest Ta in a boulder sample being 18.1 ppm. No evidence was found for any additional subcropping or unexposed cupolas of the Seagull Batholith to the east or southeast. Tantalum (Ta) levels in both stream sediments and boulder samples were far below the threshold that was set for continuing the project. As well, levels of niobium (Nb) and uranium (U), which are dilutionary and/or deleterious to a mineral concentrate, were at or well above Ta levels. Potential for a primary Ta deposit in this area appears to be very low, although Ta could still be a credit in a Sn concentrate from this district.

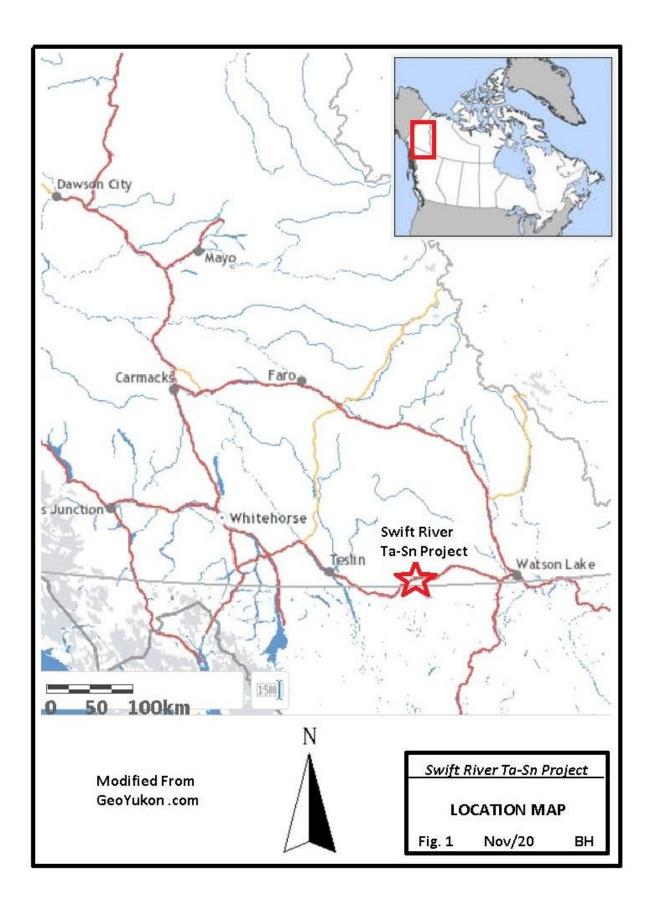
No further work is recommended for this type of Ta target in this area.

(signed, sealed, Engineers Geoscientists Manitoba Cert #4660)

William C. Hood, P.Geo. December 1, 2020

INTRODUCTION

The southern Yukon and northern British Columbia is prospective for tin (Sn) and related lithophile mineralization in the area of the Cassiar Batholith, and especially around the nearby Seagull Batholith in south-central Yukon. A large regional Sn anomaly occurs in this area, with high values occurring in stream sediments around the Seagull Batholith. This reflects the erosional unroofing of this batholith. Several Sn occurrences are preserved under/in roof zones along the northwest side of the intrusion.

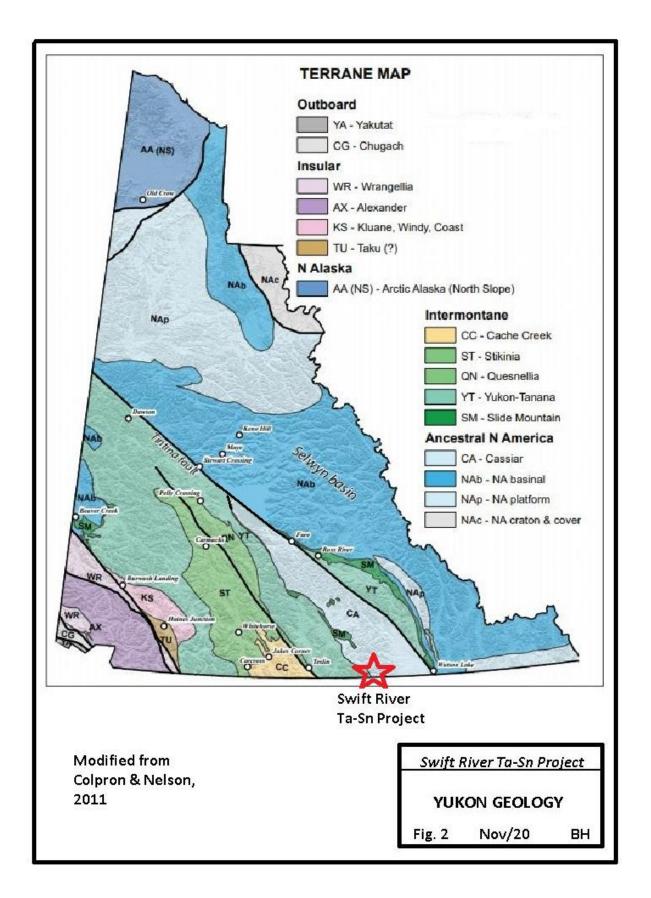

Tantalum (Ta) is a rare metal which is closely associated with Sn, but is much less abundant and much higher in price. Tantalum is used in electronics to miniaturize electrolytic capacitors, and for a variety of alloy applications. Tantalum is geochemically associated with tin, lithium, rubidium, cesium and fluorine, hence the obvious interest in the fractionated Seagull Batholith The author undertook reconnaissance stream sediment sampling for tantalum in 2019, returning anomalous values between Swift River and Rancheria.

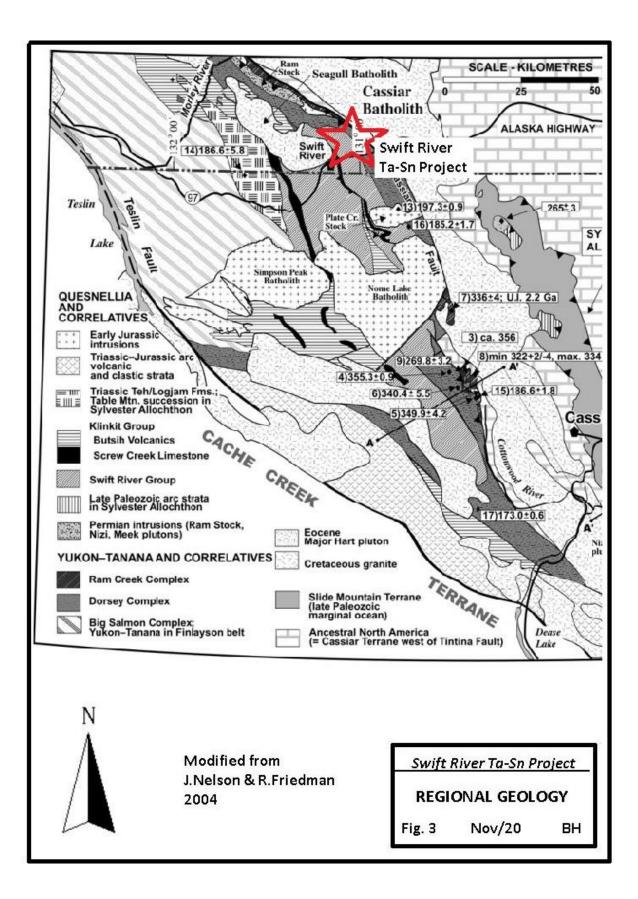
This report describes the results of a followup program of stream sediment, boulder and bedrock sampling undertaken during July, 2020, mainly in the area northeast of Swift River, where ground access was possible.

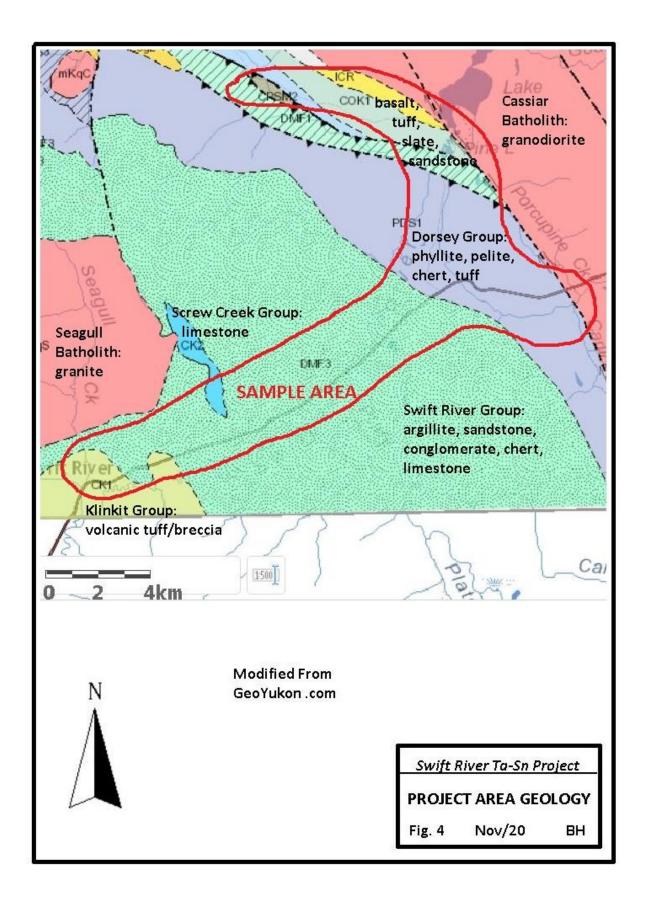
LOCATION, ACCESS & PHYSIOGRAPHY

The project area lies in the south-central Yukon, near the British Columbia border, just east and northeast of the village of Swift River, about 150 km west of the town of Watson Lake (Fig. 1). Access to the project area is from highway #1, the Alaska Highway, and the Pine Lake road, which crosses the old Pine Lake airstrip, and then extends west from Dauphney Lake and Pine Lake, along the Swift River to Crescent Lake.

No services are available in Swift River, which has largely reduced to a highways department maintenance camp. A seasonal gas station/motel/campground is located near the highway #1 bridge over the Upper Rancheria River. The town of Watson Lake has complete facilities, including fuel, groceries, hardware, accommodations and government services.

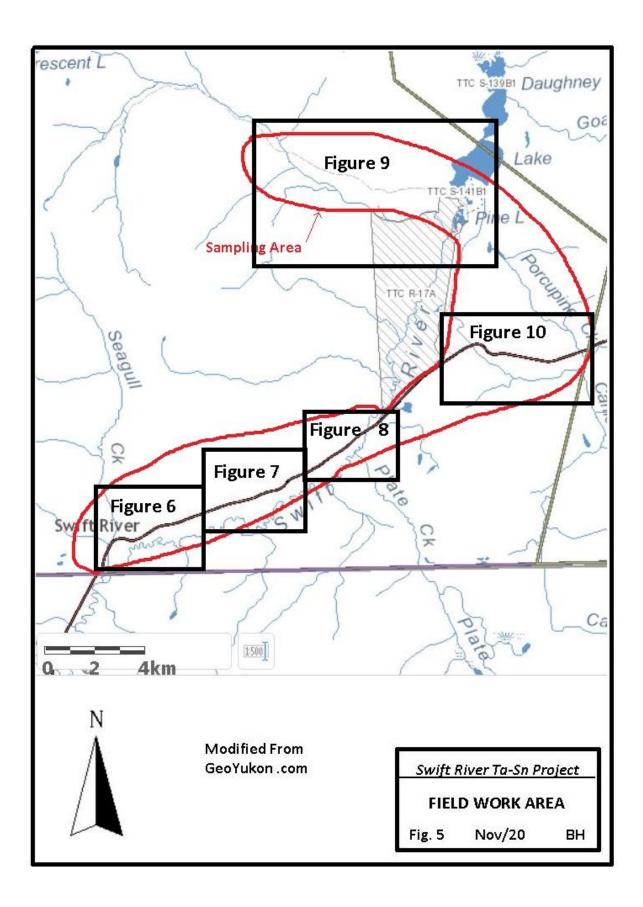

The project area lies within the northern Cassiar Mountains. In this area, high angular ridges are interspersed with wide glacial valleys. Vegetation is mainly pine and spruce, with treeline at about 1500 m elevation. The project area straddles the continental divide separating the watersheds of the Rancheria, Liard and Mackenzie Rivers which drain into the Beaufort Sea, from the Swift, Teslin and Yukon Rivers which drain into the Bering Sea.


GEOLOGY

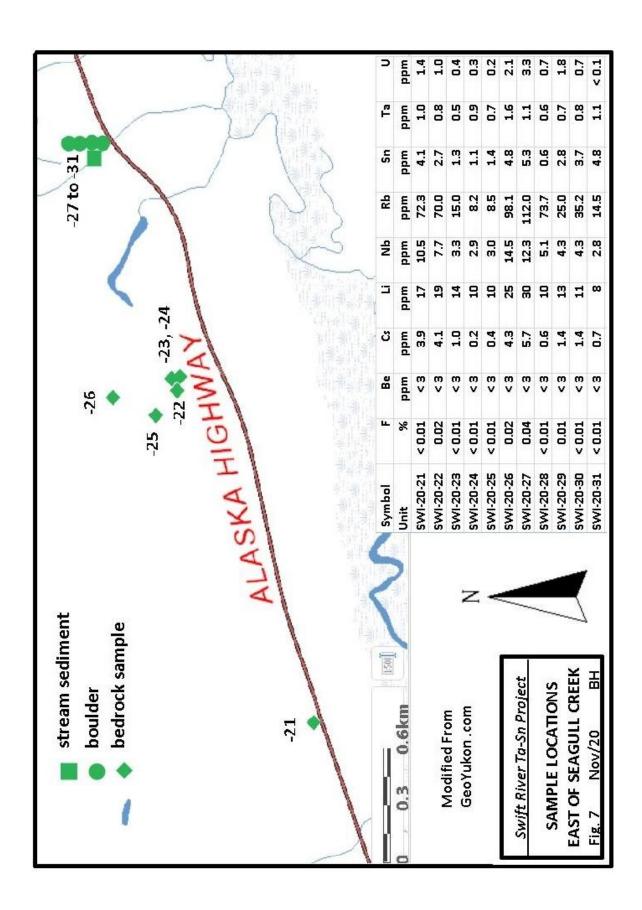

The project area lies across the western boundary of the old North American continent, straddling Cassiar Terrane rocks and allochthonous packages of the Yukon-Tanana Terrane (Fig. 2 & 3). These rocks are intruded by Cretaceous age granite-granodiorite batholiths, the Cassiar Batholith and nearby Seagull Batholith, both with associated beryllium (Be) and tin (Sn) lithophile mineralization.

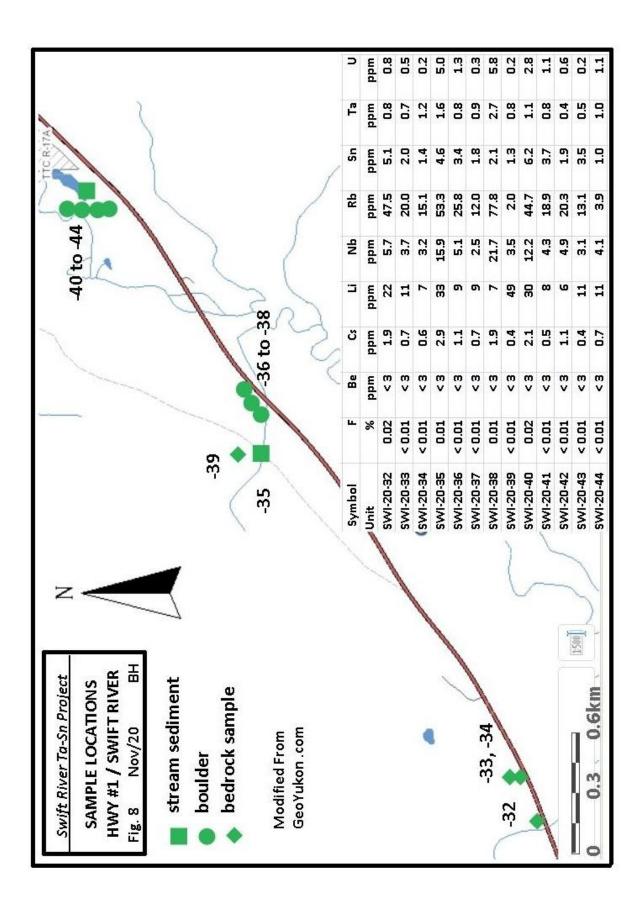
The area of interest in this work program lies between eastern end of the Seagull Batholith and the west, fault-bounded edge of the Cassiar Batholith (Fig. 4). Much of the area is underlain by sediments of the Swift River Group, including argillite, sandstone, conglomerate, chert and limestone, as well as the underlying Dorsey Group, with assorted phyllites, pelites, chert and tuff. Minor volcanics of the Klinkit Group are present in the southeast corner of the project area, and a series of thin fault slices of assorted lithologies outcrop along the northeast edge of the area of interest.

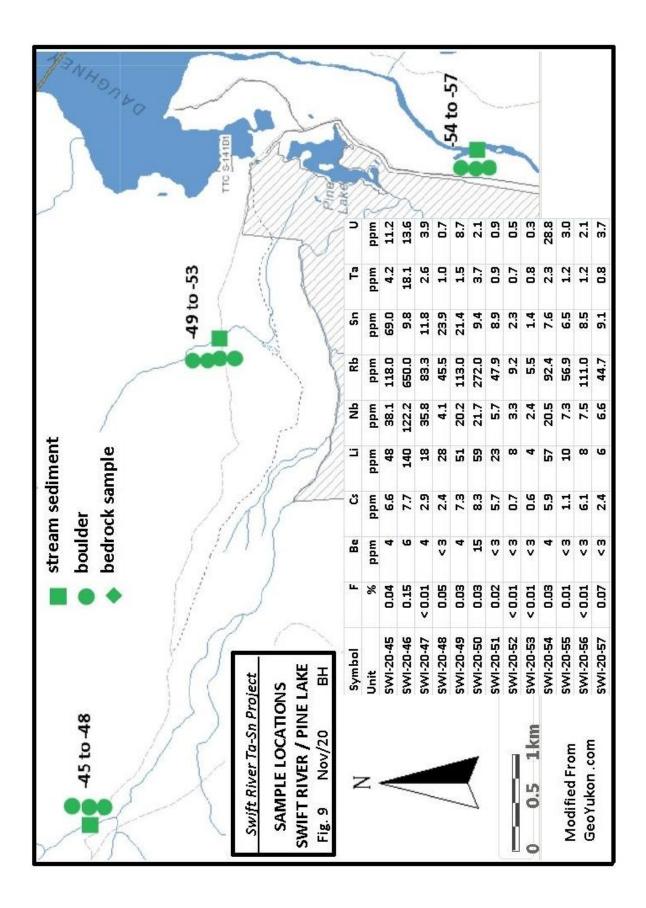
An important feature in this project is the north-south fault structure along the east end of the Seagull Batholith, and the thin slice of Screw Creek limestone along this structural feature. The basic exploration hypothesis of this project was that an unexposed or subcropping cupola of the Seagull Batholith may be preserved east of this north-south fault structure. It is well established that tantalum (Ta) mineralization occurs in the upper, most fractionated, portions of granitic magma systems. When a fractionated granitic intrusion is well exposed over a wide area, such as the Seagull Batholith is, it can be reasonably assumed that any significant Ta mineralization has already been eroded away. Since the Seagull Batholith shows increasing fractionation trends toward its east and southeast end, the best place to explore for a preserved cupola which might host

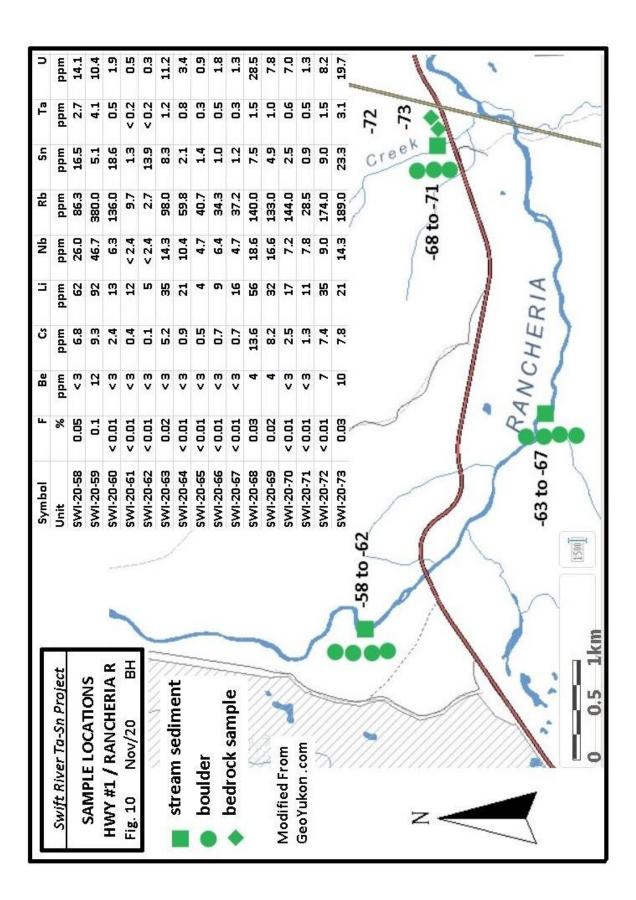

a primary Ta deposit, would be to the east of the north-south fault structure along the east end of the Seagull Batholith. Figure 4 also outlines the project sample area, which was based on both prospectivity and easy ground access.

WORK PROGRAM; SUMMER 2020


A small program of stream sediment, boulder and bedrock sampling was undertaken over 14 days during the period July 12 – 25, 2020. A total of 73 samples, including 13 stream sediments, 47 boulders and 13 bedrock samples, were shipped to Activation Laboratories in Ancaster, Ontario. All samples were collected on open Crown land, except for samples SWI-20-45 to -48 which were collected on an existing mining claim with permission from the claim holder. All samples were analyzed for 54 elements by sodium peroxide fusion/ICP, plus fluorine (F). Sample locations and descriptions are included in Appendix I. Analytical data is in Appendix II. Several photographs from this work are included in Appendix III. Sample locations and selected analytical results are plotted on Figures 6 – 10. Work was undertaken from a camp at Continental Divide Lodge, located along highway #1 within the project area (Photo 1, Appendix II).


The general idea behind the work program was to take a series of stream sediment samples around the prospective area at the southeast end of the Seagull Batholith to determine if a particular watershed was anomalous (Photo 2, Appendix III). Most of these samples were taken along the Swift River or tributaries draining into the Swift River. Several samples were also taken to the east along the Rancheria River watershed, which would be more reflective of the Cassiar Batholith, for comparison. It should be recognized in sampling of these surficial materials, that glaciation may have diluted or displaced anomalous materials.


A general threshold for success in this project was set at about 100 ppm Ta. If analyses returned results greater than 100 ppm Ta, it would be worthwhile to continue the project, but if results were less than 100 ppm, it could probably be concluded that Precambrian pegmatites offered much better Ta exploration targets going forward than Cordilleran Cretaceous granites, at least in this area.



-10 to -14		stream sediment boulder bedrock sample	sedime sample	t "					-16	-16 to -20	
				1		÷i 🦂)
1		Symbol	4	å	ö	3	å	å	S	Ę	D
		Unit	%	mqq	mdq	mqq	mqq	mqq	mqq	mqq	mqq
- ot o		SWI-20-1	0.05	13	6.2	56	29.6	79.1	8.4	0.0 0	26.1
-1 to -5		SWI-20-2	0.01	ŝ	0.5	16	5.7	9.9E	5.2	0.5	0.5
	-	SWI-20-3	0.02	ŝ	5.6	24	11.9	116.0	2.7	1.5	2.0
	Concession of the local division of the loca	SWI-20-4	0.02	ŝ	1.6	ŋ	6.6	25.9	9.8	1.1	9.8
		SWI-20-5	0.02	ŝ	2.1	61	7.2	64.8	5.0	1.2	3.5
	4	SWI-20-6	0.02	4	2.3	25	26.0	55.6	4.0	2.9	9.1
		5WI-20-7	< 0.01	m	2.7	13	15.7	176.0	6.1	2.1	6.1
	5	SWI-20-8	< 0.01	ŝ	0.7	14	9.8 0	18.0	2.5	1.1	0.3
	/	SWI-20-9	10:0	ŝ	0.4	G	2.8	8.5	4.6	0.8	0.4
0 0.05 U.OKIM		SWI-20-10	0.04	4	2.8	29	43.0	55.6	36.5	5.6	15.9
		SWI-20-11	< 0.01	ŝ	0.8	13	6.5	34.5	1.2	6.0	0.7
Modified From		SWI-20-12	0.29	9	16.9	186	78.8	623.0	6.9	8.7	19.7
GeoYukon .com	Z	SWI-20-13	< 0.01	ŝ	6.0	00	7.3	32.1	4.3	1.5	1.1
	-	SWI-20-14	< 0.01	ŝ	0.3	1	3.7	10.4	1.3	6.0	0.3
Swift River Ta-Sn Project		SWI-20-15	< 0.01	ŝ	6.0	37	8.0	12.7	0.6 0	1.0	0.8
	/	SWI-20-16	0.03	4	6.2	38	24.4	76.6	7.1	2.4	9.8
SAMPLE LOCATIONS		SWI-20-17	0.07	7	9.8	125	67.5	519.0	9.1	6.7	9.5
SFAGIILI CRFEK		SWI-20-18	< 0.01	ŝ	3.2	ŋ	5.7	36.8	5.0	0.7	1.4
		SWI-20-19	< 0.01	ŝ	0.5	4	2.9	0.2	3.4	11	0.3
		SWI-20-20	< 0.01	ŝ	0.8	9	2.8	с. С.	1.3	0.5	0.2

Given the low percentage of Ta within a deposit, stream sediment samples were relatively large, about 4 liters (5 to 10 kg), in order to obtain a more representative sample. Samples were generally collected from gravelly stream deposits, where Ta minerals of density 7 to 8 g/cc might be expected to accumulate. Samples were wet screened at camp to obtain a -4mm component of about 1.5 liters (about 3 kg). A representative sample of about 0.5 liters (0.5 to 1 kg) of this -4mm material was then split and dried for shipping to the lab. A representative sample of the +4mm component was saved for later visual lithological estimates (Photo 3, Appendix III).

At each stream sediment sample location, 3 or 4 representative boulders were collected with the objective of trying to identify any specific lithology hosting Ta mineralization. At each sample location, a general attempt was made to collect a boulder of unfractionated granite, fractionated granite, a (quartz) vein lithology and an alteration or brecciated lithology.

In the course of this field work, an area of substantial quartz veining and hornfelsing of sediments was located (Photo 4, Appendix III). It was felt that this area might represent the geologic environment above a granite cupola related to the Seagull Batholith. Since this target area was easily accessible, near highway #1, a series of bedrock samples was taken to provide a geochemical profile across this target. Lithogeochemistry is widely used to locate subsurface pegmatites in Precambrian terrains, using lithium (Li), rubidium (Rb) and cesium (Cs) as pathfinder elements. Li is particularly mobile and useful for detecting subsurface fractionated granitic magmatic rocks.

Sample locations, as well as select analytical data, have been plotted on Figures 6 – 10, roughly from west to east. Although multi-element analyses were received, 9 elements are of particular interest with regard to exploration for Ta within fractionated granitic magma systems. These include tantalum (Ta), niobium (Nb), tin (Sn), uranium (U), beryllium (Be), lithium (Li), rubidium (Rb), cesium (Cs) and fluorine (F). A significant factor in Ta exploration relates to the mineralogy, chemistry and dollar value of an expected mill concentrate, where one would seek high Ta, but low Nb, Sn and U, which are dilutionary and/or deleterious.

Figure 6 shows results from the Seagull Creek area, which would be expected to reflect material shed from the southeast end of the Seagull Batholith. Stream

sediment samples SWI-20-1, -6, -10 and -16 all show some enrichment in the elements of interest that reflect fractionation in the Seagull Batholith. Sample SWI-20-10 returned the highest Ta content in stream sediments, at 5.6 ppm, but with both Nb and U higher than Ta. The specific lithology reflecting this fractionation is clearly shown in boulder sample SWI-20-12, a porphyritic phase described as "granite;......light grey, fine-grained, massive; 65% grey feldspar, 25% grey quartz, 5% K-feldspar phenocrysts, 5% biotite/amphibole". This boulder sample returned 8.7 ppm Ta, along with significant elevation in F, Li, Rb and Cs.

Figure 7 displays a series of mainly bedrock samples several km east of Seagull Creek, in the area of the north-south fault structure at the southeast end of the Seagull Batholith. Yukon MINFILE showing 105B 034, the Plate occurrence, is reported in this area. It is variably described as a stream sediment and float boulder anomaly with elevated values of barium (Ba), lead (Pb), zinc (Zn), copper (Cu), tin (Sn) and silver (Ag). In the course of looking for this "occurrence", an area of strong hornfelsing and significant quartz veining was located, as delineated by samples SWI-20-22 to -26 (Photo 4, Appendix III). Since this could be characteristic of the environment above a subsurface granite cupola, additional bedrock samples were collected both east and west of this area, in order to provide a bedrock lithogeochemical profile across this feature. Lithium (Li), the main pathfinder element for this type of target, was essentially flat, and certainly not anomalous across samples SWI-20-21, -22 to -26, and -32 to -34, discounting this area as a granite cupola target.

As can be seen on Figure 8, covering the area around the highway #1/Swift River crossing, all elements of interest are low, probably reflecting increasing distance from the outcropping area of the Seagull Batholith, and lack of any other sources east of that intrusion.

Figure 9 shows samples northeast of the Seagull Batholith and in the Pine Lake/Daughney Lake area. Samples SWI-20-45 to -48 would be expected to reflect the shallow northeast dipping roof of the Seagull Batholith which hosts a number of Sn occurrences. Stream sediment sample SWI-20-45 returned the second highest Ta content, with 4.2 ppm, and the highest Sn content, with 69.0 ppm. Boulder sample SWI-20-46, from the same location, returned the highest Ta content in the work program, with 18.1 ppm. From the sample description in Appendix I, this sample is "granite;...... light grey-brown, medium-grained, massive; 65% light brown altered feldspar, 30% grey quartz, 4% black biotite, 1% black amphibole". This sample clearly reflects the fractionated phase of the Seagull Batholith with 650 ppm Rb, the highest Rb in the program, but with 122.2 ppm Nb and 13.6 ppm U, suggesting that concentrates from this type of mineralization could be problematic.

Figure 10 shows samples collected in the area of the highway #1 bridge over the Rancheria River. Samples from this area would be expected to reflect the large Cassiar Batholith to the east, rather than the Seagull Batholith to the west. Although not to levels that would be of interest in this program, it is noteworthy that fractionation levels in samples SWI-20-58 to -73 on Figure 10, are higher than levels shown in samples SWI-20-21 to -44 to the west (Figures 7 & 8), and almost as high as levels in samples SWI-20-1 to -20 in the Seagull Creek area (Figure 6). This suggests the possibility of a fractionated phase of the Cassiar Batholith being present along its west faulted boundary. This is supported by samples SWI-20-72 and -73 from a mylonitized white granite lithology exposed in a highway cut immediately east of Porcupine Creek, which returned elevated levels in elements indicating magmatic fractionation.

CONCLUSIONS & RECOMMENDATIONS

Results from this work program were generally disappointing. No evidence was found for any additional subcropping or unexposed cupolas of the Seagull Batholith to the east or southeast. Tantalum (Ta) levels in both stream sediments and boulder samples were far below the threshold that was set for continuing the project. As well, levels of niobium (Nb) and uranium (U), which are dilutionary and/or deleterious to a mineral concentrate, were at or well above Ta levels. Potential for a primary Ta deposit in this area appears to be very low, although Ta could still be a credit in a Sn concentrate from this district.

No further work is recommended for this type of Ta target in this area.

(signed, sealed, Engineers Geoscientists Manitoba Cert #4660) William C. Hood, P.Geo. December 1, 2020

CERTIFICATE

For: William C. Hood, P.Geo.

P.O. Box 1722; 508 Elm Ave. Beausejour, Manitoba Canada R0E0C0 (204)268-3455h (204)266-0659c bhood@mts.net

1) I am a graduate of the University of Manitoba (1979) with a B.Sc. (Honours) Degree in Science (Geology) and I have practiced my profession since that time.

2) I am a Registered Professional Geoscientist with Engineers Geoscientists Manitoba since 1982.

3) I have been employed by Tantalum Mining Corporation (1979-1983), Province of Manitoba Departments of Labour (1992 – 1995) & Energy and Mines (1995 - 1997), and ProAm Exploration Corporation (1997 – 2000), as well as operating my own business as W.C. Hood, Consulting Geologist (1983 – 1992 & 2000 – present).

4) I have researched, conducted and supervised a wide range of exploration programs for hydrothermal gold, volcanogenic copper-zinc, magmatic nickel-copper-PGE, pegmatitic tantalum-lithium-cesium, kimberlitic diamonds and various industrial mineral commodities.

(signed, sealed, Engineers Geoscientists Manitoba Cert #4660)

William C. Hood, P.Geo. December 1, 2020

APPENDIX I – SAMPLE DESCRIPTIONS & ASSAY CERTIFICATES

-UTM coordinates are NAD83, Zone 9.

<u>SWI-20-1</u>: stream sediment; collected on tributary about 50-100m west of Seagull Ck; 377999E/6654711N, 909m; sample from lower end of a gravel-boulder bar along inside of bend on north side of creek; brown clay-sand-gravel; screened sample is brown & sandy; +4mm is 55% grey to brown sediment/schist, 40% white to pink-brown granite/granodiorite & 5% light grey quartz.

<u>SWI-20-2</u>: granite; boulder from same location as SWI-20-1; white, massive, medium-grained, weakly magnetic; 60% white feldspar, 25% grey quartz, 10% black amphibole, 5% black biotite, trace pyrite.

<u>SWI-20-3</u>: granite; boulder from same location as SWI-20-1; pink-brown, aplitic, massive, fine-grained; probable mix of pink feldspar, quartz & mica; slightly rusty along seams.

<u>SWI-20-4</u>: cherty mudstone; boulder from same location as SWI-20-1; black, very fine-grained, grossly layered/bedded; weakly brecciated with minor calcite veinlets.

<u>SWI-20-5</u>: quartz; boulder from same location as SWI-20-1; white to grey, finegrained, sugary; 10% altered brown schist fragment inclusions, minor pyrite. <u>SWI-20-6</u>: stream sediment; Seagull Ck; 378362E/6655007N, 914m; sample from brown silt-sand-gravel bar under alder thicket along east side of creek; screened sample is light brown & silt-sand; +4mm is 55% grey to brown sediment/schist, 40% white to pink-brown granite/granodiorite & 5% light grey quartz.

<u>SWI-20-7</u>: aplitic granite; boulder from same location as SWI-20-6; composite sample from two similar boulders; white to pink-brown, fine-grained, massive; 60% white to pink feldspar, 35% grey quartz, 5% grey rounded inclusions up to 5mm size, minor pyrite.

<u>SWI-20-8</u>: cherty siltstone; boulder from same location as SWI-20-6; grey, very fine-grained, weakly schistose; about 5% of sample is a light brown sericite schist band with local kink folding.

<u>SWI-20-9</u>: quartz; boulder from same location as SWI-20-6; composite sample from three boulders; range from fine-grained & sugary to coarse-grained; 5% black schist inclusions; 5% rusty patches probably after Fe carbonate; minor pyrite.

<u>SWI-20-10</u>: stream sediment; Seagull Ck; 378345E/6656000N, 933m; sample from brown sand-gravel bar behind large boulder along east side of creek; screened sample is brown & sandy; +4mm is 60% grey to brown sediment/schist, 38% white to pink-brown granite/granodiorite & 2% grey quartz.

<u>SWI-20-11</u>: granite; boulder from same location as SWI-20-10; white, mediumgrained, massive; 60% white feldspar, 25% grey quartz, 10% black amphibole, 5% black biotite.

<u>SWI-20-12</u>: granite; boulder from same location as SWI-20-10; light grey, finegrained, massive; 65% grey feldspar, 25% grey quartz, 5% K-feldspar phenocrysts, 5% biotite/amphibole.

<u>SWI-20-13</u>: sandstone; boulder from same location as SWI-20-10; pinkish-brown, fine-grained, massive; about 90% fine rounded quartz grains; slightly rusty. <u>SWI-20-14</u>: quartz; boulder from same location as SWI-20-10; 90% white to grey fine-grained quartz, 5% black graphitic schist inclusions, 5% rusty patches probably after Fe-carbonate.

<u>SWI-20-15</u>: sandstone; bedrock sample; Hwy #1 road cut; 380661E/6655276N, 906m; greenish-grey, fine-grained, massive; well cemented feldspathic sandstone with 10% rounded quartz grains.

<u>SWI-20-16</u>: stream sediment; unnamed creek; 381817E/6655668N, 917m; sample from brown sand-gravel area behind boulders on west side of creek; screened sample is brown & sandy; +4mm is 75% grey to brown sediment/schist, 24% pinkbrown granite/granodiorite & 1% white quartz.

<u>SWI-20-17</u>: granite; boulder from same location as SWI-20-16; light brown, medium-grained, massive, weakly altered; 60% white to light brown altered feldspar, 25% grey quartz, 10% black biotite, 5% black amphibole.

<u>SWI-20-18</u>: sandstone(?); boulder from same location as SWI-20-16; brown, medium- to coarse-grained, schistose; probable sheared & rusty sandstone to conglomerate with elongate grains of black graphitic shale up to 3x10mm in matrix of fine-grained feldspar grains with minor quartz; about 20% rusty sericite schist.

<u>SWI-20-19</u>: chert; boulder from same location as SWI-20-16; grey, very finegrained, brecciated; about 5% irregular white calcite veinlets.

<u>SWI-20-20</u>: quartz; boulder from same location as SWI-20-16; composite sample from two similar boulders; white to rusty light brown, medium- to coarse-grained, massive.

<u>SWI-20-21</u>: sandstone; bedrock sample from probable outcrop in Hwy #1 road cut; 382452E/6655815N, 959m; grey-brown, fine-grained, massive; well-sorted & well-cemented with about half white feldspar grains & half grey quartz grains. <u>SWI-20-22</u>: siltstone(?); bedrock sample; 384254E/6656514N, 1010m; greybrown, fine-grained, weakly schistose; heavily altered sediment.

<u>SWI-20-23</u>: quartz; bedrock sample; 384317E/6656532N, 998m; light grey, very fine-grained, massive; sample from 5m thick cross-cutting quartz vein trending north-south/60E; minor light brown carbonate alteration.

<u>SWI-20-24</u>: quartz; bedrock sample; same general location & lithology as SWI-20-23.

<u>SWI-20-25</u>: quartz; bedrock sample; 384129E/6656643N, 1017m; white to grey, fine- to coarse-grained, massive to fractured; sample from area of abundant irregular quartz veins in an area of hornfelsed sediments; sample is a mix of 60% white fractured quartz, 40% grey altered fine-grained wallrock inclusions & minor light brown altered carbonate.

<u>SWI-20-26</u>: sandstone; bedrock sample; 384235E/6656888N, 1010m; light grey, fine-grained, massive; well cemented feldspathic sandstone with 10% quartz grains; sample from 2m thick bed trending 320/35S in area of predominantly black graphitic sediments.

<u>SWI-20-27</u>: stream sediment; unnamed creek; 385528E/6656928N, 978m; sample of brown to black sand-gravel from behind large boulder on west edge of creek; lots of graphitic schist, sericite schist & quartz boulders in this creek; screened sample is brown & sandy; +4mm is 75% black graphitic schist, 10% white granite/granodiorite, 10% white quartz & 5% grey to yellow-brown sericite schist. <u>SWI-20-28</u>: granodiorite; boulder from same location as SWI-20-26; white to light grey, fine- to medium-grained, massive; 70% white feldspar, 20% grey quartz, 9% black biotite, 1% disseminated pyrite.

<u>SWI-20-29</u>: conglomerate; boulder from same location as SWI-20-26; rusty brown on weathered surface, grey on fresh surface, massive; chert pebble conglomerate with rounded light to dark grey clasts up to 1.5 cm size; matrix/cement is mainly Fe-carbonate which is rusty & weathering out.

<u>SWI-20-30</u>: quartz vein/graphite schist; boulder from same location as SWI-20-26; mix of 60% coarse-grained massive white quartz vein that is 8cm thick in 40% black graphitic schist wallrock.

<u>SWI-20-31</u>: quartz; boulder from same location as SWI-20-26; white, coarsegrained, massive; 90% white quartz & 10% pasty white Fe-carbonate. <u>SWI-20-32</u>: sericite schist; bedrock sample; 386068E/6657024N, 990m; sample from low outcrop on north side of Hwy #1; grey, fine-grained, strongly schistose; rusty on weathered surface; schistosity trends about 280/30S.

<u>SWI-20-33</u>: sericite schist; bedrock sample; 386311E/6657140N, 1011m; sample from large open cut about 50m north of Hwy #1; rock was used for riprap at Hwy #1/Swift River crossing; light yellow-brown to rusty, fine-grained, schistose; about 70% very fine-grained sugary quartz, 30% yellow-brown sericite, minor pyrite. <u>SWI-20-34</u>: sericite schist; bedrock sample from same location as SWI-20-33; grey, fine-grained, schistose; about 70& very fine-grained sugary quartz, 30% grey sericite.

<u>SWI-20-35</u>: stream sediment; unnamed creek; 388025E/6658352N, 978m; sample from sandy gravel from between old timbers put down in stream crossing of old overgrown bush road; screened sample is brown & sandy; +4mm is 70% grey to brown sediment/schist, 25% white to pink-brown granite/granodiorite & 5% white to grey quartz.

<u>SWI-20-36</u>: sandstone; boulder from same creek as SWI-20-35 but about 300m east along north ditch of Hwy #1; 388329E/6658393N, 926m; white, fine-grained, massive; sample appeared to be aplitic granite in field but probable well-cemented fine sandstone with 20% rounded grey quartz grains.

<u>SWI-20-37</u>: granite; boulder from same creek as SWI-20-35 but about 300m east along north ditch of Hwy #1; 388329E/6658393N, 926m; white to beige, medium-grained, weakly schistose; probable granite with 60% white feldspar, 25% grey quartz, 10% yellowish-brown sericite & 5% grey-brown biotite patches from altered wallrock.

<u>SWI-20-38</u>: granite; boulder from same creek as SWI-20-35 but about 300m east along north ditch of Hwy #1; 388329E/6658393N, 926m; composite sample of three small boulders that are very similar in appearance; white, fine- to medium-grained, massive; 70% white feldspar, 30% grey quartz, minor red-brown garnet, minor fine black minerals.

<u>SWI-20-39</u>: quartz; bedrock sample taken from outcrop about 25m north of SWI-20-35; 387976E/6658352N, 979m; large area of irregular quartz veining east of small beaver pond; local pyrite along south side of veining; strong lineation in area -60/320; white to brownish, medium-grained, weakly schistose; 85% white to light grey sugary to medium-grained quartz, 10% rusty altered sericite/biotite; 5% pyrite in cubes up to 2mm size, minor altered carbonate.

<u>SWI-20-40</u>: stream sediment; sample from southwest shore of small pond in cutoff meander about 100m southeast of the Swift River; 389367E/6659138N,

913m; sample from area of brown-black sand gravel in area of mud & boulders; screened sample is brown & sandy; +4mm is 70% grey to brown sediment/schist, 29% white to pink-brown granite/granodiorite & 1% white to grey quartz. <u>SWI-20-41</u>: granite; boulder from same location as SWI-20-40; pasty white, fineto medium-grained, weakly banded & gneissic. Weakly sheared; 70% white feldspar, 30% quartz, minor fine-grained black minerals.

<u>SWI-20-42</u>: granite; boulder from same location as SWI-20-40; light grey-brown, fine-grained, weakly schistose & sheared; altered with 10% light brown carbonate & sericite, 60% altered feldspar, 30% grey quartz, minor black minerals. <u>SWI-20-43</u>: sericite schist; boulder from same location as SWI-20-40; white to reddish-pink, fine-grained, schistose; about 70& sugary quartz, 30% altered sericite.

<u>SWI-20-44</u>: quartz vein; boulder from same location as SWI-20-40; sample consists of a mix white quartz veining & altered sandstone wallrock; overall rock is about 20% carbonate, 20% rounded quartz clastic grains & 60% vein quartz. <u>SWI-20-45</u>: stream sediment; Swift River; 386218E/6669825N, 1053m; sample from brown pebbly sand in gravel bar along northeast shore of Swift River about 10m northwest of road crossing; screened sample is grey-brown & sandy; +4mm is 55% grey to brown sediment/schist, 40% white to pink-brown granite/granodiorite & 5% white quartz.

<u>SWI-20-46</u>: granite; boulder from same location as SWI-20-45; light grey-brown, medium-grained, massive; 65% light brown altered feldspar, 30% grey quartz, 4% black biotite, 1% black amphibole.

<u>SWI-20-47</u>: granite; boulders from same location as SWI-20-45; composite sample of two similar aplitic granite boulders; white to light brown, fine-grained, massive to slightly banded; about 70% weakly altered feldspar & 30% grey quartz.

<u>SWI-20-48</u>: quartz; boulders from same location as SWI-20-45; composite sample of several quartz vein boulders; variable white to grey, fine- to coarse-grained, massive to schistose; 90% quartz, 10% carbonate/sericite/rusty alteration.

<u>SWI-20-49</u>: stream sediment; unnamed creek; 391180E/6668174N, 1025m; sample from brown sand-gravel area along east side of small creek about 10m north of Swift River road; screened sample is grey-brown & sandy; +4mm is 85% grey to brown sediment/schist, 14% white to pink-brown granite/granodiorite & 1% white quartz.

<u>SWI-20-50</u>: granite; boulder from same location as SWI-20-49; light pink-brown, medium-grained, weakly foliated; 50% light pink-brown feldspar, 35% grey quartz, 15% silver muscovite.

<u>SWI-20-51</u>: limestone; boulder from same location as SWI-20-49; pasty white to grey, fine-grained, brecciated; abundant carbonate fracture fillings.

<u>SWI-20-52</u>: quartz; boulder from same location as SWI-20-49; white to light brown, fine- to medium-grained, massive to schistose; mix of about 50% white quartz & 50% light brown carbonate & sericite.

<u>SWI-20-53</u>: quartz; boulder from same location as SWI-20-49; variable grey, medium- to coarse-grained, massive; 85% quartz with 15% altered carbonate-sericite along fracture fillings; rusty along weathered edges of sample.

<u>SWI-20-54</u>: stream sediment; Upper Rancheria River; 392987E/6665374N, 980m; sample from rusty brown coloured gravelly boulder bar along the west shore of river about 300m east of the north end of the Pine Lake air strip; screened sample is brown & silt-sand; +4mm is 80% brown sediment/schist, 15% pink-brown granite/granodiorite & 5% white quartz, but all pebbles in this sample have a dark brown clay-rust coating.

<u>SWI-20-55</u>: diorite; boulder from same location as SWI-20-54; grey, mediumgrained, massive; 70% light grey feldspar, 20% black amphibole, 10% grey quartz. <u>SWI-20-56</u>: granite; boulder from same location as SWI-20-54; light brownishgrey, very fine-grained, weakly foliated; probable aplitic granite with about 70% feldspar & 30% quartz; weakly altered.

<u>SWI-20-57</u>: siltstone; brown-grey to black, very fine-grained, thin bedded & contorted; intermediate composition sediment that has been altered & brecciated.

<u>SWI-20-58</u>: stream sediment; Upper Rancheria River; 392652E/6662469N, 969m; sample from sand-gravel-boulder bar along east shore of river; screened sample is brown & sandy; +4mm is 80% grey-brown sediment/schist, 19% pink-brown granite/granodiorite & 1% white quartz.

<u>SWI-20-59</u>: granite; boulder from same location as SWI-20-58; light pink-brown, medium- to coarse-grained, massive; 60% stained/altered pink-brown feldspar in crystals up to 4x6mm, 30% grey quartz, 5% black amphibole & 5% black biotite. SWI-20-60: granodiorite; boulder from same location as SWI-20-58; grey to

brown, mostly fine-grained, massive; 70% light grey feldspar, 20% grey quartz, 10% biotite in rounded pods up to 3mm size, minor pyrite; altered brownish along weathered edges.

<u>SWI-20-61</u>: quartz; boulder from same location as SWI-20-58; white to light grey, medium-grained, massive; minor rusty carbonate, minor pyrite.

<u>SWI-20-62</u>: quartz; boulder from same location as SWI-20-58; white, very coarsegrained, massive; 10% altered biotite, minor altered carbonate. <u>SWI-20-63</u>: stream sediment; Rancheria River; 394722E/6660529N, 943m; sample from clay-sand-boulder bar under exposed roots of large tree along northeast shore of river; screened sample is brown & sandy; +4mm is 80% grey-brown sediment/schist, 18% pink-brown granite/granodiorite & 2% white to grey quartz. <u>SWI-20-64</u>: granodiorite; boulder from same location as SWI-20-63; grey, fine-grained, weakly foliated; 80% grey feldspar, 10% grey quartz & 10% biotite/sericite forming weak foliation.

<u>SWI-20-65</u>: granite; boulder from same location as SWI-20-63; white-beige, fineto medium-grained, massive; 65% pasty white feldspar locally altered to light yellowish-brown, 30% grey quartz & 5% biotite/chlorite

<u>SWI-20-66</u>: sandstone; boulder from same location as SWI-20-63; brown-grey, fine-grained, weakly brecciated; probable well-cemented quartz sandstone; weakly altered & brecciated with minor black chlorite fracture fillings.

<u>SWI-20-67</u>: quartz vein; boulder from same location as SWI-20-63; white to grey, very coarse-grained, massive to schistose; mix of about 60% quartz with 40% coarse patches of dark green-brown chlorite/biotite.

<u>SWI-20-68</u>: stream sediment; Porcupine Creek; 397486E/6661490N, 943m; sample from sand-gravel bar along braided meandering creek with lots of granite boulders; screened sample is brown & silt-sand; +4mm is 90% pink-brown granite/granodiorite, 9% dark grey sediment/schist & 1% white to grey quartz. <u>SWI-20-69</u>: granodiorite; boulder from same location as SWI-20-68; grey, medium- to coarse-grained, strongly porphyritic, foliated; about 40% light grey feldspar phenocrysts up to 4x8mm size in a dark grey matrix of fine- to medium grained feldspar, quartz & biotite.

<u>SWI-20-70</u>: granite; boulder from same location as SWI-20-68; light grey, fine- to medium-grained, massive; 70% light grey feldspar, 30% grey quartz & minor biotite/chlorite.

<u>SWI-20-71</u>: diorite(?); boulder from same location as SWI-20-68; dark grey, finegrained, weakly schistose; 80% dark grey plagioclase feldspar & 20% black amphibole, minor pyrite.

<u>SWI-20-72</u>: granite; bedrock sample from rock cut on north side of Highway #1; 397699E/6661396N, 986m; outcrop is mainly porphyritic granodiorite with local heavily sheared white lithology; pasty white, fine- to medium-grained, schistose; 60% altered white feldspar, 30% light grey quartz & 10% silvery muscovite. <u>SWI-20-73</u>: granite; bedrock sample from rock cut on north side of Highway #1; 397699E/6661396N, 986m; outcrop is mainly porphyritic granodiorite with local heavily sheared white lithology; pasty white, fine-grained, strongly schistose; probable felsic granite but mylonitized into a very fine-grained mix of sugary feldspar, quartz & mica with about 2% fine black minerals that are possible tourmaline.

APPENDIX II – ANALYTICAL DATA

Quality Analysis ...

Actiabs

Innovative Technologies

Report No.:	A20-10250
Report Date:	17-Sep-20
Date Submitted:	31-Aug-20
Your Reference:	WOLF PROJECT

WILLIAM C. HOOD PO BOX 1722 BEAUSEJOUR MB R0E0C0 Canada

ATTN: BILL HOOD

CERTIFICATE OF ANALYSIS

73 Rock and Soli samples were submitted for analysis.

The following analytical paci	age(s) were requested:	Testing Date:	
4F-F	QOP Fluorine (Fusion Specific ion Electrode-ISE)	2020-09-10 14:11:34	
UT-7	QOP Sodium Peroxide (Sodium Peroxide Fusion ICPOES + ICPMS)	2020-09-09 14:31:51	

REPORT A20-10250

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittai regarding excess material, it will be discarded within 90 days of this report. Our ilability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

CERTIFIED BY:

Emmanuel Eseme , Ph.D. Quality Control Coordinator

ACTIVATION LABORATORIES LTD. 41 Bittem Street, Ancaster, Ontario, Canada, L9G 4V5 TELEPHORE +905 649-9511 or +1.888.228.5227 FAX +1.905 648.9513 E-MAIL Ancaster@actiabs.com ACTLABS GROUP WEBSITE www.actiabs.com 30

Activation Laboratories Ltd.

Results

Report:

Unit Symbol % Lower Limit 0.01 Method Code FUS SWI-20-1 0.05 SWI-20-2 0.01											I			1					2			Ī
4 0.01 3de FUS- 1SE 0.05 0.01		ppm ppm	mdd	mdd	mdd			d udd			E	ppm p	ppm ppm	d udd			ä		E	ppm p	bpm pg	mdd
000 FUS- ISE 0.05				0	0	1								0.3			05 0.					-
	Na202 N	NS- NS- NS- NS- NS- NS- NS- NS- NS- NS-	FUS- MS- Na202	NIS- NIS- NIZO2	FUS- FUS- MS- MS- Na202 Na20	22	PUS- Na202 M	MS- MS- Na202 N	HUS- MS- Na202 N	FUS- MS- Na202 N	FUS- MS- Na202 N	FUS- MS- Na202 N	Na202 N	NIS- NIS- NIA202 N	FUS- MS- Na202 N	FUS- MS- Na202	FUS- Na202 M	MS-	MS- MS- Na202 N	MS- MS- Na202 N	FUS- MS- Na202 N	FUS- MS- Na202
333	6.12	33	50	671	13	evi V	1.92	< 2	132	15.3	220	6.2	39	18.5		1.3	4.93	14.5	15.7	2.0	4.3	10
	8.30	× Pi	< 10	1740	< 3	< 5	2.29	<2	10.9	3.1	100	0.5	4	1.0	0.5	1.0	1.57	20.3	0.8	1.1	0.3	< 10
5.75	6.72	7	40	687	N N	ev i	0.17	< N	55.0	7.3	110	5.6	15	22	1.6	1.1	2.11	15.9	3.4	1.8	0.5	< 10
	1	53	20	550	Y CO	N	< 0.01	V S	16.3	1.1	240	1.6	9	1.3	0.9	0.3	1.39	4.5	15	24	0.3	< 10
SWI-20-5 0.02		Y DI	< 10	412	N N	N V	2.24	× 2	32.6	3.9	210	2.1	6	2.4	1.2	0.7	0.99	9.0	2.7	1.3	0.5	< 10
2.23	1	14	30	999	4	C4 V	2.72	4 N	80.7	14.2	200	2.3	27.	8.6	5.2	1.3	3.74	15.6	1.1	2.0	1.8	10
SWI-20-7 < 0.01	6.97	434	< 10	529	60	N V	0.38	<2	31.5	0.4	100	2.7	10	4.0	2.7	0.2	0.56	16.7	3.2	1.4	0.9	< 10
<u>х</u>	0.72	15	< 10	213	40 V	er v	< 0.01	< 2	10.0	< 0.2	80	0.7	7	0.6	0.2	0.2	0.19	3.6	0.7	1.5	< 0.2	< 10
SWI-20-9 0.01	0.36	6	< 10	254	× 3	20	0.31	< 2	4.0	0.4	110	0.4	55	0.4	< 0.1	0.1	0.66	1.9	0.4	1.7	< 0.2	< 10
SWI-20-10 0.04	5.99	34	40	730	4	20	2.68	<2	131	14.2	230	2.8	30	10.3	5.5	1.5	5.78	18.8	10.3	2.1	2.4	20
~	8.41	N.	< 10	1700	N N	× N	2.54	<2	15.7	4.2	8	0.8	8	1.2	0.8	1.0	1.80	19.7	1.5	1.0	< 0.2	< 10
3	6.58	10	< 10	22	10	× 20	0.42	×2	150	< 0.2	120	16.9	8	17.4	11.9	< 0.1	1.04	34.8	14.0	3.0	3.9	< 10
	· · · ·	m	20	239	CO V	N N	0.20	< 2	28.7	1.4	110	0.9	8	1.5	0.8	0.6	0.77	5.5	1.8	1.3	0.3	< 10
SWI-20-14 < 0.01	11	× 5	< 10	71	× 3	× 2	0.80	< 2	7.3	3.0	290	0.3	12	0.8	0.4	< 0.1	0.61	2.1	0.4	1.8	< 0.2	< 10
SWI-20-15 < 0.01	10.6	9	< 10	488	N G	N N	5.35	< 2	23.0	27.9	120	0.9	116	3.7	2.3	1.5	7.51	20.8	3.2	1.9	0.8	< 10
		34	80	964	4	N N	1.83	< 2	93.4	17.4	210	5.9	36	9.0	5.3	2.0	4.64	12.7	8.5	2.2	2.1	10
58 58	6.21	7	30	29	7	× 5	0.12	<2	130	0.9	8	9.8	DI	11.0	7.1	< 0.1	1.00	28.1	8.7	3.5	2.4	10
	1.80	11	20	1380	N 3	N N	0.08	< 2	8.7	4.1	150	3.2	131	1.7	1.0	0.7	9.58	6.3	1.3	1.9	0.2	× 10
	0.25	4 V	< 10	180	N 3	N N	0.30	< 2	2.3	21	170	0.5	11	< 0.3	0.2	0.2	0.41	1.1	0.2	2.1	< 0.2	< 10
	0.17	N N	< 10	26	es y	N N	0.10	× 2	0.9	3.1	8	0.8	9	< 0.3	0.1	0.1	0.31	< 0.2	< 0.1	5.5	< 0.2	< 10
*		9		555	N N	N Y	0.88	< N	53.1	5.7	190	3.9	23	2.7	1.3	1.0	1.78	13.0	3.2	1.5	0.5	< 10
	3.20	26	-	> 10000	N 3	N N	0.05	× 2	30.3	7.7	140	4.1	34	2.4	1.3	5.3	3.56	14.7	3.1	2.4	0.5	< 10
	0.51	9	10	2680	N.	N.	0.04	< 2	10.8	0.3	140	1.0	6	< 0.3	0.2	0.9	0.29	0.6	0.3	1.4	< 0.2	< 10
SWI-20-24 < 0.01	0.40	N N	< 10	747	N CO	N N	0.02	N N	5.5	0.7	140	0.2	19	0.5	0.5	0.3	0.34	1.2	1.0	1.5	< 0.2	< 10
×.	0.29	0.4	< 10	613	v o	N N	20.0	22	3.5	1.3	130	0.4	0 9	eu>	1.0	0.3	97.0	0.1	2.0	n	< 0.2	×10
SWI-20-26 0.02		N S	< 10	2050	N C	N C	101	V	51.6 60.0	1.5	06	5.4	12	3.1	1.4	6.1	2.00	17.0	3.0	9.	0.6	< 10.
		9 4	90	1000	a c	V	0.01	N C	12.0	1.11	1001	2.0	100	0.4	1.2	1.0	0.00	10.1		0.1	2.0	101 2
SWI-20-29 0.01	1.25	n r	20	773	o eo	10.0	1 96	101	10.7	100	120	14	36	0.9	0.4	0.4	0.96	3.0	90	14	- 0.2	10
	1 49	. a	~ 10	662	i et v	10	0.06	101	13.9	04	120	14	2	11	0.4	0.8	0.50	0.0	10	10	-00	10
33		14	× 10	0000	a en v	101	0.11	101	108	0.3	160	0.7	a	-03	102		0.29	13	-01	1.1	-00	× 10
SWI-20-32 0.02	3.23	Y QL	30	2840	N CO	CV V	0.08	× 2	22.3	2.8	100	1.9	36	0.8	0.5	0.9	2.29	5.9	1.1	1.5	0.2	< 10
		10 V	× 10	3470	CO V	Ci Y	0.02	×2	6.8	0.6	80	0.7	8	0.5	0.4		0.31	6.1	0.7	1.8	< 0.2	< 10
SWI-20-34 < 0.01	0.58	< 5	< 10	202	4 03	N NO	0.11	<2	4.0	0.3	130	0.6	10	0.3	0.2		0.21	1.1	< 0.1	1.7	< 0.2	< 10
	5.66	17	370	941	× 3	× 2	2.16	< 2	58.1	17.0	190	2.9	61	4.1	2.3		4.27	12.6	5.6	1.7	0.9	10
SWI-20-36 < 0.01	1.63	13	10	293	N CS	N V	0.06	<2	27.3	3.1	110	1.1	7	2.0	1.0	0.3	0.69	3.1	2.1	1.4	0.5	< 10
SWI-20-37 < 0.01	0.63	× 5	< 10	519	×3	< 2	0.07	< 2	3.7	2.7	140	0.7	12	0.3	0.3	0.3	0.32	3.3	0.2	1.9	< 0.2	< 10
000	7.50	5	< 10	230	N G	× S	0.86	×2	7.6	0.4	80	1.9	10	3.2	1.8	0.3	0.30	16.7	2.1	2.1	0.7	< 10
SWI-20-39 < 0.01	0.09	17	× 10	68	N CO	N N	0.20	< 2	7.8	7.1	110	0.4	10	0.7	0.4	0.2	1.06	0.5	0.6	1.7	< 0.2	10
52 52	5.33	0	20	732	N SO	CN V	8.71	< 50	47.2	8.4	210	2.1	33	4.1	2.5	1.5	2.70	11.1	4.3	1.2	1.0	< 10
88	2.33	6	< 10	60	en v	N NO	0.30	< 2	29.3	1.1	60	0.5	9	1.0	0.7	0.4	0.61	2.4	2.3	1.6	< 0.2	< 10
SWI-20-42 < 0.01	0.68	15	< 10	698	× 3	× 2	< 0.01	< 2	6.3	1.0	130	1.1	88	1.2	0.8	0.3	1.94	2.0	0.8	2.3	0.2	< 10
	0.61	N D	< 10	657	v v	V V	0.06	< S	3.9	< 0.2	110	0.4	7	< 0.3	0.2	0.1	0.27	1.0	0.1	15	< 0.2	< 10
*	1.32	v v	< 10	32	× 3	V V	0.17	< S	30.9	2.3	140	0.7	25	1.2	0.6	0.3	0.71	3.6	1.7	1.1	0.2	< 10
		37	120	691	4	× N	1.92	64	137	14.2	170	6.6	21	7.6	5.3	2.1	4.07	19.6	9.5	2.3	1.9	8
1.5		16	20	72	9	N N	0.25	× 2	158	0.3	2	7.7	20	11.9	8.8	< 0.1	0.81	40.3	9.1	3.2	2.9	10
V	6.80	10	< 10	720	4	N Y	3.49	< 2	35.3	3.0	8	2.8	28	6.2	3.1	0.5	2.35	22.8	6.9	1.4	1.5	× 10
	1.90	16	< 10	282	N	N N	1.37	< N	7.2	2.1	100	2.4	2300	1.0	0.5	0.4	1.13	4.7	0.6	1.9	0.2	< 10
SWI-20-49 0.03	6.82	14	90	832	4	N Y	1.68	<2	109	13.7	190	7.3	34	6.9	4.3	1.7	4.02	16.6	7.9	2.0	1.4	10

Activation Laboratories Ltd.

Analyte Symbol	1	AI N	As E	8	Ba	Be	Bi	3	Cd b	Ce	8	ö	Cs	Cu	Dy.	Li.	Eu	Fo	Ga	Gd	Ge	Ho	Ŧ
Unit Symbol	%	36	ppm p	undo	mdd	-	b mdd	*	d mdd	mdd	mdd	mod	mdd	mdd	mdd	mdd	undd	%	mdd	mdd	mdd	mdd	mad
Lower Limit		0.01		10	9		2	0.01	01	80	0.2	8	0.1	N	0.3	0.1	0.1	0.05	0.2	0.1	0.7	0.2	10
Method Code	FUS-	FUS- Na202	Na202 N	FUS- MS- Na202	FUS- MS- Nu202	FUS- MS- Na202	RUS- MS- Na202	FUS- Na202	FUS- F MS- MS- Na202 N	ż. ö	. do	S. 202	FUS- MS- Na202	FUS- MS- Na2O2	ch . 60	FUS- MS- Na202	FUS- MS- Na202	FUS- Na202		FUS- MS- Na202	FUS- MS- Na202	FUS- MS- Na202	FUS- MS- Na202
SWI-20-50.	0.03	7.53	4 P	20	101		<2	0.37	<2	5.8	0.4	02	8.3	3	1.5	9.0	0.1	0.57	20.8		2.7	< 0.2	< 10
SWI-20-51	0.02	9.99	14	< 10	456	4 G	< 2	8.02	<2	56.8	16.2	200	5.7	12	4.5					42	1.9	0.9	< 10
SWI-20-52	< 0.01	0.30	9	< 10	17	4 G	N V	0.05	< 2	13.2	1.6	100	0.7	4	0.5	0.3	0.1	0.34	1.0	0.7	1.4	< 0.2	< 10
SWI-20-53	< 0.01	0.32	4 P	< 10	65	N SO	× 2	0.03	<2	2.5	0.9	100	0.6	10	0.3	0.3	0.2	0.54	1.1	0.3	1.4	< 0.2	< 10
SWI-20-54	0.03	6.73	51	50	734	4	< 2	2.14	< 2	84.8	10.8	190	6.9	23	6.1	3.6	1.6	4.62	18.2	1.7	1.5	1.2	< 10
SWI-20-55	0.01	8.80	4 Pe	< 10	1210	< 3	< S	4.92	× 2	25.0	18.8	130	1.1	33	4.1	2.5	1.4	4.81	16.8	3.0	23	0.8	< 10
SWI-20-56	< 0.01	4.63	đ	< 10	684	< 3	10	2.47	<2	58.8	3.6	80	6.1	7	2.5	1.0	0.7	1.55	8.8	2.6	1.3	0.4	< 10
SWI-20-57	0.07	5.74	29	< 10	2280	< 3	< 2	4.52	<2	21.1	12.2	320	2.4	36	5.1	3.2	1.4	5.09	17.1	3.6	1.1	1.2	< 10
SWI-20-58	0.05	6.83	33	60	747	< 3	< 2	3.23	<2	99.0	16.9	210	6.8	40	6.3	4.2	1.8	5.14	17.6	7.9	1.9	1.6	10
SWI-20-59	0.10	6.26	9	30	154	- 12	×2	0.22	<2	150	1.4	20	9.3	3	8.7	5.1	0.3	1.18	25.5	9.9	2.3	1.6	< 10
SWI-20-60	< 0.01	8.31	66	< 10	1440	< 30	2	3.68	< 2	25.9	8.4	80	2.4	53	1.7	1.0	0.6	2.50	15.1	1.7	1.7	0.5	< 10 <
SWI-20-61	< 0.01	0.26	< 5	< 10	112	< 3	< 2	0.04	<2	2.5	0.3	90	0.4	9	< 0.3	< 0.1	0.1	0.30	0.2	0.2	1.4	< 0.2	< 10
SWI-20-62	< 0.01	0.24	× 5	< 10	16	< 3	< 2	0.06	<2	4.3	0.5	90	0.1	9	< 0.3	0.2	< 0.1	0.66	0.7	0.2	1.2	< 0.2	< 10
SWI-20-63	0.02	6.04	23	50	844	< 3	<2	1.99	<2	62.7	11.0	190	5.2	20	4.1	1.9	1.3	3.79	15.6	4.5	1.7	0.8	< 10
SWI-20-64	< 0.01	5.09	< 5	< 10	590	< 3	<2	0.25	<2	80.6	6.4	100	0.9	8	2.8	1.6	1.0	1.56	13.7	4.5	1.3	0.5	10
SWI-20-65	< 0.01	8.84	× 5	< 10	423	< 3	< 2	3.42	<2	11.4	0.9	20	0.5	10	1.1	0.6	0.6	0.50	18.2	1.1	1.0	0.2	< 10
SWI-20-66	< 0.01	2.70	8	< 10	180	< 3	<2	0.55	<2	34.1	4.6	110	0.7	17.	1.7	0.8	0.9	1.31	8.0	2.0	1.4	0.4	< 10
SWI-20-67	< 0.01	1.85	× 5	< 10	170	< 3	< 2	0.25	<2	21.9	8.1	110	0.7	42	0.9	0.6	0.3	1.53	3.9	1.1	1.5	0.2	< 10
SWI-20-68	0.03	6.80	12	40	771	4	<2	1.55	<2	143	9.1	120	13.6	22	6.8	3.7	2.0	2.83	20.3	9.4	21	1.3	10
SWI-20-69	0.02	7.43	< 5	< 10	1650	4	26	0.55	<2	67.5	1.7	80	8.2	8	7.0	3.4	1.4	1.31	16.2	4.8	2.0	1.3	< 10
SWI-20-70	× 0.01	7.38	< 5	< 10	1010	< 3	< 2	0.48	<2	19.6	0.3	20	2.5	8	1.5	0.7	1.1	0.52	13.6	1.5	2.1	0.4	< 10
SWI-20-71	< 0.01	2.70	10	< 10	166	< 3	< 2	0.15	<2	49.3	3.9	140	1.3	L	2.1	1.0	0.8	1.66	5.0	2.7	1.3	0.5	10
SWI-20-72	< 0.01	7.60	4 P	50	382	7	<2	0.63	<2	17.8	1.0	20	7.4	4	2.0	1.0	0.4		12.9	1.1	2.2	0.5	10
SWI-20-73	0.03	7.85	4 QU	210	134	10	en	0.33	<2	4.1	× 0.2	60	7.8	7	0.9	0.5	< 0.1	0.45	17.5	0.9	3.4	0.2	< 10

ulto	nite	
900	100	
0	4	

Activation Laboratories Ltd.

Umit Symbol ppm % ppm Lower Limit 0.2 0.1 0.4 Method Code NS- Na202 0.4 SWI-20-1 0.2 0.1 0.4 SWI-20-1 Na202 NA202 NA202 SWI-20-1 Na202 1.4 70.6 SWI-20-5 < 0.2 1.6 5.2 SWI-20-5 < 0.2 1.6 5.2 SWI-20-5 < 0.2 1.6 5.2 SWI-20-5 < 0.2 1.1 9.1 SWI-20-6 < 0.2 1.3 78.9 SWI-20-7 < 0.2 0.1 1.0.5 5.1 SWI-20-6 < 0.2 0.1 1.0.5 5.1 SWI-20-10 0.3 1.3 78.9 5.1 5.2 SWI-20-11 < 0.2 0.1 1.1 5.0 5.1 1.1 SWI-20-13 < 0.2 0.1 1.3 7.8 5.1 5.4 SWI-20-13 < 0.2	Appm 70.01 FUS- MaSO2 70.01 MaSO2 MasC02 FUS- FUS- 10 0.01 FUS- 10 Mas202 1.10 16 0.12 24 0.01 29 0.01 13 0.045 29 0.02 13 0.04 13 0.04 13 0.04 13 0.04 13 0.05 14 0.05 13 0.12 14 0.05 17 0.13 18 0.10 19 0.10 11 0.10 125 0.03 125 0.03 126 0.03 11 0.10 12 0.01 13 0.10 14 0.03 14 0.01	Import Import<	2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3	Pppm ppp 242 P1 MS- MS- MS- M320 Nai202 N P306 236 236 236 236 236 236 236 236 236 23	Dpm Dpm Dpm 10 FUS- 10 RMS- MMS- MMS- NMS- MMS- 10 70.3 70.3 9.1 70.3 9.1 3.4 9.1 13.4 13.4 5.5 66.6 56.6 55.5 46.0 5.5 5.5	833 <u>2 ¥ 7</u> , <u>8</u> 8 8 8 8 8 9 8 9 8 9 8 8 8 8 8 8 8 8 8	Dpm Dpm D.3 0.1 FUS 0.1 MS- MS- MS- Na202 Na202 Na202 7.1 11.1 10.1 1 7.1 29.2 7.1 27.2 11.2 27.3 7.1 27.4 11.2 20.2 7.1 20.2 11.2 20.2 11.2 20.2 20.2 1 20.2 1 20.2 1 20.2 1 21.2 20.2 20.2 1 11.2 20.2 20.2 1 20.4 1 20.4 1 20.4 1 20.4 1 20.4 1 20.4 1 20.5 1 20.6 5 20.7 1 1.1	000 000 000 000 000 000 000 000 000 00	m % % % % % % % % % % % % % % % % % % %	2 Pure Plus	PUS Na20	0. 0. He He	do LNZ	NISS NISS	3 3 MS- MS- Na202	Ppm 0.2 MS- MS- Na202	Ppm FUS- MS-	udd 9
FUS- MS- MS- MS- MS- MS- MS- MS- MS- MS- M	E2		9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				DSM No.	2WN N		NS NS NS	PUS MS ⁻ Na2(the sta	E 22	NSN NSN	FUS- MS- Na202	. 8		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.10 115 115 .46 371 36 .13 35 35 .14 .12 36 .112 .12 36 .112 .112 .112 .112 .112 .111 .111 .115 .111 .111 .115 .111 .111 .116 .111 .111 .112 .111 .111 .116 .111 .111 .116 .111 .111 .116 .111 .111 .111 .111 .111 .111 .111 .111 .111 .111 .111 .111 .111 .111 .111 .111 .111 .111 .111 .111 .111 .111 .111 .111 .111 .111 .111 .111 .111 .111 .111	6 0 1 V V 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							01-00.83	l	۰		ļ				MS- MS- Na202
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(45) (37) (34) (37) (35) (36) (37) (38) (36) (37) (37) (38) (37) (38) (37) (38) (37) (38) (37) (38) (37) (38) (37) (36) (37) (36) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) (37) <td></td> <td>5.7 5.7 6.6 6.6 6.6 7.2 7.2 2.6 3.9 2.6 3.7 3.9 3.1 15.7 15.7 15.7 15.7 15.7 17.3 2.4 2.5 2.4 2.5 2.4 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7</td> <td>2014 2014 2014 2014 2014 2014 2013 2014 2014 2014 2014 2014 2014 2014 2014</td> <td></td> <td>3.3</td> <td></td> <td>< 6</td>		5.7 5.7 6.6 6.6 6.6 7.2 7.2 2.6 3.9 2.6 3.7 3.9 3.1 15.7 15.7 15.7 15.7 15.7 17.3 2.4 2.5 2.4 2.5 2.4 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7	2014 2014 2014 2014 2014 2014 2013 2014 2014 2014 2014 2014 2014 2014 2014											3.3		< 6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		356 356 356 356 1.12 5 6 2 9 5 1 2.0 2.0 7 38 6 7 3 1		11.9 6.6 7.2 28.0 15.7 15.7 3.9 45.0 6.5 7.3 7.3 7.3 7.3 5.8 7.3 5.8 7.3 5.8 7.3 5.8 7.3 5.8 2.4,4 5.7 5.8 2.4,4 5.7 5.8 2.5 5.8 2.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5	20.4 9.1 13.4 13.4 2.5 57.8 57.8 57.8 57.8 57.8 13.4 10.9 10.9 57.8 57.8 57.8 57.8 57.8 57.8 55.5 55.5											0.5	0.1	< 6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1.12 5 1.12 388 1.00 20 1.01 1.01 1.01 20 1.01 26 1.01 26 1.11 371 2.52 1298 3.71 266 1.11 373 2.52 1538 3.73 256 3.73 256 2.53 156 2.53 156 2.53 156 2.53 156 2.53 156 2.55 14 1.11 17 1.11 17 1.11 159 1.11 158 1.11 158		66 65 65 72 72 72 72 72 73 73 73 73 73 73 73 73 73 73 73 73 73	9.1 18.9 38.2 57.8 57.8 56.6 10.9 10.9 10.9 10.9 46.0 5.5 55.5 55.5 55.5 55.5 55.5 55.5 55					8	-	< 8 > 30.0	0 3.9	2.7	55	1.5	0.4	× 6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(3) (3) <td></td> <td>26.0 15.7 15.7 15.7 3.9 2.8 4.3.0 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3</td> <td>16.9 38.2 38.2 53.6 57.8 61.6 10.9 10.9 10.9 10.9 10.9 10.9 10.9 10.9</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>83</td> <td></td> <td>0</td> <td></td> <td></td> <td>1.1</td> <td>0.2</td> <td>< 6</td>		26.0 15.7 15.7 15.7 3.9 2.8 4.3.0 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3	16.9 38.2 38.2 53.6 57.8 61.6 10.9 10.9 10.9 10.9 10.9 10.9 10.9 10.9						83		0			1.1	0.2	< 6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		220 799 250 799 250 799 251 728 252 1289 252 1290 252 1290 252 1290 252 1290 252 1290 252 1290 252 1290 252 1290 252 1290 255 144 177 256 256 71 256 73 256 73 257 73 258 74 257 75 258 757 258 7577 258 7577		26.0 15.7 15.7 2.8 43.0 78.8 73.9 73.5 73.3 73.5 73.5 73.5 73.5 73.5 73.5	38.2 13.4 3.0 5.7.8 5.7.8 5.7.8 5.7.8 5.6 46.0 46.0 5.5						< 2 ×	< 8 > 30.0				1.2	0.4	< 6×
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		10.04 7. 0.05 11 0.05 11 5.2 1286 0.02 137 2.5 1286 3.7 1300 3.7 136 3.7 136 3.7 136 3.7 136 3.7 136 3.7 136 3.7 136 3.7 136 3.7 136 3.7 136 3.7 136 3.7 136 3.7 136 3.8 136 3.8 136 3.8 14 1.1 10 1.1 11 1.1 11 1.1 15 1.1 15		15.7 3.9 2.8 4.3.0 6.5 7.3.8 7.3.8 7.3.8 7.3.8 7.3.8 5.4 67.5 5.7 5.7 2.9	13.4 3.0 2.5 57.8 56.6 58.6 10.9 10.9 46.0 46.0 5.5							1.1	10			2.9	1.3	< 6×
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1005 11 1007 26 1007 26 1007 26 1007 13 1003 14 1003 15 1003 16 1003 10 1003 16 1003 10 1003 10 100		2.8 6.5 73.8 73.8 73.8 73.8 73.8 73.8 73.8 73.8	3.0 57.8 57.8 57.8 10.9 10.9 46.0 5.5 5.5							< 8 > 30.0	-	6.1	-	2.1	0.7	4 e
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		26 2007 20 20 20 20 20 20 20 20 20 20 20 20 20		28 43.0 6.5 73.8 73.8 73.8 73.8 73.8 73.8 73.8 73.8	2.5 57.8 6.6 58.6 10.9 46.0 5.5 5.5						17					1.1	0.2	10
0.3 1.3 <0.2 1.3 <0.2 1.3 <0.2 0.8 <0.2 0.8 <0.2 0.6 <0.2 0.6 <0.2 0.7 <0.2 0.7 <0.2 0.7 <0.2 0.7 <0.2 0.7 <0.2 0.1 <0.2		52 128 54 371 554 371 554 371 551 13 551 13 551 13 551 13 551 13 551 13 551 13 551 13 551 13 551 14 551 14 551 14 551 14 552 14 552 14 551 14 551 15 551 15		43.0 6.5 78.8 7.3 3.7 5.8 5.3 5.7 5.7 5.7 5.7 5.7 5.7 5.7	57.8 8.6 58.6 10.9 15.3 46.0 5.5							15 > 30.0	383		56	0.8	< 0.1	11
 <0.2 1.3 <0.2 4.1 <0.2 4.1 <0.2 0.6 <0.2 0.6 <0.2 0.6 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.1 <0.2 <0.2 <0.1 <0.2 <0.2 <0.1 <0.1<		154 37 152 13 155 13 156 151 159 158 158 158 158 158 158 158 158 158 158		6.5 78.8 7.3 7.3 7.3 7.3 7.3 5.7 67.5 67.5 5.7 2.9	8.6 58.6 10.9 15.3 46.0 5.5					-20	<2 ×	< 8 > 30.0	5		-	5.6	1.8	× 6
<pre><02 4.1 <02 0.8 <0.2 0.8 <0.2 0.6 <0.2 0.6 <0.2 0.6 <0.2 0.6 <0.2 0.7 <0.1 <0.2 0.7 <0.2 0.7 <0.2 0.7 <0.1 <0.2 0.7 <0.1 <0.2 0.7 <0.1 <0.2 0.7 <0.2 0.7</pre>		(110 25 13) (110 355 130 (119 555 130 (119 555 130 (117 159 (110 177 159 (119 159 (119 159		78.8 7.3 5.8 5.8 67.5 5.7 5.7 5.7 5.7	58.6 10.9 15.3 46.0 5.5						-	_				0.9	0.2	6
<pre><0.2 0.8 <0.2 0.6 <0.2 0.5 <0.2 0.6 <0.2 0.6 <0.2 0.7 <0.2 0.7 <0.2 0.7 <0.2 0.7 <0.2 0.7 <0.2 0.7 <0.2 0.7 <0.2 0.2 <0.1 <0.2 0.2 <0.1 <0.2 0.2 <0.2 0.5 <0.2 0.5 <0.2 0.5 <0.2 0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <</pre>		(110 35 555 232 1300 232 1300 03 14 14 03 14 17 03 911 17 159 159		7.3 3.7 5.8 24.4 67.5 5.7 2.9	10.9 15.3 46.0 5.5						× 20	1.1			38	8.7	2.4	< 6 <
<pre><02 0.2 <0.2 0.6 <0.2 0.6 <0.2 0.6 <0.2 0.7 <0.1 0.8 <0.2 0.7 <0.1 0.8 <0.1 0.8</pre>		1.19 555 2.23 1300 0.03 144 0.03 141 1.10 17 2.25 441 159 159		3.7 5.8 5.4 67.5 5.7 2.9	1.9 15.3 46.0 5.5						532	< 8 > 30.0	1	4.3	37	1.5	0.3	×6
<pre><0.2 0.6 <0.2 1.4 <0.2 1.4 <0.2 0.7 <0.2 0.7 <0.2 0.1 <0.2 0.1 <0.2 1.1 <0.2 1.1 <0.2 1.1</pre>		123 130 32 266 144 17 110 17 110 17 110 117 110 117 110 117 110 117 110 117 110 117 110 117 110 117 110 117 110 117 110 117 110 117 110 117 110 117 117		5.8 24.4 67.5 2.9 2.9	15.3 46.0 5.5			6.01 6.01				< 8 > 30.0				0.9	0.1	×6
<pre><02 14 <02 40 <02 40 <02 07 <02 02 <02 01 <02 10 <02 10 <02 10</pre>				24.4 67.5 5.7 2.9	46.0 5.5	51 ²⁰ (S16)	50 C 133 50 - 138	53 - 13 ba					35		-33	1.0	0.5	< 6×
<pre><02 4.0 <02 0.7 <0.2 0.7 <0.2 0.2 <0.2 0.2 <0.2 0.2 <0.2 1.7 <0.2 1.8 <0.2 1.8</pre>		14 103 14 17 17 17 17 17 17 17 17 17 17 17 17 17		67.5 5.7 2.9	46.0	²⁰ (393)	·	1.50			3	1	168	1.1	100	2.4	1.6	× 6
<pre><02 0.7 <0.2 0.2 <0.2 <0.2 <0.2 <0.1 <0.2 <0.2 <0.2 <0.1 <0.2 <0.2</pre>		17 17 003 911 022 7 19 159		5.7 2.9	5.5	1303	3363-288	1.00				^				6.7	1.7	15
<pre><02 0.2 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 1.8 <0.8</pre>		003 911 002 70 125 448		2.9		33	5.0 4.5 10.3	12				<8 > 30.0	13			0.7	0.3	8
<pre><02 <0.1 <02 1.7 <02 1.8 <02 1.8</pre>		.02 71 .25 444			1.2		4.5				33	< 8 > 30	66			1.1	< 0.1	×6
<0.2 1.7 < 0.2 1.8		119 159		2.8	< 0.4		10.3	0.1			< 25 ×	< 8 > 30.0			24	0.5	< 0.1	4 P
< 0.2 1.8		119 1590	10	10.5	21.2							_	1			1.0	0.5	< 6
			Y	7.7	15.3	22	6.7					_	8			0.8	0.4	7
< 0.2 0.4	1	02 2		3.3	5.1	_	7.6						_			0.5	< 0.1	4 P
< 0.2 0.2	10 0	4 4		2.8	28	88	4.5				er er	<8 > 30.0			14	0.9	0.1	4 P
<0.2 0.2 0.0 0.0		20. 102		3.0	0.0	2	0.0				2		2			1.0	< 0.1	-
<0.2 2.0 0.0		100 000		14.0	22.0		10.4	6.0				< 5 > 30.0					0.0	2 P
<0.2 2.1		1411 1411		12.3	20.0		20.0				N N						5.0	01
×0.2 2.4		190 000	Y.	1.0	6.3		1.0								-		0.3	e v
100 00	10	102 201	0 0	2 0 4	0.0	d i	2.0				N O	< 5 > 30.0	0.0	2.0	83	0.0	200	V
<0.0 0.0 V.0 V.0 V.0 V.0 V.0 V.0 V.0 V.0		101 24		0.0	0.0								1				101	101
1.2		0.62	1	57	11.4		10.9	1			-	<8 >30.0	1	51	3 8		0.0	191
<0.2 0.7		11 3		3.7	3.5	1	5.8			-	100	1.1	0.0		-	0.7	< 0.1	×6
< 0.2 0.4		22		3.2	1.7		3.8										< 0.1	6
< 0.2 1.3	33 1	.09 1330	1×1	15.9	25.0		19.2	7.3 5				15 29	38	4.6	56	1.6	0.6	< 6
< 0.2 0.8	9 6	006 24	4	5.1	13.3	::/	5.1	32 2			::::	1.00	-		-	0.8	0.3	×6×
	6	0.05 17/		2.5	22	8	5.5		2.0 < 0.01		× 5	< 8 > 30.0	0.5	1.8	17	0.9	< 0.1	×6×
<0.2 2.2		.04 28		21.7	3.6		25.0									27	0.5	2 e
< 0.2 < 0.1	48	006 46		3.5	3.4		8.0				Y NY					0.8	< 0.1	N N
< 0.2 1.1		.06 46	×1	12.2	25.0		16.4					_				1.1	0.7	×6
< 0.2 0.5		0.11 64	×1	4.3	12.2		17.8			0.05 <		_				0.8	0.3	A B
< 0.2 0.4		0.05 94	Y	4.9	4.5		18.3					14 > 30.0		1.9	33	0.4	0.1	4 9 V
< 0.2 0.3		04		3.1	1.3		4.8	0.4				_				0.5	< 0.1	8
< 0.2 < 0.1		210 210		4.1	11.2			_	_			_		33	3	1.0	0.2	A B
0.5 2.1	48	36 92	× 1	38.1	57.2			172		63	0	< 8 > 30.0	32		32	4.2	1.3	4 B
3.8	1	0.02 68	0	122.2	50.5		28.8	_		0.02	5	< 8 > 30.0				18.1	1.7	~
0.2		156 47:		35.8	22.1		1		83.3 0.	12	12		-	11.8	247	2.6	1.1	10
0.3	28 0	0.30 21		4.1	3.2	12	1	0.8		0.03 ×	N SA	٨	22			1.0	0.2	4 B
< 0.2 2.1		1.14 76	7 <1	20.2	53.7	20	31.1	_				29 29.4		24		1.5	1.3	< 6

	1	ì	
ţ	i		
	ŝ		
1	5	1	ļ

Activation Laboratories Ltd.

Analyte Symbol	In	×	1		Mg	Mn III	Mo	No	4 DN	N N	8	Pr	Rb	s	Sb	Se	35	Sm	Sa	S.	Ta	10	10
Unit Symbol			mdd	mdd	%		undd		d udd	bpm p	mdd	mad	mdd	%	mdd	mdd	%	undd	mdd	mdd	mdd	mqq	mqq
Lower Limit		0.1		3	0.01			24 0	0.4	- C.		0.1	0.4	10.0	N	8	0.01	0.1		3	0.2	11	9
Method Code	FUS- MS- Na202	FUS- Na202	FUS- MS- Na202	FUS- MS- Na202	FUS- Na202	FUS- MS- Na202	FUS- MS- Na202	00	FUS- F MS- Na202 N	FUS- FUS- MS- MS- Na202 N	FUS- MS- Na202	FUS- MS- Na202	FUS- MS- Na202	FUS- Na202	FUS- MS- Na202	FUS- MS- Na202	FUS- Na202	FUS- MS- Na202	FUS- MS- Nu202	FUS- MS- Na202	FUS- MS- Na202	FUS- MS- Na202	FUS- MS- Na202
SWI-20-50	< 0.2	3.4	2.7	69	0.10		<1	21.7	1.9	20	17.6	8.0	272	10.01	<2	< 8	> 30.0	0.5	9.4	44	3.7	0.2	×6
SWI-20-51	< 0.2	0.7	31.0	8	3.49	776	<1	5.7	26.3	8	19.0	7.0	47.9	< 0.01	7	14	25.0	4.9	8.9	387	0.9	0.5	< 6
SWI-20-52	< 0.2	0.1	6.4	8	0.04	81	C1	3.3	5.0	20	4.3	1.5	9.2	0.01	< 2	< 8	> 30.0	0.4	2.3	16	0.7	0.1	< 6×
SWI-20-53	< 0.2	0.1	1.9	4	0.10	275	<1	2.4	1.6	8	17.1	0.2	5.5	0.01	<2	< 8	> 30.0	0.8	1.4	2	0.8	< 0.1	< 6 × 6
SWI-20-54	< 0.2	1.6	54.6	57		1170	0	20.5	41.0	8	23.5	11.1	92.4	0.07	×2	21	27.5	8.1	7.6	196	2.3	1.2	< 6
SWI-20-55	0.3	1.7	13.8	10	2.57	666	<1	7.3	12.3	40	9.0	3.4	56.9	< 0.01	5	14	26.9	2.2	6.5	283	1.2	0.6	< 6×
SWI-20-56	< 0.2	2.6	32.2	8	0.22	669	<1	7.5	22.1	30	30.7	6.4	111	0.03	3	< 8	> 30.0	4.0	8.5	126	1.2	0.5	< 6
SWI-20-57	0.3	1.3	11.1	6	3.06	14	4	6.6	16.7	20	10.3	3.2	44.7	0.03	7	22	29.7	3.9	9.1	246	0.8	0.8	12
SWI-20-58	× 0.2	1.5	52.2	62	1.98	1410	<1	26.0	40.5	8	26.4	11.6	86.3	0.05	< 22	15	27.1	7.5	16.5	203	2.7	1.2	< 6
SWI-20-59	< 0.2	4.0	83.5	92		146	5	46.7	58.4	8	25.3	16.8	360	< 0.01	<2×	15	> 30.0	10.0	5.1	8	4.1	1.5	*6 *
SWI-20-60	0.2	3.5	15.6	13	0.86	524	1	6.3	12.9	8	55.6	2.9	136	0.26	< 2	< 8	> 30.0	1.5	18.6	426	0.5	0.4	< 6
SWI-20-61	× 0.2		1.2	12	0.02	36	<1	< 2.4	1.4	10	4.0	0.3	9.7	0.04	<2	< 8	> 30.0	0.3	1.3	12	< 0.2	< 0.1	14
SWI-20-62	0.2	< 0.1	1.9	5	0.09	247	<1×	<2.4	1.7	20	14.5	0.4	2.7	< 0.01	<2	< 8	> 30.0	0.2	13.9	18	< 0.2	< 0.1	< 6
SWI-20-63	< 0.2	1.9	36.8	35	1.10	904	1	14.3	27.6	80	23.2	7.9	98.0	0.03	< 2	< 8	> 30.0	5.4	8.3	178	1.2	0.7	< 6
SWI-20-64	< 0.2	1.5	43.7	21		241	<1	10.4	32.6	20	48.6	8.7	59.8	0.11	<2	< 8×	> 30.0	6.5	2.1	131	0.8	0.7	< 6×
SWI-20-65	< 0.2	0.9	6.1	4	0.21	117	×1	4.7	5.8	30	10.1	1.6	40.7	< 0.01	< 2	21	> 30.0	6.0	1.4	385	0.3	0.2	< 6 × 6
SWI-20-66	< 0.2	0.8	19.3	8	0.35	482	<1	6.4	15.7	30	9.2	3.9	34.3	< 0.01	<2	29	> 30.0	2.6	1.0	48	0.5	0.3	< 6 <
SWI-20-67	< 0.2	0.8	18.4	16	0.49	192	<1	4.7	12.6	40	16.1	3.7	37.2	< 0.01	< 2	< 8	> 30.0	1.8	1.2	55	0.3	0.2	< 6
SWI-20-68	< 0.2	2.4	84.1	56	0.70	493	<1	18.6	66.1	40	32.3	18.2	140	0.03	< 2	< 8	> 30.0	9.5	7.5	197	1.5	1.4	< 6
SWI-20-69	< 0.2	3.5	40.5	32	0.24	172	4	16.6	25.3	20	43.8	7.6	133	< 0.01	<2	< 8	> 30.0	4.0	4.9	372	1.0	0.7	< 6×
SWI-20-70	< 0.2	4.2	10.4	17.	0.10	101	<1	72	8.2	8	44.0	2.1	144	< 0.01	20	15	> 30.0	1.8	2.5	306	0.6	0.3	7
SWI-20-71	< 0.2	0.6	26.1	11	0.23	636	3	7.8	17.6	09	9.2	4.8	28.5	0.01	<2	15	> 30.0	4.8	0.9	65	0.5	0.5	< 6
SWI-20-72	< 0.2	3.4	8.7	35		347	<1	9.0	4.7	8	37.8	22	174	< 0.01	< 2	15	> 30.0	1.3	9.0	129	1.5	0.3	13
SWI-20-73	< 0.2	2.9	2.3	21	0.09	217	<1	14.3	1.8	40	19.8	0.4	169	< 0.01	CU V	< 8	> 30.0	1.0	23.3	47	3.1	0.2	< 6×

Activation Laboratories Ltd.

Report: A20-10250

Analyte Symbol	Th	F	F	1m	0	N	M	1	Yb	u7
Init Symbol	ppt	8	mpda	mda	mda	mod	Luda		mod	mad
Lower Limit	0.1	10.0	0.1	0.1	0.1	9	0.7	0.1	0.1	30
Method Code	FUS- MS- Na2O2	FUS- Na202	FUS- MS- Na202	FUS- MS- Na202	FUS- MS- Na202	FUS- MS- Na202	FUS- MS- Na202		FUS- MS- Na202	FUS- MS- Na202
SWI-20-1	27.9	0.52		1.9		116				160
WI-20-2	1.2		0.2			35	1.3	5.7		40
SWI-20-3	12.2				2.0				1.9	8
WI-20-4	2.5	0.12	< 0.1	< 0.1		118	1.6	8.7	1.3	< 30
WI-20-5	6.1	0.17		2				12.9		< 30
SWI-20-6	15.5	0.58	0.4			123	7.2	51.1	5	100
SWI-20-7	19.4	_			6.1	4 P		1		< 30
WI-20-8	0.9	_		0.1	0.3	13	1.0			< 30
WI-20-9	0.5			v	0.4	18				20
SWI-20-10	34.4	0.70			15.9	165				110
WI-20-11	1.6	0.16				45	`			40
WI-20-12	73.0	0.05		1.8	19.7	10	1	117	-	8
SWI-90-13	a s	0.16	0.0			10				1.80
MLOOLIA	0.0	000	1.2	101	0.0	u t		20	2.5	100
NAME OF ACT	0.0	0.07		1	0.0	200				No.
01-02-1M	B.1.	19.0				280		1	5.3	001
WI-20-16	19.3	0.72	0.5	1.0	8.8	113		1.63		8
WH-20-17	70.6	0.06	- 1					~		4
SWI-20-18	2.3	0.09		0.1	1.4			8.3		8
WH-20-19	0.2									< 30
WI-20-20	< 0.1		< 0.1						0.5	30
WI-20-21	12.4									< 30
WH-20-22	4.5				1.0		3.0		2.3	50
SWI-20-23	0.5	0.03							0.7	< 30
WI-20-24	0.3					11				30
WI-20-25	0.2		< 0.1		0.2					< 30
WI-20-26	7.0				2.1	20				100
WI-20-27	10.0	_			3.3					140
WI-20-28	3.0	_								< 30
WI-20-29	1.4								0.9	80
SWI-20-30	1.8	_	0.1	0.1		33	1.6	3.5		< 30
WI-20-31	< 0.1	_			v	× 20				30
WI-20-32	2.7	_	0.2	< 0.1		87				8
WI-20-33	1.4	_	Y				< 0.7			< 30
SWI-20-34	0.5	0.03	< 0.1	< 0.1	0.2				0.6	8
WI-20-35	11.1	0.61				127	3.1	28.2		210
WI-20-36	4.2	0.13				17	1.3			< 30
WI-20-37	0.4									< 30
WI-20-38	11.2									< 30
WI-20-39	0.6		< 0.1			45 6	3.4			8
WI-20-40	6.8	_						-		40
WH-20-41	9.4	0.07	0.1	0.1	1.1					8
WI-20-42	0.8	0.05			0.6	55				30
WI-20-43	0.4	0.03	Y	v	0.2	15			0.6	30
SWI-20-44	7.4	0.06			1.1	10		7.4		50
SWI-20-45	32.1			0.8	11.2			a.,		210
WI-20-46	74.8							1	10.4	< 30
SWI-20-47	13.4									480
WI-20-48	1.4									1630
SWLDD-49	0.40	Ľ			L				L	4.40
	012	5			_			с.		9

Page 6/19

Activation Laboratories Ltd.

Analyte Symbol	E F	F	F	E	n	>	M	×	ę	Zu
Unit Symbol	mdd	%	mdd	mdd	mqq	mdd	mdd	mqq	mod	mqq
Lower Limit	0.1	0.01	0.1	0.1	0.1	40	0.7	0.1	0.1	30
Method Code	FUS- MS- Na202	FUS- Na202	FUS- MS- Na202							
SWI-20-50	2.2		1.6	< 0.1	2.1	1	2.7	5.7	0.7	00
SWI-20-51	2.3	0.55	0.6	0.4	0.9	284	2.1	23.5	3.2	40
SWI-20-52	1.3		< 0.1	< 0.1	0.5	80	1.5	43		< 30
SWI-20-53	0.5	< 0.01	< 0.1	< 0.1	0.3	× 5	2.5	1.8	0.6	40
SWI-20-54	21.4	0.44	0.7	0.5	28.8	114	4.4	34.8		110
SWI-20-55	5.5	2	0.4	0.4	3.0	191	2.0		2.8	200
SWI-20-56	17.1	0.15	0.8	0.2	2.1	20	2.6	12.0	2.1	170
SWI-20-57	2.8	0.56	0.5	0.5	3.7	388	3.4	30.5	3.3	110
SWI-20-58	17.0	0.63	0.9	0.6	14.1	136	9.7	39.2	4.5	150
SWI-20-59	53.4	0.09	1.9	_	10.4	× QL	4.2	49.4	4.7	8
SWI-20-60	5.4	0.20	1.4	0.2	1.9	72	2.9	11.5	1.5	150
SWI-20-61	0.3	< 0.01	< 0.1	< 0.1	0.5	2 Y E	< 0.7	2.1	0.7	< 30
SWI-20-62	0.5	0.01	< 0.1	< 0.1	0.3	< 5	< 0.7	2.0	0.5	140
SWI-20-63	13.8		0.7	0.4	11.2	100	3.7	23.4		8
SWI-20-64	22.9	0.27	0.2	0.2	3.4	29	1.4	17.4	2.4	× 30
SWI-20-65	3.0	0.07	0.3	< 0.1	0.9	19	< 0.7	5.7	1.1	< 30
SWI-20-66	6.8	0.18	0.2	0.2	1.8	28	1.4	8.3	1.3	< 30
SWI-20-67	3.2	0.07	< 0.1	< 0.1	1.3	17	< 0.7	7.5	0.9	50
SWI-20-68	32.6	23	1.0	0.4	28.5	69	3.5	്	3.1	06
SWI-20-69	47.9		1.2	0.6	7.8	21	1.5	37.3	3.4	80
SWI-20-70	10.9	0.05	1.2	0.1	7.0	< 5 × 5	1.5	11.3	1.3	< 30
SWI-20-71	8.9	1	< 0.1	0.2	1.3	13	2.5	10.8	1.4	< 30
SWI-20-72	5.0	0.04	1.0	0.2	8.2	< 5	1.3	14.0	1.7	40
SWI-20-73	1.7	10.0	1.2	0.1	19.7	9	3.9	5.2	0.9	120

aboratories Ltd.	on Laboratories L	ories L
aboratories	on Labora	on Labora
abora	on Labora	on Labora
	on L	vation La

oc

Report: A20-10250

As B Ba Be Bi Ca Cd Ce	mog 200 ppm 200 200 200 200 200 200 200 200 200 20	0.01 5 10 3 3 2 0.01 2 0.8 FUS FUS FUS FUS FUS FUS FUS FUS FUS Wardow MS MS MS MS MS MS MS	Mazuk Nazuk Nazuk Nazuk				2090	2200	> 25.0	28.9	0.22 16 0.06	< 16.0 0.0900 < < < < < < < < < < < < < < < < < <	1	59	20	20	20	28	20	12	13		450 240.000							346	0.0715 356.00 2604.0 000		7.59 481 11 0.49 88
Co Co		0.2 30 FUS- FUS- MS- MS-	MILON				 > 5000	20500.			132 > 10000	61.5 11.5 15500	60.3 13.5	561 1790	181	559 1820	581 1800.00	547 1850	561 1800.00	1260 49.8	1396 48.8	267	00							97.7	93.5	78.5 21.3 150	88.0 20.9 90
Cs Cu	bpm ppm	PUS- FUS- MS- MS-	_			-	> 10000	249600			8	3.00	67	1130	1240.0	1210	1240.0	1190	1240.0	418	434	8	13	342	350	369	350	2940	2830	4140	4030.0	7.1 2970	7.6 2220
Dy Er		0.3 0.1 FUS- FUS- MS- MS-	NakUk			-														32.2 19.1	1 33.3 19.5											5.7 2.8	5 7.75 3.30
Eu Fe	E	0.1 0.05 FUS- FUS- MS- Na202	_			3										10	1701 10	2 - 16 2 - 16		7.7	8.06	1.3	1.2							1		1.6	1 50
Ga	mdd	0.2 FUS- MS-		20			-	-				212	23.1	13.6	13.7	13.7	13.7	1-16 1-16		11.4	11.06		14 - 1							20		5.84 22.3	5 71 01 0
Gid Gie 1	udd u	FUS- FUS- NS- MS-	Nazouc	100	- 360	-					0.7	0.700	12.4							42.0	43.4											5.8	e ort
110	-	FUS- FUS- MS- MS-	_		-300			_			-			-						6.9	6.46											1.1 10	1 00 5 00

Page 8/19

QC

Report: A20-10250

Analyte Symbol	Unit Symbol Lower Limit	Method Code	(Peroxide Fusion) Cert	OREAS 922 (Peroxide Fusion) Meas	OREAS 922 (Peroxide Fusion) Cert	OREAS 922 (Peroxide Fusion) Meas	OREAS 922 (Peroxide Fusion) Cert	OREAS 621 (Peroxide Fusion) Meas	OREAS 621 (Peroxide Fusion) Cent	OREAS 621 (Peroxide Fusion) Meas	OREAS 621 (Peroxide Fusion) Cert	CCU-te Meas	CCU-1e Cert	CCU-1e Meas	CCU-1e Cert	CCU-te Cert	OREAS 680 (Peroxide Fusion) Meas	OREAS 660 (Peroxide Fusion) Cert	OREAS 139 (Peroxide Fusion) Meas	OREAS 139 (Peroxide Fusion) Cert	OREAS 139 (Peroxide Fusion) Meas	OREAS 139 (Peroxide Fusion) Cert	OREAS 139 (Peroxide Fusion) Meas	OREAS 139 (Peroxide Fusion) Cert	OREAS 624 (Peroxide Fusion)
1	%	FUS	6	0	6	0	0	0	(0	0		33	223	3	223	.(1	0	0	0	6	0	0	6	(
2	%	FUS- Na2O2	- 2					6.85	6.63		0	0.14	0.139		3	323	16.7	7.19	3.67	3.70	3.68	3.70) 10	4.30
AS	mdg 2				e - 1	c8		8 77	3 85	81	85	4 1100		1130	1010	1010		9 120	7 320	332	320	0 332	314	332	0 117
m	ppm 10	and the second				. 8		~	10	2	10	0					205	0		01	0	01	**	01	E.
	mdd	FUS- MS- Na202		479	481	462	481	2690	2610	2580	2610		322	::::	3	223	661	649	ā 3		13 - 1				1050
Be	mdd	FUS- MS- Na202	- 2					v	61	< 3	Q				3	223			0	3.17	4	3.17	e	3.17	
	5 ppm			6	10	6	10	4	4	4	4			100	- 3	223	<2	1.66	7	6.64	7	6.64	9	6.64	22
3	%	FUS- Na202	- 8					197	2.00						-3	2123	5.87	5.80	122	1.20	1.18	1.20			1.55
8	ppm 2	FUS- MS- Na202			20 - 1			279	295	280	295	74	74.2	83	75.2	74.2	11	8.18	281	296	263	296	268	296	138
	ppm 0.8	8		83.5	88.0	79.0	68.0	52.5	52.0	54.3	52.0		555	Rae	-	8453	38.6	38.7	46.9	49.4	51.0	49.4	47.4	49.4	31.7
_	_	FUS- MS- Na202		22.2	20.9	20.4	20.9	28.5	31.4	30.8	31.4	312	301	307	301	301	323	334	26.0	26.0	25.0	26.0	27.5	26.0	286
Τ	mqq	505		140	8	140	8	120	49	110	49						2100	2140							
Τ	0.1	5.00		7.2	7.5	9.0	7.5	3.6	3.6	4.1	3.6						4.5	3.94	27	3.21	3.3	3.21	4.1	3.21	1.7
Τ	ppm p	MS- Ma202		2230	2220	2150	2220	3540	3680	3640	3630	10000	229000	10000	229000	229000	8930	9040	274	274	290	274	275	274	> 10000
	0.3 0	6.8	_	5.4	5.75	5.4	5.75										3.1	3.07							
	0.1 D	6.0	_	3.3	3.38	2.5	3.38										14	1.74	1.6	1.69	15	1.69	1.1	1.69	
Eu Fe	0.1 0.1	6 . Q		1.4	1.52	1.3	1.52									8 153	1. 62	1.30						<u></u>	
Ga	% ppm 0.05 0.2	.8			<u></u>	s – 93		3.80	3.71		<u>i</u>	> 30.0	30.7			8 853	11.9	11.9	11.7	11.9	11.8	11.9			16.6
	m ppm	6.0	_	20.9	21.2	18.2	21.2	25.6	26.5	20.0	26.5		555			8850	17.0	16.5	7.5	10.2	12.7	10.2	10.5	10.2	20.4
Τ		505		5.5	6.94	5.7	6.94			<u> ()</u>			<u>(19</u>		9		4.0	3.77	<u>a s</u>		<u>2</u> 1	()) (<u>, </u>	
	ppm pg	8								<u></u>			100		9			<u>.</u>							
Τ		FUS- MS- Na2O2 N		1.0	1.20	12	1.20			<u> ()</u>			100		8		0.5	0.580	<u>a s</u>		<u> </u>			2	
	10	MS- MS- Na202	Γ	< 10	5.93	< 10	5.83							Τ	Τ	Γ									

oc

Report: A20-10250

Market Market Barten	Analyte Symbol	LL.		Π	П	Π	Be		3	8											124	Π		主
	Init Symbol	%					mdd		200	mdd												mdd 2		ppm 10
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Aethod Code	FUS	FUS- Na202	FUS- MS- Na202	FUS- MS- Na202	FUS- MS- Na202	FUS- MS- Na202	FUS- MS- Na202		FUS- MS- Na202									FUS-	NS-		FUS- MS- Na202		Na202
4.22 123 964 20 134 136 0100 135 135 1000 135 131 133 231 135 133 231 133 231 133 231 133 231 133 231 133 231 133 231 133 231 133 231 133 231 133 231 133 231 </td <td>DREAS (24 Peroxide Fusion) Cert</td> <td></td> <td>4.32</td> <td>115</td> <td></td> <td>1070</td> <td></td> <td></td> <td></td> <td>133</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>12</td> <td></td> <td></td> <td></td> <td></td>	DREAS (24 Peroxide Fusion) Cert		4.32	115		1070				133										12				
4.20 115 100 213 1.40 133 203 273 132 2000 16.3 22.1 16.3 22.1 16.3 22.1 16.3 22.1 16.3 22.1 16.3 22.1 16.3 22.1 16.3 22.1 16.3 22.1 16.3 22.1 16.3 22.1 16.3 22.1 16.3 22.1 16.3 22.1 16.3 22.1 16.3 22.1 16.3 22.1 </td <td>DREAS 624 Peroxide Fusion) Meas</td> <td></td> <td>4.22</td> <td>123</td> <td></td> <td>964</td> <td></td> <td>8</td> <td>1.54</td> <td>135</td> <td></td> <td>278</td> <td></td> <td></td> <td>+ 10000</td> <td></td> <td></td> <td>1</td> <td>16.3</td> <td>23.1</td> <td></td> <td></td> <td></td> <td></td>	DREAS 624 Peroxide Fusion) Meas		4.22	123		964		8	1.54	135		278			+ 10000			1	16.3	23.1				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	OREAS 624 (Peroxide Fusion) Cert		4.32	115		1070		21.3	1.49	133	32.9	273		1.32	30800				16.3	22.1				
Martinetion 115 100 213 329 273 132 3000 1 221 231	DREAS 624 Peroxide Fusion) Meas			126		1070		24		133	32.9	276		1.80	× 10000					24.4	10			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	OREAS 624 Peroxide Fusion) Cert			115		1070		21.3		133	32.9	273		1.32	30800		19 - 11	To er	11 11	13				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	OREAS 124 Peroxide Fusion) Meas		4.64						0.09										1.56					
	Peroxide Fusion) Cert		4.62						0.0880										1.56					
	AMIS 0250 Flourine) Meas																				9 - 5			
	MMIS 0250 Flourine) Cert	8.99																						
	AMIS 0250 Flourine) Meas	8.56																			3			
	MMIS 0250 Flourine) Cert	8.99												5		8		\$ 10			9 59	0 0		
8.99 1 1 1 1 2.30.0 2.30.0 2.30.0 2.3	MMIS 0250 Flourine) Meas	9.18																						
$ \left[\begin{array}{c c c c c c c c c c c c c c c c c c c $	MMIS 0250 Flourine) Cert	-																2			- 5 - 5			
$ \left(\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MMIS 0346 Peroxide Fusion) Meas																		> 30.0					
$ \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	MilS 0346 Peroxide Fusion) Cert																		5 5 5					
$ \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	AMIS 0346 Peroxide Fusion) Meas																				23 Q			
	MAIS 0346 Peroxide Fusion) Cert																				1 83			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	SWI-20-7 Orig		6.92	436			8			<2		0.2	130	3.0	8	3.9	2.7	0.2	0.55	16.3	3.2	1.5	1.0	< 10
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SWI-20-7 Dup	1000		432		556	4		0.40	<2		0.6	20	2.4	11	4.1	2.7	0.2	0.56	17.1	3.2	1.3	0.8	< 10
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SWI-20-15 Orig	< 0.01														Ĩ								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SWI-20-21 Orig	1000	5.72	8	20		< 3		-			6.3	260	4.2	25	2.7	1.4	1.0	1.80	12.8	3.4		0.5	< 10
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SWI-20-21 Dup		5.76	6	30		< 3					5.2	120	3.7	22	2.6	12	0.9	1.75	13.1	3.0		0.6	< 10
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SWI-20-29 Orig		1.25	7	20		N 3		1.97	<2		3.8	110	1.3	22	0.8	0.4	0.3	0.87	3.2	13	1.6	< 0.2	< 10
0.02 0.02 <th< td=""><td>SWI-20-29 Dup</td><td>0.01</td><td></td><td>1</td><td>20</td><td></td><td>< 3</td><td></td><td>1.95</td><td><2</td><td>10.8</td><td>3.1</td><td>120</td><td>15</td><td>23</td><td>1.0</td><td>0.4</td><td>0.4</td><td>0.88</td><td>28</td><td>0.8</td><td>1.2</td><td>0.2</td><td>< 10</td></th<>	SWI-20-29 Dup	0.01		1	20		< 3		1.95	<2	10.8	3.1	120	15	23	1.0	0.4	0.4	0.88	28	0.8	1.2	0.2	< 10
1.33 <5 <10 31 <3 <2 0.17 <2 29.5 2.8 1.70 0.5 10 1.4 0.6 0.3 0.73 4.4 1.3 1.3 0.2 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3	SWI-20-32 Dup	0.02							1.00				04.1				1							4
	SWI-20-44 Ong SWI-20-44 Dup		1.33	45 6									120		40	10	0.6	0.4	0.70	2.8	2.0		0.2	< 10

Page 10/19

oc

Report: A20-10250

Analyte Symbol		N	As	8	Ba	Be B	Bi		S	Ce	Co Co	ō	Ce	Cu	DV.	Ш	Eu	Fe	Ga	Gd	Ge	Ho	Ŧ
Unit Symbol	240	%	mdd	ppm a	ppm 1		6 mdd	a a	ppm p	ppm p		bprm 1	mdd	mdd	mqq	mqq	mdd	%	mdd	mdd	mqq	mqq	Ludid
Lower Limit	0.01	-		23			-										0.1	0.05	0.2	0.1	0.7	0.2	10
Method Code	FUS- ISE	FUS- Na2O2	FUS- MS- Na202	FUS- MS- Na202	FUS- MS- Na202	FUS- FUS- NaS- Na202 N	HUS- MS- Na202	FUS- Na202 N	FUS- F MS- Na202 N	FUS- MS- Na202 N	02	FUS- MS- Na202	FUS- MS- Na202	FUS- MS- Na202	FUS: MS- Na202	FUS- MS- Na202	FUS: MS: Na202	FUS- Na202	FUS- MS- Na202	FUS- MS- Na202	FUS- MS- Na202	FUS- MS- Na202	FUS- MS- Na202
SWI-20-50 Orig	0.03	7.53	<5×	20	101	15	<2	0.37	<2	5.8	0.4	20	8.3	62	1.5	0.6	0.1	0.57	20.6	0.8	2.7	< 0.2	< 10
SWI-20-50 Split PREP DUP	0.03	7.41	9	8	122	14	< 2	0.35	<2	6.2	0.3	8	7.7	a	1.3	9.0	v	0.57	24.3	12	3.2	0.3	< 10
SWI-20-52 Orig		0:30	7	< 10	14	es v	N Y	0.03	× 2	13.4	1.1	100	0.6	4	0.6	0.2	0.1	0.34	0.7	0.6	1.6	< 0.2	< 10
SWI-20-52 Dup	Sec. 1	0:30	LCT LCT	< 10	20	× 3	× 2	0.06	<2	13.0	51	110	0.8	62	0.4	0.3		0.34	1.4	0.6	1.3	< 0.2	10
SWI-20-63 Orig	0.02		522		() ()	52	Sec.	-	1	Sec. 1	2000	10 mm		THE NAME	100		1000	Section 12	1000 X	CALL ST	nan B	States - La	in a lite
SWI-20-63 Dup	0.02																						
SWI-20-68 Orig	10	6.74	12	40	762	4	<2	1.49	<2	149	9.0	120	13.4	23	7.3	3.8		2.83	21.2	9.6	2.5	1.2	20
SWI-20-68 Dup		6.86	11	\$	781	4	< 2	1.61	< 2	137	9.2	120	13.7	21	6.2	3.6	2.2	2.84	19.4	9.2	1.6	1.3	10
SWI-20-73 Orig	0.03	7.85	× 5	210	134	10	2	0.33	<2	4.1	< 0.2	60	7.8	7	0.9	0.5	< 0.1	0.45	17.5		3.4	0.2	< 10
SWI-20-73 Split PREP DUP	0.02	7.81	× 5	190	122	10	<2	0.35	<2	4.8	< 0.2	20	6.6	4	1.0	0.8	< 0.1	0.44	15.9	0.6	2.7	< 0.2	< 10
Method Blank	< 0.01	929 	929 	929	929 	229	929					10 202	10 392	333			202		322	111 332	11 233	111 223	23
Method Blank	< 0.01																						
Method Blank	< 0.01													533			530		239	- 1	18		12
Method Blank	2000	< 0.01	525	929	3.9	329	5,5	< 0.01				222	33	83		202	202	< 0.05		372	11 238	11 23	23
Method Blank		< 0.01	< 5	< 10	3	× 3	×2	< 0.01	<2	< 0.8	0.3	130	0.6	< 2	< 0.3	< 0.1	< 0.1	< 0.05	< 0.2	< 0.1	< 0.7	< 0.2	<10
Method Blank		< 0.01	< 5	< 10	4	× 3	×2	0.02	<2	< 0.8	< 0.2	8	0.4	<2	< 0.3	< 0.1	< 0.1	< 0.05	0.3	< 0.1	< 0.7	< 0.2	< 10
Method Blank	2	< 0.01	< 5	< 10	4	× 3	× S	0.03	< 2	< 0.8	< 0.2	202	0.4	9	< 0.3	< 0.1	< 0.1	< 0.05		< 0.1	< 0.7	< 0.2	< 10
Method Blank			< 5	< 10	4	< 3	×2		<2	< 0.8	0.3	80	0.1	3	< 0.3	< 0.1	< 0.1		< 0.2	< 0.1	< 0.7	< 0.2	< 10
Method Blank	0.0	< 0.01	<5	< 10	< 3	× 3	×2	< 0.01	<2	< 0.8	0.3	60	0.5	3	< 0.3	< 0.1	< 0.1	< 0.05	< 0.2	< 0.1	< 0.7	< 0.2	< 10
Method Blank		< 0.01	× 5	< 10	6	< 3	4 N	< 0.01	<2	< 0.8	1.8	110	0.1	10	< 0.3	< 0.1	< 0.1	< 0.05	< 0.2	<u> </u>	< 0.7	< 0.2	< 10
Method Blank		< 0.01	< 5	< 10	4	< 3	×2	< 0.01	×2	< 0.8	< 0.2	100	0.3	<2	< 0.3	< 0.1	< 0.1	< 0.05	0.2	< 0.1	< 0.7	< 0.2	< 10
Method Blank	00	8	< 5	< 10	4	< 3	<2		<2	~< 0.8	0.7	110	< 0.1	4	< 0.3	< 0.1	< 0.1	3	< 0.2	< 0.1	< 0.7	< 0.2	< 10
Method Blank		< 0.01	×5	< 10	< 3	< 3	× 2	< 0.01	<2	< 0.8	0.4	60	< 0.1	5	< 0.3	< 0.1	< 0.1	< 0.05	< 0.2	× 0.1	< 0.7	< 0.2	< 10
Method Blank	202	Sec. 19	< 5	< 10	× 3	< 3	<2	001-00-100	<2	< 0.8	0.3	70	0.2	7	< 0.3	< 0.1	< 0.1	Second Second	< 0.2	< 0.1	< 0.7	< 0.2	< 10
Method Blank		-0.01	5	0 to	0 1	0 1	0 -	10.04	0	0.0	001	5	2.0.2		00	10.4	* V *	20.02	0.0	* V *	1	2 4	1 m

_
Ð
+-
_
-
00
d)
-
-
0
+=
60
-
0
0
100
-
_
-
-
0
100
The second
100
-
+
0
1
~

oc

Report: A20-10250

Analyte Symbol	Unit Symbol	Lower Limit Method Code		NIST 694 Meas	IST 694 Cert	IST 694 Meas	IST 694 Cert	NIST 694 Meas	NIST 694 Cert	PTM-1a Meas	PTM-1a Cert	NIST 696 Mase	NIST 696 Cert	DTS-2b Meas	TS-2b Cert	GBW 07239 (NCS DC 70007) Meas	GBW 07239 (NCS DC 70007) Cert	Oreas 74a (Fusion) Mase	Oreas 74a	Oreas 74a	Oreas 74a	Oreas 74a	Ireas 74a	REAS 101a	OREAS 101a	SARM 3 Meas	SARM 3 Cert	NCS DC66303 Metts	NCS DC66303 Cert	NCS DC86303 Metrs	NCS DC66303 Cert	NCS DC86314 Meas	NCS DC86314 Cert	CZN-4 Meas	CZN-4 Cert	OREAS 922 (Peroxide Fusion) Meas	DEAC 000
E.	bpm	0.2 FUS-	MS- Na202			2.5)		250	2.5		i.	2.5		2.5		0	0								13				2			2 5		24	2 5	0.4	0.0
×	36	0.1 FUS-	Na202			20			25					~ ~ ~										22	2.34							2 3			2 3	2.6	100
			MS- Na202			20		2.50	2.5							36.8	37.4							778	816	222	250.000		2			2 5			2 0	42.7	0.05
2	mdd	3 FIS-	MS- Na202			25		200	25		2			2.5			0.00											2110	2100	2120	2100	> 10000	18100.	2	2 3	41	
	%	0.01 FUS-	Na202			25			25					> 30.0	29.8		~ 3							121	123										2 5	1.60	
	ppm	3 FIS-	MS- Na202			25			2.5		10 20			778		> 10000	11500							984	964	5580	5960.0		2 3			2 5			2 5	895	
	ppm		MS- Na202			2.5			2.5							1180	1100							21	21.9												ľ
-			MS- Na202			5.5		8.65	3.8								S - 3				20-3				2.5	909.1	978	25	5 6		9-5	5 5			5 5	15.8	0.00
			MS- Na202					9700	2.5	200				52		33.1	29.8				2			363	403	47.1	48	20			2.5				5 0	32.8	
Z			MS- Na202		2.00	2.5		5.00	2.0	+ 10000	474400	3		3740	3760	8	20.9	10000	32400.	10000	32400.	10000	32400.	3	28			<u> - 8</u>				8 8		1000	5 8	8	
	6 8		MS- Na202		2.00	2.5		2.00	3.5		10	1.50		8.6	4.00	23.4	26.1	8							28	45.3	\$	22-1	5		22	5 - 3		1800	1861.0	62.7	
22	ppm p		MS- Na202 N		200	52		200	2.2		e C	1		62		82	7.40	<u>) - 6</u>	T		8			114	134			28 -	-		28			22.0	5 8	8.6	1.00
	-		MS- Na202		2.00	52		200	2.52		8	1 5 7		4.2	2.00		8 - 3				2 - 6				37	204	190	1360	1330	1350	1330	> 5000	11400	10.0	5 0	157	1000
	% p		Na2O2 N			200		200	5.5	22.9	22.4			5.2			1	7.20	7.25	7.18	7.25				28			22 -			22 -	3 3		> 25.0	33.07	0.35	1 100
2	ppm pg		MS- Na202 N			5-2		200	32		2	1.5.0		< 20	0.600		8 7	8 8	T		20-8		1		28	-		28 - I	-		28 - C			1940	2 8		t
-	mdd %		MS- Na202			5-2		200	3.2		94. S	1 2 1		5.2	6.49 7.72		8 -	<u></u>	105		<u>.</u>	1			28	-		27 i	8 8		28 - I	3 3		58	86.7	20	
Sa	bpm		Na2O2 MS			52		200	3.2		2	1 2 1		18.3	18.4		8	15.0	15.14	15.1	15.14	-	-	-	28			28 -	-		28 - 1	3 3		0.27	0.295	> 30.0	40.64
			MS- MS Na202 Nat				+	200	3.2		a.	-	-	52				8 8	-	-	8	-	-	46.5	48.8		-	22 -		_	22 -	3 3		100	5 8	7.1	2 0.4
	u ppm		MS- MS- Na202 Na202			52		200	3.2		0. C	-	-			35.7	33.2		-	-	20-8	-		-	28	e	4	27	-	_	27	155	152	1010	3 - 5	13.2	
	1		MS- Ma202		-	10		ie.	10.0		č.			50			ă i	i i	-	1	10 - i	-		-	čē.	3890	4565	<u> (</u>	1		de la	3-2			7 2	8	10.01
9	ppm	100	MS- Na202		i i i	12	_	te.	10.0		š			ca:			ă i	i i	_	-		_		2	ιά.			80 -)	1	_	.	0 2			3-10	1.0	
9	ppm		MS- Ma202		te.	1Č	_	te.	10		č.	-		ca.					_			_		6.1	5.92						ce i			Sa		12	1 000

Page 12/19

pol																			_			41
Unit symbol		0.1	D.4	3 mdd	0.01	udd 3	1 Lind				0.8	0.1	_	0.01	2 2 8	8 0	0.01 0	D 1 0	_	3 0	0.2	udd L
8	FUS- F MS- Nu202	500	8	FUS- MS- Na202	.8	FUS- MS- Na202	FUS- MS- Na202	FUS- MS- Na202	FUS- MS- Na202	FUS- MS- Na202	5	. 8	FUS- MS- Na202	.8	FUS- F MS- MS- Na202 N	MS- Na202	.8	. 8	FUS- FU MS- MS- Na202 Na	MS- MS- Na202 N	S02	FUS- MS- Na202
Peroxide Fusion) ent				20 more									1000					0		20		- 8
OREAS 922 (Peroxide Fusion) Metrs	0.5		43.6	41		199		15.4	37.3	50	63.1	9.6	176					6.1	10.6	8	1.6	0.8
OREAS 922 (Peroxide Fusion) Cert	0.3		45.6	29		880		15.2	38.9	40	64.0	10.6	167					7.31	10.0	58.0	1.3	1.02
OREAS 922 (Peroxide Fusion) Meas	0.3		43.3	34	8	791		14.7	37.7	8	65.6	102	156					7.0	11.9	5	15	0.9
OREAS 922 (Peroxide Fusion) Cert	0.3		45.6	8	a - 1	680	1 1	16.2	38.9	40	64.0	10.6	167					7.31	10.0	58.0	1.3	1.02
OREAS 621 (Peroxide Fusion) Meas	23	23	27.8		0.52	509	16	10.7	20.9		> 5000	5.3	88.6	4.50	147		28.7			105		
OREAS 621 (Peroxide Fusion) Cert	1.9	2.23	28.1	8	0.516	554	14	10.4	24.2		13300	6.64	89.0	4.51	146		28.1			101		
OREAS (21 (Peroxide Fusion) Meas	50		29.7			569	14	10.9	21.5		> 5000	58	84.1		140					8		
OREAS 621 (Peroxide Fusion) Cert	1.9		26.1			554	14	10.4	24.2		13300	6.64	89.0		146					101		
CCU-1e Meas				100	0.74	106	103	103		0.00	> 5000			> 25.0	117							
CCU-1e Cert	52		39	38-	0.706	96.0	32			22	7030			35.3	104				22			
CCU-1e meas	0			100	100	96.0	100				7030				104				- 64	- 23		
CCU-1e Meas	:03			193	193	112	:03	193	1.9.9	1.2.2	> 5000	1.1.1			110				12			
CCU-te Cert OPEAS Non		1.2	19.5	18	374	96.0		6.6	10.3	10000	7030	4.5	7.07	£ 18	104		20.8	30		300	-	0.6
(Peroxide Fusion) Meas		3	2	2	41.0	201		8	2.0	0001	8	7	161	0	3		0.02	9	<u> </u>	2		
OREAS 680 (Peroxide Fusion) Cert		128	16.6	14.5	3.71	1240		5.09	20.8	21500	2560	4.99	76.0	5.14	19.7		20.6	4.26		420		0.550
OREAS 139 (Peroxide Fusion) Meas	0.6	3.2	24.3	45	0.50	6460	60				> 5000		114	16.0	8		16.2			432		0.4
OREAS 139 (Peroxide Fusion) Cert	0.69.0	3.30	23.1	40.4	0.501	6570	11.1	o			22000		145	16.04	63.0		16.34			479		0.500
OREAS 139 (Peroxide Fusion) Meas	0.6	35	28.6	46	0.48	6640	on				> 5000		142	15.1	59		16.1			450		0.8
OREAS 139 (Peroxide Fusion) Cert	0.690	3.30	12	40.4	0.501	6570	11.1	88			22000		145	16.04	63.0		16.34		22	479		0.500
OREAS 139 (Peroxide Fusion) Meas	0.7		24.4	43		6830	9				> 5000		140		88					435		0.5
OREAS 139 (Peroxide Fusion) Cert	0.69.0		23.1	40.4		6570	11.1				22000		145		63.0					479		0.500
OREAS 624	3.3	1.0	16.6	18	1.30	612	15	6.2	15.5	-92	> 5000	3.5	29.7	13.3	68		20.6	3	33	20		

Page 13/19

oc

Report: A20-10250

log		Method Code FUIS Mathod Code FUIS	OREAS 624 (Peroxide Fusion) Cert	OREAS 624 (Peroxide Fusion) Meas	OREAS 624 (Peroxide Fusion) Cert	OREAS 624 (Peroxide Fusion) Meas	OREAS 624 (Peroxide Fusion) Cert	OREAS 124 (Peroxide Fusion) Meas	OREAS 124 (Peroxide Fusion) Cert	AMIS 0250 (Flourine) Meas	AMIS 0250 (Flourine) Cert	AMIS 0250 (Flourine) Meas	AMIS 0250 (Flourine) Cert	AMIS 0250 (Flourine) Meas	AMIS 0250 (Flourine) Cert	AMIS 0346 (Peroxide Fusion) Meas	AMIS 0346 (Peroxide Fusion) Cert	AMIS 0346 (Peroxide Fusion) Meas	AMIS 0346 (Peroxide Fusion) Cert	SWI-20-7 Orig		SWI-20-15 Ong SWI-20-15 Dup		SWI-20-21 Dup		SWI-20-32 Orig	
	-	6.0	50 - 2	4.3	4.14 0	3.9	4.14		3			8-3			0-0			00		< 0.2	< 0.2	Second	< 0.2	< 0.2	< 0.2		< 0.2
E.		500	0.991	1.0	0.991	8	<u>5 8</u>	26	2.62			8-3			0-0	8		<u>9</u> 0		3.8	3.8	30	1.7	1.7	0.7	Ħ	< 0.1
	_	ch .00		19.1	17.3	17.5	17.3		S 1			8-3			0-0	- 20		00		16.9	16.5	100	30.5	30.5	4.7	Ħ	14.0
	bpm %	MS- Na202	10.3	18	10.3	18	10.3			- 23		10 - 10 	- 33							12	14		18	16	1 12	Π	12
~		FUS- FUS- Na202 N	1.31	127	131			0.22	0.224											0.04	0.05		0.25	0.25	1.03	Π	0.08
	E	MS- Na202		619	660	714	680						- 34		0-0					65	8	-	457	441	223	Π	206
	mdd	FUS- MS- Na202		11	17.8	\$	17.6						(32)		0-0					7	~		18	00	1 00	Π	4
Τ		FUS- MS- Na202		6.3	5.78	6.8	5.78					18			9—0			0		15.0	16.4	100 million (100 m	10.7	10.3	4.2		4.0
Nd	mdd	MS- MS- MS-		13.9	16.8	16.4	16.8					a-1			i - i					12.4	14.4		21.7	20.6	5.3		10.5
IN	mdd	FUS- MS- Na2O2		1			4						1					0 0		10	10	1000		88		Ц	20
8	mdd	UUS FUS- MS- Na202	6120	> 5000	6120	> 5000	6120								i)—ii			0-0		39.2	36.2		52	10.4	8 52		11.3
a.	mod	U.T FUS- MS- Na2O2	4.27	4.0	4.27	4.1	4.27						11 20		i) ii			i) - ii		3.8	3.7	100	72	-	8 152		3.0
6B	mdd	MS- MS- Na202	33.0	27.9	33.0	34.3	33.0		a 1			82			i) ii			i: i:		170	181			75.6	21.7		3.8
ŝ	200	FUS- Na2O2	13.2	12.1	13.2							82			á á			i: i:		0.05	i.	-	10.01	2			0.04
\$P	mdd	Na202		42	72.0	65	72.0		á - 1			8 - 1			i - i			á: i		3	Rit	9		CU IO	8 152		<2
Se	udd	NS- MS- Na202		1					a - 1						i) i			0 0		×8		- 22		< 8 × 8	2 52		21
55	%	FUS- Na202	20.5	19.9	20.5		4	> 30.0	38.2						i i			0-0		> 30.0		100		> 30.0			> 30.0
Sm	mdd	ULL FUS- MS- Nat202		0											0-0			i) — (i		3.2	Rit	- 58	152	2.7	2 152		2.5
Sn	udd	MS- MS- Nu202		1								8			0-0			i)ii	-	5.6	Rit	1		4.8	8 152		1.1
ŭ	mdd	MS- MS- Na202		44	47.6	8	47.6		a 1				- 12		á á			6: - 6:		-	106		152	116			51
Ta	Lind	NS- NA202										0-0									2.3	1		1.1		Ц	0.7
1p	_	MS- MS- Na202		a - 12			a - 13			7 ay		9 B	1 03							0.7		3		0.5		Ц	0.3
10	Ludd	MS- MS- MS-											1 - 03								4 B V	200		10		Ц	6

oc

Report: A20-10250

Te	mqq	9	FUS- MS- Na202	< 6	6	<6×	×6	82		×6		< 6	< 6				1	2	8	7	< 6	< 6	19	13	16	11	×6	18
Tb	mod	0.1	FUS- MS- Na202	0.2	0.1	0.1	0.2			1.3	1.5	0.2	0.2		28			< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	× 0.1	- 01
Ta	mqq	0.2	FUS- MS- Na202	3.7	3.1	0.9	0.5			1.4	1.5	3.1	3.4				2	1.2	1.7	21	2.2	< 0.2	0.7	0.5	0.5	0.4	0.5	0.6
	d uudd	0	FUS- F MS- MS- Na202 N	44	37	15	17	02		191	202	47	51					14	12	17	12	15	0	14	14	11	13	01-
1 Sc	bbm b	5	FUS- F MS- M Na202 N	9.4	5.8	3.7	0.9	225		7.3	7.7	23.3	20.9				100	4.1	3.5	3.5	3.4	1.2	3.9	0.6	2.7	2.4	3.9	10.5
n Sn		0	. 8	0.5	0.6	0.6	0.2	2.55	195	9.0	10.0	1.0	0.3	229			100	< 0.1	< 0.1	< 0.1	< 0.1	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	101
ES.	mdd	1 0.3	FUS- FUS Na202 MS- Na20	30.0	30.0	30.0	30.0	225	100	30.0	30.0	30.0	30.0	222			< 0.01	< 0.01	< 0.01	0.01		0.01	< 0.01	0.01		0.01		-0.04
ō	%	0.01	FUS- FU MS- Nac Na202	< 8 >	20 >	< 8×	< 8 >	35	1910	< 8 >	< 8×	< 8×	< 8 >	223			V	< 8 <	< 8 ×	21 <	< 8	15 <	14 <	21 ×	< 8	< 8 <	< 8	14
es.	ppm	60		< 2	64 V	êN V	< S	:15	1950	ev v	64 V	< 2	× 2				12	× 23	< 25	24 X	er v	< 2	es v	éu V	< 2	ev v	< 2	01
ds.	mdd	ev.	C FUS- 02 MS- Na202	0.01	0.02	0.02	0.01	225	1	0.03	0.04	< 0.01	< 0.01				< 0.01	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01		< 0.01		10.01
so.	8	0.01	FUS- Na202	272 0	20	8.1 0	0.2 0	235		142 0	137 0	169 < 0	90 × 06	223	-		v o	2.5 <0	< 0.4 < 0	0.4 <0	0.5		2.2 <0	0.6 <0	1.9	0.4 <0	3.1	0.0
8	mdd	0.4	FUS- MS- Na202	0.8 2	0.6 2	1.6	1.5 1(:15	1912	19.3 1	2	0.4 1	1 10	22			200			1	-				1	۷		
Pr	mqq	0.1	FUS- MS- Na202	.6		4.6 1	4.0 1	:15		27	4 17			223			223) 123	4.6 × 0.1	3.6 < 0.1	0.9 <0.	1 <0.	4.3 < 0.1	3.5 < 0.1	20 <0.1	2.0 < 0.	0.9 < 0.1	2.5 < 0.1	10- 10
Pa	mdd	0.8	FUS- MS- Na202	17	0 17.3			:15	199	32.2	32.4	0 19.8	10 19.2	223	222		224			12	0 4.1			70 2	80 2	10 0.	_	
IN	mdd	10	FUS- MS- Na202	20	8	30	8	235		40	40	40	1				- 1) 223	8	20	20	30				-	0	10	UV I
DN	mdd	0.4	FUS- MS- Na202	1.9	2.6	4.8	5.2	235		70.07		1.8	2.8	229			3 225	× 0.4	< 0.4	< 0.4	× 0.4	с. С	< 0.4	× 0.4	< 0.4	< 0.4	< 0.4	101
2	mdd	2.4	FUS- MS- Na202	21.7	20.4	3.5	3.1			19.0	18.2	14.3	14.B				į	2.8	4.0	<2.4	2.5	<2.4	3.1	3.7	3.7	<2.4	<2.4	101
Mo	mdd	1	FUS- MS- Na202	<1	<1	C1	C1	28		<1	<1×	<1	<1		65			6	<1	<1 >	<1	<1	CV.	×1	< 3	<1	<1×	1.1
Mn		0	FUS- MS- Na202	184	234	83	79	20	150	479	507	217	188		63S			1	0	6	10	10	14	12	< 3	11	6	14
Mg N	%	0.01	FUS- Na202	0.10	0.11	0.04	0.04	23	550	0.71	0.68	0.09	0.09		55		< 0.01	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01		< 0.01	10000	10.01
	6 mdd	0	FUS- F MS- Na202	58	51	6	æ	23		56	99	21	21		100			8	< 3	10	4	< 3	<. 3	w	10	20	10	8
1 L	bpm ppm	4	FUS- F MS- M Na202 N	2.7	3.2	5.8	7.0	20		85.5	82.6	2.3	23		53			< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	× 0.4	< 0.4	< 0.4	104
E.		1 0.4	FUS- FUS- Na202 M	3.4	3.3	0.1	0.1	33		2.3	2.4	2.8	2.9		100		< 0.1	< 0.1	× 0.1	< 0.1	100	× 0.1	< 0.1	< 0.1		< 0.1		101
×	av. m	2 0.1	FUS- FU MS- Na Na202	< 0.2	< 0.2	< 0.2	< 0.2	23		< 0.2	< 0.2	< 0.2	< 0.2		13		1	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	× 0.2	< 0.2	< 0.2	000
ni loc	bpm	0.2	1					Bi	9		-										33			13				
Analyte Symbol	Jinit Symbol	Lower Limit	Method Code	SWI-20-50 Orig	PREP DUP	SWI-20-52 Orig	SWI-20-52 Dup	SWI-20-63 Orig	SWI-20-63 Dup	SWI-20-68 Orig	SWI-20-68 Dup	SWI-20-73 Orig	SWI-20-73 Split PREP DUP	Method Blank	Mathori Black													

Report: A20-10250

Activation Laboratories Ltd.

oc

interint for allight to a	-	1	H	m		>	N	>	AD.	15
Unit Symbol	mdd	%	mdd	mdd	mdd	udd	udd	udd	udd	mdd
Method Code	FUS-	FUS- Na202	FUS- MS-	FUS-	FUS-	NS-	FUS-	FUS-	FUS-	PUS-
NIST 694 Meas	NakOZ		Nazor	Nazouz	Naizuz	Nazouz	NAKOZ	Nazouz	Nazoz	Nakuz
NIST 694 Cert										
NIST 694 Meas										
NIST 694 Cert										
NIST 694 Meas										
NIST 694 Cert										
PTM-1a Meas										
NIST 696 Meas										
NIST 696 Cert										1 m
DTS-2b Mean			2.75		2.46	24				33
DIS-20 Cert		2				22.0	1010	20.0		140
DC 70007) Meas										1
GBW 07239 (NCS DC 70007) Cert							1000.00	34.2		120
Oreas 74a (Fusion) Meas										
Oreas 74a (Fusion) Cert										
Oreas 74a (Fusion) Meas										
Oreas 74a (Fusion) Cert										
Oreas 74a (Fusion) Meas										
Oreas 74a (Fusion) Cent										
DREAS 101a Fusion) Meas	35.7	0.39		2.8	420	9/		188	16.7	
DREAS 101a Fusion) Cert	36.6	0.395		2.90	422	8		183	17.5	
SARM 3 Meas	65.3				17.8	86		19.4		440
SARM 3 Cert	66				14	81		8		395
NCS DC86303 Meas							10.4			
NCS DC86303 Cert							8.90			
NCS DC86303 Meas							6.6			
NCS DC86303 Cert							8.9			
NCS DC86314 Mets							75.4			
NCS DC86314 Carl					~		79.0			
CZN-4 Medis										> 10000
CZN-4 Cert										550700
OREAS 922 (Peroxide Fusion) Meas	17.9	0.44	8.0	0.5	3.7	68		30.8	3.4	270
OREAS 922 (Peroxide Fusion)	17.7	0.439	0.9	0.510	3.6	92.0		31.1	3.17	280

Page 16/19

oc

Analyte Symbol	HL I	H	F	Tm	n	٨	M	٨	Ab	Zn
Unit Symbol	mdd	22	ppm	bpm	6	bpm	udd	_	mqq	ppm
Lower Limit Mathod Corts	0.1	0.01	0.1	0.1	0.1 File	5 FIIS	0.7	0.1	0.1	30 El Is.
lethod Code	MS- MS- Na202	Na202	MS- Na202	MS- Ma202	MS- Na202	MS- MS- Na202	MS- MS- Na202		MS- Na202	MS- MS- Na202
OREAS 922 Peroxide Fusion) Mens	16.4		9.0	0.4	3.4	32		28.4	3.1	200
OREAS 922 (Peroxide Fusion) Cert	<i>E1</i> 1		0.9	0.510	3.6	92.0		31.1	3.17	260
OREAS 922 (Peraxide Fusion) Meas	18.1		0.9	0.5	3.4	88		31.1	3.4	300
OREAS 922 (Peroxide Fusion) Cert	£24		6.0	0.510	3.6	92.0		31.1	3.17	280
OREAS 621 (Peroxide Fusion) Meas	8.4	0.19	2.1		2.8	37	3.5	14.3	1.5	> 10000
OREAS 621 (Peroxide Fusion) Cert	6.6	0.181	2.0		3.0	36.3	26	13.9	1.03	52200
OREAS 621 Peroxide Fusion) Mens	8.4		2.0	10	2.7	8	3.2	13.6	1.3	> 10000
OREAS 621 Peroxide Fusion) Cert	8.6		2.0		3.0	36.3	2.6	13.9	1.03	52200
OCU-te Meas			3.0							> 10000
CCU-1e Cert			2.69							30200
CCU-1e Meas			2.7							> 10000
CCU-1e Metts			2.6							> 10000
CCU-1e Cert		Country of	2.69							30200
OREAS 680 Peroxide Fusion) Meas	6.3	0.52			1.6	216		17.3	1.8	2300
OREAS 680 (Peroxide Fusion) Cert	6.73	0.523			1.55	224		16.2	1.52	2320
OREAS 139 (Peroxide Fusion) Meas	7.8	0.15	34.8		12.3			16.7	30/21	> 10000
OREAS 139 (Peroxide Fusion) Cert	7.54	0.157	35.4		12.2			1.71		133600
OREAS 139 (Peroxide Fusion) Meas	8.0	0.15	34.0		12.3			16.6		> 10000
OREAS 139 (Peroxide Fusion) Cert	7.54	0.157	35.4		12.2			17.1		133600
OREAS 139 (Peroxide Fusion) Mens	17		37.0		11.7			18.0		> 10000
OREAS 139 (Peroxide Fusion) Cert	7.54		35.4		12.2			17.1		133600
OREAS 624 (Peroxide Fusion) Metts	3.9	0.15	1.0		1.3	8	4.9	17.0	2.0	> 10000
OREAS 624	4.12	0.146	0.940		1.34	43.3	4.58	17.3	1.94	24100

Page 17/19

Analyte Symbol	H	I	F	Tm	n	>	W	X	Ab.	4U
Unit Symbol	mdd	%	tudo	mdd	ppm	bpm	bpm	mdd	mdd	mdd
Method Code	Na202	FUS-	NIS- NIS- NIS-	PUS- MS- NA202	FUS- MS- MS-	PUS- MS- Na202	NS- NS- NS-	MS- MS- Na202	MS- MS- MS-	Na2O2
Cert OREAS 624 (Peroxide Fusion)		0.15	0.9		1.3	25	5.1	17.6	2.5	> 10000
Meas OREAS (24 (Peroxide Fusion)	4.12	0.146	0.940		1.34	43.3	4.58	17.3	1.94	24100
OREAS 624 (Peroxide Fusion)	4.3		0.7		1.3	26	5.4	16.9	2.1	> 10000
OREAS 624 (Peroxide Fusion) Cert	4.12		0.940		1.34	43.3	4.58	17.3	1.94	24100
OREAS 124 (Peroxide Fusion) Meas		0.26								-
OREAS 124 (Peroxide Fusion) Cert		0.254								
AMIS 0250 (Flourine) Meas										
AMIS 0250 (Flourine) Cert										
AMIS 0250 (Flourine) Meas	. %	1 0 %		. 8						
AMIS 0250 (Flourine) Cert										
AMIS 0250 (Flourine) Meas										
AMIS 0250 (Flourine) Cert		1 - 0 %								
AMIS 0346 (Peroxide Fusion) Meas		14.9				2670				
AMIS 0346 (Peroxide Fusion) Cert		15.0				2700				
AMIS 0346 (Peroxide Fusion) Means						2630				
AMIS 0346 (Peroxide Fusion) Cert		-				2700		2		
SWI-20-7 Orig	19.2	0.03	1.4	0.5	6.1	< 5	2.9	24.3	2.8	< 30
SWI-20-7 Dup	19.6		1.3	0.4	6.1	< 5			3.2	< 30
SWI-20-15 Orig SWI-20-15 Dup				(14) (1 201 23				20122	Jobs	
SWI-20-21 Orig	12.1	0.24	0.3	0.3	1.6	36	1.0	15.1	1.9	40
SWI-20-21 Dup	12.6				1.2	36	1.1	16.4	1.8	< 30
SWI-20-29 Orig	1.3		< 0.1	< 0.1	1.9	24	2.3	3.5	1.0	8
SWI-20-29 Dup SWI-20-29 Orio	1.4	0.06	0.2	0.1	1.7	33	0.8	3.4	0.8	40
SWI-20-32 Dup							1			
SWI-20-44 Orig	7.4	0.06		< 0.1	1.1	12		1.1	1.0	80
SWI-20-44 Dup	7.4	-	v	2	1.1	0.1	2.8	7.8	1.1	60
SWI-20-50 Ung	22	0.04	1.6	< 0.1	2.1	1	2.7	5.7	0.7	8

Page 18/19

ac

Analyte Symbol.	Th	E	F	Tm	2	N	M	X	ę	Zn
Unit Symbol	bpm	%	uudd	uudd	mdd	mqq	mqq	bpm	mdd	mdd
Lower Limit	0.1	0.01	0.1	0.1	0.1	10	0.7	0.1	0.1	30
Method Code	FUS- MS- Na202	FUS- Na2O2	FUS- MS- Na202							
SWI-20-50 Split PREP DUP	20	0.04	1.5	< 0.1	2.0	< 5 <	3.4	8.7	1.0	40
SWI-20-52 Orig	1.2	0.03	< 0.1	< 0.1	0.5	8	2.2	5.0	0.7	< 30
SWI-20-52 Dup	1.3	0.03	< 0.1	< 0.1	0.4	6	0.8	3.5	0.9	< 30
SWI-20-63 Orig					2115	5 233			153	152
SWI-20-63 Dup										
SWI-20-68 Orig	35.0	0.43	0.9	0.5	29.5	73	3.5	42.2	3.0	8
SWI-20-68 Dup	30.1	0.42	1.2	0.4	27.6	65	3.5	37.6	3.2	100
SWI-20-73 Orig	1.7	0.01	1.2	0.1	19.7	9	3.9	5.2	0.9	120
SWI-20-73 Split PREP DUP	1.6	0.01	1.4	1.0	14.9	9	2.3	5.2	1.1	8
Method Blank	88	33	33	38	38	88	58	88	39	32
Method Blank										
Method Blank	103		33	03	100	193	33	103	58	5.H3
Method Blank	33	< 0.01	82	58	68	32	58	68		22
Method Blank	< 0.1	< 0.01	< 0.1	< 0.1	< 0.1	< 5 × 5	< 0.7	0.2	0.3	
Method Blank	< 0.1	< 0.01	< 0.1	< 0.1	< 0.1	< 5	< 0.7	< 0.1	0.3	< 30
Method Blank	< 0.1	< 0.01	< 0.1	< 0.1	< 0.1	< 5	1.5	< 0.1	0.5	
Method Blank	< 0.1		< 0.1	< 0.1	< 0.1	< 5	1.5	< 0.1	0.2	< 30
Method Blank	< 0.1	< 0.01	< 0.1	< 0.1	0.2	< 5	1.0	< 0.1	0.5	
Method Blank	< 0.1	< 0.01	< 0.1	< 0.1	< 0.1	< 5 <	2.2	< 0.1	0.4	
Method Blank	< 0.1	× 0.01	< 0.1	< 0.1	0.1	< 5 <	1.2	< 0.1	0.3	< 30
Method Blank	< 0.1	00	< 0.1	< 0.1	0.1	< 5	1.6	< 0.1	0.4	
Method Blank	< 0.1	< 0.01	< 0.1	< 0.1	< 0.1	< 5	< 0.7	< 0.1	0.3	< 30
Method Blank	< 0.1	Burner	< 0.1	< 0.1	< 0.1	< 5 5	< 0.7	0.1	0.6	< 30
Method Blank	< 0.1	< 0.01	< 0.1	< 0.1	0.1	< 5×	< 0.7	0.2	1.0	< 30

Page 19/19

APPENDIX III – PHOTOGRAPHS

Photo 1. Camp at Continental Divide Lodge campground between Swift River and Rancheria.

Photo 2: Author selfie along unnamed creek, collecting samples SWI-20-27 to -31.

Photo 3. Author wet screening stream sediment samples to +4mm and -4mm for visual examination and laboratory analysis, respectively.

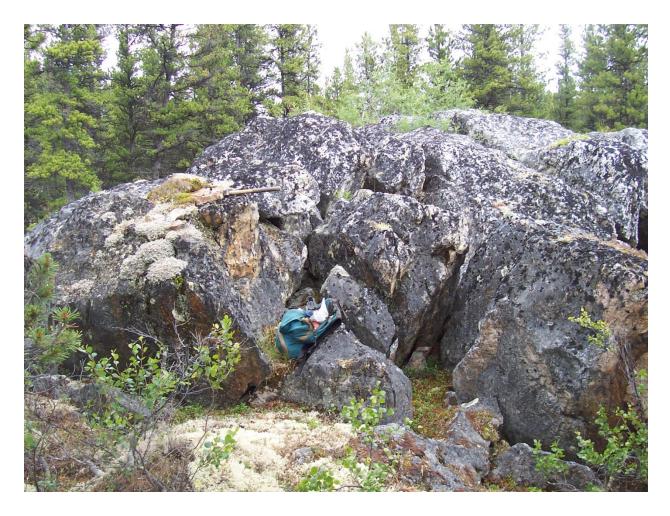


Photo 4. Large quartz vein in outcrop at sample site SWI-20-23 and -24.