YMEP 2020 - 037

GOLDORAK PROJECT

WHITEHORSE MINING DISTRICT

NTS 105L/15

UTM NAD 83 ZONE 8: 514400E, 6973150N

BY: JEROME DE PASQUALE

&

ROGER HULSTEIN, P. GEO.

DECEMBER 12, 2020

TABLE OF CONTENTS

Frontispiece photo; looking southeast from Dromedary Mountain, with Anaconda's DDH81-05 drill pad in foreground.

Contents

SUMMARY	4
INTRODUCTION	7
LOCATION, ACCESS AND LAND STATUS	7
2020 PROGRAM DESCRIPTION	9
TOPOGRAPHY, VEGETATION AND CLIMATE	
PREVIOUS WORK	10
TENURE	13
REGIONAL GEOLOGY	
2020 LOCAL PROJECT AREA GEOLOGY & MINERALIZATION	
GEOCHEMICAL DATA	26
DRILLING	29
GEOPHYSICAL DATA	
2020 PROGRAM and RESULTS	33
CONCLUSIONS and RECOMMENDATIONS	43
BUDGET	44
REFERENCES	
STATEMENT of QUALIFICATIONS (RH)	47
STATEMENT of QUALIFICATIONS (JdP)	48

Tables

	40
Table 1. Claims held within Goldorak Project Area	
Table 2. Table of Goldorak Mineral Occurrences	21
Table 3. Drill holes within Goldorak Project Area (coordinates in NAD83, Zone9)	29
Table 4. Significant geochemistry from drill holes in 2020 project area	30
Table 5. Significant Rock Geochemistry from Occurrences	38
Table 6. 2020 Expenditures	44

Figures

Figure 1. Goldorak Project Location – centered over Dromedary Mountain.	8
Figure 2. Claim Map, Goldorak Project	15
Figure 3. Claim block outlines and zone names, NTS 105L/15	16
Figure 4. Regional Geology (geology after Cobbett and Keevil, 2019)	18
Figure 5. Diagramatic stratigraphic column for Glenlyon area, from Cobbett, 2019	19
Figure 6. Massive sulfide from the Main Showing	20
Figure 7. 2020 Field stations and traverses.	
Figure 8 Property Geology in pocket	
Figure 9. Stream sediment sampling	27
Figure 10. GSC Regional Stream Sediment Geochemical Data (Au, As, Cu and Sb), grey rectangle is approx	imate
target areain_pocket	
Figure 11. 2020 Rock sample locations, numbers and gold geochemistry	

Figure 12. 2020 Soil and stream sediment locations, numbers and gold geochemistry	in pocket	
Figure 13. Example of 2020 claim post		. 33
Figure 14. Cu DDH81-05 target area		. 39
Figure 15. MacMillan River looking west.		. 55
Figure 11. Gold Geochemistry	in pocket	
Figure 12. Silver Geochemistry	in pocket	
Figure 13. Copper Geochemistry		
Figure 14. Lead Geochemistry	in pocket	
Figure 15. Zinc Geochemistry	in pocket	
Figure 16. Arsenic Geochemistry	in pocket	
Figure 17. Bismuth Geochemistry	in pocket	
Figure 18. Antimony Geochemistry	in pocket	
Figure 19. Regional Aeromagnetics (after Cobbett, 2019)		31
Figure 20. GSC Aeromagnetic Data (1 st vertical Derivative) over project area		32

Photos

Photo 1. Dromedary intrusion outcrop	3
Photo 2. Soil Sample Y647755 area	
Photo 3. Main showing area-sample W6418673	4
Photo 4. Main Showing-sampling area	5
Photo 5. West Dromedary talus slope	
Photo 6. Silver Showing	
Photo 7. BMS Showing	0
Photo 8. Inform Silver Occurrence	1
Photo 9. Discovery Showing-rusty boulder field 4	2
Photo 10. Dromedary Mountain looking west	4
Photo 11. Looking North West from Dromedary Mountain	4
Photo 12. Looking north-east from drill pad DDH81-055	5
Photo 13. Drill hole DDH81-01 and DDH81-02 area	6
Photo 14. Drill hole DDH81-06 collar	6
Photo 15. North Ridge target5	7
Photo 16. Sheeted vein scree slope5	
Photo 17. Semi-massive sulfide float on the top of the Goldorak North Ridge	
Photo 18. Calc-silicate outcrop	
Photo 19. Sample W641916	

Appendices

Appendix A	2020 Analytical Certificates
Appendix B	2020 Rock Sample Descriptions & Analytical Results
Appendix C	2020 Soil and Stream Sediment Descriptions, Statistics & Analytical Results
Appendix D	2020 Field Station Locations and Descriptions
Appendix E	2020 Photos

Map Pocket

Figures 8, 10 to 18

SUMMARY

The Goldorak Project (YMEP 2030-37) is located in central Yukon, 240 kilometres north of Whitehorse, on the west side of the Selwyn Basin east of the Tintina Trench. Goldorak is a gold project focusing on a previously unrecognized intrusive related gold target centered over Dromedary Mountain. In 1980 Anaconda Canada Exploration Ltd. staked and explored the area (1980 - 1982) for sedimentary exhalative (SEDEX) Pb-Zn-Ag deposits. Anaconda drilled ten holes 1,900 m in 1981 testing an 18 km long thrust fault bounded belt of prospective Earn Group rocks consisting of variably calcareous argillite, siltstone, and siliceous argillite. In the 1990's Dromedary Exploration Company Ltd. and Blackstone Resources Inc. diamond drill tested the Francoise Zone, on the west side of Dromedary Mountain, and intersected syngenetic and replacement style massive and semi-massive sulfide mineralization in the same belt of Earn Group rocks. The upper sulfide lens returned up to 8.4% Zn, 2.4 % Pb and 29.8 ppm Ag over two meters while the lower horizon is characterized by its gold-rich signature (up to 2.2 g/t Au over 4.4m) and a strong gold-arsenic correlation.

The 18 km long northwest trending mineralized belt is defined by anomalous soil, stream sediment and rock (Au, Cu, Pb, Zn, Sb, As) geochemistry, EM conductors and magnetic linears. This anomalous belt is bounded to the south by the Twopete Fault that may have served as a conduit for mineralizing fluids. The magnetic high surrounding the annular magnetic low at Dromedary Mountain is evidence of a large shallowly buried intrusion, likely a reduced intrusion, similar to that of Tombstone intrusions that host or are integral to distal disseminated - replacement style gold mineralization. The Keg deposit, approximately 75 km on trend to the SE shares a similar geological setting; similar granitoid intrusion, metasedimentary host rocks and thrust faulting.

The 2020 exploration program was carried out from a two person fly camp from June 29 to July 6. A total of 24 quartz claims (Acta 1-24) were staked in 2020 to cover the granitic intrusion and surrounding area including six of the 1981 Anaconda drill holes. A total of 38 quartz claims, including the Acta 1-24, in four separate groups, make up the claim package within the Goldorak project area. The claims are owned 100% by Hulstein and de Pasquale. In 2019 the Fran 1-4 & Orak 5-8 claims were staked to cover other historic drill holes at the historic SEDEX – gold Francoise and Dromedary Creek Zones, respectively. The La Liga Zone and the Nagai Zone discovered in 2019 were staked as the Orak 1-4, 9, 10 claims.

With the exception of some widespread geochemistry carried out by Inform Resources Corp. the belt has never seen focused gold exploration. Anaconda did not analyze systematically for Au or pathfinders (pre ICP analysis) and geochemistry carried out by later workers (Blackstone Resources) was focused on the Francoise and Dromedary Creek Zones for lead-zinc mineralization.

The 2020 program focused on the central portion of the belt over Dromedary Mountain. The quartz monzonite mapped by Anaconda was relocated and sampled. Four key drillholes from 1981 were relocated along with five reported mineral occurrences. Two types of mineralization were noted; base metal sulfide replacement at the Main, Silver Creek, BMS showings, sulfides and calc-silicate reported at the Cu DDH81-05 occurrence, and quartz veining at the Inform Silver Occurrence.

A total of 29 rock, 37 soil and 7 stream sediment samples were collected in 2020, most from the Acta 1-24 claims. Rock samples returned low values for gold (< 0.147 ppm), up to 193 ppm for silver and up to 6000 ppm Cu, 1.06 % Pb and 4.17 % Zinc along with highly anomalous values for pathfinder elements bismuth, arsenic and antimony. Banded semi massive sulfide replacement returned low gold and silver values (< 0.147 ppm and <22.7 ppm respectively) but high values for Cu, Pb, Zn and pathfinder elements. Five rock samples from the Inform Silver Occurrence returned between 0.9 ppm and 193 ppm Ag along with low gold values (< 0.067 ppm) and anomalous As (up to 10,000 ppm), Bi (up to 115 ppm) and Sb (up to 339 ppm).

Soil samples returned up to 0.529 ppm for gold and 6240 ppm Pb from the Main Showing area, up to 66.4 ppm Ag, 1210 ppm Cu, and 3740 ppm Zn all from an area about 300 m north of the Main Showing. Soil geochemistry in 2020 across the target returned highly anomalous values for pathfinder elements bismuth, arsenic and antimony.

Stream sediment samples returned up to 0.132 ppm gold, up to 4.66 ppm silver, 1930ppm Cu, 33.9 ppm Pb and 1610 Zn along with highly anomalous values for pathfinder elements bismuth, arsenic and antimony. In addition, panned stream sediment samples yielded abundant scheelite from the drainage below the quartz monzonite and two samples may have contained specks of gold.

Sampling and prospecting at the Inform Silver Occurrence located the outcrop sample site reported by Inform Resources Corp. to contain 203 gpt Ag. Resampling in 2020 obtained results up to 193 ppm from a 10 cm, approximate true thickness, weathered gossanous crustiform quartz vein cutting siltstones. Six soil – talus fine samples collected downslope from the outcrop returned >2.43 to 8.21 ppm Ag, >124 to 220 ppm As, >20.2 to 74.1 ppm Mo, >36.9 to 165.5 ppm Pb, >7.7 to 23.5 ppm Sb, >20.9 to 65.9 ppm Se, and >210 to 504 ppm Zn over a 500 m long contour line.

Given that highly anomalous gold, silver, copper, lead and zinc has been identified in drill holes, surface showings and in soil and stream sediment samples further work is warranted and recommended on the Goldorak project. The primary target is distal precious metal mineralization related to a mostly buried reduced intrusion utilizing the structural preparation provided by the Twopete Fault. Two main deposit types present themselves; gold, silver, and to a lesser extent base metals, in replacement type deposits as indicated by drill holes on the Francoise Zone and at the Main, BMS and Silver Creek Showings. A secondary target is vein or vein – fault precious metal mineralization as found at the Inform Silver and Nagai Occurrence.

Hulstein and with de Pasquale (2019) recommended additional work on the Francoise, Dromedary Creek Zone, northern Mag Anomaly, La Liga, Nagai and the RGS Sb Anomaly which will not be repeated here and to which the reader is referred as a complement to this report.

As a result of the work carried out in 2020 the following is recommended. Trace the banded sulfide mineralization using the results of the ground electromagnetic (EM) surveys carried out by Anaconda in 1981 and 1982 in conjunction with the accurately relocated sulfide horizons. Further compilation using this historic data across the entire project area will greatly assist in targeting auriferous sulfides as found at the Francoise Zone (2.2 g/t Au over 4.4m).

The west facing slope Dromedary Mountain between the Main Showing and Francoise Occurrence should be prospected and sampled as far as practicable given the vegetation and overburden at lower elevations. Anaconda reported significant and to this day unexplained highly anomalous copper in soil anomalies north and west of the Main Showing that require follow- up. This area overlaps anomalous geochemistry obtained about 300 m north of the Main Showing in 2020. The east facing slope from the 2020 camp location to Dromedary Creek also needs to be prospected and sampled as far practicable. The area of Anaconda drill hole DDH81-07 and the LM occurrence need to be relocated and prospected and if warranted, sampled as well. Due to time constraints in 2020 the ACE barite occurrence was not examined and this along with additional prospecting and sampling on the steep north facing slope should be carried out.

INTRODUCTION

The purpose of this report on the Goldorak project (YMEP 2020-13) is to fulfill obligations arising from funding obtained through the Yukon Mineral Exploration Program (YMEP). The report describes and summarizes the geological and geochemical results obtained in 2020 from an eight-day program carried out from June 29 – July 6, 2020. An exploration program of prospecting, reconnaissance geological mapping and geochemical sampling was carried out within a portion of the recently mapped (Cobbett, 2018) Dromedary Mountain area. The principals behind the Goldorak project, Roger Hulstein and Jérôme de Pasquale, were attracted to the area by the results of the recent Yukon Geological Survey mapping, open ground, and lack of exploration for gold in what is believed to be a prospective target area for gold deposits.

This report also describes the location, access, history, geological setting, known mineral occurrences and outlines a proposed exploration program to further explore the project area for intrusive hosted and intrusive related gold deposits.

LOCATION, ACCESS AND LAND STATUS

The Goldorak project is centered over the Dromedary Mountain, located approximately 73 miles from Carmacks, 65 miles from Mayo, 68 miles from Faro, and the area is accessible by helicopter. (Figure 1). The main portion of the target area examined in 2020 is approximately centered over Dromedary Mountain. In 2019 the area east of Dromedary Mountain was examined.

The 2020 target area is located over Dromedary Mountain and over the ridge to the east of Dromedary Mountain. The prospective Goldorak gold exploration target, as defined by aeromagnetics, mineral occurrences and anomalous geochemistry, extends from Lone Mountain to the northwest to Earn Lake in the southeast, an overall distance of approximately 27 km.

The entire target area lies within the Traditional Territory of the Selkirk First Nation Territory. Category A First Nations Settlement Lands (Surface and Subsurface Rights, no staking permitted) are located on the west side of Dromedary Mountain (west of Clarke Creek) and over Lone Mountain and Category B (Surface Rights) land is located to the southeast and surrounds Earn Lake.

No active mineral claims (Yukon Quartz claims) other than the Fran 1-4, Orak 1-10, and Acta 1-24, all owned by Roger Hulstein and Jérôme de Pasquale and described within this report, are recorded in the area as of September 10, 2020.

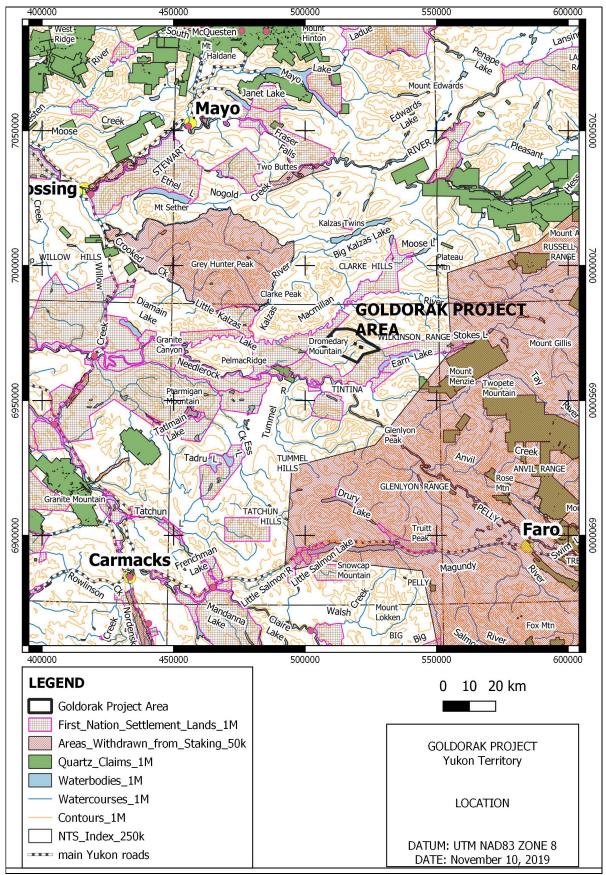


Figure 1. Goldorak Project Location – centered over Dromedary Mountain.

2020 PROGRAM DESCRIPTION

The 2020 field program was carried out by Roger Hulstein and Jérôme de Pasquale between June 29 – July 6, 2020 including mobilization and demobilization. Camp was established to the west of Dromedary Mountain at UTM 514400 east and 6973150 north (NAD83, Zone 8) from which traverses were carried out daily.

The following is a day-by-day summary of field activities in 2020:

June 29; drive from Whitehorse to Mayo, mobilize by helicopter and set up camp.
June 30; stake Acta 1-6 claims, search for BMS occurrence and DDH81-05, locate DDH81-01 and 02, prospects, rock soil and stream sediment sample. Locate old drilling camp.
July 1; stake Acta 7-10 claims, locate DDH81-05, rock and soil sample below Main Occurrence.
July 2; prospect and sample in area of DDH81-05, examine and sample Discovery and Silver Creek Occurrence, traverse up creek.
July 3; stake Acta 11-20 claims, locate, prospect and sample (age date) granitic intrusion. Prospect and sample on claim line.
July 4; stake Acta 20, 22 claims, locate and sample BMS Occurrence, locate DDH81-06, traverse and stream sediment sample. Refine intrusion extent.
July 5; stake Acta 23, 24 claims, locate and sample North Ridge area with high silver values.

July 6; demobilize to Mayo by helicopter and drive to Whitehorse.

Weather was good with intermittent showers during the field program with the exceptions of June 29 and July 6 when the weather was very marginal for flying (thank you Hugh at Fireweed for getting us in and out).

All sample and field stations locations were collected by GPS, Garmin model's 60CSx or better, with an accuracy commonly of +/- 3 m, and location information was stored using a UTM grid, NAD83 Datum in Zone 8v.

TOPOGRAPHY, VEGETATION AND CLIMATE

Topography in the region is typical of central Yukon, incised valleys with steep hillsides and rounded crests. Elevations range from approximately 650-800 m in the McMillan River valley to about 1800 m at the crest of Dromedary Mountain. Areas of high elevation locally consist of rugged alpine terrain with rare patches of stagnant ice and abundant evidence of recently departed alpine glaciers. Areas of lower elevation and the valleys, approximately below 1350 m elevation are moderately to densely vegetated. Larger valleys such as the McMillan River valley and Dromedary Creek are broad and filled with glacial debris.

The climate in the project area is variable with warm summers and long cold winters. Precipitation is light, with moderate snowfalls during the winter months. Depending on the elevation the typical field season extends from late May to middle - late September. Permafrost can be expected anywhere within the project area, particularly on northerly facing slopes. Permafrost, thick ash and organic horizons and glacial till cover posed significant problems in 2019 while attempting to collect meaningful soil and stream sediment samples.

PREVIOUS WORK

The area was explored intermittently for SEDEX Pb-Zn deposits in the 1980's to late 1990's. The latest work in the area was by Inform Resources in 2012 that carried out a ridge line soil traverse and some prospecting, likely exploring for gold. The gold potential was recognized during lead – zinc exploration but this was never consistently followed up on. Anaconda carried out work in the area extending from the Cave mineral showing west of Dromedary Mountain and north of the McMillan River to Earn Lake, to the east. A summary of previous work is as follows (work completed outside the immediate Goldorak target area carried out by Anaconda and others is included):

1980 Program by Anaconda Canada Exploration Ltd., Assessment report 090888 (Carlson, 1981):

- Prospecting and mapping
- Discovery of Fe, Zn and Pb sulfides on Dromedary Mountain
- Staked Ace 1-724 and Earn 1-4 claims

1981 Program by Anaconda Canada Exploration Ltd., Assessment report 090888 (Carlson, 1981), and internal Anaconda report (Carlson, 1982):

- 3500 line km airborne magnetometer and EM survey
- Geological mapping, prospecting (Cave showing discovery)
- Geochemical survey (rock, soil, drill core)
- Seven diamond drill holes on Dromedary Mountain and three drill holes on Dromedary Creek totaling of 1950 metres NQ core,

1982 Program by Anaconda Canada Exploration Ltd., Assessment report 091468 (Hall, 1983):

- 123 km Line-cutting and surveyed grid establishment
- Gravity survey, 45 line km of gravity level survey
- 3500 soil samples on grid at 25m centers
- 156 km of ground horizontal loop EM and magnetic geophysics survey
- Geological mapping
- Overburden mechanical hand drill soil sampling

1984-Anaconda Canada Exploration Ltd. ceased exploration activities

1985-Fleck Resources Ltd. acquired 1,436 claims from Anaconda

1988 Program by Dromedary Exploration Company Ltd. acquired the Ace and Bum claims by option agreement from Fleck Resources Ltd.

1988 Program by Dromedary Exploration Company Ltd., company prospectus (Regabliati, 1988):

- Claim staking
- Geological mapping, prospecting
- Geochemical survey (rock and soil)
- Ground geophysics
- Trenching

Data was reviewed by Rebagliati Geological Consulting Ltd. and work program was conducted by Aurum Geological Consultants Inc.

1990 Program by Dromedary Exploration Company Ltd., Assessment report 092882 (Hulstein 1990):

- Two diamond drill holes on the Ace Clams (Francois grid) totalizing 434 metres
- Geochemical survey (drill core), gold potential was recognized.

1990-Placer Dome Inc. examined the property, sampled limited drill core and, recommended a large drill program which was not undertaken.

1992-Kennecott Canada Inc. examined the property for Pb-Zn potential.

• Soil sampling (Cave grid)

1993-Energold Minerals Inc. optioned the property.

1993 Program by Energold Minerals Inc.:

- Geological mapping
- Soil sampling
- Ground Mag geophysics

Due to insufficient financing, the proposed drilling program was not undertaken.

1996 Blackstone Resources Ltd. optioned the property

1996 Program by Blackstone Resources Ltd., program conducted by Equity Engineering Ltd., Assessment report 093595 (Caulfield, 1997):

- Geological mapping, prospecting (DMC claims)
- One diamond drill hole at Dromedary creek and four on the Fran Zone totaling 936 metres,
- Geochemical survey (rock and drill core)

1997 Program by Blackstone Resources Ltd., program funded by Geologix Explorations Inc. and conducted by Equity engineering Ltd., Assessment reports 093755 and 093764 (Jones, 1998a, Jones 1998b):

- Additional claim stacking
- Geological mapping, prospecting (Francois grid, King claims, DMS claims)
- Gravity and Mag geophysical survey
- Geochemical survey (rock and soil sampling)
- Hand trenching

1998 Program by Blackstone Resources Ltd., program conducted by Equity Engineering Ltd. Assessment report 093945 (Jones, 1999)

- Three diamond drill holes totalizing 354.6 metres on the Fran Zone
- Geochemical survey (drill core)
- X-ray fluorescence analysis

2012 Program by Inform Resources Corp., Assessment report 096377 (Gibson, 2013).

- Ridge and spur soil sampling
- Limited rock sampling

2019 Roger Hulstein and Jérôme de Pasquale staked the Fran 1-4 quartz claims over anomalous drill holes DDH96-02 and 04 on the Francois Grid located west of Dromedary Mountain. East of Dromedary Mountain the Orak 5-8 claims were staked to cover the drill holes at the Dromedary Creek Zone. Also, in the Dromedary Creek area the Nagai, Ksf and La Liga Zones were explored by prospecting and geochemical sampling. The Nagai Zone being a new discovery with anomalous gold values.

TENURE

There is a total of 38 quartz claims in four separate groups within the Goldorak project area held by Hulstein and de Pasquale. All the claims are registered in the name of Roger Hulstein who holds them in a 49% / 51% partnership with Jérôme de Pasquale.

The four claim blocks are all located within the Yukon Whitehorse Mining District on NTS map sheet 105L/15. The claims cover a total of 790 hectares (1950 acres). A total of 24 claims (ACTA 1-24) were staked in 2020 to cover the granitic intrusion and surrounding area including most of the 1981 Anaconda drill holes. In 2019 in three groups of claims were staked to cover other historic drill holes (Fran 1-4 & Orak 5-8 claims), the La Liga Zone and the Nagai Zone discovered in 2019 (Orak 1-4, 9, 10 claims).

The claims and zone names are shown on Figures 2 and 3.

The Fran 1-4 claims cover the area of diamond drilling carried out by Blackstone Resources Ltd. and Dromedary Exploration Company Ltd. Additional historic drilling is found to the west of the Fran Zone located within Category A land belonging to the Selkirk First Nation.

The Orak 1-4, 9 and 10 claims cover the La Liga Zone, located on the creek banks of a steep northerly drainage, the newly identified Nagai Zone and the Ksf zone (Figure 4). The Orak 5-8 claims cover the historic Dromedary Creek Zone previously drilled by Anaconda and Blackstone.

Grant			Registered owner				
Number	Name	Number	(100%)	Recording Date	Staking Date	Expiry Date	
YD18081	ORAK	1	Roger Hulstein	2019-08-15	2019-07-24	2021-08-15	
YD18082	ORAK	2	Roger Hulstein	2019-08-15	2019-07-24	2021-08-15	
YD18083	ORAK	3	Roger Hulstein	2019-08-15	2019-07-24	2021-08-15	
YD18084	ORAK	4	Roger Hulstein	2019-08-15	2019-07-24	2021-08-15	
YD18085	ORAK	5	Roger Hulstein	2019-08-15	2019-07-26	2021-08-15	
YD18086	ORAK	6	Roger Hulstein	2019-08-15	2019-07-26	2021-08-15	
YD18087	ORAK	7	Roger Hulstein	2019-08-15	2019-07-26	2021-08-15	
YD18088	ORAK	8	Roger Hulstein	2019-08-15	2019-07-26	2021-08-15	
YD18089	ORAK	9	Roger Hulstein	2019-08-15	2019-07-28	2021-08-15	
YD18090	ORAK	10	Roger Hulstein	2019-08-15	2019-07-28	2021-08-15	
YC94546	FRAN	1	Roger Hulstein	2019-08-15	2019-07-23	2021-08-15	
YC94547	FRAN	2	Roger Hulstein	2019-08-15	2019-07-23	2021-08-15	
YC94548	FRAN	3	Roger Hulstein	2019-08-15	2019-07-23	2021-08-15	
YC94549	FRAN	4	Roger Hulstein	2019-08-15	2019-07-23	2021-08-15	
YD17521	ACTA	1	Roger Hulstein	2020-07-07	2020-06-30	2021-07-07	
YD17522	ACTA	2	Roger Hulstein	2020-07-07	2020-06-30	2021-07-07	
YD17523	ACTA	3	Roger Hulstein	2020-07-07	2020-06-30	2021-07-07	
YD17524	ACTA	4	Roger Hulstein	2020-07-07	2020-06-30	2021-07-07	
YD17525	ACTA	5	Roger Hulstein	2020-07-07	2020-06-30	2021-07-07	
YD17526	ACTA	6	Roger Hulstein	2020-07-07	2020-06-30	2021-07-07	
YD17527	ACTA	7	Roger Hulstein	2020-07-07	2020-07-01	2021-07-07	
YD17528	ACTA	8	Roger Hulstein	2020-07-07	2020-07-01	2021-07-07	
YD17529	ACTA	9	Roger Hulstein	2020-07-07	2020-07-01	2021-07-07	
YD17530	ACTA	10	Roger Hulstein	2020-07-07	2020-07-01	2021-07-07	
YD92181	ACTA	11	Roger Hulstein	2020-07-07	2020-07-03	2021-07-07	

Table 1. Claims held within Goldorak Project Area.

YD92182	АСТА	12	Roger Hulstein	2020-07-07	2020-07-03	2021-07-07
YD92183	ACTA	13	Roger Hulstein	2020-07-07	2020-07-03	2021-07-07
YD92184	ACTA	14	Roger Hulstein	2020-07-07	2020-07-03	2021-07-07
YD92185	ACTA	15	Roger Hulstein	2020-07-07	2020-07-03	2021-07-07
YD92186	ACTA	16	Roger Hulstein	2020-07-07	2020-07-03	2021-07-07
YD92187	ACTA	17	Roger Hulstein	2020-07-07	2020-07-03	2021-07-07
YD92188	ACTA	18	Roger Hulstein	2020-07-07	2020-07-03	2021-07-07
YD92189	ACTA	19	Roger Hulstein	2020-07-07	2020-07-03	2021-07-07
YD92190	ACTA	20	Roger Hulstein	2020-07-07	2020-07-03	2021-07-07
YD17531	ACTA	21	Roger Hulstein	2020-07-07	2020-07-04	2021-07-07
YD17532	ACTA	22	Roger Hulstein	2020-07-07	2020-07-04	2021-07-07
YD17533	ACTA	23	Roger Hulstein	2020-07-07	2020-07-05	2021-07-07
YD17534	ACTA	24	Roger Hulstein	2020-07-07	2020-07-03	2021-07-07

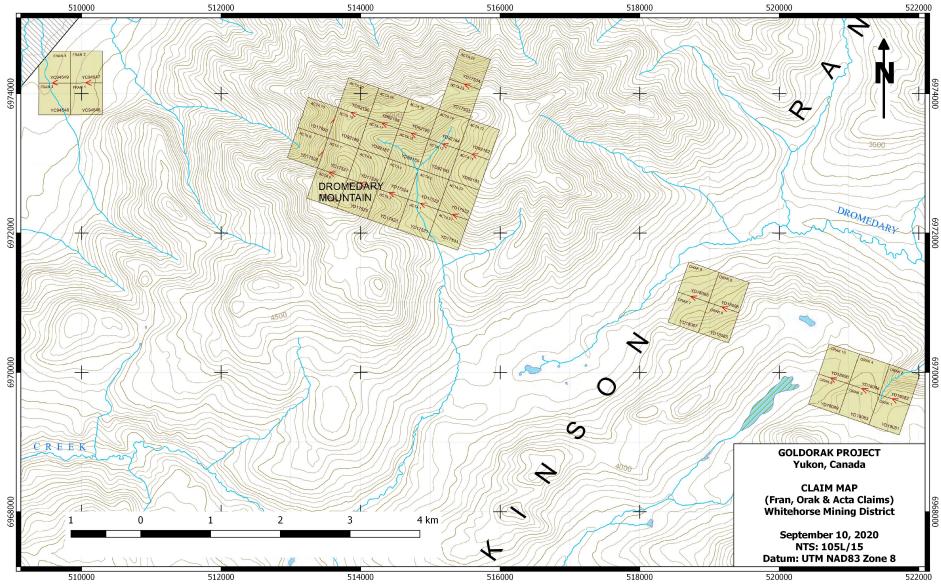


Figure 2. Claim Map, Goldorak Project.

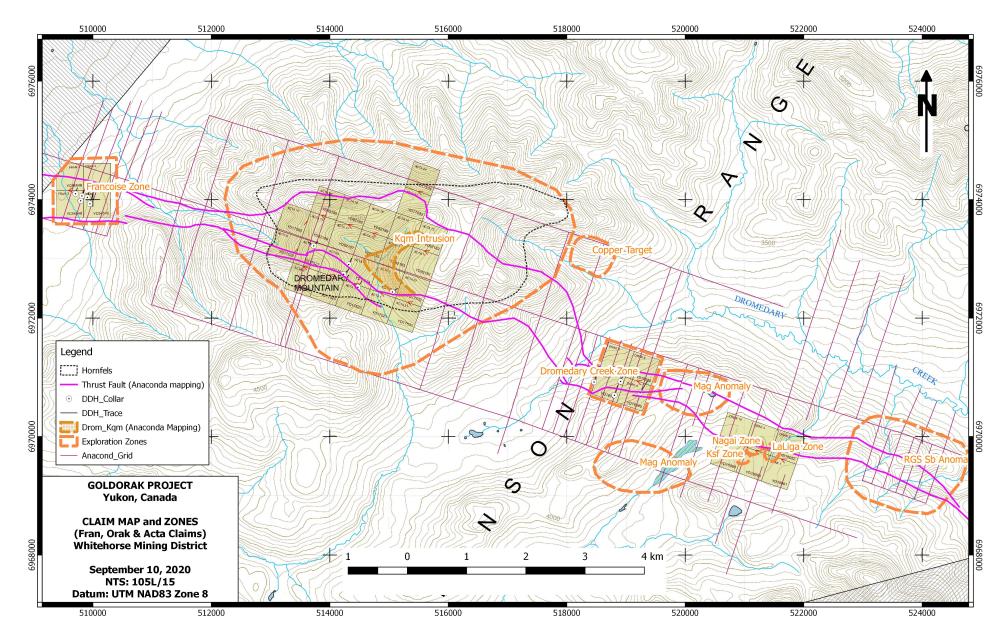


Figure 3. Claim block outlines and zone names, NTS 105L/15.

REGIONAL GEOLOGY

The project area was remapped by Rosie Cobbett in 2018 of behalf of the Yukon Geological Survey and the results are shown in Figure 4. Following information is extracted from: *Preliminary observations on the geology of northeastern Glenlyon area, Central Yukon* (Cobbett, 2019, Cobbett and Keevil, 2019).

- Three structural panels separate subparallel thrust faults (Duo fault on the south/Twopete fault on the north) and subdivide the stratigraphy as shown diagrammatically in the legend, Figure 5.
- The Southern Panel consists of volcanic and volcaniclastic rocks and sedimentary strata and are assigned to Vangorda Formation (interpreted to be metamorphic equivalent to Rabbitkettle formation (Jennings, 1986, Godfrey and Anderson, 1994, Pigage, 2004) and Menzie Creek.
- The Central Panel (fault bounded) comprised of siliciclastic and carbonate rocks and phyllites. Rocks exposed in the Dromedary Mountain area are assigned to Rabbitkettle Formation based on lithology similarities to the other parts of the Selwyn basin. It underlays rocks from Road River Group. The contact is to date considered as unconformable based on observations made in Nahanni, Flat River and Glacier lake areas (Gabrielse et al., 1973; Gordey and Anderson, 1993).
- Late Devonian dioritic intrusions (364 Ma) outcrop within the Central Panel. They are laterally cut-out where the Duo fault merges with the Twopete fault.
- The Northern Panel consists of Mid to Upper Paleozoic siliciclastic rocks, carbonate and chert assigned to Road River Group/Steel Formation, Earn Group, Tay River Formation, and Mount Christie Formation unconformably underlain by Jones Lake Formation.
- Intrusive rocks are represented by Mid-Cretaceous MacArthur batholith to the west of the target area. It is considered as part of the Mayo suite, based U-Pb zircon dating (98-93 Ma) on a sample collected near 30 km to the northwest (Colpron et al., 2016). A similar intrusion is thought to underlie Dromedary Mountain
- The area is deformed by a northwest-trending fold and post-Triassic thrust belt. Thrust faults are offset by steeply dipping, north-south oriented faults that have both strike-slip and dip-slip displacement.

The Goldorak project area can be said to straddle the northerly directed Twopete fault. The Rabbitkettle Formation of the Road River Group makes up the upper panel and the Earn Group the lower panel on the west side (Dromedary Mountain and Francoise Grid) of Dromedary Creek. East of the northeast trending fault in Dromedary Creek the Mount Christie and Tay Formations form the lower plate with the Road River Group, missing the Rabbitkettle Formation, forms the upper plate. From Cobbett (2018);

Detailed mapping along the Twopete fault provides evidence that it was a syn-sedimentary fault that controlled deposition of Upper Devonian clastic sedimentary and volcanic rocks. Fossils collected during mapping provide constraints on the position of the Twopete fault; Ordovician fossils were found in its hanging-wall and Late Devonian fossils in the footwall. This in turn shows that known mineralization is hosted in Upper Devonian sedimentary strata in the immediate footwall of the Twopete fault, suggesting a genetic link between mineralization and the fault, a relationship that can be traced for approximately 100 km to the southeast.

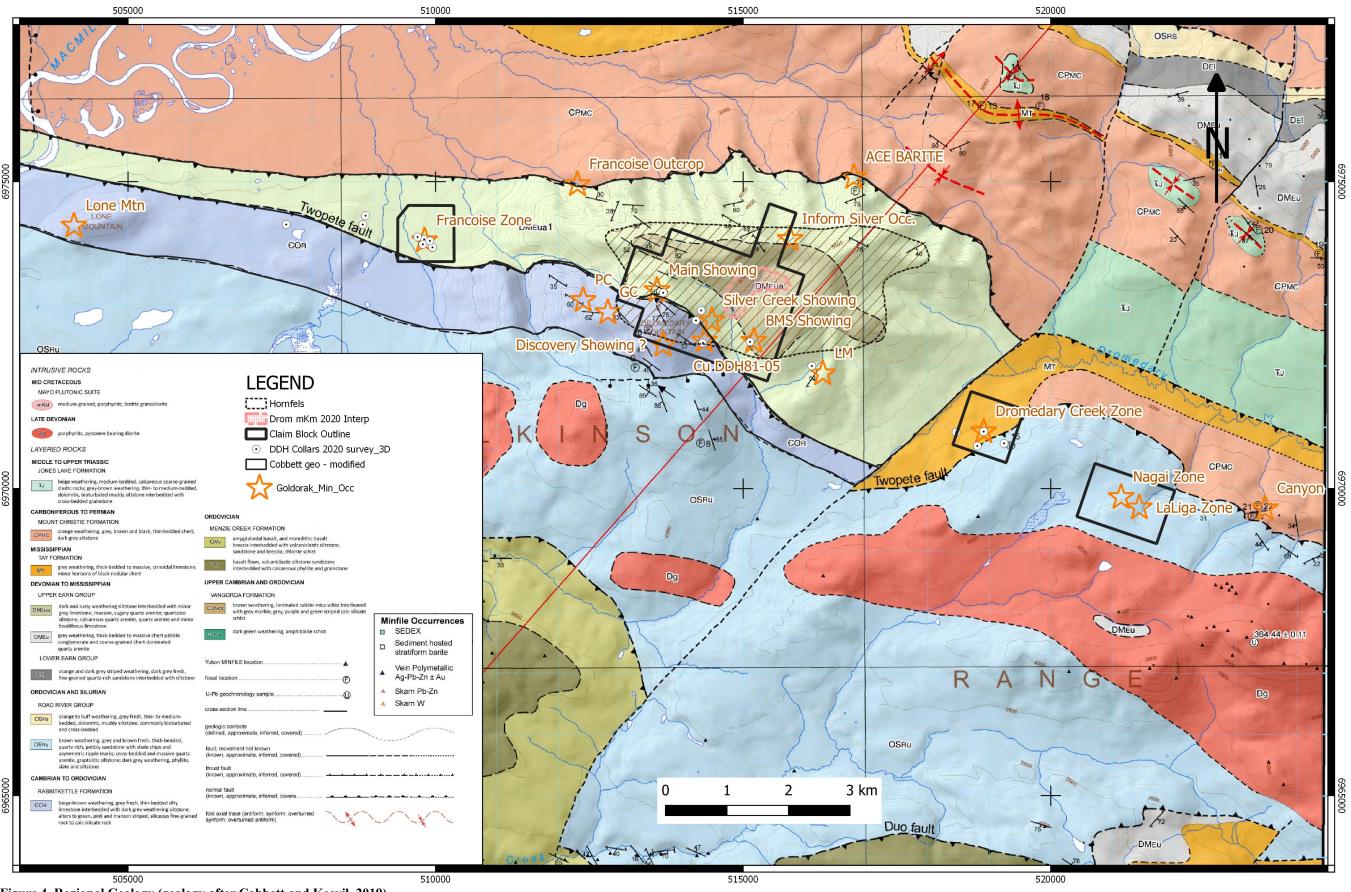


Figure 4. Regional Geology (geology after Cobbett and Keevil, 2019).

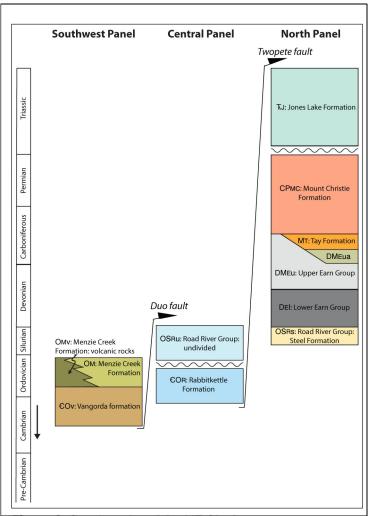


Figure 5. Diagramatic stratigraphic column for Glenlyon area, from Cobbett, 2019.

Mid-Cretaceous plutons exposed in the footwall of the Twopete fault are locally coincident with mineral occurrences. At Dromedary Mountain, a buried intrusion is imaged in regional aeromagnetic surveys and coincides with occurrences of polymetallic veins and a pyrrhotite-pyrite halo at surface. This relationship between epigenetic mineralization and Cretaceous intrusions continues to the southeast.

These features suggest that the Twopete fault is a long-lived, crustal-scale structure that defines a prospective corridor with potential for Late Devonian syngenetic mineralization similar to Macmillan Pass, replacement-style mineralization, and mid-Cretaceous vein-style mineralization similar to the Keno Hill district.

Further afield the Keg deposit located approximately 75 km to the southeast shares some similarities with the geological setting at the Goldorak Project. Namely, structural complexity involving thrust faults, normal faults, juxtaposition of siliciclastic rocks and perhaps most importantly the proximity to a small Cretaceous granitoid, within two kilometers at the Keg, that may have provided heat and or fluids to the mineralizing system (Giroux and Melis, 2014).

Known mineral occurrences within the project area are shown on Figure 4 and listed in Table 2. Mineralization can be grouped into three main types: sedimentary exhalative (SEDEX), replacement and vein type. The project was explored by Anaconda and Blackstone for SEDEX type mineralization, typified by the Francoise Zone, Dromedary Creek and Ace Barite occurrences. The SEDEX mineralization has been remobilized by the Cretaceous hydrothermal event associated with the Dromedary Mountain intrusion. Replacement type mineralization was found at the Francoise Zone and at most of the other zones (Main, Discovery, BMS, Silver Creek, La Liga Zones). The replacement mineralization is typified by massive to semi-massive sulfides, pyrite and or pyrrhotite with trace to low amounts of sphalerite, galena and chalcopyrite.

Figure 6. Massive sulfide from the Main Showing

The vein type occurrences: Lone Mountain, Inform Silver and Nagai are each quite different in character, but all consist of quartz veining and low sulfides and contain gold and or silver (Lone Mountain was never analysed for gold).

Cu DDH81-05 occurrence is centered on the Anaconda drill hole DDH81-05 which reported highly anomalous copper values and low but anomalous silver values (<10 ppm). Mineralization is found in a calc-silicate unit that contains variable amounts of pyrite – pyrrhotite and accompanying chalcopyrite as bands, disseminations and veinlets and is therefore included in the replacement type of mineralization. The minor pyrite – pyrrhotite – chalcopyrite mineralization at the Discovery Showing is also found within calc-silicate rocks and is accordingly placed in the replacement type group.

The PC, GC, LM and Discovery occurrences are of unknown type as there are no descriptions of them available and they were not examined in 2020. The Canyon or RGS Sb Anomaly at the east side of the project area is centred on anomalous stream sediment and soil geochemistry that remains to be followed up.

Table 2. Table of Goldorak Mineral Occurrences.

Occurrence Name	Lithology	Description	Rock Geochemistry	Number	Au ppm	Ag ppm	As ppm	Bi ppm	Cu ppm	Fe %	Pb ppm	Zn ppm
Main Showing		Meter scale, semi massive - massive iron sulfide 'lozanges' at contact between shale and calc-silicate (along or near a E-W trending fault zone?)	2020 Rock grab	W641908	0.014	22.7	486	19	909	31.3	5890	41,700
	· ·		2020 Rock grab	W641867	0.147	12.5	99	233	6100	22	12	225
	, , ,		2020 Rock grab	W641868	0.009	2.5	156	5	1315	18.6	30	173
Discovery Showing ?	calc-silicate	Multiple rusty boulders in the slope of calc silicate. Grey, quartz-calcite veinlets, foliaform lenses, weakly mineralized py-po-cpy.	2020 Rock grab	W641910	0.005	0.5	30	2	100	3.33	12	61
Silver Creek Showing	massive sulfide	Approximate bedding 145/55S. Rusty-vuggy, rounded massive sulfide, about 40 cm thick, grey massive sulfide within metasediment.	2020 Rock grab	W641871	0.008	1.8	8850	2	3180	19.65	159	944
	· · · · · · · · · · · · · · · · · · ·			W641912	0.005	1.5	32	2	442	7.7	4	215
BMS Showing	massive sulfide	Massive sulfide, small exposure and up to 60 cm thick quartzite - siltstone wallrock. Rusty weathering fine-med grained granular dark grey sulfide in groundmass of qtz- chlorite.	2020 Rock grab	W641915	0.005	3.3	343	2	870	16.2	7	319
Francoise Zone	massive sulfide	Massive sulfide in drill holes including: 8.4% Zn, 2.4% Pb and 29.8ppm Ag over 2.0m in FRN96-04 and 2.2g/t Au over 4.4m in FREN96-02.								1 1 1 1 1 1 1	 	
Inform Silver Occ.	Quartz Veins	Inform Resources rock grab A00044558: 213ppm Ag, JDP rock grab W641875: 193ppm Ag. Crustiform qtz veins and veinlets with diss arsenopyrite, pyrite and Fe oxides. crosscutting shale and siltstone.	2012 Rock grab	A00044558	0.064	213	86	15.6	142	6.12	>1%	496
			2020 Rock grab	W641875	0.067	193	13	42	113	6.59	10,600	374
Cu DDH81- 05	Siliceous Skarn	DDH81-05; 1300ppm Cu over 37m.				 	 			 	 	
Dromedary Creek Zone	massive sulfide	Four drill holes with low - mod grade Pb-Zn-Ag-Fe-Mn-Ni intersections								 		
Nagai Zone	siliciclastic rocks	Qtz veined chlorite altered siliciclastic: Rock grab W641854; 572ppb Au.	2019 Rock grab	W641854	0.572	0.5	69	6	112	21.39	6	83
La Liga Zone	Iron oxide in siltstone	small lens of iron oxide in siltstone: rock grab A00044574; 0.99 g/t Au.	2012 Rock grab	A00044558	0.99	1.76	103	0.25	333	15	3.8	37
Canyon	pyrite in shale- mudstone	Bedded Py <10cm thick in graphitic shale, chert, mudstone & marble in creek bed. Anomalous soil (Cu,Pb,Zn,Ag) on L102 & L110.										
Francoise Outcrop	pyrite in shale- mudstone	Bedded Py <10cm thick in graphitic shale, chert, mudstone & marble in creek bed. Between L1800 - L2200W at about 1200m N								 	 	- - - - - - -
Lone Mtn	Qtz-Aspy veins	Qtz-Aspy veins cutting hornfels grading up to 1.24% Pb, 0.41% Zn, 1012 g/t Ag over 0.3m. Skarn in area and within soil anomaly.								T	I I I I I I	
PC	1	No data other than location	· · · · · · · · · · · · · · · · · · ·									
GC	1	No data other than location	· · · · · · · · · · · · · · · · · · ·	1						,	·	
LM	+	No data other than location	+ ! !		• •	·		L	·	+	 	*
Ace Barite	+	Bedded Barite	+		· •				!	•	 !	

2020 LOCAL PROJECT AREA GEOLOGY & MINERALIZATION

2020 Geological Mapping and Prospecting

Outcrops were examined, given a station number, data recorded in notebooks and locations recorded by GPS. Outcrop is generally restricted to the ridges, ridge spurs, gullies on hillsides, knobby outcroppings on hillsides and as exposures in the upper portions of creek drainages. Field station data is presented in Appendix D and locations are shown on Figure 6 with results incorporated in the geology map on Figure 7. Most outcrops consisted of foliated, quartzite, siltstone to shale, locally calcareous or limy. Local limestone beds were noted but were not common. Both foliations and bedding generally strike east – west and dip moderately to the south. As described above numerous mineral occurrences and four of the 1981 Anaconda drill holes were relocated in 2020. Geological observations are further described under '2020 Exploration Results'.

Geology

According to the YGS Geology map, the 2020 target area comprises five units described by Cobbett, 2019 and shown on maps by Cobbett and Keevil (2019) and Hall (1983), units as encountered from north to south:

- 1. Carboniferous to Permian Mount Christie formation consisting of thinly bedded chert and grey siltstone (CPMC)
- 2. Upper Devonian Group siltstone interbedded with gray limestone, calcareous quartz arenite and quartz arenite of the Earn Group (DMEua).
- 3. Cretaceous quartz monzonite pluton (mKm) (Carlson, 1980; Hall, 1983), intruding the Earn Group
- 4. COR Cambrian to Ordovician Rabbitkettle Formation, silty limestone, grey weathering siltstone; altered to green, pink, and maroon striped, siliceous, fine-grained rock to calc-silicate in the 2020 project area.
- 5. Ordovician Road River Group silica rich pebbly sandstone and cross-bedded quartz arenite with phyllite, slate and siltstone (OSRu).

The three units encountered in 2020 were the Earn Group, the quartz monzonite pluton, and the Rabbitkettle Formation.

Mapping by Anaconda in 1980 and 1981 (Carlson 1981 and Hall, 1983) has geological discrepancies when compared to Cobbett's 2019 map (Cobbett, 2019). Most geological units are similar but geological contacts do differ significantly between Anaconda and Cobbetts's mapping and Anaconda's work included more subunits. Significantly they both recognize the Twopete Fault although Cobbett has it offset by a significant NE trending fault in the upper section of Dromedary Creek. While both Cobbett and Keevil's (2019) and Anaconda's mapping both show the Twopete Fault, Anaconda's map also has a prospective zone of Earn Group rocks bounded by the Twopete Fault and a splay to the north. It is along the Twopete Fault and its splay to the north that most of the replacement mineral occurrences are found.

Significantly geological mapping by Anaconda located a Cretaceous quartz monzonite intrusion east of Dromedary Mountain which was not located by Cobbett and Keevil (2019) but was relocated by Hulstein and de Pasquale in 2020. A rock sample from outcrop (Rosie Sample 1) was collected for possible whole rock analysis and age dating. Cobbett and Keevil (2019) show the intrusion being approximately bounded by the Twopete Fault on the south side and underlying Earn Group rocks to the north which is consistent with the known exposure and the mapped hornfels zone.

The intrusion (mKm) is a biotite-quartz monzonite, porphyritic granite and where observed in outcrop and float it was very fresh and contained only rare unmineralized quartz veins. The quartz monzonite contains about 5% megacrystic up 2-3cm size feldspar crystals, approximately 20% smoky rounded 3-4mm quartz phenocrysts, about 5% prismatic 1-2mm biotite, all in a groundmass of <1 -1mm quartz and feldspar.

Photo 1. Dromedary intrusion outcrop

The outcrop is about 20m x 4m wide along an east-west trending gully. (a): quartz-monzonite outcrop (sample W641813); (b): intrusion close-up, quartz-feldspar (plagioclase)-biotite in quartz-feldspar groundmass-trace tourmaline

Hand samples and a sample selected for possible age dating of the quartz monzonite (mKm) has been tested by a magnetic susceptibility meter. The Terraplus KT-10 magnetic susceptibility meter yielded a measurement of 0.000 SI units while the more sensitive meter SM 30 (ZH Instruments) recorded a maximum measurement of 0.717 SI units. According to Hart and Goldfarb (2005) this low measurement, lack of observed magnetite in the rock and in the panned stream sediment samples draining the intrusion is consistent with the quartz monzonite being a reduced intrusion. Examination

of thin sections made from samples of the intrusion, examined by Rosie Cobbett of the Yukon Geological Survey, indicate it is similar to the Mayo Suite (95-96MA).

According to Rowins (2000);

The low-grade Cu-Au core is an expected consequence of both the fluid evolution in reduced porphyry Cu-Au deposits and the initial metal budget of the hydrothermal ore system. The recognition of a reduced porphyry Cu-Au system should prompt the mineral explorationist to search at distal sites deemed favorable for focusing and precipitating Au and Cu-rich vapors.

The recent thermodynamic and experimental studies documenting relatively high Au solubility in reduced saline fluids, coupled with the vapor transport of Au and Cu during subsequent fluid immiscibility, raise the possibility that reduced ore fluids in a boiling porphyry environment can, under favorable circumstances, transport large quantities of Au (and Cu) as reduced S complexes to distal sites far from the causative porphyry. Mineralization in this peripheral environment may take several forms, including structurally controlled, sheeted sulfide veins in hornfels and sulfide replacement bodies (mantos) in calcareous metasedimentary rocks.

Mineralization

Mineralization as described above under Regional Geology consists of three types: SEDEX, replacement and vein type. Only replacement and vein type mineralization were located in 2020 in the Dromedary Mountain area and will be described below. A total of five replacement type occurrences were relocated and examined in 2020; the Main, Discovery, Silver Creek, BMS and Cu DDH81-05, along with one vein type occurrence, the Inform Silver Occurrence. All occurrences were prospected and sampled, and all are hosted by quartzite, siltstone, or calc-silicate. With the exception of the Cu DDH81-05 occurrence the showings all consist of rusty iron – oxide weathering bands, apparently bedding conformable, of grey semi-massive pyrite – pyrrhotite with minor (generally <1%) disseminated chalcopyrite, galena and sphalerite all in a dark groundmass of quartz – chlorite. The thickest unit appears to be at the Main Showing where sulfide 'lozenges' are <10m long and up a maximum of 2-3m thick. Sulfides at the Silver Creek and BMS are poorly exposed although ferricrete and disseminated sulfide mineralization, now iron oxide, indicate more extensive mineralization on strike. Extensive ferricrete exposed in an old blast trench at field station RH20-009 located approximately 100m north of drill hole collar DDH81-02 indicates an east - west strike and continuity with the mineralization at the Main occurrence about 150 m to the west (see Appendix E).

Drilling by Anaconda in 1981 intersected what they (Carlson, 1982) described as massive to semimassive skarn like sulfide mineralization in drill holes DDH81-01, DDH81-02 at the Main occurrence and DDH81-06 at the BMS occurrence. Mineralization consisted largely of pyrrhotite and pyrite with trace to generally <1% chalcopyrite, galena, sphalerite and occasionally arsenopyrite. This is similar to what was observed at the mineral occurrences in 2020.

The Cu DDH81-05 mineral occurrence is centered over drill hole DDH81-05. The drill hole collar is on a ridge spur east of Dromedary Mountain. The nearest mineral occurrence, the Silver Creek Showing, is located about 350m to the northeast and was not tested by this drill hole. There is no visible

mineralization at the drill hole occurrence but chalcopyrite in calc-silicate returned copper values averaging 1341 ppm over 37.08 m. This mineralized calc-silicate was not located in 2020 and is thought to be covered by extensive scree.

Vein type mineralization was located at the Inform Silver Occurrence over a discrete area measuring 10's of meters. Mineralization consists of disseminated arsenopyrite, pyrite and iron oxides in discontinuous crustiform quartz veins and veinlets crosscutting shale and siltstone. Vein widths are at a maximum of about 25cm. Abundant white barren quartz veining was noted on the south facing scree slope between the Inform Silver Occurrence and the Main Showing. Although barren the amount of veining is considered anomalous and indicative of the widespread hydrothermal system present in the project area. The quartz monzonite is nonmagnetic, no visible magnetite was observed, it did not respond to a swing magnet and panned samples collected in the drainage below the outcrop contained only traces of magnetite. It may be a reduced intrusion.

GEOCHEMICAL DATA

Regional and Historic

Results from the Geological Survey of Canada's Regional Geochemical Survey (GSC, RGS) for the project area for Au, As, Cu and Sb are shown in Figure 8. It can be seen that the four elements define an anomalous NW trend, parallel to stratigraphy and thrust faults that also appear to be boundaries for SEDEX style mineralization. This is the same belt of rocks that was identified by Anaconda as being prospective for SEDEX deposits and tested by diamond drilling in the 1980's and 1990's.

In 1981 Anaconda Canada Exploration Ltd. established a surveyed cut line grid east and west of Dromedary Mountain from Earn Lake to McMillan River (Carlson, 1981 and Hall, 1983) that was used for access and location (Figure 3). The reader is referred to Carlson (1981) and Hall (1983) for details on the geochemistry carried out in the 1980's. Anaconda and others used the grid for soil geochemical survey and geophysical survey control and for location during geological mapping. In treed areas the cut lines can still be located and used to locate previous work sites.

A limited ridge and spur soil sampling and rock sampling program was conducted in 2012 (La Liga Project) by Inform Resources Corp. (Gibson, 2013) and this work is available digitally. Inform Resources geochemical results have been incorporated with the work carried out in 2020 and will be described below as part of the 2020 Program.

2020 Program

A total of 29 rock, 37 soil and 7 stream sediment samples were collected in 2020. These sample locations and gold results are shown for rocks on Figure 9 and on Figure 10 for soil and stream sediment samples. Geochemical results from the 2020 program and Inform Resources 2012 work are shown for gold, silver, copper, lead, zinc, arsenic, bismuth and antimony on Figures 11 to 18 respectively in the map pocket. Analytical certificates are presented in Appendix A, rock sample results merged with location and sample description data are presented in Appendix B, for soil and stream sediment samples in Appendix C.

All samples were submitted to ALS Canada Ltd. preparation laboratory in Whitehorse and analyzed in Vancouver. Rock samples were analyzed for gold (50 grams fire assay and AA finish) and 33 other elements by ME-ICP61 (four acid ICP-AES). Soil and stream sediment samples were analyzed for gold and 43 other elements by ALS Global method AuME-TL44. This method for Au + Multi-Element package employs a single Aqua Regia digest with 50g charge weight to combat nugget effect. Gold, in conjunction with a wide range of base metal and pathfinder elements, are determined from the same digested solution via a combination of ICP-MS and ICP-AES.

All soil samples were collected by GeoTul at depths generally of 25cm or greater except in areas of rock talus where talus fines were collected. Most of the samples can be best described as talus fines and are not true soils. Rock samples, averaging 1 - 2 kg, were collected by GeoTul hammer from surface outcrops or float where mineralization was noted or suspected. Stream sediment samples consisted of about 0.5 kg screened <2 mm stream sediment material and all but sample Y647781 had the 'heavies' of one panned <2mm screened material added (amounting to a few to 10's of grams of

iron oxides, scheelite, etc.). These samples can be said to be 'enhanced' stream sediment samples.

Rock Sample Geochemistry

Gold values returned from the 2020 rock samples were less than 0.147 ppm, the high value returned from sample W641867, a semi-massive sulfide sample from the Main Showing area. The same sample contained the highest copper and bismuth values of 6100 ppm and 233 ppm respectively. The highest silver value of 193 ppm from sample W641875 is of selected quartz veining cutting a siltstone at the now named 'Inform Silver Occurrence'. The same sample returned the highest lead value of 10,600 ppm obtained in 2020. Inform's 2012 rock sample (A00044558) at the same occurrence contained 213 ppm Ag. Although the rock samples contained low gold values, arsenic, bismuth and antimony were generally anomalous with eight samples containing between 600 to 10,000 ppm Sb.

Soil Sample Geochemistry

Of the 37 soil samples collected in 2020 the highest gold value of 0.529 ppm (sample Y647755) was returned from talus fines collected over 100 m below the Main Showing. The same sample returned 183.5 ppm bismuth, and 364 ppm copper, the highest values returned for those two elements in 2020. Eleven other samples contained between 0.015 ppm and 0.053 ppm gold. Importantly arsenic is anomalous (>100 ppm to 10,000 ppm – detection limit) in 24 of the 37 samples along with significant bismuth and antimony values. Copper is also anomalous (>100 ppm to 1210 ppm) in most samples and correlates in general with the higher iron values. In general, anomalous gold values show a positive correlation with; anomalous silver, copper, arsenic, selenium, iron, bismuth and zinc values and to a lesser extent with antimony (see Appendix C).

Stream Sediment Geochemistry

Figure 7. Stream sediment sampling Note white coating on rocks and gravel

A total of seven stream sediment samples were collected from the creek and its tributaries draining the center of the 2020 project area. Samples Y647778 and Y647779 contained 0.132 ppm and 0.116 ppm gold, respectively. Two possible fine specks of gold were noted in the pan that was added to the W647779 stream sediment sample. The other five samples returned <0.023 ppm gold. Scheelite was noted in samples Y647778 and Y647780. All the pan samples contained very minor amounts of heavy minerals and consisted mostly of iron oxides, scheelite and only trace to negligible magnetite.

During stream sediment sampling, it was noted that the boulders in the main creek had a white (aluminum compound?) coating. The white coating was not noted in the west fork draining the east side of the Main Showing and the coating was cut off above sample Y647781. The coating may be related to the nearby presence of the quartz monzonite intrusion.

Photo 2. Soil Sample Y647755 area. Looking north. The sample is located about 200 m-downslope from the Main Showing.

DRILLING

There have been several drill campaigns within the Goldorak project area totalling 20 drill holes and 3718 m (Table 3). The first drill program by Anaconda in 1981 consisted of 10 diamond drill holes totalling 1811 m. Six of these drill holes (DDH81-01 to DDH81-06) are located on the ACTA claims staked in 2020 over Dromedary Mountain. A total of nine drill holes were on the Francoise Grid testing for stratabound massive sulfides and gold. Three of these drill holes (DDH90-01, 02 and DCK91-01) are on Category A land of the Selkirk First Nation. Four drill holes tested the eastern side of the prospective horizon at the Dromedary Creek Zone. Only the drill holes within the area of the 2020 exploration program (DDH81-01 to DDH81-06) will be described in detail below.

Drill holes DDH81-01, 02, 05 and 06 were relocated in 2020 (see Appendix E). All four drill holes were found to be marked by steel casing pipe. The drill pad for what was presumably DDH81-03 was viewed from a distance but not examined close up. Drill hole DDH81-04 was searched for but not located. Given that the drill hole collar DDH81-05 was approximately 150 m from where it was noted by Anaconda (Carlson, 1982), the actual locations of DDH81-03 and 04 can be considered uncertain.

DDH Number	Zone	Easting	Northing	Az degree	Dip -degree	Length(m)	Elevation(m)
DDH81-01	Dromedary Mtn	513699	6973189	305	58	157	1672.63
DDH81-02	Dromedary Mtn	513699	6973190	35	50	90.22	1672.63
DDH81-03	Dromedary Mtn	514317	6972902	20	60	139.2	1581
DDH81-04	Dromedary Mtn	514233	6972739	43	50	111.86	1650
DDH81-05	Dromedary Mtn	514344	6972373	30	45	142.04	1511
DDH81-06	Dromedary Mtn	515111	6972391	60	50	133.19	1353
DDH81-07	Dromedary Mtn	516117	6971999	345	45	105.8	1345
DDH81-08	Dromedary Cr.	519240	6970737	30	45	322.2	1247
DDH81-09	Dromedary Cr.	518461	6970919	18	45	301.8	1108
DDH81-10	Dromedary Cr.	518805	6970696	18	50	307.93	1214
DDH90-01	Francoise	507572	6974303	18	47	274.6	655
DDH90-02	Francoise	508817	6974302	18	55	159.4	663
DCK96-1	Dromedary Cr.	518910	6970930	16	46	204.2	1088
FRN96-01	Francoise	508860	6974446	198	54.5	135	651
FRN96-02	Francoise	509790	6973981	18	45	199.9	678
FRN96-03	Francoise	509949	6973930	18	45	264	687
FRN96-04	Francoise	509814	6974062	18	45	135.9	678
FRN98-05	Francoise	509793	6973979	18	65	257.2	685
FRN98-06	Francoise	509707	6974099	18	45	131.83	678
FRN98-07	Francoise	509906	6974036	18	45	145.54	690

 Table 3. Drill holes within Goldorak Project Area (coordinates in NAD83, Zone9).

Significant results returned from the 1981 drilling on Dromedary Mountain are tabulated below in Table 4. With the exception of 19 samples from DDH81-01 being analyzed for gold, gold was not analyzed for. Results for gold from the 19 samples were <45 ppb gold (Carlson, 1982).

Drill hole 81-05 was supposed to target the Silver Creek Zone but the collar is located almost 400m to the south. An inspection of the drill site and area did not locate any mineralization, nothing that can explain the 37.08m intersection of 1341ppm Cu. Presumably the copper rich unit is covered by scree.

								Fe	
DDH No.	From_m	To_m	Interval_m	Ag_ppm	Cu_ppm	Pb_ppm	Zn_ppm	%	Comments
D81-01	77.35	79.95	2.6	22.42	2138	4365	30253		75.2-127.0m Spotty anomalous Ag,Cu,Pb,Zn throughout
D81-02	43	48	5	1.9	605	36	2399		Overall, 43-48m is best interval
D81-03	37	41	4	2.4	1000	82	1700		Overall, 37-41m is best interval
D81-04	9.1	111.86	102.76	< 3.8	< 400	< 115	< 1960		
D81-05	39.2	76.28	37.08	2.8	1341				Low Pb and Zn values
including	39.2	52	12.9	3.22	1448				
Including	57	76.28	19.28	2.86	1524				
D81-06	24.75	26.86	2.16	6.51	1511	497	1928	20	Spotty Ag, Cu, Pb, Zn anomalies throughout
D81-07	83.5	88.5	5				1360	1.6	only Zn is elevated

Table 4. Significant geochemistry from drill holes in 2020 project area.

GEOPHYSICAL DATA

Regionally the aeromagnetic signature over Dromedary Mountain quartz monzonite intrusion is similar to the MacArthur batholith (Figures 19) assigned to the Mayo Suite. Both are aeromagnetic lows (blue) surround by an oval-shaped (extended along the Twopete fault) magnetic high (yellow - red - maroon) that corresponds to a pyrrhotite-rich contact aureole. This is a characteristic of exposed to shallowly buried plutons.

Among the mid-Cretaceous Tintina Gold Belt plutonic suites, the Tombstone, Mayo and Tungsten are considered the most metallogenically prolific. The Mayo suite intrusions are characteristically gold-enriched, with As-Bi-Te and W associations (Hart, 2007).

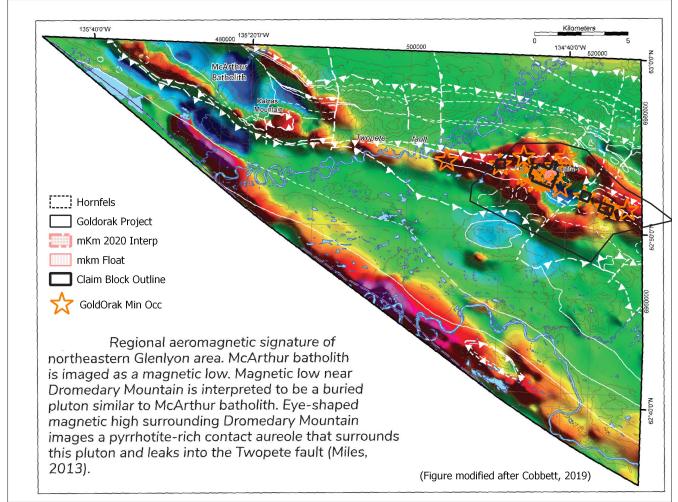


Figure 19. GSC Regional Aeromagnetics

Most of the replacement type of mineralization, the massive to semi-massive sulfide bodies, found in the project area are on the margins of the aeromagnetic highs (Figure 20). The thrust faults mapped

by both Cobbett & Keevil, 2019 and Hall, 1983, generally lie within aeromagnetic lows. Given the coarse nature of the magnetic survey, one half mile spaced flight lines, this can be considered a close approximation.

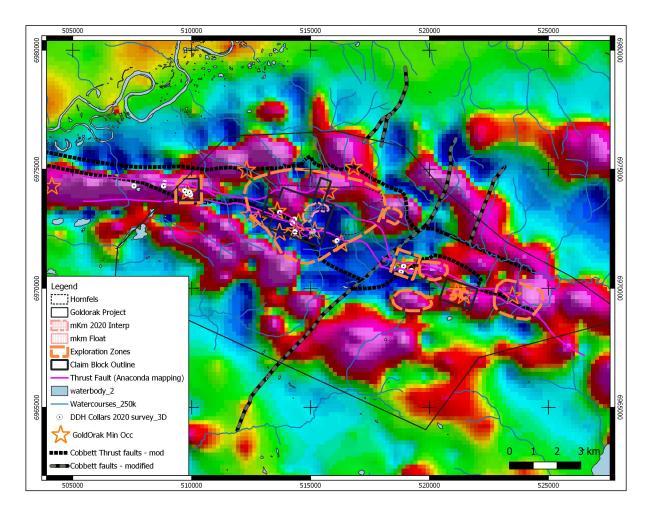


Figure 20. GSC Aeromagnetic data (first vertical derivative) over project area with faults.

2020 PROGRAM and RESULTS

Acta 1-24 Claims

The Acta 1-24 quartz claims were staked over Dromedary Mountain in 2020 to cover a number of mineral occurrences identified by Anaconda in the 1980's, six drill holes with anomalous geochemistry, the high silver value in quartz veining identified by Inform Resources in 2012, the creek drainage with anomalous geochemistry identified by the GSC, the prospective Earn Group rocks with anomalous soil geochemistry bounded by thrust faults near outcropping quartz monzonite and a significant portion of the oval aeromagnetic high and low.

Figure 8. Example of 2020 claim post. Twenty-four claims were staked in 2020 covering 6 historical drill holes and 5 showings.

Main Showing

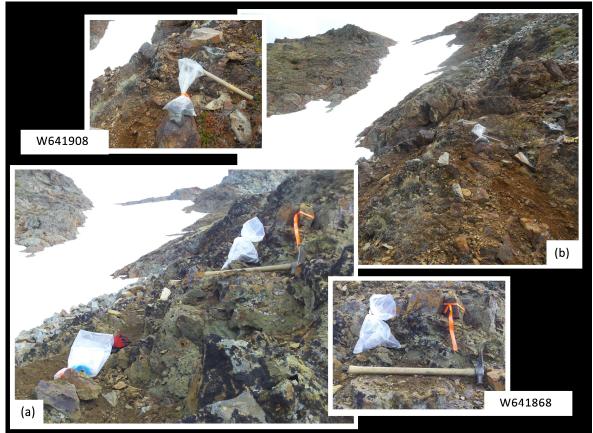

Rock and soil - talus fine sampling at the Main Showing returned the highest gold values for 2020. Rock sample W641867 contained 0.147 ppm gold, 12.5 ppm silver, 6100 ppm copper. 233 ppm bismuth, but low values for arsenic, antimony, lead and zinc (Table 5). Nearby soil sample Y647755 returned 0.529 ppm Au, 4.17 ppm silver, 183.5 ppm bismuth, 364 ppm copper.

Photo 3. Main showing area-sample W641867 Sample W641867 was taken on the north side of the gully occupied by the Main showing. It consists of strongly rusty metre sized boulder. The rock shows medium grained crystalline texture and could be of igneous origin.

At the Main showing sulfide mineralization is hosted by rusty weathering siltstones and shales appears to lie on the north side, in the footwall, of the trace of the thrust fault or one of several fault splays which follows an approximate gully east – west gully.

Siliciclastic rocks to the south of the fault, in the hanging wall, are sparsely mineralized. Given the collar location and length of drill holes DDH81-01 and 81-02 it is likely this mineralized fault zone was only partially tested as DDH 81-02 does not go below the blast trench located at field station RH20009. Gold values reported by Anaconda for the drill holes are sparse with 19 samples analysed for gold from DDH81-01 with a high value of 45 ppb reported (Carlson, 1982).

Photo 4. Main Showing-sampling area Massive sulfide lens of the Main showing sampled at two locations. The gully (covered by snow on pictures) may represent the controlling structure of the mineralization. (a); lower lens sample; (b) upper lens sample.

Approximately 400 m north of the Main Showing four soil – talus fine samples (Y647771 – Y647774) returned up to 0.032 ppm Au, 66.4 ppm Ag, 10,000 ppm As (detection limit), 21 ppm Bi, 1210 ppm Cu, 80.8 ppm Pb and 3510 ppm Ag. The area is a scree slope of iron oxide stained formerly sulfide bearing hornfelsed siltstone and possibly replaced limestone.

Photo 5. West Dromedary talus slope Sample Y647771-Y647774 were taken along a contour line within a large area of soil copper anomaly highlighted in Anaconda1980's soil sampling results.

A single rock float sample (W641873) of bleached and leached gossanous shale – siltstone with 1% pyrite and trace chalcopyrite contained 0.049 ppm Au, 2.8 ppm Ag, 1300 ppm As, 74 ppm Bi, 501 ppm Cu, 4.8% Fe, 12 ppm Pb and 2400 ppm Zn. This area and the Main Showing are within a 900 m x 400 m copper in soil anomaly (>100 ppm) reported by Carlson (1981) that has no record of being followed up on until 2020.

Silver Creek Showing

The Silver Creek Showing is poorly exposed over about 30m in a creek gully on the east side of Dromedary Mountain. Exposure consists of strongly oxidized iron-oxide replaced and coated calc-silicate to skarn composed of dense sugary white quartz and green chloritized metasedimentary rock with about 20% disseminations and blebs of pyrrhotite and trace chalcopyrite. In appearance it looks totally recrystallized. A massive to semi-massive sulfide bed of pyrrhotite and pyrite, about 30-40 cm thick, strikes about SE at 145 degrees and dips 50 degrees south although at one location it dip appears near vertical. A rough chip rock sample (W641871) of the sulfide bed returned 3180 ppm Cu, 74 ppm Bi, 1300 ppm As, 19.95% Fe, and 944 ppm Zn. A grab rock sample (W641912) of iron-oxide – pyrrhotite calc-silicate returned 442 ppm Cu and 7.75% Fe. Results for other elements of interest were low in both samples.

Photo 6. Silver Showing The Silver Showing is located on an East facing steep slope, in a narrow gully bellow treeline. Meta-sediments outcrop over 30 by 5m along the creek.

Occurrence Name	Sample Number	Sample	Source	Description	Au ppm	Ag ppm	As ppm	Bi ppm	Co ppm	Cu ppm	Fe %	Mn ppm	Pb ppm	S %	Sb ppm	W ppm	Zn ppm
Main	W641866	Rock	float	Semi-massive sulfide, oxidized	0.127	12.6	10000	144	1	816	11.1	912	140	1.66	41	80	1765
Main	W641867	Rock	float	Semi-massive sulfide	0.147	12.5	99	233	4	6100	22	936	12	10	5	1980	225
Main	W641868	Rock	outcrop	Semi-massive sulfide	0.009	2.5	156	5	25	1315	18.6	20800	30	9.93	5	10	173
Main	W641908	Rock	outcrop	Semi-massive sulfide	0.014	22.7	486	19	2	909	31.3	3130	5890	10	14	10	41700
Silver Cr.	W641871	Rock	outcrop	Semi-massive sulfide	0.008	1.8	8850	2	147	3180	19.65	892	159	10	6	10	944
Silver Cr.	W641912	Rock	outcrop	Calc-silicate with sulfides	0.005	1.5	32	2	3	442	7.7	4910	4	3.51	5	10	215
BMS	W641915	Rock	outcrop	Semi-massive sulfide	0.005	3.3	343	2	1	870	16.2	1985	7	10	5	20	319
Cu DDH81-05	W641911	Rock	float	Calc-silicate with sulfides	0.122	1.4	196	2	20	35	18.9	930	16	10	7	10	20
Inform Resources	W641875	Rock	outcrop	Quartz-sulfide vein, oxidized	0.067	193	13	42	1	113	6.59	6030	10600	1.6	188	10	374
Inform Resources	W641876	Rock	float	Quartz-arsenopyrite veining	0.005	3.4	10000	2	4	100	2.27	57	32	0.52	40	10	123
Inform Resources	W641877	Rock	float	Semi-massive sulfide	0.071	3.5	89	115	47	1120	12.8	4560	21	6.3	5	1000	9830
Inform Resources	W641918	Rock	outcrop	Quartz-arsenopyrite veining	0.005	10.1	2360	42	1	65	1.25	109	683	0.07	339	30	134

Table 5. Significant Rock Geochemistry from Occurrences

A soil sample of gossanous soil from the north creek bank contained 0.044 ppm Au, 4.73 ppm Ag, 1075 ppm As, 12.1 ppm Bi, 413 ppm Cu, 13.05% Fe, 20.19 ppm Pb, 16.25 ppm Sb and 207 ppm Zn. It is possible that this sample was collected very close to a massive sulfide band although both Au and Ag values are higher in soil than in the rock samples. Thick spruce vegetation on a steep slope on either side of the exposure in the creek hinder exploration in this area.

Cu DDH81-05

Mineralization at the presumed drill collar DDH81-05 is reported in the drill logs by Carlson (1982) and was not located in outcrop in 2020 during a site examination. Mineralization is described as disseminated chalcopyrite and chalcopyrite in carbonate and sulfide veinlets and overall averages about 1% from 39.2 m – 76.28 m. Sulfides vary from 1% up to 50% over narrow intervals and consist of pyrite, pyrrhotite and chalcopyrite are richer sections are associated with actinolite. The drill hole from 39.2 m to 76.28 m averaged 1341 ppm Cu, 2.8 ppm Ag with no analysis being made for Au.

Figure 9. Cu DDH81-05 target area.

Looking north-west, general view of the scree slope area (a). Red polygon represents the prospected 2020 area; scree slope (b); soil sample W647765 (c); rock sample W641911 (d); drill pad of hole DDH81-05 that originated the target area (e).

Three rock (W641869, 1870, 1911) and four soil samples (Y647752, 7764 -7766), were collected near the drill collar. One rock float sample (W641911) of pyrrhotite – pyrite bearing argillite returned 0.122 ppm Au and 196 ppm As and 18.9% Fe and results for other elements of interest were low for all samples. The soil samples returned low values for most elements with a gold high of 0.019 ppm, 125.5

ppm As, 5.24 ppm Bi, 94.6 ppm Cu, and 338 ppm Zn. It seems likely that the Cu bearing calc-silicate is buried under mostly non mineralized talus.

BMS Showing

Mineralization at the BMS Showing is similar to the massive and semi-massive sulfide bands found at the Main and Silver Creek Showings.

Photo 7. BMS Showing The BMS Showing is located on a west facing slope on the east side of the property, just below treeline.

Exposure at the BMS is limited to a small outcrop less than 3 m by 3 m of quartzite, locally leached and punky adjacent to the apparent stratabound sulfide band. The 60 cm thick sulfide band, striking 110 degrees and dipping 56 degrees to the south, consists of about 60% pyrrhotite and 2% - 5% disseminated chalcopyrite with a groundmass of chlorite and quartz. A rock chip sample (W641915) across the 60cm sulfide band contained low gold, silver, bismuth, lead values, 870 ppm copper, 10.1% iron, 343 ppm As, and 319 ppm Zn. A single soil sample (Y647777) collected from the excavated material used to make the drill platform low values for gold, silver, lead, 190.5 ppm As, 149 ppm Cu, 2.24 ppm Bi, 9.7 ppm Sb and 199 ppm Zn.

Inform Silver Occurrence

The occurrence consists of discontinuous crustiform quartz – sulfide veins cutting bedded siltstones, quartzite and lesser shales exposed on the ridge on the north side of the Acta claims. Inform Resources reported finding vein material here in 2013 over a 700 m distance and three rock samples of vein material returned a high of 0.064 ppm Au, 213 ppm Ag, 10,000 ppm As, 89.29 ppm Bi, 634

ppm Cu, 10,600 ppm Pb 188 ppm Sb and 1160 ppm Zn. Several soil samples collected by Inform Resources along the ridge in the same area also returned anomalous values for the same elements of interest.

In 2020 six rock samples of vein material returned similar values as those reported by Inform Resources including two, samples W641875 and W641918 that contained 193 ppm Ag and 10.1 ppm Ag respectively. A 500m line of six contour soil – talus fine samples (Y647785 to 7790) collected below the rock samples returned; >2.43 to 8.21 ppm Ag, >124 to 220 ppm As, >20.2 to 74.1 ppm Mo, >36.9 to 165.5 ppm Pb, >7.7 to 23.5 ppm Sb, >20.9 to 65.9 ppm Se, and >210 to 504 ppm Zn.

Photo 8. Inform Silver Occurrence General view of the outcrop, quartz-sulfide veining crosscutting metasediments (a); close-up of sample W641875 (b)

The quartz sulfide veins where measurements were possible strike NW and dip steeply south. Bedding in area is generally similar although bedding was also observed to dip north implying a that there are a series of minor folds with short north dipping limbs.

Discovery Showing

It is worth noting that the "Discovery" name is confusing since the Main discovery is sometime named Main-Discovery in Anaconda's assessment reports._Prospecting in the area of the Discovery Showing, as shown on page 18 in Hall's AR091468 (1983) report, located multiple rusty weathering boulders on a hillside of calc-silicate scree. Rock sample W641910 returned low values for elements of interest. As no further description of the Discovery Occurrence has been located it is not certain that these

Photo 9. Discovery Showing-rusty boulder field Multiple calc-silica boulder/sub-crop, weakly mineralized corresponding to the description of Discovery showing from previous Authors.

Other Occurrences

Occurrences other than those noted above, located within the Goldorak Project area (see Table 2), were not located or visited in 2020

CONCLUSIONS and RECOMMENDATIONS

The 2020 field program built on the work carried out in 2019 and confirmed anew that the area has potential to host significant gold, silver and base metal mineralization. The model developed in 2019 was confirmed by the relocation of the Cretaceous quartz monzonite which appears to be a reduced intrusion. There is an apparent linkage and relationship to the aeromagnetic signature, the reduced intrusion, the Twopete thrust fault and mineralization over a strike length of 18 km.

The primary target is distal mineralization related to a mostly buried reduced intrusion utilizing the structural preparation provided by the Twopete Fault. Two main deposit types present themselves; gold, silver, and to a lesser extent base metals, in replacement type deposits as indicated by drill holes on the Francoise Zone and at the Main, BMS and Silver Creek Showings. A secondary target is vein or vein – fault precious metal mineralization as found at the Inform Silver, and Nagai Occurrence.

Given that highly anomalous gold, silver, copper, lead and zinc has been identified in drill holes, surface showings and in soil and stream sediment samples further work is warranted and recommended on the Goldorak project. Hulstein and with de Pasquale (2019) recommended additional work on the (drill ready) Francoise Zone, Dromedary Creek Zone, northern Mag Anomaly, La Liga, Nagai and the RGS Sb Anomaly which will not be repeated here and to which the reader is referred as a complement to this report.

As a result of the work carried out in 2020 the following is recommended. Now that the banded sulfide mineralization has been accurately located the sulfide horizons might be traced using the results of the ground electromagnetic (EM) surveys carried out by Anaconda in 1981 and 1982. Further compilation using this data across the entire project area will greatly assist in targeting auriferous sulfides as found at the Francoise Zone (2.2 g/t Au over 4.4m).

The west facing slope Dromedary Mountain between and the Main and Francoise occurrences should be prospected and sampled as far as practicable given the vegetation and overburden at lower elevations. Anaconda reported significant and to this day unexplained highly anomalous copper in soil anomalies north and west of the Main Showing that require follow- up.

The south-west of the property needs to be investigated and resampled along a traverse from the assumed Discovery showing - represented by boulders of calc-silicate with pyrite and minor chalcopyrite, to the PC showing that lines up with the GC Showing. The coordinates of these showings are available (page 18, Hall, 1983) but no description of them is found in the previous reports. If mineralization is identified within the southern panel consideration should be given to re-mapping the Twopete thrust.

The east facing slope from the 2020 camp location to Dromedary Creek also needs to be prospected and sampled as far practicable. The area of Anaconda drill hole DDH81-07 and the LM occurrence need to be relocated and prospected and if warranted, sampled as well. Due to time constraints in 2020 the ACE barite occurrence was not examined and this along with additional prospecting and sampling on the steep north facing slope should be carried out.

BUDGET

The table below (Table 6) details the 2020 project expenditures. Compared to the proposed budget costs incurred are approximately in line with what was anticipated when the slightly shorter program, and lower than anticipated helicopter costs are taken into account. Geochemical costs are lower than anticipated due to the lack of appropriate medium for soil samples.

	Exploration Goldorak Target (f	<u>ieldwork June 29 - July 6, 2020)</u>			
<u>Labour</u>	Person/Item	Activity	<u>unit(s)</u>	<u>Rate \$</u>	<u>Total \$</u>
	Roger Hulstein	Field prep mob and demob	1.5	\$500	750.00
	Jerome DePasquale	Field prep mob and demob	1.5	\$500	750.00
	Roger Hulstein	Prospecting/sampling/staking/travel	8	\$500	4000.00
	Jerome DePasquale	Prospecting/sampling/staking/travel	8	\$500	4000.00
Field Costs	\$100 per worker-day		14	\$100	1400.00
Helicopter	Mayo -property; return				5193.72
Truck	\$0.60 per km	Whitehorse to Mayo; return	812	\$0.60	487.20
Assays	ALS Canada Ltd.	soils, stream sediment	44		2067.87
	ALS Canada Ltd.	rocks	29		1582.68
Claim Posts	HomeHardware				77.49
flagging, bags	Integraphics				82.95
Maps	Staples	plotting			22.38
Report	J. De Pasquale, R. Hulstein		5	500	2500.00
		Subtotal			22914.29
		TOTAL			\$22,914.29

Table 6. 2020 Expenditures.

Respectfully submitted,

Jerome De Pasquale

REFERENCES

- Butterworth, B.P. and Jones, M., 1998. Geology and mineralization on the Dromedary property, central Yukon. In: Yukon Exploration and Geology 1997, Exploration and Geological Services Division, Yukon, Indian and Northern Affairs Canada, p. 121-124.
- Carlson, G.G., 1981. Anaconda Canada Exploration Ltd., Assessment Report #090888.
- Caulfield, D.A. and Weber, J., 1997. Blackstone Resources Ltd., Assessment Report #093618.
- Caulfield, D.A. and Weber, J., 1997. Blackstone Resources Ltd., Assessment Report #093595.
- Cobbett, R., 2019. Preliminary observations on the geology of northeastern Glenlyon area, Central Yukon (parts of NTS 105L/10, 14, 15). In: Yukon Exploration and Geology 2018, K.E. MacFarlane (ed.), Yukon Geological Survey, p. 43–60.
- Cobbett, R., and Keevil, H., 2019. Geology of northeastern Glenlyon area ((Sheets 1 and 2), NTS 105L/13,14,15 (scale 1:50:000). Yukon Geological Survey, Open File 2019-3.
- Colpron, M., Israel, S., Murphy, D., Pigage, L. and Moynihan, D., 2016a. Yukon bedrock geology map. Yukon Geological Survey, Open File 2016-1, scale 1:5,000,000.
- De Pasquale, J. and Hulstein, R., 2020. YMEP 2020 013, GOLDORAK Project, Report prepared for Yukon Geological Survey, Yukon Mineral Exploration Program.
- Gibson, J., 2013. Inform Resources Corp., Assessment Report #096377.
- Giroux, G.H. and Melis, L.A., 2013. Geology, Mineralization, Geochemical Surveys, Diamond Drilling, Metallurgical Testing, and Mineral Resources at the Keg Property. 43-101 report for Silver range Resources Ltd. Available on SEDAR.
- Hall, R.D., 1983. Anaconda Canada Exploration Ltd., Assessment Report #091468.
- Hart, C. and Goldfarb, R., 2005. Distinguishing intrusion-related from orogenic gold systems. Proceedings of Scientific Conference on Minerals, New Zealand.
- Hart, C.J.R., 2007. Reduced intrusion-related gold systems, *in* Godfellow, W.D., ed., Mineral deposits of Canada: A synthesis of Major Deposit Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods: Geological Association of Canada, Mineral Deposits Division, Special Publication No. 5, p. 95-112.
- Jones, M.J., 1998a. Blackstone Resources Ltd., Assessment Report #093755 (Mayo Mining District).
- Jones, M.J., 1998b. Blackstone Resources Ltd., Assessment Report #093764 (Whitehorse Mining District).
- Miles, W., (compiler) 2013. Aeromagnetic map compilation, Geological Survey of Canada, <u>ftp://ftp.agg.nrcan.gc.ca/public/gdc/YUKON</u>, (accessed June 2014).
- Rebagliati, C.M., 1989. Dromedary Exploration Co. Ltd., Prospectus Report.

- Rowins, S.M., 2000, Reduced porphyry copper-gold deposits: A variation on an old theme: Geology, 28, 491-494
- Scott, A.R., 1982. Anaconda Canada Exploration Ltd., Assessment Report #091039.
- Sellmer. H. and R. Zuran, R., 1993. Energold Minerals Inc., Assessment Report #093148.
- Sellmer, H., 1993. Energold Minerals Inc., Assessment Report #093157.

STATEMENT of QUALIFICATIONS (RH)

I, Roger W. Hulstein, of:

106 Wilson Drive

Whitehorse, Yukon Territory

Y1A 0C9,

do hereby certify that:

- 1. I am an independent, self-employed, mineral exploration geologist with over 30 years of experience working in the Yukon.
- 2. I am a graduate of Saint Mary's University, Halifax, with a degree in geology (B.Sc., 1981) and have been involved in geology and mineral exploration continuously since 1978.
- 3. I am a fellow of the Geological Association of Canada (F3572).
- 4. I am registered as a professional geoscientist (No. 19127) with the Association of Professional Engineers and Geoscientists of the Province of British Columbia.
- 5. I am the author of this application report on the Goldorak Project in the Whitehorse Mining District, Yukon.
- 6. The report is based on personal examination of selected areas within the project area in 2020, 2019, 1993, 1994 and on referenced sources.

Roger Hulstein, P.Geo.

December 12, 2020

STATEMENT of QUALIFICATIONS (JdP)

I, Jérôme de Pasquale, of:

Box 21201

Whitehorse, Yukon Territory

Y1A 6R8,

do hereby certify that:

- 1. I am an independent, self-employed, geologist with over 8 years of experience working in Canada.
- 2. I am a graduate of Université d'Orléans-La-Source, with a Maitrise des Sciences de la Terre Option Géologie and have been involved in geology and mineral exploration continuously since 2011.
- 3. I am the co-author of this application report on the Goldorak Project in the Whitehorse Mining District, Yukon.

Jérôme de Pasquale

December 12, 2020

APPENDIX A

Analytical Certificates

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

CERTIFICATE WH20151530

Project: Goldorak 2020

This report is for 29 Rock samples submitted to our lab in Whitehorse, YT, Canada on 17-JUL-2020.

The following have access to data associated with this certificate:

JEROME DE PASQUALE

ROGER HULSTEIN

To: HULSTEIN GEOLOGICAL SERVICES 106 WILSON DRIVE WHITESHORSE YT Y1A 0C9

Page: 1 Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 12-AUG-2020 This copy reported on 13-AUG-2020 Account: HULGEO

	SAMPLE PREPARATION	
ALS CODE	DESCRIPTION	
WEI-21	Received Sample Weight	
LOG-21	Sample logging - ClientBarCode	
CRU-QC	Crushing QC Test	
PUL-QC	Pulverizing QC Test	
OA-HSUL10	Handling of High Sulphide Samples	
CRU-31	Fine crushing - 70% <2mm	
SPL-21	Split sample - riffle splitter	
PUL-31	Pulverize up to 250g 85% <75 um	

	ANALYTICAL PROCEDUR	ES
ALS CODE	DESCRIPTION	INSTRUMENT
ME-ICP61	33 element four acid ICP-AES	ICP-AES
Ag-OG62	Ore Grade Ag - Four Acid	
ME-OG62	Ore Grade Elements - Four Acid	ICP-AES
Pb-OG62	Ore Grade Pb - Four Acid	
Zn-OG62	Ore Grade Zn - Four Acid	
Au-AA24	Au 50g FA AA finish	AAS

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

Saa Traxler, General Manager, North Vancouver

***** See Appendix Page for comments regarding this certificate *****

ALS

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: HULSTEIN GEOLOGICAL SERVICES 106 WILSON DRIVE WHITESHORSE YT Y1A 0C9

Page: 2 - A Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 12-AUG-2020 Account: HULGEO

Project: Goldorak 2020

	Method	WEI-21	Au-AA24	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61
	Analyte	Recvd Wt.	Au	Ag	Al	As	Ba	Be	Bi	Ca	Cd	Co	Cr	Cu	Fe	Ga
Sample Description	Units	kg	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm
Sample Description	LOD	0.02	0.005	0.5	0.01	5	10	0.5	2	0.01	0.5	1	1	1	0.01	10
W641906		1.04	0.018	<0.5	4.60	21	1510	1.3	9	1.57	9.7	8	66	131	2.98	10
W641907		0.79	0.007	2.6	2.66	3280	350	2.0	13	3.72	7.6	3	63	56	2.03	10
W641908		1.32	0.014	22.7	0.37	486	20	<0.5	19	2.79	130.5	2	112	909	31.3	<10
W641909		1.62	0.023	0.8	5.73	910	1070	2.2	30	8.09	2.1	8	61	310	3.89	20
W641910		1.40	<0.005	<0.5	8.04	30	850	2.2	<2	6.53	<0.5	14	98	100	3.33	30
W641911		0.95	0.122	1.4	4.39	196	60	1.2	<2	0.31	<0.5	20	38	33	18.90	10
W641912		1.21	< 0.005	1.5	2.15	32	100	<0.5	<2	11.45	3.2	3	24	442	7.70	10
W641913		1.60	< 0.005	1.6	4.44	48 212	690	2.3	4	0.60 7.28	1.0 5.6	2 8	16 72	11 78	1.16	10 10
W641914 W641915		1.58 1.29	0.014 <0.005	5.0 3.3	2.47 1.79	343	160 60	5.9 <0.5	28 <2	7.28 0.88	5.6 4.2	8 <1	72 28	78 870	4.45 16.20	<10 <10
W641916		1.18	0.034	0.9	1.93	1770	10	38.1	65	17.70	148.5	5	54	311	10.10	10
W641917		1.48	< 0.005	0.9	6.45	91	2600	1.4	<2	0.93	0.7	1	50	62	4.24	20
W641918		0.97	< 0.005	10.1	1.16	2360	740	1.2	42	0.16	12.2	<1	56	65	1.25	<10
W641864		1.18	0.006	<0.5	6.81	91	1390	1.9	7	3.26	<0.5	10	63 07	151 155	2.99 3.44	20
W641865		1.02	<0.005	<0.5	6.49	82	1770	2.1	<2	2.78	0.9	10	97			20
W641866		1.01	0.127	12.6	1.15	>10000	20	2.4	144	0.82	81.7	<1	15	816	11.10	10
W641867		1.66	0.147	12.5	1.46	99	30	5.1	233	2.13	8.6	4	29	6100	22.0	10
W641868		1.61	0.009	2.5	1.09	156	20	0.8	5	4.61	1.9	25	21	1315	18.60	10
W641869		1.24	0.006	< 0.5	7.03	8	1070	1.9 1.5	<2	6.79	<0.5	18 12	61 64	201 129	4.98	20 20
W641870		1.56	0.005	<0.5	6.91	21	2940		<2	7.74	0.6				3.64	
W641871		1.95	0.008	1.8	1.15	8850	110	<0.5	2	2.08	5.0	147	20	3180	19.65	10
W641872		2.07	< 0.005	0.6	1.43	366	120	3.4	3	2.61	2.5	2	60	50	1.56	<10
W641873		1.76	0.049 <0.005	2.8 <0.5	2.51	1300	950 1710	1.2	74	11.75 5.72	77.8	5 8	62 97	501 165	4.80 2.02	10
W641874 W641875		0.85 1.23	<0.005 0.067	<0.5 >100	4.41 3.94	17 13	600	1.3 0.5	<2 42	5.72 1.62	4.9 2.6	8	97 39	165	2.02 6.59	10 30
												4	68		2.27	
W641876 W641877		1.78 1.43	0.005 0.071	3.4 3.5	1.62 1.66	>10000 89	1280 130	1.3 1.3	2 115	0.03 7.57	4.0 291	4 47	68 14	100 1120	12.80	10 20
W641877 W641878		1.43	<0.001	0.7	2.55	89 117	610	<0.5	2	0.32	1.3	47	44	98	3.15	20 10
W641878 W641879		1.18	<0.005 0.005	1.0	2.33 5.87	15	3810	<0.5 1.1	<2	0.32	1.5	14	44	39	1.38	10
W041079		1.10	0.005	1.0	5.67	15	3010	1.1	<2	0.70	1.0	I	40	39	1.30	10

ALS)

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: HULSTEIN GEOLOGICAL SERVICES 106 WILSON DRIVE WHITESHORSE YT Y1A 0C9

Page: 2 - B Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 12-AUG-2020 Account: HULGEO

Project: Goldorak 2020

r																
	Method	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61
	Analyte	К	La	Mg	Mn	Мо	Na	Ni	Р	Pb	S	Sb	Sc	Sr	Th	Ti
Sample Description	Units	%	ppm	%	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%
Sample Description	LOD	0.01	10	0.01	5	1	0.01	1	10	2	0.01	5	1	1	20	0.01
W641906		1.85	20	0.89	147	18	0.43	52	740	13	0.80	<5	14	152	<20	0.19
W641907		0.27	20	0.30	813	9	0.25	17	270	187	0.22	<5	3	117	<20	0.15
W641908		0.01	20	0.49	3130	6	0.01	167	9700	5890	>10.0	14	2	115	<20	0.01
W641909		0.70	40	4.10	959	4	0.20	41	3970	17	0.72	<5	9	243	<20	0.32
W641910		2.99	20	1.37	383	<1	0.61	38	460	12	0.67	<5	11	320	<20	0.45
W641911 W641912		2.70 0.02	10 10	0.71 0.18	930 4910	1	0.08 0.01	52 12	290 180	16 4	>10.0 3.51	7	13 3	25 53	<20 <20	0.18 0.11
W641912 W641913		2.58	10	0.18	250	<1 13	0.01	3	220	4	0.03	<5 6	3	53 92	<20 <20	0.11
W641913 W641914		2.58 0.09	10	1.67	2360	58	0.92	3 108	220 640	44 172	0.03	8	4 5	92 116	<20 <20	0.09
W641914 W641915		0.09	20	0.52	1985	3	0.14	20	500	7	>10.21	° <5	3	22	<20 <20	0.18
W641916		0.01	10	1.13	12100	2	0.03	54	320	5	1.74	37	4	47	<20	0.10
W641917		1.96	20	0.93	1050	1	1.47	4	790	7	0.43	<5	14	321	<20	0.21
W641918		0.59	10	0.13	109	11	0.02	7	200	683	0.07	339	5	10	<20	0.05
W641864		1.82	20	1.09	226	13	0.80	36	400	16	0.79	<5	14	201	<20	0.31
W641865		2.03	30	2.37	266	46	0.28	79	2070	3	1.16	<5	11	240	<20	0.27
W641866		0.08	10	1.59	912	2	0.01	4	570	140	1.66	41	3	11	<20	0.05
W641867		0.01	10	0.58	936	<1	0.03	44	700	12	>10.0	<5	19	32	<20	0.07
W641868		0.02	20	1.07	20800	<1	0.01	72	1330	30	9.93	<5	7	19	<20	0.05
W641869		2.65	30	2.76	937	<1	0.31	33	330	6	2.08	<5	10	299	<20	0.34
W641870		2.63	40	3.58	582	<1	0.34	26	460	2	1.10	<5	10	334	<20	0.32
W641871		0.08	10	0.15	892	5	0.01	85	1160	159	>10.0	6	1	58	<20	0.05
W641872		0.33	10	0.34	715	27	0.06	54	240	9	0.28	123	3	32	<20	0.09
W641873		1.42	20	5.43	1330	18	0.17	33	790	12	0.96	19	7	139	<20	0.15
W641874		2.15	30	2.46	259	9	0.38	72	1720	10	0.81	<5	13	271	<20	0.30
W641875		1.31	20	2.77	6030	9	0.26	6	7610	>10000	1.60	188	13	143	<20	0.19
W641876		0.79	10	0.17	57	8	0.02	18	460	32	0.52	40	6	11	<20	0.06
W641877		0.01	10	1.78	4560	5	0.06	79	3430	21	6.30	5	5	79	<20	0.07
W641878		0.98	10	1.22	466	1	0.26	80	550	4	1.61	<5	6	78	<20	0.11
W641879		1.85	10	0.72	369	2	1.38	4	190	16	0.15	6	16	248	<20	0.23

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: HULSTEIN GEOLOGICAL SERVICES 106 WILSON DRIVE WHITESHORSE YT Y1A 0C9

Page: 2 - C Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 12-AUG-2020 Account: HULGEO

CERTIFICATE OF ANALYSIS WH20151530

Project: Goldorak 2020

	Method	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	Ag-OG62	Pb-OG62	Zn-OG62	
	Analyte	TI	U	V	w	Zn	Ag	Pb	Zn	
	Units	ppm	ppm	ppm	ppm	ppm	ppm	%	%	
Sample Description	LOD	10	10	1	10	2	1	0.001	0.001	
W641906		<10	<10	384	<10	848				
W641907		<10	<10	108	120	371				
W641907 W641908						>10000			4.17	
		<10	10	423	<10				4.17	
W641909		<10	<10	389	20	301				
W641910		<10	<10	101	<10	61				
W641911		<10	<10	38	<10	20				
W641912		<10	<10	81	<10	215				
W641913		<10	<10	10	60	37				
W641914		<10	<10	483	3180	440				
W641915		<10	<10	106	20	319				
W641916		<10	<10	83	1490	3870				
W641917		<10	<10	141	10	47				
W641918		<10	<10	125	30	134				
W641864		10	<10	155	<10	57				
W641865		<10	10	821	<10	121				
W641866		<10	<10	189	80	1765				
W641867		<10	10	134	1980	225				
W641868		<10	<10	130	10	173				
W641869		<10	<10	69	<10	78				
W641870		<10	<10	55	50	79				
W641871		<10	<10	105	<10	944				
W641872		<10	<10	247	1620	98				
W641873		<10	<10	187	960	2400				
W641874		<10	<10	120	20	182				
W641875		<10	<10	151	10	374	193	1.060		
W641876		<10	<10	173	10	123				
W641877		10	<10	182	1000	9830				
W641878		<10	<10	63	<10	306				
W641879		<10	<10	164	<10	75				

Т

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: HULSTEIN GEOLOGICAL SERVICES 106 WILSON DRIVE WHITESHORSE YT Y1A 0C9

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 12-AUG-2020 Account: HULGEO

Project: Goldorak 2020

		CERTIFICATE CON	MMENTS	
	Processed at ALS Whitehors	LABOR e located at 78 Mt. Sima Rd, Whitel	ATORY ADDRESSES	
Applies to Method:	CRU-31 PUL-31	CRU-QC PUL-QC	LOG-21 SPL-21	OA-HSUL10 WEI-21
Applies to Method:	Processed at ALS Vancouver Ag-OG62 Pb-OG62	r located at 2103 Dollarton Hwy, No Au-AA24 Zn-OG62	orth Vancouver, BC, Canada. ME-ICP61	ME-OG62

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: HULSTEIN GEOLOGICAL SERVICES 106 WILSON DRIVE WHITESHORSE YT Y1A 0C9

Page: 1 Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 7-AUG-2020 Account: HULGEO

CERTIFICATE WH20151531

Project: Goldorak 2020

This report is for 44 Soil samples submitted to our lab in Whitehorse, YT, Canada on 17-JUL-2020.

The following have access to data associated with this certificate:

JEROME DE PASQUALE

ROGER HULSTEIN

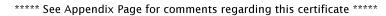
	SAMPLE PREPARATION	
ALS CODE	DESCRIPTION	
WEI-21	Received Sample Weight	
LOG-21	Sample logging - ClientBarCode	
SCR-41	Screen to -180um and save both	
	ANALYTICAL PROCEDURES	
ALS CODE	DESCRIPTION	
AuME-TL44	50g Trace Au + Multi Element PKG	

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature: Saa Traxler, General Manager, North Vancouver

***** See Appendix Page for comments regarding this certificate *****

ALS


2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: HULSTEIN GEOLOGICAL SERVICES 106 WILSON DRIVE WHITESHORSE YT Y1A 0C9

Page: 2 - A Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 7-AUG-2020 Account: HULGEO

Project: Goldorak 2020

Sample Description	Method	WEI-21	AuME-TL44	AuME-TL44	AuME-TL44	AuME-TL44	AuME-TL44	AuME-TL44	AuME-TL44	AuME-TL44	AuME-TL44	AuME-TL44	AuME-TL44	AuME-TL44	AuME-TL44	AuME-TL44
	Analyte	Recvd Wt.	Au	Ag	Al	As	B	Ba	Be	Bi	Ca	Cd	Ce	Co	Cr	Cs
	Units	kg	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm
	LOD	0.02	0.001	0.01	0.01	0.1	10	10	0.05	0.01	0.01	0.01	0.02	0.1	1	0.05
Y647751		0.32	0.023	1.06	3.57	1485	<10	200	2.33	15.15	0.45	18.95	31.4	220	25	4.03
Y647752		0.44	0.009	0.27	2.58	125.5	<10	410	0.93	1.45	0.36	1.50	23.1	14.3	34	5.37
Y647753		0.39	0.014	0.77	3.12	303	10	530	1.50	3.80	1.11	6.39	27.1	29.4	39	10.65
Y647754		0.42	0.012	0.65	4.37	278	10	200	1.23	2.89	2.90	4.30	26.5	23.1	39	13.05
Y647755		0.38	0.529	4.17	0.81	1640	10	30	0.19	183.5	0.18	0.83	12.55	3.4	18	1.99
Y647756		0.27	0.021	2.68	1.74	2170	<10	180	1.13	18.25	0.24	3.44	19.80	17.7	19	4.39
Y647757		0.37	0.005	1.30	1.38	752	<10	240	0.72	3.50	0.08	0.59	29.1	11.4	23	3.52
Y647758		0.38	0.050	4.47	2.12	2840	<10	80	0.76	92.7	0.13	0.77	15.55	17.5	27	9.36
Y647759		0.41	0.032	12.30	0.52	2410	<10	70	0.13	23.7	0.11	0.27	6.51	1.7	28	1.41
Y647760		0.22	0.053	30.8	0.14	1920	10	10	<0.05	16.50	0.01	0.32	1.04	0.2	13	0.38
Y647761		0.28	0.004	0.19	3.04	34.2	<10	310	0.74	0.51	0.40	0.42	31.7	13.9	36	5.81
Y647762		0.25	0.008	0.20	4.49	21.4	<10	220	1.09	0.52	1.13	0.26	27.5	14.6	52	5.28
Y647763		0.37	0.009	0.47	3.22	51.5	<10	160	1.03	1.18	0.19	0.97	40.9	18.3	34	3.69
Y647764		0.27	0.007	0.21	3.27	30.5	<10	230	0.93	1.55	0.38	0.63	27.0	11.9	38	4.30
Y647765		0.34	0.019	0.64	4.59	45.8	<10	180	1.29	5.24	0.35	2.40	37.1	21.5	44	7.92
Y647766		0.31	0.015	0.24	3.62	29.7	<10	260	1.05	3.21	0.40	1.26	32.0	14.1	38	5.73
Y647767		0.29	0.044	4.73	0.74	1075	<10	70	0.14	12.20	0.16	0.63	13.40	6.2	18	1.92
Y647768		0.49	0.005	4.66	10.10	2510	10	20	2.29	9.58	0.10	3.30	12.65	15.2	19	2.67
Y647769		0.31	0.006	1.33	1.61	444	<10	220	0.93	8.08	0.25	2.36	35.4	9.2	27	4.00
Y647770		0.24	0.019	0.22	1.75	35.5	<10	210	0.46	10.70	0.17	0.66	22.1	7.3	30	1.44
Y647771		0.54	0.017	3.46	1.67	1470	30	140	0.88	21.0	2.01	120.0	13.00	13.8	21	4.84
Y647772		0.51	0.008	2.21	0.67	>10000	<10	80	0.50	5.42	0.19	120.5	18.65	35.9	11	4.09
Y647773		0.48	0.006	1.74	1.17	3200	<10	130	0.74	6.53	0.34	13.30	17.60	24.1	19	6.14
Y647774		0.42	0.032	66.4	0.58	>10000	10	130	1.41	18.80	0.96	141.5	16.55	14.3	8	3.40
Y647775		0.29	0.004	0.93	1.26	38.0	<10	110	0.35	1.53	0.65	5.01	21.7	10.3	32	3.47
Y647776 Y647777 Y647778 Y647779 Y647780		0.33 0.32 0.50 0.51 0.43	0.005 0.009 0.132 0.116 0.005	1.06 1.00 2.06 0.90 2.20	1.54 1.44 6.69 1.37 6.85	1025 190.5 1865 284 1845	<10 <10 <10 <10 <10 10	180 160 150 220 180	0.47 0.44 3.12 0.79 1.87	0.94 2.24 6.11 9.61 12.10	0.15 0.19 0.33 0.43 0.22	3.63 1.49 15.50 6.76 4.83	22.5 25.6 32.1 26.8 23.8	12.8 7.4 90.7 14.7 27.1	30 26 23 22 24	4.33 3.84 4.39 2.82 4.60
Y647781		0.43	0.006	3.47	5.36	1285	<10	110	0.94	2.19	0.13	2.66	18.75	13.7	24	4.76
Y647782		0.63	0.010	1.87	1.76	363	<10	230	0.68	1.50	0.27	6.42	25.5	20.7	32	6.64
Y647783		0.35	0.002	1.20	2.48	347	<10	50	0.43	0.34	0.27	0.59	48.1	4.9	12	16.25
Y647784		0.34	0.003	1.78	1.31	17.8	<10	190	0.34	1.09	0.20	2.87	16.25	2.8	29	5.94
Y647785		0.36	0.010	4.83	2.21	155.0	<10	50	0.44	1.55	0.11	1.10	20.6	7.2	29	6.65
Y647786		0.37	0.011	8.21	1.94	204	<10	40	0.40	5.40	0.11	0.69	13.90	3.5	30	7.87
Y647787		0.46	0.012	4.37	2.23	220	<10	110	0.46	1.07	0.18	2.72	27.2	4.9	40	9.57
Y647788		0.49	0.024	3.35	2.89	124.0	<10	50	0.63	16.35	0.26	3.34	18.70	11.3	33	8.70
Y647789		0.36	0.006	3.00	3.10	156.0	10	100	1.25	1.97	0.40	4.26	14.75	47.6	20	6.02
Y647790		0.39	0.008	2.43	2.30	212	10	50	0.80	0.81	0.20	0.90	15.20	19.5	27	7.98

ALS

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

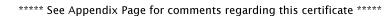
To: HULSTEIN GEOLOGICAL SERVICES 106 WILSON DRIVE WHITESHORSE YT Y1A 0C9

Page: 2 - B Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 7-AUG-2020 Account: HULGEO

Project: Goldorak 2020

Sample Description	Method Analyte Units LOD	AuME-TL44 Cu ppm 0.2	AuME-TL44 Fe % 0.01	AuME-TL44 Ga ppm 0.05	AuME-TL44 Ge ppm 0.05	AuME-TL44 Hf ppm 0.02	AuME-TL44 Hg ppm 0.01	AuME-TL44 In ppm 0.005	AuME-TL44 K % 0.01	AuME-TL44 La ppm 0.2	AuME-TL44 Li ppm 0.1	AuME-TL44 Mg % 0.01	AuME-TL44 Mn ppm 5	AuME-TL44 Mo ppm 0.05	AuME-TL44 Na % 0.01	AuME-TL44 Nb ppm 0.05
Y647751		1450	2.61	4.01	0.11	0.10	0.07	0.076	0.07	16.0	19.5	0.35	2540	29.1	0.02	0.46
Y647752		72.1	2.72	6.73	0.10	0.06	0.05	0.047	0.20	12.3	18.1	0.78	500	4.62	0.01	1.05
Y647753		206	5.30	9.85	0.11	0.06	0.05	0.146	0.54	14.4	57.6	1.41	503	3.66	0.08	0.90
Y647754		88.5	4.95	14.30	0.10	0.08	0.04	0.126	0.55	13.5	61.5	1.24	678	0.67	0.24	0.74
Y647755		364	13.85	4.33	0.38	<0.02	0.11	0.432	0.02	5.9	7.0	0.16	770	5.12	0.01	0.51
Y647756		284	5.02	5.31	0.07	0.07	0.12	0.230	0.05	9.5	25.4	0.49	623	7.34	0.01	0.42
Y647757		186.5	5.31	3.97	0.07	0.05	0.07	0.078	0.06	13.1	15.4	0.29	323	4.08	0.01	0.59
Y647758		303	12.80	10.80	0.29	0.14	0.10	0.337	0.21	6.6	37.7	0.62	695	22.7	0.02	0.46
Y647759		216	20.1	5.52	0.28	< 0.02	0.16	0.334	0.06	4.6	5.4	0.12	166	8.80	0.01	0.44
Y647760		517	43.9	1.38	1.91	0.15	2.57	1.550	0.02	0.7	0.4	0.01	<5	11.75	0.01	0.73
Y647761		32.0	4.53	8.38	0.07	0.07	0.05	0.027	0.41	13.2	33.0	0.75	395	0.88	0.03	1.85
Y647762		24.9	3.43	12.00	0.06	0.07	0.04	0.023	0.26	12.2	30.0	1.01	398	0.52	0.14	1.93
Y647763		90.7	6.06	10.55	0.08	0.27	0.05	0.033	0.20	23.6	22.2	0.55	253	10.15	0.04	2.29
Y647764		37.5	3.04	9.82	0.05	0.04	0.04	0.029	0.13	14.0	18.9	0.71	364	1.19	0.03	2.16
Y647765		94.6	4.67	14.55	0.08	0.10	0.04	0.059	0.34	17.4	29.4	0.92	541	1.16	0.03	2.86
Y647766		37.9	3.28	10.40	0.07	0.05	0.03	0.052	0.22	14.4	23.9	0.88	458	0.93	0.05	1.69
Y647767		413	13.05	4.82	0.35	<0.02	0.11	0.401	0.04	5.4	5.8	0.17	779	7.08	0.01	0.60
Y647768		653	1.24	2.28	0.10	0.23	0.15	0.042	0.03	5.3	8.2	0.17	295	39.1	0.01	0.62
Y647769		65.9	2.48	5.24	0.06	0.02	0.06	0.116	0.07	14.7	18.1	0.48	448	3.58	0.01	0.45
Y647770		17.4	2.69	6.92	<0.05	0.02	0.05	0.033	0.05	10.6	14.5	0.34	278	1.92	0.01	1.12
Y647771		234	2.89	4.96	0.09	0.11	0.13	1.410	0.10	7.4	13.6	0.60	1080	9.40	<0.01	0.27
Y647772		950	9.38	1.74	0.16	0.03	0.11	0.419	0.05	11.7	9.9	0.18	990	59.5	<0.01	<0.05
Y647773		308	4.70	3.83	0.08	0.04	0.07	0.203	0.07	9.3	24.5	0.41	780	15.55	<0.01	0.19
Y647774		1210	10.00	2.16	0.19	0.10	0.22	2.68	0.04	8.6	10.6	0.56	2450	1.71	<0.01	0.08
Y647775		113.0	2.58	4.21	0.08	0.04	0.03	0.048	0.10	11.7	11.6	0.55	277	5.12	0.03	0.36
Y647776		93.4	3.31	5.42	0.06	0.02	0.09	0.063	0.09	10.3	20.2	0.39	444	9.02	<0.01	0.88
Y647777		149.0	3.20	4.14	0.06	0.04	0.05	0.069	0.08	12.2	10.2	0.37	384	4.98	<0.01	0.60
Y647778		1930	1.72	3.29	0.11	0.19	0.16	0.052	0.05	17.1	11.5	0.27	1320	24.1	<0.01	0.81
Y647779		116.0	2.34	3.95	0.06	0.02	0.06	0.066	0.06	13.3	12.0	0.38	1000	8.71	0.01	0.25
Y647780		755	1.82	3.14	0.09	0.15	0.21	0.053	0.05	10.3	10.7	0.27	579	29.3	<0.01	1.15
Y647781		549	2.18	3.60	0.09	0.29	0.17	0.045	0.05	7.9	10.2	0.27	313	26.5	<0.01	0.94
Y647782		385	2.92	4.81	0.06	0.02	0.07	0.051	0.07	13.1	14.3	0.42	397	9.96	0.01	0.41
Y647783		114.0	8.60	5.96	0.10	0.04	0.02	0.058	0.36	20.4	21.9	0.67	485	2.07	0.13	0.20
Y647784		96.9	2.86	5.03	0.11	0.06	0.04	0.151	0.09	9.4	12.9	0.39	166	46.3	0.04	0.54
Y647785		254	13.95	7.52	0.26	0.31	0.15	0.423	0.11	11.6	10.7	0.40	290	75.4	0.07	0.83
Y647786		280	21.0	10.85	0.31	0.17	0.07	0.592	0.17	6.7	13.7	0.36	300	43.9	0.12	0.53
Y647787		201	9.98	8.68	0.26	0.07	0.12	0.205	0.18	13.9	14.5	0.44	300	74.1	0.14	0.75
Y647788		207	7.99	7.74	0.19	0.41	0.11	0.317	0.16	9.2	15.1	0.39	352	41.6	0.08	0.98
Y647789		205	6.63	5.84	0.11	0.21	0.07	0.130	0.10	5.9	19.1	0.33	1430	23.9	0.11	0.47
Y647790		192.0	9.74	6.54	0.13	0.26	0.08	0.147	0.24	6.4	29.9	0.44	552	20.2	0.13	0.77

ALS


2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: HULSTEIN GEOLOGICAL SERVICES 106 WILSON DRIVE WHITESHORSE YT Y1A 0C9

Page: 2 - C Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 7-AUG-2020 Account: HULGEO

Project: Goldorak 2020

Sample Description	Method	AuME-TL44	AuME-TL44	AuME-TL44	AuME-TL44	AuME-TL44	AuME-TL44	AuME-TL44	AuME-TL44	AuME-TL44	AuME-TL44	AuME-TL44	AuME-TL44	AuME-TL44	AuME-TL44	AuME-TL44
	Analyte	Ni	P	Pb	Rb	Re	S	Sb	Sc	Se	Sn	Sr	Ta	Te	Th	Ti
	Units	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%
	LOD	0.2	10	0.2	0.1	0.001	0.01	0.05	0.1	0.2	0.2	0.2	0.01	0.01	0.2	0.005
Y647751		191.5	1090	33.9	9.4	0.008	0.12	12.30	2.9	3.4	2.2	29.4	0.01	0.24	2.3	0.030
Y647752		66.4	1620	16.2	23.0	0.001	0.07	8.41	3.5	2.3	0.8	44.1	<0.01	0.12	4.4	0.062
Y647753		67.4	1420	11.6	47.6	0.002	0.22	4.31	5.1	6.1	2.8	187.0	<0.01	0.20	5.2	0.057
Y647754		45.4	690	23.3	63.5	<0.001	0.07	1.46	6.3	1.4	1.5	286	<0.01	0.11	7.6	0.096
Y647755		9.7	1380	18.7	1.4	0.003	0.34	3.95	1.8	98.1	4.7	12.2	<0.01	7.00	3.3	0.012
Y647756		80.9	1130	84.1	7.4	0.001	0.09	27.7	2.3	7.5	3.8	51.1	<0.01	0.66	2.5	0.016
Y647757		68.8	930	20.7	8.1	0.002	0.12	13.85	2.5	5.9	1.3	15.9	<0.01	0.19	1.6	0.023
Y647758		47.5	1400	50.6	26.4	0.004	0.41	24.8	5.6	57.9	19.8	41.2	<0.01	1.66	5.0	0.041
Y647759		9.9	4720	2160	3.3	0.001	0.75	43.2	1.5	24.6	7.7	25.8	<0.01	1.02	3.1	0.031
Y647760		2.0	2320	6240	0.4	0.002	4.54	83.7	1.6	54.2	15.6	31.6	0.02	1.04	0.6	0.016
Y647761		34.1	700	17.0	37.9	<0.001	0.07	1.02	4.7	0.6	0.7	56.9	<0.01	0.03	4.7	0.089
Y647762		37.4	510	15.5	35.0	<0.001	0.06	0.62	5.5	0.4	0.6	96.2	<0.01	0.03	4.9	0.113
Y647763		44.8	890	12.2	19.2	0.001	0.27	2.85	4.2	3.9	0.8	48.5	<0.01	0.06	10.4	0.083
Y647764		32.4	650	10.4	18.8	<0.001	0.07	1.15	3.5	1.1	0.7	38.3	<0.01	0.09	2.2	0.066
Y647765		44.7	560	8.1	42.8	<0.001	0.12	1.33	5.9	1.7	1.0	80.6	<0.01	0.21	7.7	0.104
Y647766		35.4	500	21.7	34.1	<0.001	0.05	1.33	4.4	1.0	0.9	65.9	<0.01	0.13	5.1	0.090
Y647767		18.1	590	20.2	5.5	0.001	0.33	16.25	2.5	72.1	3.2	6.5	<0.01	1.26	2.5	0.040
Y647768		62.9	1140	10.9	4.3	0.005	1.41	7.61	5.1	16.0	0.5	11.3	0.01	0.11	2.1	0.018
Y647769		37.2	760	39.5	12.9	0.003	0.03	9.88	2.6	0.9	2.2	32.2	<0.01	0.17	1.6	0.027
Y647770		22.6	640	15.1	7.7	<0.001	0.04	1.35	2.0	0.7	1.1	12.5	<0.01	0.51	1.2	0.029
Y647771		108.5	1130	63.0	5.3	0.003	0.08	13.35	1.9	6.7	34.3	179.5	<0.01	0.38	2.7	0.010
Y647772		186.0	1340	65.4	7.6	0.009	0.03	74.2	4.2	25.3	6.7	9.6	<0.01	0.31	3.2	<0.005
Y647773		99.1	1010	33.2	11.5	0.002	0.04	33.2	2.7	7.9	4.3	38.9	<0.01	0.22	1.4	0.015
Y647774		64.9	730	80.8	5.6	0.002	0.15	191.0	2.7	26.2	49.8	77.3	<0.01	0.76	2.3	<0.005
Y647775 Y647776 Y647777		56.1 38.7 35.1	1170 890 930	12.6 15.0 29.0	11.2 14.2 11.7	0.002 0.002 0.001 0.002	0.08 0.05	9.02 9.70	4.3 2.2 2.0	3.0 4.7 3.4	1.6 1.5 0.7	19.4 18.6	<0.01 <0.01 <0.01 <0.01	0.76	4.0 0.6 1.5	0.058 0.034 0.029
Y647778		157.5	1020	20.9	7.8	0.009	0.33	8.72	3.7	3.6	1.1	21.2	0.02	0.18	2.6	0.028
Y647779		59.7	970	31.7	8.6	0.004	0.02	6.67	2.5	1.6	1.5	31.0	<0.01	0.38	2.1	0.026
Y647780		71.7	1010	20.5	8.4	0.015	0.68	10.15	3.6	6.4	1.1	17.1	0.01	0.27	2.6	0.030
Y647781		56.1	1510	13.4	7.6	0.006	0.41	7.49	4.7	14.1	0.7	18.4	0.01	0.10	3.2	0.030
Y647782		81.4	1350	10.6	10.7	0.003	0.08	5.33	2.4	5.0	0.7	30.2	<0.01	0.09	0.8	0.031
Y647783		10.3	1350	20.5	24.1	0.001	0.78	21.6	2.3	6.2	0.4	422	<0.01	0.27	4.0	0.019
Y647784		14.7	980	18.7	8.6	0.003	0.21	6.31	3.2	21.7	0.3	152.5	<0.01	0.25	5.7	0.036
Y647785		26.7	2380	109.5	10.7	0.005	0.46	23.5	3.7	63.6	0.9	64.6	<0.01	0.51	7.0	0.048
Y647786		12.3	3150	165.5	15.0	0.004	0.93	21.6	5.6	65.8	1.4	103.5	<0.01	0.80	8.0	0.057
Y647787		27.8	3080	50.8	15.0	0.010	0.76	13.90	3.3	65.4	0.7	123.0	<0.01	0.34	3.2	0.048
Y647788		60.1	2160	70.6	13.6	0.017	0.57	9.95	4.4	45.6	1.0	154.5	<0.01	0.98	5.8	0.038
Y647789		139.0	1470	53.2	8.5	0.004	0.36	7.70	3.6	20.9	2.7	115.5	<0.01	0.31	3.7	0.023
Y647790		38.3	2010	36.9	20.4	0.005	0.64	10.15	4.1	23.3	0.7	101.0	<0.01	0.31	4.9	0.043

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: HULSTEIN GEOLOGICAL SERVICES 106 WILSON DRIVE WHITESHORSE YT Y1A 0C9

Page: 2 - D Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 7-AUG-2020 Account: HULGEO

Project: Goldorak 2020

	Method	AuME-TL44 Tl	AuME-TL44 U	AuME-TL44 V	AuME-TL44 W	AuME-TL44 Y	AuME-TL44 Zn	AuME-TL44 Zr	
	Analyte Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Sample Description	LOD	0.02	0.05	1	0.05	0.05	2	0.5	
Y647751		0.20	15.25	68	230	99.3	1560	1.7	
Y647752		0.46	2.88	146	20.6	7.56	338	1.9	
Y647753		0.48	3.97	99	13.30	10.85	363	2.8	
Y647754		0.46	0.80	41	1.47	14.15	249	3.1	
Y647755		0.03	1.20	80	260	3.24	93	<0.5	
Y647756		0.20	3.64	52	38.6	7.05	421	2.4	
Y647757		0.19	3.36	39	11.25	9.94	181	1.4	
Y647758		0.53	6.79	92	250	7.66	208	6.1	
Y647759		0.69	1.21	159	44.6	3.93	283	<0.5	
Y647760		1.56	0.28	151	6.79	0.86	2310	11.5	
Y647761		0.31	0.85	50	0.67	6.54	73	2.4	
Y647762		0.25	0.74	55	0.33	5.48	68	2.7	
Y647763		0.29	3.34	47	0.56	7.37	89	10.3	
Y647764		0.24	1.02	55	1.17	6.02	108	1.3	
Y647765		0.35	1.02	52	2.10	6.41	237	3.3	
Y647766		0.31	0.81	51	1.73	5.38	228	1.7	
Y647767		0.15	1.93	79	29.3	4.57	207	<0.5	
Y647768		0.10	36.5	38	77.5	50.6	326	9.0	
Y647769		0.12	2.32	52	183.0	10.05	169	0.5	
Y647770		0.13	0.66	64	21.9	3.84	70	0.5	
Y647771		0.10	3.53	47	32.9	16.35	3510	3.6	
Y647772		0.18	19.10	58	2.39	22.5	2090	1.8	
Y647773		0.20	5.49	76	14.90	12.20	814	1.5	
Y647774		0.12	1.61	40	106.5	12.45	3740	3.9	
Y647775		0.39	3.14	105	3.26	9.90	407	2.1	
Y647776		0.23	2.24	118	0.83	5.82	321	0.6	
Y647777		0.19	1.73	71	47.9	7.23	199	1.3	
Y647778		0.13	29.6	47	470	162.0	1610	4.9	
Y647779		0.13	3.13	49	155.5	11.75	434	0.5	
Y647780		0.13	25.4	51	1010	63.1	531	4.7	
Y647781		0.22	18.50	63	55.5	36.3	316	11.5	
Y647782		0.29	5.30	96	56.2	16.25	640	0.5	
Y647783		0.57	0.44	25	0.85	2.22	90	1.7	
Y647784		1.14	7.78	126	1.44	10.95	190	4.7	
Y647785		0.72	7.34	120	1.57	8.10	504	13.1	
Y647786		0.77	6.26	121	2.56	5.58	358	8.1	
Y647787		1.23	9.91	169	3.15	11.00	324	2.2	
Y647788		0.77	7.60	137	2.01	9.88	469	16.9	
Y647789		0.44	6.71	64	1.04	16.25	718	7.9	
Y647790		0.44	3.66	72	0.78	8.62	210	9.5	

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: HULSTEIN GEOLOGICAL SERVICES 106 WILSON DRIVE WHITESHORSE YT Y1A 0C9

Page: 3 - A Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 7-AUG-2020 Account: HULGEO

Project: Goldorak 2020

Sample Description	Method Analyte Units LOD	WEI-21 Recvd Wt. kg 0.02	AuME-TL44 Au ppm 0.001	AuME-TL44 Ag ppm 0.01	AuME-TL44 Al % 0.01	AuME-TL44 As ppm 0.1	AuME-TL44 B ppm 10	AuME-TL44 Ba ppm 10	AuME-TL44 Be ppm 0.05	AuME-TL44 Bi ppm 0.01	AuME-TL44 Ca % 0.01	AuME-TL44 Cd ppm 0.01	AuME-TL44 Ce ppm 0.02	AuME-TL44 Co ppm 0.1	AuME-TL44 Cr ppm 1	AuME-TL44 Cs ppm 0.05
Y647791 M895625 M895626 M895627		0.36 0.39 0.36 0.32	0.003 0.001 0.002 0.007	0.51 1.34 0.72 0.49	1.56 2.88 2.17 1.74	61.5 37.6 8.5 18.6	10 10 10 10	130 90 330 200	0.47 0.97 1.15 0.67	0.23 0.32 0.16 1.25	0.11 0.36 0.48 0.34	0.72 8.50 2.28 5.43	13.25 21.7 28.2 7.91	10.1 10.3 32.0 4.8	33 27 12 30	3.64 7.88 4.90 1.87

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: HULSTEIN GEOLOGICAL SERVICES 106 WILSON DRIVE WHITESHORSE YT Y1A 0C9

Page: 3 - B Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 7-AUG-2020 Account: HULGEO

Project: Goldorak 2020

Sample Description	Method Analyte Units LOD	AuME-TL44 Cu ppm 0.2	AuME-TL44 Fe % 0.01	AuME-TL44 Ga ppm 0.05	AuME-TL44 Ge ppm 0.05	AuME-TL44 Hf ppm 0.02	AuME-TL44 Hg ppm 0.01	AuME-TL44 In ppm 0.005	AuME-TL44 K % 0.01	AuME-TL44 La ppm 0.2	AuME-TL44 Li ppm 0.1	AuME-TL44 Mg % 0.01	AuME-TL44 Mn ppm 5	AuME-TL44 Mo ppm 0.05	AuME-TL44 Na % 0.01	AuME-TL44 Nb ppm 0.05
Sample Description Y647791 M895625 M895626 M895627	Units LOD															

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: HULSTEIN GEOLOGICAL SERVICES 106 WILSON DRIVE WHITESHORSE YT Y1A 0C9

Page: 3 - C Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 7-AUG-2020 Account: HULGEO

Project: Goldorak 2020

Sample Description	Method Analyte Units LOD	AuME-TL44 Ni ppm 0.2	AuME-TL44 P ppm 10	AuME-TL44 Pb ppm 0.2	AuME-TL44 Rb ppm 0.1	AuME-TL44 Re ppm 0.001	AuME-TL44 S % 0.01	AuME-TL44 Sb ppm 0.05	AuME-TL44 Sc ppm 0.1	AuME-TL44 Se ppm 0.2	AuME-TL44 Sn ppm 0.2	AuME-TL44 Sr ppm 0.2	AuME-TL44 Ta ppm 0.01	AuME-TL44 Te ppm 0.01	AuME-TL44 Th ppm 0.2	AuME-TL44 Ti % 0.005
Sample Description Y647791 M895625 M895626 M895627	Units															

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: HULSTEIN GEOLOGICAL SERVICES 106 WILSON DRIVE WHITESHORSE YT Y1A 0C9

Page: 3 - D Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 7-AUG-2020 Account: HULGEO

Project: Goldorak 2020

Sample Description	Method Analyte Units LOD	AuME-TL44 Tl ppm 0.02	AuME-TL44 U ppm 0.05	AuME-TL44 V ppm 1	AuME-TL44 W ppm 0.05	AuME-TL44 Y ppm 0.05	AuME-TL44 Zn ppm 2	AuME-TL44 Zr ppm 0.5	
Y647791 M895625 M895626 M895627		0.32 0.75 0.10 0.44	1.29 3.10 2.17 4.57	93 93 26 131	0.33 0.17 0.15 0.16	4.58 5.76 38.3 5.60	99 388 398 340	0.6 1.9 2.5 3.3	

Т

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

To: HULSTEIN GEOLOGICAL SERVICES 106 WILSON DRIVE WHITESHORSE YT Y1A 0C9

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 7-AUG-2020 Account: HULGEO

Project: Goldorak 2020

	CERTIFICATE COMMENTS
Applies to Method:	LABORATORY ADDRESSES Processed at ALS Whitehorse located at 78 Mt. Sima Rd, Whitehorse, YT, Canada. LOG-21 SCR-41 WEI-21
Applies to Method:	Processed at ALS Vancouver located at 2103 Dollarton Hwy, North Vancouver, BC, Canada. AuME-TL44

APPENDIX B

Rock Sample Descriptions

&

Analytical Results

2020 Goldorak Report

Station	Date	Time	Coord	System	East	North	Elev m	Sampler	Type	Type2	Structure_Type	Strike-Dip	Lithology	Min1	Min1Per	Min2	Min2Pe
									. , , , , ,	. , , , , , ,	<u> </u>						
W641864	June 30th 2020		NAD83	_UTM_Z8N	515463	6972607		JDP	Rock	float			argillite	ру	02-Jan	ро	02-Jan
													-				
W641865	July 1st 2020		NAD83	_UTM_Z8N	513605	6973006	;	JDP	Rock	outcrop			shale	ру	02-Jan	ро	1
W641866	July 1st 2020		NAD83	_UTM_Z8N	513413	6973201		JDP	Rock	float			shale	ру	2	aspy	0.5
W641867	July 1st 2020		NAD83_	_UTM_Z8N	513587	6973297		JDP	Rock	float			semi-massive sulphide	ру	30	ро	5
W641868	July 1st 2020		NAD83	_UTM_Z8N	513588	6973256		JDP	Rock	outcrop			massive sulphide	ру		ро	
W641869	July 2nd 2020		NAD83_	_UTM_Z8N	514378	6972371		JDP	Rock	subcrop			hornfeld	ру	5	сру	0.5
W641870	July 2nd 2020		NAD83_	_UTM_Z8N	514351	6972490		JDP	Rock	float			calc-silicate	ру	5	сру	0.5
W641871	July 2nd 2020		NAD83	_UTM_Z8N	514491	6972739		JDP	Rock	outcrop			massive sulphide	ру	60	ро	10
W641872	July 3rd 2020		NAD83_	_UTM_Z8N	514629	6973502		JDP	Rock	float			quartz vein	ру	0.1	сру	0.1
W641873	July 3rd 2020		NAD83	_UTM_Z8N	513672	6973784		JDP	Rock	float			metasediment	ру	1	сру	0.1
W641874	July 4th 2020		NAD83_	_UTM_Z8N	515805	6972727		JDP	Rock	float			hornfeld	ру	0.5		
NG4407E	July 5th 2020		NADOO	UTM Z8N	E4E700	6074070		JDP	Deale	outcrop			siltstone	ру	0.5		

Station	Description	SAMPLE	Au ppm	Ag ppm	Al %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm Cr ppm	Cu ppm	Fe %
	Selective grab sample, scree. Grey hornfelsed dark grey shale and grey													
	quartzite-siltstone; fine grained, crustiform quartz vein (up to 0.5cm) and													
W641864	quartz-pyrite veinlets. Disseminated pyrite-pyrrhotite.	W641864	0.006	0.5	6.81	91	1390	1.9	7	3.26	0.5	10 6	3 151	2.99
	Grab sample. 1*1*1 m outcrop. Rusty, weakly sheared, banded. Black-													
	greuy, fine grained. Quartz vein mineralized py/po/trace cpy. Wavy													
W641865	quartz veinlet (0.3 cm). 0.2% anhedral disseminated pyrite	W641865	0.005	0.5	6.49	82	1770	2.1	2	2.78	0.9	10 9	07 155	3.44
	Float above outcrop of rusty, vuggy, jarosite staining, decomposed,													
	strongly altered shale (?). Sericitzed-oxidized, bleached, sugary quartz.													
W641866	2% fine to medium grained py	W641866	0.127	12.6	1.15	10000	20	2.4	144	0.82	81.7	1 1	5 816	11.1
	Subrounded 60*60*50 cm float of semi-massive sulphide. Yellow-rusty													
	weathering. py/po/cpy (5%)/possibly honey sphalerite, chlorite, tremolite.													
	Several float of the same nature in the area. Outcrop located above is													
	not mineralized. Main showing is located 20 mteres south east of the													
W641867	sample. The protholith may be intrusive (have to be checked)	W641867	0.147	12.5	1.46	99	30	5.1	233	2.13	8.6	4 2	29 <mark>6100</mark>	22
	Over 40 cm wide, shale hosted (black-rusty weathering). Fine grained													
	massive sulphide (60% sulphide), dark green colour-chloritized (?),													
	quartz and possibly barite in groundmass. The outcrop extents over													
	20*10*20 metres and shows multiple massive sulphide													
W641868	/pods/lenses/beds	W641868	0.009	2.5	1.09	156	20	0.8	5	4.61	1.9	25 2	21 <mark>1315</mark>	18.6
	Recrystalized metasiltstone (?) sampled in the vinivity of DDH81-05.													
	Biotite alteration in yellow bands, mineralization associated with medium													
W641869	grained-recrystalized quartz lenses, cpy growing with py	W641869	0.006	0.5	7.03	8	1070	1.9	2	6.79	0.5	18 6	51 201	4.98
	Float 10*20*10 in the middle of scree slope. Rusty weathered suface,													
	angular, grey-beige. Silica dominant, 3 to 5 % py associated with													
	recrystalized medium grained quartz, trace to 0.5% cpy. Presence of 5-													
	10% actinolite (skarny), rare calcite in fracture. Sampled to test 37 m Cu													
W641870	interval within DDH81-05	W641870	0.005	0.5	6.91	21	2940	1.5	2	7.74	0.6	12 6	64 129	3.64
	Grey-dark green, fine to medium grained, py-po-cpy (5%)-possibly													
	brown to red sph). Recrystalized chlorite and quartz in groundmass.													
W641871	Metasediment hosted	W641871	0.008	1.8	1.15	8850	110	0.5	2	2.08	5	147 2	20 3180	19.65
	Selective sample from scree float averaing 30*40*20, anglular.													
	Abundant quartz within hornfeld. Rusty, boxwork, crustiform, limonite in													
W641872	fracture, rare py-cpy-gl tace (?)	W641872	0.005	0.6	1.43	366	120	3.4	3	2.61	2.5	2 6	50 50	1.56
	Selective sample within scree proximal to shale-siltstone outcrop.													
	Bleached-off white-leached, mineralized py/cpy. Presence of mica and													
	possible sericite alteration, gossaneous. Protolith obscured by strong													
W641873	alteration	W641873	0.049	2.8	2.51	1300	950	1.2	74	11.75	5 77.8	5 6	52 <mark>501</mark>	4.8
	Float field, top of the ridge. Brown, rusty angular, 30*50*30 cm. Fresh													
	surface: grey, siliceous, breaking like possible breccia, 0.5% fine grained													
	disseminated pyrite, pyrite aggregated and pyrite trains associated with													
	tremolilte (skarny), specks of biotite (1%). Difficult to have a fresh													
	surface. Some float are bleached and contain recrystalized quartz in													
W641874		W641874	0.005	0.5	4.41	17	1710	1.3	2	5.72	4.9	8 9	07 165	2.02
	Selective sample. 3*3*4 m outcrop, fractured, rusty weathering, locally													
	friable, irregular break. Fresh surface: grey, fine grained, moderate to													
	strong sericite alteration, manganse oxide, jarosite and limonite fracture													
	filling. Presence of grey-very fine disseminated sulphide which could be													
	AgS. Two sets of fracture. Major control fracture: 100/27, fracture filling:													
W641875	130/70	W641875	0.067	193	3.94	13	600	0.5	42	1.62	2.6	1 3	9 113	6.59

Station	Gannm	K %	l a nnm	Ma %	Mn nnm	Mo nnm	Na %	Ni nom I	2 nnm	Ph nnm	S %	Sh nnm	Sc nnm	Sr nnm	Th nnm	Ti %	Tinnm	ll nnm	Vnnm	Wnnm	Zn nnm	Certificate
otation		11 70		ing /o		MO ppin	144 70		ppm		0 /0		oc ppin	or ppm	in ppin	11 /0	ii ppiii	o ppin	• ppin	v ppin		Gentificate
W641864	20	1.82	20	1.09	226	13	0.8	36	400	16	0.79	5	14	201	20	0.31	10	10	155	10	57	WH20151530
W641865	20	2.03	30	2.37	266	46	0.28	79	2070	3	1.16	5	11	240	20	0.27	10	10	821	10	121	WH20151530
W641866	10	0.08	10	1.59	912	2	0.01	4	570	140	1.66	41	3	11	20	0.05	10	10	189	80	1765	WH20151530
		0.00			0.12		0.01		0.0													
W641867	10	0.01	10	0.58	936	1	0.03	44	700	12	10	5	19	32	20	0.07	10	10	134	1980	225	WH20151530
W641868	10	0.02	20	1.07	20800	1	0.01	72	1330	30	9.93	5	7	19	20	0.05	10	10	130	10	173	WH20151530
W641869	20	2.65	30	2.76	937	1	0.31	33	330	6	2.08	5	10	299	20	0.34	10	10	69	10	78	WH20151530
W641870	20	2.63	40	3.58	582	1	0.34	26	460	2	1.1	5	10	334	20	0.32	10	10	55	50	79	WH20151530
W641871	10	0.08	10	0.15	892	5	0.01	85	1160	159	10	6	1	58	20	0.05	10	10	105	10	944	WH20151530
W641872	10	0.33	10	0.34	715	27	0.06	54	240	9	0.28	123	3	32	20	0.09	10	10	247	1620	98	WH20151530
W641873	10	1.42	20	5.43	1330	18	0.17	33	790	12	0.96	19	7	139	20	0.15	10	10	187	960	2400	WH20151530
W641874	10	2.15	30	2.46	259	9	0.38	72	1720	10	0.81	5	13	271	20	0.3	10	10	120	20	182	WH20151530
W641875	20	1.31	20	2.77	6030	9	0.26	6	7610	10600	1.6	188	13	143	20	0.19	10	10	151	10	274	WH20151530

Station	Date	Time	Coord_System	East	North	Elev	m	Sampler	Туре	Type2	Structure_Type	Strike-Dip	Lithology	Min1	Min1Per	Min2	Min2Per
W641876	July 5th 2020		NAD83_UTM_Z8N	515306	6974075			JDP	Rock	float			shale	aspy	1		
W641877	July 5th 2020		NAD83_UTM_Z8N	515289	6974108			JDP	Rock	float			semi-massive sulphide	ро	25	ру	10
W641878	July 5th 2020		NAD83_UTM_Z8N	516391	6973878			JDP	Rock	outcrop			quartzite	ру	2	сру	0.1
W641879	July 5th 2020		NAD83_UTM_Z8N	516879	6973841			JDP	Rock	float			siltstone	ру	0.5		
W641906	30-Jun-20	10:45:00AM	NAD83_UTM_Z8N	515475	6972546	1559	m	RH	Rock	outcrop	bedding	070/40S	siltstone	ру	1	ро	1
W641907	30-Jun-20	11:30:44AM	NAD83_UTM_Z8N	515389	6972301	1472	m	RH	Rock	float			quartzite	ру	0.5	ро	0.5
W641908	01-Jul-20	4:36:42PM	NAD83_UTM_Z8N	513596	6973247	1588	m	RH	Rock	outcrop	bedding?	030/60E	massive sulphide	ру	30	ро	30
W641909	01-Jul-20	5:41:02PM	NAD83_UTM_Z8N	513726	6973221	1660	m	RH	Rock	float			calc-silicate - quartzite	aspy	<0.5	ро	<0.5
W641910			NAD83_UTM_Z8N						Rock				cherty metased	ру	<3	ро	<3
W641911	02-Jul-20	3:14:17PM	NAD83_UTM_Z8N	514365	6972481	1467	m	RH	Rock	float			argillite - sltst	ро	5		
W641912	02-Jul-20	4:29:11PM	NAD83_UTM_Z8N	5 14501	6972738	1416	m	RH	Rock	outcrop	bedding	145/40S	massive sulphide	ро	ро	сру	tr
W641913	03-Jul-20	12:18:13PM	NAD83_UTM_Z8N	515016	6973406	1499	m	RH	Rock	outcrop	qtz vein		qtz veining - qtz monz	FeOx	0.1		
W641914	03-Jul-20	2:23:23PM	NAD83_UTM_Z8N	514633	6973501	1572	m	RH	Rock	Float			hornfels, qtzite-siltst	ру	tr	сру	tr
W641915	04-Jul-20	12:03:49PM	NAD83_UTM_Z8N	515170	6972400	1382	m	RH	Rock	grab	bedding	110/56S	mass sulfide	ро	60	сру	3-5%

Station	Description	SAMPLE	Au ppm	Ag ppm	Al %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %
	30*20*20 cm, grey, greenish staining (scorodite?), irregular break. Scree														
	close to outcrop. Located east of the gully (limit of shale). Fresh surface:														
	bleached, quartz veined associated with aspy, moderate oxidation,														
	vuggy, presence of jarosite. Quartz shows locally well developed														
W641876	crystals up to 2 cm long	W641876	0.005	3.4	1.62	10000	1280	1.3	2	0.03	4	4	68	100	2.27
	40*30*20 cm within quartzite scree. Rusty, subrounded, gritty. Fresh														
	surface: dark green, medium grained, po-py-cpy (0.5%)-possibly														
	sphalerite-actinolite-chlorite. Quartz in the groundmass. Similar to														
W641877	W641916 (Roger). Interpreted as massive sulphide pod	W641877	0.071	3.5	1.66	89	130	1.3	115	7.57	291	47	14	1120	12.8
	Rusty weathering, blocky, jointed. Fresh suface: grey quartzite, locally														
	sucrosic, py-cpy. Pyrite occurs as disseminated and aggregated.														
	Presence of a black mineral (possibly fine grained biotite or other														
W641878	sulphide)	W641878	0.005	0.7	2.55	117	610	0.5	2	0.32	1.3	14	44	98	3.15
	Scree on the top of the ridge. Irregular break, weakly oxidized, grey														
	patina. Fresh surface: bleached, siliceous, vuggy. Presence of fine black	-													
	silvery veinlets (possibly pyrite), trace jarosite-limonite. Weak to														
	moderate sericite alteration. Protolith obscured by alteration, interpreted														
W641879	as altered siltstone.	W641879	0.005	1	5.87	15	3810	1.1	2	0.7	1.6	1	46	39	1.38
	5x5m outcrop, grab of hornfelsed argillite - siltstone, fine to med grained.									-					
W641906	<3% overall diss py-po, rare 0.5-1cm crustiform qtz veinlets.	W641906	0.018	0.5	4.6	21	1510	1.3	9	1.57	9.7	8	66	131	2.98
	Angular scree of hornfelsed white guartzite, local weak calc silicate													-	
	textrue and weak diss chlorite bands, Rusty 1-5mm gtzsulfide veinlets,														
W641907	with coarse stubby aspy, 1cm py-cpy?, Aspy overprint.	W641907	0.007	2.6	2.66	3280	350	2	13	3.72	7.6	3	63	56	2.03
	1% cpy, 30% fine grained intergranular qtz, band and boulders 0.3m														
	wide, hosted by bleached weathered FeOx leached, white siltst, or														
W641908	hornfels. OC to south on contour of light grey qtesite-calc-silicate scree.	W641908	0.014	22.7	0.37	486	20	0.5	19	2.79	130.5	2	112	909	31.3
	angular float just north of DDH81-01 and 02. Diss coarse 1-2mm aspy		0.011		0.01			0.0							00
W641909	fine po, tr cpy. Sulfides on leached fracture and poss laminaltions.	W641909	0.023	0.8	5.73	910	1070	2.2	30	8.09	2.1	8	61	310	3.89
			0.020	0.0	0.70	010	1010	2.2	00	0.00	2.1		01	010	0.00
	steep slope with anugular rusty weathering boulders of cherty metased.,														
	laminated and qtz-carb veined both along and X/c lamin, Blebs and diss														
	of non-mag po, tr, cpy, rare py in qtz veining, rare carb on vein margins														
	only. Minor actrinolite- trem on frac faces. Other float in area of grey														
W641010	weathering grey laminated sltst-chert-metased and limy sltst.	W641910	0.005	0.5	8.04	30	850	2.2	2	6.53	0.5	14	98	100	3.33
W041910	Rusty weathering boulder, 0.5x0.5m, diss po and one 1-2 cm band of	1041310	0.005	0.5	0.04	50	000	2.2	2	0.55	0.5	14	30	100	5.55
W641011	semi massive po.	W641911	0.122	1.4	4.39	196	60	1.2	2	0.31	0.5	20	38	33	18.9
W041311		1041311	0.122	1.7	4.55	100	00	1.2	2	0.01	0.5	20	50	55	10.5
	on creek bank. grab of massive sulfide, dense massive sugary white														
	and green skarn min; white is qtz, green is chl mixed with about 20% po														
	as blebs and diss, tr cpy. Looks totally recrystallized. More structure in														
	notes: ints 280/76N spaced 15+cm and 005/90 spaced 0.5m, slabby														
	near horiz - +/-25deg jnts or ??, massive sx 30-40 cm thick, trends														
W641012	145/45S (ie sx is replacement unit), small chance S0 is 145/90.	W641912	0.005	1.5	2.15	32	100	0.5	2	11.45	3.2	3	24	442	7.7
W041912	select grab from outcrop of gtz veining cross cutting granite. ,1-3cm	VV041912	0.005	1.5	2.15	52	100	0.5	Z	11.45	3.2	3	24	442	1.1
	crystalline qtz veinlets (1mm- 3 cm), smokey coxcomb qtz common.														
W644042		W644042	0.005	1.6		40	600		4	0.6	4	2	10	4.4	1 10
1913	Strong limonite - sericte vein selvege, poss tr diss sx. Scree slope of metased boulders x/c but abundant white to rarer feOx	W641913	0.005	0.1	4.44	48	690	2.3	4	0.6	1	2	16	11	1.16
W644044	colored crustiform - coxcomb qtz veinlets 1mm - 4 cm. Tr tourmaline,	M644044	0.044	-	2 47	040	460	FO		7 00	E O	0	70	70	4.45
vvo41914	cpy, py in veinlets.	W641914	0.014	5	2.47	212	160	5.9	28	7.28	5.6	8	72	78	4.45
	BMS occurrence; Grab over 60 cm of rusty weathering fine grained dark														
M044045	grey massive sulfide, groundmass of chl-qtz. FW is rusty weathering	14/04/04/5	0.005		4 70	0.40		0.5	_	0.00				070	10.0
vv641915	bleached locally punky (leached) quartzite.	W641915	0.005	3.3	1.79	343	60	0.5	2	0.88	4.2	1	28	870	16.2

Station	Ga ppm	Κ%	La ppm	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	S %	Sb ppm	Sc ppm	Sr ppm	Th ppm	Ti %	TI ppm	U ppm	V ppm	W ppm	Zn ppm	Certificate
W641876	10	0.79	10	0.17	57	8	0.02	18	460	32	0.52	40	6	11	20	0.06	10	10	173	10	123	WH20151530
W641877	20	0.01	10	1.78	4560	5	0.06	79	3430	21	6.3	5	5	79	20	0.07	10	10	182	1000	9830	WH20151530
W641878	10	0.98	10	1.22	466	1	0.26	80	550	4	1.61	5	6	78	20	0.11	10	10	63	10	306	WH20151530
W641879	10	1.85	10	0.72	369	2	1.38	4	190	16	0.15	6	16	248	20	0.23	10	10	164	10	75	WH20151530
W641906	10	1.85	20	0.89	147	18	0.43	52	740	13	0.8	5	14	152	20	0.19	10	10	384	10	848	WH20151530
W641907	10	0.27	20	0.3	813	9	0.25	17	270	187	0.22	5	3	117	20	0.15	10	10	108	120	371	WH20151530
W641908	10	0.01	20	0.49	3130	6	0.01	167	9700	5890	10	14	2	115	20	0.01	10	10	423	10	41700	WH20151530
W641909	20		40		959	4		41	3970		0.72	5		243		0.32	10	10		20		WH20151530
W641910	30	2.99	20	1.37	383	1	0.61	38	460	12	0.67	5	11	320	20	0.45	10	10	101	10	61	WH20151530
W641911	10	2.7	10	0.71	930	1	0.08	52	290	16	10	7	13	25	20	0.18	10	10	38	10	20	WH20151530
W641912	10	0.02	10	0.18	4910	1	0.01	12	180	4	3.51	5	3	53	20	0.11	10	10	81	10	215	WH20151530
W641913	10	2.58	10	0.17	250	13	0.92	3	220	44	0.03	6	4	92	20	0.09	10	10	10	60	37	WH20151530
W641914	10	0.09	10	1.67	2360	58	0.14	108	640	172	0.21	8	5	116	20	0.18	10	10	483	3180	440	WH20151530
W641915	10	0.34	20	0.52	1985	3	0.04	20	500	7	10	5	3	22	20	0.1	10	10	106	20	319	WH20151530

Station	Date	Time	Coord	_System	East	North	Elev	m	Sampler	Туре	Type2	Structure_Type	Strike-Dip	Lithology	Min1	Min1Per	Min2	Min2Per
W641916	04-Jul-20	5:09:08PM	NAD83	UTM Z8N	515395	6973607	1469	m	RH	Rock	float			skarn	po	20	сру	2
															F -		7	
W641917	05-Jul-20	9:50:15AM	NAD83	_UTM_Z8N	515844	6974053	1700	m	RH	Rock	outcrop			siltstone				
W641918	05-Jul-20	11:39:05AM	NAD83	_UTM_Z8N	515316	6974062	1696	m	RH	Rock	outcrop	qtz vein		quartzite	aspy	1		

Station	Description	SAMPLE	Au ppm	Ag ppm	Al %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %
	Float, 2+ boulders of 20x40x30cm of rusty weathering green chl-														
	tremolite-skarn with qtz and blebs of po, dis cpy. Grey qtzite scree														
W641916	immediately upslope	W641916	0.034	0.9	1.93	1770	10	38.1	65	17.7	148.5	5	54	311	l 10.1
	Grab sample from outcrop of rusty weathering fractured grey siltstone with strong feOx and local lesser MnOx, brx wth vugs and weathered out	t													
W641917	DeOx veinlets, jarosite on fractures. Bleached quartzite, x/c by vuggy - coxcomb crustiform qtz vein = 5cm</td <td>W641917</td> <td>0.005</td> <td>0.9</td> <td>6.45</td> <td>91</td> <td>2600</td> <td>1.4</td> <td>2</td> <td>0.93</td> <td>0.7</td> <td>1</td> <td>50</td> <td>62</td> <td>2<mark>4.24</mark></td>	W641917	0.005	0.9	6.45	91	2600	1.4	2	0.93	0.7	1	50	62	2 <mark>4.24</mark>
	wide with diss aspy on vein margins. Qte starts about 60m from gully. Qtz veining also makes an appearance (previously absent in FeOx														
W641918	weathering siltst.	W641918	0.005	10.1	1.16	2360	740	1.2	42	0.16	12.2	1	56	65	5 1.25

Station	Ga ppm	Κ%	La ppm	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm S	S %	Sb ppm	Sc ppm	Sr ppm	Th ppm	Ti %	TI ppm	U ppm	V ppm	W ppm	Zn ppm	Certificate
W641916	10	0.01	10	1.13	12100	2	0.03	54	320	5	1.74	37	4	47	20	0.1	10	10	83	1490	3870	WH20151530
W641917	20	1.96	20	0.93	1050	1	1.47	4	790	7	0.43	5	14	321	20	0.21	10	10	141	10	47	WH20151530
W641918	10	0.59	10	0.13	109	11	0.02	7	200	683	0.07	339	5	10	20	0.05	10	10	125	30	134	WH20151530

APPENDIX C

Soil and Stream Sediment Sample Descriptions

&

Analytical Results

2020 Goldorak Report

		ak Project - Soil Sam	ple Des	criptio	ns and O	eochem	nistry							
Station	Date	Time Grid Datum	Zone V	East	North	Elev m S	Sampler	Туре	Slope	Drainage	Horizon	Depth-cm Color	Quality	/ Description
M895625	July 5th 2020	UTM NAD83	3 8 V	516135	6973927		JDP	soil	north	steep	С	30 orange	good	Yellow-brown-orange, sandy, grain sixe up to 3 mm, angular, shally. Rock around consists of 5 to 20 cm siltstone float and rubbles, weakly bleached, weakly oxidized, containing 1-2% disseminated pyrite Yellow-brown-orange, fine grained, sandy, 10% shale fragments. Rock around
M805626	July 5th 2020	UTM NAD83	2 9 1/	516264	6973900		JDP	soil	north	steen	с	20 orange	good	consists of irregular, rusty fracture filling, fine oxidized quartz veinlets within shale. No fresh sulphide observed
	July 5th 2020	UTM NAD83					JDP			•	C		0	Orange-brown, silty sand, 10% angular siltstone fragments, limonitic
Y647752		3:50:09PM UTM NAD83			6973834 6972519	1418 m l		soil	north	steep		30 orange 25 brown	good mod	Stange-brown, sing stand, 10% angular sinstone magments, innonitic sandy soil , float of calc-silicate with <3% py-po. Below JP rock W6973003. Scree of calc-silicate, grey quartzite, shale - argillite,
Y647753	1-Jul-20	11:26:55AM UTM NAD83	3 8 V	513600	6973003	1643 m l	RH	talus fines		steep	с	10 brown	good	cross cut by rusty weathering sulfidic shear - fracture with irregular qtz veining. Shear at 080/60S 0.3m wide, 1 cm white qtz veinlet at 324/30E.
Y647754		12:25:39PM UTM NAD83				1552 m l		talus fines		steep	C	10 brown	good	Float of calc-silicate, minor FeOx stained bands, minor po, possible Aspy.
Y647755	1-Jul-20	1:39:21PM UTM NAD83									c			slope of rusty-leached siltst float - scree, X/C by occassional drusy qtz - FeOx venlets (rare stubby aspy). Sample at south edge of rusty rocks. JDP rock W641866 8 m to NW. Rock leached to point of nothing left except FeOx-goe- limonite. OC of massive grey calc-silicate to south.
						1501 m l		talus fines		steep			Ū	Massive quartzite - calc-silicate outcrop to S. <0.5% py, tr po in Qtezite, weathers
Y647756	1-Jul-20	2:17:24PM UTM NAD83	3 8 V	513514	6973320	1497 m l	RH	soil			B?	15 brown	mod	rusty, wispy sulfides. from side of gully below main occurrence, Float of rusty weathered grey shale-
Y647757	1-Jul-20	3:13:18PM UTM NAD83	3 8 V	513532	6973343	1508 m l	RH	talus fines		steep	С	15 brown	good	argillite- grey quartzite.
Y647758	1-Jul-20	3:40:53PM UTM NAD83	8 8 V	513586	6973304	1561 m I	RH	talus fines		steep	С	15 rusty brown	good	Composite soil sample over 8 m, talus fines, in area of main occurrence. next to snow filled gully in area of main occurrnace. Float of fine grained massive
Y647759	1-Jul-20	4:06:17PM UTM NAD83	3 8 V	513587	6973266	1575 m l	RH	talus fines		steep	С	15 rusty brown	good	sulfide, ferricrete, calc-silicate. gossan material in old anaconda hand trench at Main Sulfide occurrence. Sample
Y647760	1-Jul-20	5:08:12PM UTM NAD83	8 8 V	513594	6973247	1588 m I	RH	gossan		steep	С	40 rusty brown	good	over 40 cm depth. Loess - ash rich, scree of shale-siltst x/c by gtz veinlets with strong bleached
Y647761	2-Jul-20	10:47:34AM UTM NAD83	3 8 V	513793	6972781	1784 m l	RH	soil		mod	В	15 brown	mod	selvege. Trace diss blebs py with qtz veinlets, tr po. loamy ash - loess soil with few pebbles. Float of grey - green white banded calc-
Y647762	2-Jul-20	12:11:39PM UTM NAD83	3 8 V	513937	6972313	1664 m l	RH	soil		mod	С	15 brown	poor	silicate, sltst, interlam limy - siliceous rock. Minor FeOx stain, minor po-py as blebs, diss on lamination and in qtz veinlets and on frac.
Y647763	2-Jul-20	12:32:12PM UTM NAD83	3 8 V	514027	6972414	1640 m l	RH	talus fines		steep	с	15 brown	good	Limonite - brown soil. Float of grey shale, sitst, minor feOx. Lots of FeOx brx-qtz veining in shale. On ridge spur above DDh81-05. Rusty shale unit 40-50 m on rigdge spur. Approx 40 m down spur to east o/c of white banded lamin lst with shale partings with S0 125/56S.
Y647764	2-Jul-20	2:03:49PM UTM NAD83	3 8 V	514353	6972371	1506 m l	RH	talus fines		steep	с	25 brown	good	Float of grey +/- feOx weathering hornfelsed - weak calc silicate siltstone, minor grey shale. On ridge spur about 10m below drill pad. Float of grey +/- FeOx weathering hornfelsed - weak calc silicate siltstone, minor
Y647765	2-Jul-20	2:30:28PM UTM NAD83	3 8 V	514393	6972361	1494 m l	RH	soil		mod	B?	20 brown	good	grey shale. On ridge spur.
Y647766		2:54:48PM UTM NAD83				1467 m l		soil		mod	B?	15 brown	mod	soliflucted frost boil, float as 764.
Y647767		3:57:13PM UTM NAD83				1410 m l		gossan soil		steep	С	10 rusty brown		collected from north side of creek bank.
Y647769		11:52:58AM UTM NAD83				1481 m l		soil		steep	В	20 brown	poor	some ash - loess, lots of pebbles, next to gully with Qtz-Monz exposure. Float of Qtz monz and hornfels.
											_			ash -loess dilution. soil patch in middle of scree slope of metased boulders avg 25cm in size, weak FeOx stain, white 1mm -3 cm crustiform-coxcomb qtz veinlets
Y647770		4:07:57PM UTM NAD83				1613 m I		soil		steep	B	10 brown	poor	common
Y647771 Y647772		5:18:06PM UTM NAD83 5:42:18PM UTM NAD83				1585 m l		soil		steep	C VC	15 brown	good	Scree slope of FeOx stained metased rocks. Scree slope, below rusty weathering formerly sulfidic outcrop of siltst and possibly replaced limestone.
						1588 m l		soil		steep			good	Scree slope, below rusty weathering formerly sulfidic outcrop of siltst and possibly
Y647773		5:54:01PM UTM NAD83				1593 m l		soil		steep	С		good	replaced limestone. Scree slope, below rusty weathering formerly sulfidic outcrop of sittst and possibly replaced lineatence. Encoder any metaged to point (about 100m)
Y647774		6:07:25PM UTM NAD83				1612 m l		soil		steep	C		good	replaced limestone. Fresher grey metased to south (about 100m). Small frost boil, ash, float of rusty weathering argilite- shale with 1% py-po. Mostly
Y647775		9:30:13AM UTM NAD83				1707 m l		soil		mod	В	15 brown	poor	quartzite on ridge. Argillite - shale float corresponds to Anaconda Cu soil anomaly. some ash - loess, float of quartzite, fractured, bleached, tr py, mod FeOx
Y647776	4-Jul-20	10:21:56AM UTM NAD83			-	1650 m l		soil		mod	С	15 brown	mod	weathering.
Y647777	4-Jul-20	1:23:33PM UTM NAD83	3 8 V	515104	6972378	1363 m I	RH	soil		mod	С	15 brown	mod	soil from drill pad cut into bank. Disturbed!
Y647783 Y647784	5-Jul-20 5-Jul-20	10:06:02AM UTM NAD83				1696 m l		soil		steep	c c	20 brown 10 brown	good good	from small gully cutting ridge, orange - brown, leakage halo test, gully = fault zone? Below gully, fault zone on ridge, Dark grey shale - poss graphitic?, stongly fractured with FeOx, jarosite.
Y647785		1:40:22PM UTM NAD83				1590 m l		talus fines		steep	C	10 brown	good	base of grey slate - shale outcrop at contact with limestone.
Y647786		2:00:30PM UTM NAD83				1590 m l		talus fines		steep	C	10 brown	good	in gully, shale float.
Y647787		2:11:51PM UTM NAD83				1541 m l		talus fines		steep	C	10 brown	good	on side of snow filled gully, shale float.
Y647788		2:25:29PM UTM NAD83						talus fines			C	10 brown	good	on side of snow filled gully, shale noat.
						1545 m l				steep	C			Float of quartzite and shale. Outcrop of rusty weathering quartzite.
Y647789 Y647790		2:44:48PM UTM NAD83 2:58:06PM UTM NAD83				1532 m l		talus fines talus fines		steep	c	10 brown 10 brown	good good	Float of quartitle and shale. Outcrop of rusty weathering quartitle. Float of quartitle and shale. Outcrop of rusty weathering quartitle about 2% diss py
Y647791		5:15:48PM UTM NAD83				1667 m l		soil		mod	C	20 brown	mod	in saddle, some loess/ash, quartzite-fractured grey shale float. Minor FeOx.
104/191	0-Jui-20	J. 13.40FIVI UTIVI NAD63	V O V	510920	0913919	1007 10	NT.	5011		mou	U		IIIOu	in sadals, senie issorasii, quarzite indotaled grey shale nout. Willor i 60x.

	AuME-TL44	Au	Ag	Al	As	B Ba		Be	Bi	Са	Cd	Ce	Co Cr		Cs Cu		Fe	Ga	Ge
Station	DESCRIPTION		ppm	%	ppm	ppm ppm		ppm	ppm	%	ppm	ppm	ppm ppm		ppm ppn		%	ppm	ppm
M895625	M895625	0.001	1.3	4 2.88	37.6	10	90	0.97	0.32	0.36	8.5	21.7	10.3	27	7.88	159.5	8.57	8.47	0.1
M895626	M895626	0.002	0.7	2 2.17	8.5	10	330	1.15	0.16	0.48	2.28	28.2	32	12	4.9	133	6.2	3.3	0.1
M895627	M895627	0.002	0.4				200		1.25					30	1.87	257	9.45		0.11
Y647752	Y647752	0.009			125.5	10	410	0.93	1.45	0.36	1.5	23.1	14.3	34	5.37	72.1	2.72	6.73	0.1
Y647753	Y647753	0.014	0.7	7 3.12	303	10	530	1.5	3.8	1.11	6.39	27.1	29.4	39	10.65	206	5.3	9.85	0.11
Y647754	Y647754	0.012	0.6	5 4.37	278	10	200	1.23	2.89	2.9	4.3	26.5	23.1	39	13.05	88.5	4.95	14.3	0.1
Y647755	Y647755	0.529	4.1	7 0.81	1640	10	30	0.19	183.5	0.18	0.83	12.55	3.4	18	1.99	364	13.85	4.33	0.38
Y647756	Y647756	0.021	2.6	<mark>8</mark> 1.74	2170	10	180	1.13	18.25	0.24	3.44	19.8	17.7	19	4.39	284	5.02	5.31	0.07
Y647757	Y647757	0.005	1.3	3 1.38	752	10	240	0.72	3.5	0.08	0.59	29.1	11.4	23	3.52	186.5	5.31	3.97	0.07
Y647758	Y647758	0.05					80							27	9.36	303	12.8	10.8	0.29
V047750		0.000	10			10													0.00
Y647759	Y647759	0.032	12.	<u>3</u> 0.52	2410	10	70	0.13	23.7	0.11	0.27	6.51	1.7	28	1.41	216	20.1	5.52	0.28
Y647760	Y647760	0.053	30.	<mark>8</mark> 0.14	1920	10	10	0.05	16.5	0.01	0.32	1.04	0.2	13	0.38	517	43.9	1.38	1.91
Y647761	Y647761	0.004	0.1	9 3.04	34.2	10	310	0.74	0.51	0.4	0.42	31.7	13.9	36	5.81	32	4.53	8.38	0.07
104/101	104//01	0.004	0.1	5 5.04	<u> </u>	10	510	0.74	0.51	0.4	0.42		10.0	50	5.01	52	4.00	0.00	0.07
Y647762	V647762	0.008	0.:	2 4.49	21.4	10	220	1.09	0.52	1.13	0.26	27.5	14.6	52	5.28	24.9	3.43	12	0.06
1047702	1047702	0.006	0	2 4.49	21.4	10	220	1.09	0.52	1.13	0.20	21.0	14.0	52	5.20	24.9	3.43	12	0.00
Y647763	Y647763	0.009	0.4	7 3.22	51.5	10	160	1.03	1.18	0.19	0.97	40.9	18.3	34	3.69	90.7	6.06	10.55	0.08
Y647764	Y647764	0.007	0.2	1 3.27	30.5	10	230	0.93	1.55	0.38	0.63	27	11.9	38	4.3	37.5	3.04	9.82	0.05
Y647765	Y647765	0.019	0.6	4 4.59	45.8	10	180	1.29	5.24	0.35	2.4	37.1	21.5	44	7.92	94.6	4.67	14.55	0.08
Y647766	Y647766	0.015				10	260							38	5.73	37.9	3.28	10.4	0.07
Y647767	Y647767	0.044	4.7	3 0.74	1075	10	70	0.14	12.2	0.16	0.63	13.4	6.2	18	1.92	413	13.05	4.82	0.35
Y647769	Y647769	0.006	1.3	<mark>3</mark> 1.61	444	10	220	0.93	8.08	0.25	2.36	35.4	9.2	27	4	65.9	2.48	5.24	0.06
Y647770	Y647770	0.019	0.2	2 1.75	35.5	10	210	0.46	10.7	0.17	0.66	22.1	7.3	30	1.44	17.4	2.69	6.92	0.05
Y647771	Y647771	0.017	3.4	<mark>6</mark> 1.67	1470	30	140	0.88	21	2.01	120	13	13.8	21	4.84	234	2.89	4.96	0.09
Y647772	Y647772	0.008	2.2	1 0.67	10000	10	80	0.5	5.42	0.19	120.5	18.65	35.9	11	4.09	950	9.38	1.74	0.16
V047770						10		0.74	0.50		10.0								0.00
Y647773	Y647773	0.006	1.7	4 1.17	3200	10	130	0.74	6.53	0.34	13.3	17.6	24.1	19	6.14	308	4.7	3.83	0.08
Y647774	Y647774	0.032	66.	<mark>4</mark> 0.58	10000	10	130	1.41	18.8	0.96	141.5	16.55	14.3	8	3.4	1210	10	2.16	0.19
Y647775	Y647775	0.004	0.9	3 1.26	38	10	110	0.35	1.53	0.65	5.01	21.7	10.3	32	3.47	113	2.58	4.21	0.08
Y647776	Y647776	0.005		<mark>6</mark> 1.54 1 1.44			180							30	4.33	93.4	3.31	5.42	0.06
Y647777	Y647777	0.009		1 1.44	190.5	10	160	0.44	2.24	0.19	1.49	25.6	5 7.4	26	3.84	149	3.2	4.14	0.06
Y647783	Y647783	0.002	1.:	<mark>2</mark> 2.48	347	10	50	0.43	0.34	0.27	0.59	48.1	4.9	12	16.25	114	8.6	5.96	0.1
Y647784	Y647784	0.003	1.7	8 1.31	17.8	10	190	0.34	1.09	0.2	2.87	16.25	2.8	29	5.94	96.9	2.86	5.03	0.11
Y647785		0.01					50							29	6.65	254	13.95		0.26
Y647786		0.011					40							30	7.87	280	21		0.31
Y647787 Y647788		0.012					110 50							40 33	9.57	201 207	9.98 7.99		0.26
Y647789		0.024		2.69 3 3.1			100							33 20	6.02	207	6.63	5.84	0.19
Y647790 Y647791		0.008					50 130							27 33	7.98	192 67.6	9.74 2.93		0.13
1041191	1041191	0.003	0.5	1.30	01.5	10	130	0.47	0.23	0.11	0.72	13.25	10.1	33	3.04	07.0	2.93	4.09	0.05

	Hf	Hg	In	к	La	Li	Mg	Mn	Мо	Na	Nb	Ni	Р	Pb	Rb	Re	S	Sb	Sc
Station	ppm	ppm	ppm		ppm	ppm	%		ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm
	P.P.	PP	PP···			PP	-	PP	PP		P.P.	PP···	PP····	PP···	PP	PP		PP	PP
1005005																			
M895625	0.0	5 0.04	0.224	0.17	9.2	22.5	0.47	315	6.56	0.07	0.48	27.4	1600	7.1	12.3	3 0.002	2 0.28	3 1.81	8.2
M895626	0.			-	11.1	17.3			0.78								-		3.6
M895627 Y647752	0.0				4.5				<u>11.25</u> 4.62								-		
1047702	0.0	0.00	0.047	0.2	12.0	10.1	0.70	500	4.02	0.01	1.00	00	1020	10.2	20	0.001	0.01	0.41	0.0
VC 47750	0.00		0.440	0.54		57.0		500	0.00	0.00		07.0	4.400		47.0	0.000		4.04	- 4
Y647753 Y647754	0.0			-	14.4	57.6 61.5		503 678	3.66	0.08									5.1 6.3
1047704	0.0	0.04	0.120	0.00	10.0	01.5	1.27	0/0	0.07	0.24	0.74		. 030	/ 20.0	00.0	0.001	0.01	1.40	0.5
Y647755	0.0	2 0.11	0.432	0.02	5.9	7	0.16	770	5.12	0.01	0.51	9.7	1380	18.7	1.4	0.003	0.34	4 3.95	1.8
Y647756	0.0	7 0.12	.23	0.05	9.5	25.4	0.49	623	7.34	0.01	0.42	80.9	1130	84.1	7.4	0.001	0.09	9 27.7	2.3
Y647757	0.0	5 0.07	0.078	0.06	13.1	15.4	0.29	323	4.08	0.01	0.59	68.8	930	20.7	8.1	0.002	0.12	2 13.85	2.5
Y647758	0.1	4 0.1	0.337	0.21	6.6	37.7	0.62	695	22.7	0.02	0.46	6 47.5	i 1400	50.6	26.4	0.004	0.4	1 24.8	5.6
Y647759	0.0	2 0.16	0.334	0.06	4.6	5.4	0.12	166	8.8	0.01	0.44	9.9	4720	2160	3.3	0.001	0.75	5 43.2	1.5
1047759	0.0.	2 0.10	0.334	0.00	4.0	5.4	0.12	100	0.0	0.01	0.44	9.5	4720	2100	0.0	0.001	0.7	43.2	1.0
Y647760	0.1	5 <mark>2.57</mark>	1.55	0.02	0.7	0.4	0.01	5	11.75	0.01	0.73	2	2320) <u>6240</u>	0.4	0.002	2 <mark>4.5</mark> 4	4 83.7	1.6
Y647761	0.0	7 0.05	0.027	0.41	13.2	33	0.75	395	0.88	0.03	1.85	34.1	700	17	37.9	0.001	0.07	7 1.02	4.7
1011101	0.0	0.00	0.021	0.41	10.2		0.70	000	0.00	0.00	1.00	04.1	100		07.0	0.001	0.01	1.02	
V647760	0.0	7 0.04	0.000	0.00	10.0	20	1.01	200	0.50	0.14	1.02		540	45.5	25	0.001	0.00	0.60	
Y647762	0.0	7 0.04	0.023	0.26	12.2	30	1.01	398	0.52	0.14	1.93	37.4	510) 15.5	35	5 0.001	0.06	6 0.62	5.5
Y647763	0.2	7 0.05	0.033	0.2	23.6	22.2	0.55	253	10.15	0.04	2.29	44.8	890	12.2	19.2	0.001	0.27	2.85	4.2
1047703	0.2	0.00	0.033	0.2	23.0	22.2	0.00	200	10.15	0.04	2.23	44.0	0.030	/ 12.2	19.2	0.001	0.21	2.03	4.2
Y647764	0.0	4 0.04	0.029	0.13	14	18.9	0.71	364	1.19	0.03	2.16	32.4	650	10.4	18.8	0.001	0.07	7 1.15	3.5
Y647765	0.	1 0.04	0.059	0.34	17.4	29.4	0.92	541	1.16	0.03	2.86	44.7	560	8.1	42.8	0.001	0.12	2 1.33	5.9
Y647766	0.0				14.4				0.93										
Y647767	0.0	2 0.11	0.401	0.04	5.4	5.8	0.17	779	7.08	0.01	0.6	18.1	590	20.2	5.5	0.001	0.33	3 16.25	2.5
Y647769	0.0	2 0.06	0.116	0.07	14.7	18.1	0.48	448	3.58	0.01	0.45	37.2	760	39.5	12.9	0.003	0.03	9.88	2.6
104//03	0.0.	2 0.00	0.110	0.07	14.7	10.1	0.40		0.00	0.01	0.40	51.2	. 700	00.0	12.0	0.000	0.00	5 3.00	2.0
V0 47770																			
Y647770 Y647771	0.0				10.6 7.4				1.92 9.4										
104/1/1	0.1	0.10	, 1.41	0.1	1	15.0	0.0	1000			0.21	100.0	1130	, 00	0.0	0.000	0.00	10.00	1.0
Y647772	0.0	3 0.11	0.419	0.05	11.7	9.9	0.18	990	59.5	0.01	0.05	i <mark>186</mark>	1340	65.4	7.6	0.009	0.03	3 74.2	4.2
Y647773	0.0	4 0.07	0.203	0.07	9.3	24.5	0.41	780	15.55	0.01	0.19	99.1	1010	33.2	11.5	0.002	2 0.04	4 33.2	2.7
Y647774	0.	1 0.22	2.68	0.04	8.6	10.6	0.56	2450	1.71	0.01	0.08	64.9	730	80.8	5.6	6 0.002	2 0.15	5 <mark>191</mark>	2.7
Y647775	0.0	4 0.03	0.048	0.1	11.7	11.6	0.55	277	5.12	0.03	0.36	56.1	1170	12.6	11.2	0.002	2 0.08	3 1.66	4.3
Y647776 Y647777	0.0			-	10.3			-	9.02 4.98										2.2
	0.0	- 0.00	0.009	0.00	12.2	10.2	0.37	504			0.0		330	29	11.7	0.002	. 0.0:	9.1	2
Y647783	0.0	4 0.02	2 0.058	0.36	20.4	21.9	0.67	485	2.07	0.13	0.2	2 10.3	1350	20.5	24.1	0.001	0.78	3 21.6	2.3
Y647784	0.0	6 0.04	0.151	0.09	9.4	12.9	0.39	166	46.3	0.04	0.54	14.7	980	18.7	8.6	0.003	3 0.2 ⁻	6.31	3.2
Y647785	0.3				11.6				75.4										
Y647786	0.1				6.7				43.9										
Y647787	0.0				13.9				74.1	0.14									
Y647788 Y647789	0.4				9.2 5.9				41.6 23.9										
1041108	0.2	. 0.07	0.13	0.1	5.9	13.1	0.33	1430	23.9	0.11	0.47	135	14/0		0.0	0.004	0.30	1.1	5.0
Y647790	0.2				6.4				20.2										
Y647791	0.03	2 0.04	0.042	0.14	6.3	27.1	0.45	455	3.94	0.07	0.69	20.8	900	8.5	15.7	0.001	0.23	3 2.84	2.3

	Se		Sn	Sr	Та	Те	Th	Ti	ті	U	v	w	Y	Zn	Zr	
Station	ppm		opm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	Certificate
	PP									P.P	P.P	FF	P.P	PP	P.P	
M895625	1:	3.6	1.3	244	0.01	0.11	3	0.045	0.75	3.1	93	0.17	5.76	388	1.9	WH20151531
M895626	4	4.4	0.6	71.9	0.01	0.07	1.9	0.017	0.1	2.17	26	0.15	38.3	398 <mark>398</mark>	2.5	WH20151531
M895627		9.8	2.1	51.5	0.01	0.16		0.067	0.44			0.16				WH20151531
Y647752	2	2.3	0.8	44.1	0.01	0.12	4.4	0.062	0.46	2.88	146	20.6	7.56	338	1.9	WH20151531
Y647753	6	6.1	2.8	187	0.01	0.2	5.2	0.057	0.48	3.97	99	13.3	10.85	363 363	2.8	WH20151531
Y647754		1.4	1.5	286	0.01	0.11	7.6	0.096	0.46	0.8	41	1.47	14.15	249	3.1	WH20151531
Y647755	98	B.1	4.7	12.2	0.01	7	3.3	0.012	0.03	1.2	80	260	3.24	93	0.5	WH20151531
Y647756		7.5	3.8	51.1	0.01	0.66	2.5	0.016	0.2	3.64	52	38.6	7.05	i <mark>421</mark>	2.4	WH20151531
Y647757		5.9	1.3	15.9	0.01	0.19	1.6	0.023	0.19	3.36	39	11.25	9.94	181	1.4	WH20151531
Y647758		7.9	19.8	41.2	0.01	1.66			0.53							WH20151531
Y647759	24	4.6	7.7	25.8	0.01	1.02	3.1	0.031	0.69	1.21	159	44.6	3.93	283	0.5	WH20151531
Y647760	54	4.2	15.6	31.6	0.02	1.04	0.6	0.016	1.56	0.28	151	6.79	0.86	2310	11.5	WH20151531
Y647761	(0.6	0.7	56.9	0.01	0.03	4.7	0.089	0.31	0.85	50	0.67	6.54	73	2.4	WH20151531
Y647762	(0.4	0.6	96.2	0.01	0.03	4.9	0.113	0.25	0.74	55	0.33	5.48	68	2.7	WH20151531
Y647763		3.9	0.8	48.5	0.01	0.06	10.4	0.083	0.29	3.34	47	0.56	7.37	. 89	10.3	WH20151531
Y647764		1.1	0.7	38.3	0.01	0.09	2.2	0.066	0.24	1.02	55	1.17	6.02	108	1.3	WH20151531
Y647765		1.7	1	80.6	0.01	0.21	7.7	0.104	0.35	1.02	52	2.1	6.41	237	3.3	WH20151531
Y647766		1.7	0.9		0.01	0.21		0.104	0.33	0.81		1.73				WH20151531
Y647767	7	2.1	3.2		0.01	1.26		0.04	0.15							WH20151531
Y647769	(0.9	2.2	32.2	0.01	0.17	1.6	0.027	0.12	2.32	52	183	10.05	6 169	0.5	WH20151531
Y647770	(0.7	1.1	12.5	0.01	0.51	1.2	0.029	0.13	0.66	64	21.9	3.84	70	0.5	WH20151531
Y647771	(6.7	34.3	179.5	0.01	0.38	2.7	0.01	0.1	3.53	47	32.9	16.35	5 <mark>3510</mark>	3.6	WH20151531
Y647772	21	5.3	6.7	9.6	0.01	0.31	3.2	0.005	0.18	19.1	58	2.39	22.5	2090	1 0	WH20151531
104/1/2		5.5	0.7	9.0	0.01	0.31	3.2	0.005	0.10	19.1	50	2.39	22.0	2090	1.0	WH20131331
Y647773	1	7.9	4.3	38.9	0.01	0.22	1.4	0.015	0.2	5.49	76	14.9	12.2	2 <mark>814</mark>	1.5	WH20151531
VC 47774			40.0	77.0	0.04	0.70		0.005	0.40	4.04	40	400.5	40.45	0740		100454524
Y647774	20	6.2	49.8	77.3	0.01	0.76	2.3	0.005	0.12	1.61	40	106.5	12.45	3740	3.8	WH20151531
Y647775		3	1.6	55.9	0.01	0.06	4	0.058	0.39	3.14	105	3.26	9.9	407	2.1	WH20151531
Y647776		4.7	1.5		0.01	0.13		0.034	0.23							WH20151531
Y647777		3.4	0.7	18.6	0.01	0.16	1.5	0.029	0.19	1.73	71	47.9	7.23	5 <mark>199</mark>	1.3	WH20151531
Y647783		6.2	0.4	422	0.01	0.27	4	0.019	0.57	0.44	25	0.85	2.22	90	1.7	WH20151531
Y647784		1.7	0.3		0.01	0.25										WH20151531
Y647785 Y647786		3.6 5.8	0.9		0.01	0.51	7		0.72							WH20151531 WH20151531
Y647787		5.8 5.4	0.7		0.01	0.8										WH20151531 WH20151531
Y647788		5.6	1		0.01	0.98										WH20151531
Y647789		0.9	2.7	115.5	0.01	0.31	3.7		0.44							WH20151531
Y647790		3.3	0.7		0.01	0.31										WH20151531
Y647791		3.8	0.4	89.8	0.01	0.1	0.5	0.031	0.32	1.29	93	0.33	4.58	99	0.6	WH20151531

2020	Au	Ag	Al	As	В	Ва	Ве	Bi	Са	Cd	Се	Со	Cr	Cs	Cu	Fe	Ga
Soil Samples	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm
Mean	0.028	4.72	2.11	1126.80	10.54	160.27	0.73	12.88	0.43	12.62	21.88	13.87	27.73	5.61	223.66	8.14	6.83
Standard Error	\$0.014	1.92	0.18	381.54	0.54	18.07	0.06	5.40	0.09	5.72	1.59	1.67	1.64	0.54	39.29	1.26	0.54
Median	0.009	1.33	1.94	204	10	140	0.74	2.89	0.25	1.5	21.7	11.9	29	4.9	186.5	5.31	5.96
Mode	0.009	#N/A	1.74	10000	10	50	0.93	1.55	0.11	0.59	21.7	14.3	27	#N/A	#N/A	#N/A	#N/A
Standard																	
Deviation	0.086	11.69	1.12	2320.84	3.29	109.91	0.38	32.87	0.56	34.77	9.70	10.15	9.96	3.31	238.99	7.67	3.26
Sample Variance	0.007	136.75	1.26	5386315.55	10.81	12080.48	0.15	1080.19	0.32	1208.77	94.09	102.96	99.15	10.97	57118.40	58.89	10.61
Kurtosis	35.155	22.96	-0.22	10.82	37.00	2.57	-0.86	21.73	10.92	8.97	0.58	2.44	-0.13	1.97	9.25	12.79	-0.07
Skewness	5.866	4.62	0.49	3.26	6.08	1.34	0.13	4.50	3.14	3.21	0.46	1.40	-0.01	1.16	2.83	3.14	0.61
Range	0.528	66.21	4.45	9991.5	20	520	1.45	183.34	2.89	141.24	47.06	47.4	44	15.87	1192.6	41.42	13.17
Minimum	0.001	0.19	0.14	8.5	10	10	0.05	0.16	0.01	0.26	1.04	0.2	8	0.38	17.4	2.48	1.38
Maximum	0.529	66.4	4.59	10000	30	530	1.5	183.5	2.9	141.5	48.1	47.6	52	16.25	1210	43.9	14.55
Sum	1.026	174.67	78.25	41691.6	390	5930	27.1	476.48	16.06	466.83	809.71	513.2	1026	207.59	8275.4	301.14	252.76
Count	37	37	37	37	37	37	37	37	37	37	37	37	37	37	37	37	37
Largest(1)	0.529	66.4	4.59	10000	30	530	1.5	183.5	2.9	141.5	48.1	47.6	52	16.25	1210	43.9	14.55
Smallest(1)	0.001	0.19	0.14	8.5	10	10	0.05	0.16	0.01	0.26	1.04	0.2	8	0.38	17.4	2.48	1.38
Confidence Level																	
(95.0%)	0.029	3.90	0.37	773.81	1.10	36.65	0.13	10.96	0.19	11.59	3.23	3.38	3.32	1.10	79.68	2.56	1.09
-																	
2020	Ge	Hf	Hg	In	К	La	Li	Mg	Mn	Мо	Na	Nb	Ni	Ρ	Pb	Rb	Re
2020 Soil Samples		<i>Hf</i> ppm	<i>Hg</i> ppm		K %	<i>La</i> ppm			<i>Mn</i> ppm	<i>Mo</i> ppm	Na %	<i>Nb</i> ppm	<i>Ni</i> ppm	P ppm	-	<i>Rb</i> ppm	<i>Re</i> ppm
		-	-			ppm				-	%	ppm	ppm	ppm	-		-
Soil Samples	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm 1364.59	ppm	ppm	ppm
Soil Samples Mean	ppm 0.18	ppm 0.09	ppm 0.14	ppm 0.32	% 0.16	ppm 10.59	ppm 19.87	% 0.52	ppm 582.95	ppm 14.90	%	ppm 0.81 0.11	ppm 49.08 6.58	ppm 1364.59 143.81	ppm 260.49	ppm 16.67	ppm 0.00 0.00
Soil Samples Mean Standard Error	ppm 0.18 0.05	ppm 0.09 0.02	ppm 0.14 0.07	ppm 0.32 0.09	% 0.16 0.02	ppm 10.59 0.75	ppm 19.87 2.11	% 0.52 0.05	ppm 582.95 83.80	ppm 14.90 3.35 6.56	% 0.05 0.01	ppm 0.81 0.11 0.6	ppm 49.08 6.58 37.4	ppm 1364.59 143.81	ppm 260.49 175.82 20.7	ppm 16.67 2.31	ppm 0.00 0.00 0.002
Soil Samples Mean Standard Error Median	ppm 0.18 0.05 0.1	ppm 0.09 0.02 0.06	ppm 0.14 0.07 0.06	ppm 0.32 0.09 0.146	% 0.16 0.02 0.1	ppm 10.59 0.75 10.6	ppm 19.87 2.11 18.1	0.52 0.05 0.45	ppm 582.95 83.80 448	ppm 14.90 3.35 6.56	% 0.05 0.01 0.03	ppm 0.81 0.11 0.6	ppm 49.08 6.58 37.4	ppm 1364.59 143.81 1130	ppm 260.49 175.82 20.7	ppm 16.67 2.31 12.3	ppm 0.00 0.00 0.002
Soil Samples Mean Standard Error Median Mode	ppm 0.18 0.05 0.1	ppm 0.09 0.02 0.06	ppm 0.14 0.07 0.06	ppm 0.32 0.09 0.146	% 0.16 0.02 0.1	ppm 10.59 0.75 10.6	ppm 19.87 2.11 18.1	0.52 0.05 0.45	ppm 582.95 83.80 448	ppm 14.90 3.35 6.56	% 0.05 0.01 0.03	ppm 0.81 0.11 0.6 0.6	ppm 49.08 6.58 37.4 #N/A	ppm 1364.59 143.81 1130 1130	ppm 260.49 175.82 20.7 18.7	ppm 16.67 2.31 12.3	ppm 0.00 0.00 0.002 0.001
Soil Samples Mean Standard Error Median Mode Standard	ppm 0.18 0.05 0.1 0.1	ppm 0.09 0.02 0.06 0.02	ppm 0.14 0.07 0.06 0.04	ppm 0.32 0.09 0.146 0.033	% 0.16 0.02 0.1 0.05	ppm 10.59 0.75 10.6 14.4	ppm 19.87 2.11 18.1 18.1	% 0.52 0.05 0.45 0.39	ppm 582.95 83.80 448 166	ppm 14.90 3.35 6.56 5.12	% 0.05 0.01 0.03 0.01	ppm 0.81 0.11 0.6 0.6	ppm 49.08 6.58 37.4 #N/A 40.02	ppm 1364.59 143.81 1130 1130 874.78	ppm 260.49 175.82 20.7 18.7 1069.48	ppm 16.67 2.31 12.3 15	ppm 0.00 0.00 0.002 0.001
Soil Samples Mean Standard Error Median Mode Standard Deviation	ppm 0.18 0.05 0.1 0.1 0.31	ppm 0.09 0.02 0.06 0.02 0.09	ppm 0.14 0.07 0.06 0.04 0.41	ррт 0.32 0.09 0.146 0.033 0.52	% 0.16 0.02 0.1 0.05 0.13	ppm 10.59 0.75 10.6 14.4 4.55	ppm 19.87 2.11 18.1 18.1 12.81	% 0.52 0.05 0.45 0.39 0.30	ppm 582.95 83.80 448 166 509.74	ppm 14.90 3.35 6.56 5.12 20.39	% 0.05 0.01 0.03 0.01 0.05	ppm 0.81 0.11 0.6 0.66 0.44	ppm 49.08 6.58 37.4 #N/A 40.02 1601.61	ppm 1364.59 143.81 1130 1130 874.78 765236.64	ppm 260.49 175.82 20.7 18.7 1069.48	ppm 16.67 2.31 12.3 15 14.02	ppm 0.00 0.002 0.001 0.001
Soil Samples Mean Standard Error Median Mode Standard Deviation Sample Variance	ppm 0.18 0.05 0.1 0.1 0.31 0.09	ppm 0.09 0.02 0.06 0.02 0.09 0.09 0.01	ppm 0.14 0.07 0.06 0.04 0.41 0.17	ppm 0.32 0.09 0.146 0.033 0.52 0.52	% 0.16 0.02 0.1 0.05 0.13 0.02	ppm 10.59 0.75 10.6 14.4 4.55 20.69	ppm 19.87 2.11 18.1 18.1 12.81 163.97	% 0.52 0.05 0.45 0.39 0.30 0.30	ppm 582.95 83.80 448 166 509.74 259836.33	ppm 14.90 3.35 6.56 5.12 20.39 415.87	% 0.05 0.01 0.03 0.01 0.05 0.00	ppm 0.81 0.11 0.6 0.66 0.44 1.99	ppm 49.08 6.58 37.4 #N/A 40.02 1601.61 3.12	ppm 1364.59 143.81 1130 1130 874.78 765236.64 5.22	ppm 260.49 175.82 20.7 18.7 1069.48 1143793.62	ppm 16.67 2.31 12.3 15 14.02 196.67	ppm 0.00 0.002 0.001 0.001 0.00 0.00 11.09
Soil Samples Mean Standard Error Median Mode Standard Deviation Sample Variance Kurtosis	ppm 0.18 0.05 0.1 0.1 0.31 0.09 30.10	ppm 0.09 0.02 0.06 0.02 0.09 0.01 3.60	ppm 0.14 0.07 0.06 0.04 0.41 0.17 36.09	ррт 0.32 0.09 0.146 0.033 0.52 0.52 0.27 12.07	% 0.16 0.02 0.1 0.05 0.13 0.02 2.24	ppm 10.59 0.75 10.6 14.4 4.55 20.69 1.05	ppm 19.87 2.11 18.1 18.1 12.81 163.97 3.49	% 0.52 0.05 0.45 0.39 0.30 0.09 1.46	ppm 582.95 83.80 448 166 509.74 259836.33 6.65	ppm 14.90 3.35 6.56 5.12 20.39 415.87 2.86	% 0.05 0.01 0.03 0.01 0.05 0.00 2.96	ppm 0.81 0.11 0.6 0.66 0.44 1.99 1.54	ppm 49.08 6.58 37.4 #N/A 40.02 1601.61 3.12 1.69	ppm 1364.59 143.81 1130 1130 874.78 765236.64 5.22	ppm 260.49 175.82 20.7 18.7 1069.48 1143793.62 29.13	ppm 16.67 2.31 12.3 15 14.02 196.67 2.58	ppm 0.00 0.002 0.001 0.001 0.00 0.00 11.09
Soil Samples Mean Standard Error Median Mode Standard Deviation Sample Variance Kurtosis Skewness	ppm 0.18 0.05 0.1 0.1 0.31 0.09 30.10 5.27	ppm 0.09 0.02 0.06 0.02 0.09 0.01 3.60 1.94	ppm 0.14 0.07 0.06 0.04 0.41 0.17 36.09 5.98	ppm 0.32 0.09 0.146 0.033 0.52 0.52 0.27 12.07 3.29	% 0.16 0.02 0.1 0.05 0.13 0.02 2.24 1.59	ppm 10.59 0.75 10.6 14.4 4.55 20.69 1.05 0.53	ррт 19.87 2.11 18.1 18.1 12.81 163.97 3.49 1.59	% 0.52 0.05 0.45 0.39 0.30 0.09 1.46 1.03	ppm 582.95 83.80 448 166 509.74 259836.33 6.65 2.46	ppm 14.90 3.35 6.56 5.12 20.39 415.87 2.86 1.92 74.88	% 0.05 0.01 0.03 0.01 0.05 0.00 2.96 1.67	ppm 0.81 0.11 0.6 0.66 0.44 1.99 1.54	ppm 49.08 6.58 37.4 #N/A 40.02 1601.61 3.12 1.69 184	ppm 1364.59 143.81 1130 1130 874.78 765236.64 5.22 2.04 4220	ppm 260.49 175.82 20.7 18.7 1069.48 1143793.62 29.13 5.29	ppm 16.67 2.31 12.3 15 14.02 196.67 2.58 1.60	ppm 0.00 0.002 0.001 0.000 0.000 11.09 3.09 0.016
Soil Samples Mean Standard Error Median Mode Standard Deviation Sample Variance Kurtosis Skewness Range	ррт 0.18 0.05 0.1 0.31 0.31 0.09 30.10 5.27 1.86	ppm 0.09 0.02 0.06 0.02 0.09 0.01 3.60 1.94 0.39	ppm 0.14 0.07 0.06 0.04 0.41 0.17 36.09 5.98 2.55	ppm 0.32 0.09 0.146 0.033 0.52 0.52 0.27 12.07 3.29 2.657	% 0.16 0.02 0.1 0.05 0.13 0.02 2.24 1.59 0.53	ppm 10.59 0.75 10.6 14.4 4.55 20.69 1.05 0.53 22.9	ppm 19.87 2.11 18.1 18.1 12.81 163.97 3.49 1.59 61.1	% 0.52 0.05 0.45 0.39 0.30 0.09 1.46 1.03 1.4	ppm 582.95 83.80 448 166 509.74 259836.33 6.65 2.46 2445	ppm 14.90 3.35 6.56 5.12 20.39 415.87 2.86 1.92 74.88	% 0.05 0.01 0.03 0.01 0.05 0.00 2.96 1.67 0.23	ppm 0.81 0.11 0.66 0.66 0.44 1.99 1.54 2.81 0.05	ppm 49.08 6.58 37.4 #N/A 40.02 1601.61 3.12 1.69 184 2	ppm 1364.59 143.81 1130 1130 874.78 765236.64 5.22 2.04 4220 500	ppm 260.49 175.82 20.7 18.7 1069.48 1143793.62 29.13 5.29 6235.4	ppm 16.67 2.31 12.3 15 14.02 196.67 2.58 1.60 63.1	ppm 0.00 0.002 0.001 0.000 0.000 11.09 3.09 0.016 0.001
Soil Samples Mean Standard Error Median Mode Standard Deviation Sample Variance Kurtosis Skewness Range Minimum	ррт 0.18 0.05 0.1 0.1 0.31 0.09 30.10 5.27 1.86 0.05	ppm 0.09 0.02 0.06 0.02 0.09 0.01 3.60 1.94 0.39 0.02	ppm 0.14 0.07 0.06 0.04 0.41 0.17 36.09 5.98 2.55 0.02	ppm 0.32 0.09 0.146 0.033 0.52 0.52 0.27 12.07 3.29 2.657 0.023	% 0.16 0.02 0.1 0.05 0.13 0.02 2.24 1.59 0.53 0.02	ppm 10.59 0.75 10.6 14.4 4.55 20.69 1.05 0.53 22.9 0.7	ppm 19.87 2.11 18.1 12.81 163.97 3.49 1.59 61.1 0.4	% 0.52 0.05 0.45 0.39 0.30 0.09 1.46 1.03 1.4 0.01	ppm 582.95 83.80 448 166 509.74 259836.33 6.65 2.46 2445 5	ppm 14.90 3.35 6.56 5.12 20.39 415.87 2.86 1.92 74.88 0.52	% 0.05 0.01 0.03 0.01 0.05 0.00 2.96 1.67 0.23 0.01	ppm 0.81 0.11 0.66 0.66 0.44 1.99 1.54 2.81 0.05 2.86	ppm 49.08 6.58 37.4 #N/A 40.02 1601.61 3.12 1.69 184 2 186	ppm 1364.59 143.81 1130 1130 874.78 765236.64 5.22 2.04 4220 500 4720	ppm 260.49 175.82 20.7 18.7 1069.48 1143793.62 29.13 5.29 6235.4 4.6	ppm 16.67 2.31 12.3 15 14.02 196.67 2.58 1.60 63.1 0.4	ppm 0.00 0.002 0.001 0.000 11.09 3.09 0.016 0.001 0.017
Soil Samples Mean Standard Error Median Mode Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum	ppm 0.18 0.05 0.1 0.31 0.09 30.10 5.27 1.86 0.05 1.91	ppm 0.09 0.02 0.06 0.02 0.09 0.01 3.60 1.94 0.39 0.02 0.41	ppm 0.14 0.07 0.06 0.04 0.41 0.17 36.09 5.98 2.55 0.02 2.57	ppm 0.32 0.09 0.146 0.033 0.52 0.27 12.07 12.07 3.29 2.657 0.023 2.68	% 0.16 0.02 0.1 0.05 0.13 0.02 2.24 1.59 0.53 0.02 0.55	ppm 10.59 0.75 10.6 14.4 4.55 20.69 1.05 0.53 22.9 0.7 23.6	ppm 19.87 2.11 18.1 18.1 12.81 163.97 3.49 1.59 61.1 0.4 61.5	% 0.52 0.05 0.45 0.39 0.30 0.09 1.46 1.03 1.4 0.01 1.41	ppm 582.95 83.80 448 166 509.74 259836.33 6.65 2.46 2445 5 2450	ppm 14.90 3.35 6.56 5.12 20.39 415.87 2.86 1.92 74.88 0.52 75.4	% 0.05 0.01 0.03 0.01 0.05 0.00 2.96 1.67 0.23 0.01 0.24	ppm 0.81 0.6 0.6 0.66 0.44 1.99 1.54 2.81 0.05 2.86 30.02	ppm 49.08 6.58 37.4 #N/A 40.02 1601.61 3.12 1.69 184 2 186 1816.1	ppm 1364.59 143.81 1130 1130 874.78 765236.64 5.22 2.04 4220 500 4720 50490	ppm 260.49 175.82 20.7 18.7 1069.48 1143793.62 29.13 5.29 6235.4 4.6 4.6	ppm 16.67 2.31 12.3 15 14.02 196.67 2.58 1.60 63.1 0.4 63.5	ppm 0.00 0.002 0.001 0.000 11.09 3.09 0.016 0.001 0.017 0.103
Soil Samples Mean Standard Error Median Mode Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Sum	ppm 0.18 0.05 0.1 0.31 0.09 30.10 5.27 1.86 0.05 1.91 6.73	ppm 0.09 0.02 0.06 0.02 0.09 0.01 3.60 1.94 0.39 0.02 0.41 3.44	ppm 0.14 0.07 0.06 0.04 0.41 0.17 36.09 5.98 2.55 0.02 2.57 0.02 2.57 5.25	ppm 0.32 0.09 0.146 0.033 0.52 0.52 12.07 12.07 3.29 2.657 0.023 2.68 11.907	% 0.16 0.02 0.1 0.05 0.13 0.02 2.24 1.59 0.53 0.02 0.55 5.79	ppm 10.59 0.75 10.6 14.4 4.55 20.69 1.05 0.53 22.9 0.7 23.6 391.9	ppm 19.87 2.11 18.1 18.1 12.81 163.97 3.49 1.59 61.1 0.4 61.5 735.3	% 0.52 0.05 0.45 0.39 0.30 0.09 1.46 1.03 1.4 0.01 1.41 19.16	ppm 582.95 83.80 448 166 509.74 259836.33 6.65 2.46 2445 5 2450 2450 21569	ppm 14.90 3.35 6.56 5.12 20.39 415.87 2.86 1.92 74.88 0.52 75.4 551.43	% 0.05 0.01 0.03 0.01 0.05 0.00 2.96 1.67 0.23 0.01 0.24 1.86	ppm 0.81 0.6 0.6 0.66 0.44 1.99 1.54 2.81 0.05 2.86 30.02 37	ppm 49.08 6.58 37.4 #N/A 40.02 1601.61 3.12 1.69 184 2 186 1816.1 37	ppm 1364.59 143.81 1130 874.78 765236.64 5.22 2.04 4220 500 4720 50490 37	ppm 260.49 175.82 20.7 18.7 1069.48 1143793.62 29.13 5.29 6235.4 6235.4 6240 9638.3	ppm 16.67 2.31 12.3 15 14.02 196.67 2.58 1.60 63.1 0.4 63.5 616.9	ppm 0.00 0.002 0.001 0.000 11.09 3.09 0.016 0.001 0.017 0.103 37
Soil Samples Mean Standard Error Median Mode Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Sum Count	ppm 0.18 0.05 0.1 0.31 0.09 30.10 5.27 1.86 0.05 1.91 6.73 37	ppm 0.09 0.02 0.06 0.02 0.09 0.01 3.60 1.94 0.39 0.02 0.41 3.44 3.7	ppm 0.14 0.07 0.06 0.04 0.41 0.17 36.09 5.98 2.55 0.02 2.57 0.02 2.57 5.25 37	ppm 0.32 0.09 0.146 0.033 0.52 0.27 12.07 3.29 2.657 0.023 2.68 11.907 37	% 0.16 0.02 0.1 0.05 0.13 0.02 2.24 1.59 0.53 0.02 0.55 5.79 37	ppm 10.59 0.75 10.6 14.4 4.55 20.69 1.05 0.53 22.9 0.7 23.6 391.9 37	ppm 19.87 2.11 18.1 18.1 12.81 163.97 3.49 1.59 61.1 0.4 61.5 735.3 37	% 0.52 0.05 0.45 0.39 0.30 0.09 1.46 1.03 1.4 0.01 1.41 1.41 19.16 37	ppm 582.95 83.80 448 166 509.74 259836.33 6.65 2.46 2445 5 2450 21569 37	ppm 14.90 3.35 6.56 5.12 20.39 415.87 2.86 1.92 74.88 0.52 75.4 551.43 37 75.4	% 0.05 0.01 0.03 0.01 0.05 0.00 2.96 1.67 0.23 0.01 0.24 1.86 37	ppm 0.81 0.66 0.66 0.44 1.99 1.54 2.81 0.05 2.86 30.02 37 2.86	ppm 49.08 6.58 37.4 #N/A 40.02 1601.61 3.12 1.69 184 2 186 1816.1 37 186	ppm 1364.59 143.81 1130 1130 874.78 765236.64 5.22 2.04 4220 500 4720 50490 37 4720	ppm 260.49 175.82 20.7 18.7 1069.48 1143793.62 29.13 5.29 6235.4 6235.4 6240 9638.3 37	ppm 16.67 2.31 12.3 15 14.02 196.67 2.58 1.60 63.1 0.4 63.5 616.9 37	ppm 0.00 0.002 0.001 0.000 11.09 3.09 0.016 0.001 0.017 0.103 37 0.017
Soil Samples Mean Standard Error Median Mode Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Sum Count Largest(1)	ppm 0.18 0.05 0.1 0.31 0.09 30.10 5.27 1.86 0.05 1.91 6.73 37 1.91	ppm 0.09 0.02 0.06 0.02 0.09 0.01 3.60 1.94 0.39 0.02 0.41 3.44 37 0.41	ppm 0.14 0.07 0.06 0.04 0.41 0.17 36.09 5.98 2.55 0.02 2.57 5.25 37 2.57	ppm 0.32 0.09 0.146 0.033 0.52 0.27 12.07 3.29 2.657 0.023 2.68 11.907 37 2.68	% 0.16 0.02 0.1 0.05 0.13 0.02 2.24 1.59 0.53 0.02 0.55 5.79 37 0.55	ppm 10.59 0.75 10.6 14.4 4.55 20.69 1.05 0.53 22.9 0.7 23.6 391.9 37 23.6	ppm 19.87 2.11 18.1 18.1 12.81 163.97 3.49 1.59 61.1 0.4 61.5 735.3 37 61.5	% 0.52 0.05 0.45 0.39 0.30 0.09 1.46 1.03 1.4 0.01 1.41 19.16 37 1.41	ppm 582.95 83.80 448 166 509.74 259836.33 6.65 2.46 2445 2450 21569 37 2450	ppm 14.90 3.35 6.56 5.12 20.39 415.87 2.86 1.92 74.88 0.52 75.4 551.43 37 75.4	% 0.05 0.01 0.03 0.01 0.05 0.00 2.96 1.67 0.23 0.01 0.24 1.86 37 0.24	ppm 0.81 0.6 0.6 0.66 0.44 1.99 1.54 2.81 0.05 2.86 30.02 37 2.86	ppm 49.08 6.58 37.4 #N/A 40.02 1601.61 3.12 1.69 184 2 186 1816.1 37 186	ppm 1364.59 143.81 1130 1130 874.78 765236.64 5.22 2.04 4220 500 4720 50490 37 4720	ppm 260.49 175.82 20.7 18.7 1069.48 1143793.62 29.13 5.29 6235.4 6235.4 6240 9638.3 37 6240	ppm 16.67 2.31 12.3 15 14.02 196.67 2.58 1.60 63.1 0.4 63.5 616.9 37 63.5	ppm 0.00 0.002 0.001 0.000 11.09 3.09 0.016 0.001 0.017 0.103 37 0.017

2020 Goldorak Project

2020	S	Sb	Sc	Se	Sn	Sr	Та	Те	Th	Ti	Τl	U	V	W	Y	Zn	Zr
Soil Samples	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Mean	0.37	19.21	3.62	20.86	4.88	87.18	0.01	0.56	3.80	0.04	0.43	3.63	82.59	30.01	9.03	563.89	3.80
Standard Error	0.12	5.67	0.25	4.25	1.65	14.24	0.00	0.19	0.38	0.00	0.06	0.59	6.54	10.64	1.08	144.54	0.65
Median	0.12	9.7	3.5	6.7	1.3	56.9	0.01	0.22	3.3	0.038	0.32	2.88	72	2.39	7.37	283	2.4
Mode	0.07	1.33	2.3	#N/A	0.7	#N/A	0.01	0.31	2.5	0.057	0.44	1.02	52	0.33	#N/A	#N/A	0.5
Standard																	
Deviation	0.75	34.50	1.52	25.87	10.04	86.62	0.00	1.16	2.31	0.03	0.34	3.60	39.75	64.73	6.57	879.19	3.97
Sample Variance	0.56	1189.94	2.33	669.09	100.73	7503.36	0.00	1.33	5.32	0.00	0.11	12.97	1580.30	4190.61	43.14	772973.77	15.73
Kurtosis	28.57	17.57	0.74	1.09	12.55	5.60	37.00	28.49	0.57	-0.13	2.84	8.54	-0.74	7.46	10.56	7.30	2.70
Skewness	5.09	3.89	0.86	1.42	3.46	2.15	6.08	5.09	0.82	0.80	1.62	2.46	0.60	2.85	2.76	2.81	1.77
Range	4.51	190.38	6.7	97.7	49.5	415.5	0.01	6.97	9.9	0.108	1.53	18.82	144	259.85	37.44	3672	16.4
Minimum	0.03	0.62	1.5	0.4	0.3	6.5	0.01	0.03	0.5	0.005	0.03	0.28	25	0.15	0.86	68	0.5
Maximum	4.54	191	8.2	98.1	49.8	422	0.02	7	10.4	0.113	1.56	19.1	169	260	38.3	3740	16.9
Sum	13.58	710.91	133.8	771.7	180.6	3225.5	0.38	20.72	140.7	1.623	15.85	134.49	3056	1110.26	334.19	20864	140.6
Count	37	37	37	37	37	37	37	37	37	37	37	37	37	37	37	37	37
Largest(1)	4.54	191	8.2	98.1	49.8	422	0.02	7	10.4	0.113	1.56	19.1	169	260	38.3	3740	16.9
Smallest(1)	0.03	0.62	1.5	0.4	0.3	6.5	0.01	0.03	0.5	0.005	0.03	0.28	25	0.15	0.86	68	0.5
Confidence Level																	
(95.0%)	0.25	11.50	0.51	8.62	3.35	28.88	0.00	0.39	0.77	0.01	0.11	1.20	13.25	21.58	2.19	293.14	1.32

	Au	Ag	As	Ba	Bi	Ca	Cd	Со	Си	Fe	Ga	Ge	Hg	In	К	Mn	Мо	Na	Ni	Р	Pb	Rb	S	Sb	Se	Sn	W	Zn
Au	1.00																											
Ag	0.07	1.00																										
As	0.08	0.64	1.00																									
Ba	-0.25	-0.24	-0.23	1.00																								
Bi	0.92	0.10	0.17	-0.29	1.00																							
Ca	-0.08	0.05	0.02	0.27	-0.09	1.00																						
Cd	-0.04	0.55	0.80	-0.11	0.01	0.34	1.00																					
Co	-0.20	-0.14	0.23	0.31	-0.17	0.27	0.23	1.00																				
Cu	0.16	0.76	0.92	-0.34	0.20	-0.02	0.75	0.13	1.00																			
Fe	0.22	0.46	0.19	-0.51	0.23	-0.26	-0.04	-0.33	0.40	1.00																		
Ga	-0.14	-0.35	-0.45	0.23	-0.09	0.33	-0.36	0.08	-0.49	-0.22	1.00																	
Ge	0.20	0.44	0.12	-0.37	0.19	-0.18	-0.05	-0.30	0.32	0.91	-0.28	1.00																
Hg	0.07	0.44	0.12	-0.27	0.05	-0.13	0.00	-0.24	0.28	0.82	-0.32	0.97	1.00															
In	0.11	0.90	0.63	-0.29	0.16	0.20	0.71	-0.15	0.78	0.47	-0.38	0.46	0.47	1.00														
К	-0.20	-0.26	-0.30	0.41	-0.20	0.51	-0.21	0.24	-0.35	-0.22	0.72	-0.22	-0.21	-0.31	1.00													
Mn	0.07	0.47	0.52	0.08	0.11	0.27	0.58	0.55	0.53	-0.14	-0.30	-0.16	-0.15	0.46	-0.15	1.00												
Мо	-0.08	-0.02	0.16	-0.40	-0.06	-0.26	0.11	-0.03	0.24	0.23	-0.04	0.11	0.01	0.04	-0.16	-0.14	1.00											
Na	-0.16	-0.17	-0.31	-0.08	-0.23	0.47	-0.22	0.15	-0.25	-0.03	0.55	-0.11	-0.15	-0.21	0.64	-0.08	0.21	1.00										
Ni	-0.19	-0.05	0.46	0.19	-0.14	0.21	0.53	0.84	0.34	-0.29	-0.27	-0.25	-0.18	0.05	-0.11	0.61	0.12	-0.13	1.00									
Ρ	0.04	0.14	0.00	-0.36	0.07	-0.26	-0.12	-0.24	0.10	0.59	-0.09	0.34	0.23	0.11	-0.14	-0.18	0.49	0.14	-0.14	1.00								
Pb	0.05	0.41	0.10	-0.28	0.04	-0.15	-0.07	-0.28	0.21	0.85	-0.29	0.93	0.95	0.39	-0.21	-0.22	-0.02	-0.16	-0.24	0.40	1.00							
Rb	-0.20	-0.27	-0.27	0.47	-0.19	0.53	-0.22	0.29	-0.37	-0.31	0.78	-0.27	-0.24	-0.36	0.94	-0.12	-0.23	0.57	-0.07	-0.29	-0.25	1.00						
S	0.08	0.38	0.01	-0.39	0.06	-0.22	-0.13	-0.31	0.21	0.90	-0.23	0.96	0.95	0.39	-0.13	-0.24	0.13	0.02	-0.30	0.43	0.93	-0.22	1.00					
Sb	0.00	0.93	0.85	-0.27	0.05	0.00	0.69	-0.02	0.90	0.42	-0.46	0.37	0.39	0.85	-0.31	0.49	0.10	-0.24	0.16	0.13	0.35	-0.32	0.31	1.00				
Se	0.57	0.25	0.15	-0.59	0.60	-0.30	-0.03	-0.33	0.39	0.63	-0.12	0.48	0.27	0.31	-0.29	-0.02	0.55	0.02	-0.26	0.47	0.23	-0.36	0.40	0.21	1.00			
Sn	0.07	0.79	0.66	-0.18	0.23	0.31	0.79	0.00	0.69	0.22	-0.30	0.23	0.25	0.90	-0.22	0.56	-0.08	-0.28	0.19	-0.02	0.20	-0.24	0.14	0.78	0.14	1.00		
W	0.65	0.20	0.26	-0.17	0.83	-0.09	0.08	-0.15	0.24	0.10	-0.11	0.08	-0.02	0.21	-0.21	0.19	-0.12	-0.31	-0.11	-0.04	-0.04	-0.16	-0.05	0.18	0.42	0.36	1.00	
Zn	-0.04	0.70	0.69	-0.20	0.01	0.31	0.89	0.12	0.74	0.28	-0.45	0.33	0.40	0.88	-0.28	0.52	0.08	-0.24	0.41	0.02	0.31	-0.32	0.27	0.76	0.08	0.87	0.05	1.00

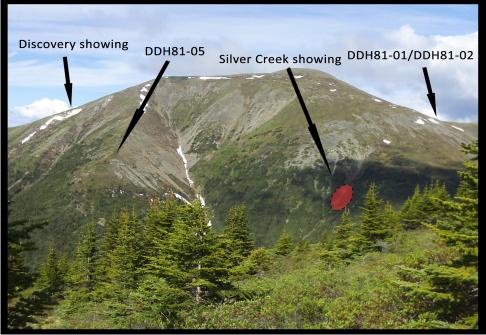
APPENDIX D

Field Station Data

2020 Goldorak Report

ield Station ID	Geologist	Date	Lithology	Min1	Min1Per	Min2	Min2Per	Description	UTM_E	UTM_N	Coord_System
JDP01	JDP	June 30th 2020	calc- silicate	ру	1	gl	0.1	Boulder of calc-silicate (60*50*50 cm). Recrystalized-hornfeld, fresh	515254	6972247	NAD83 UTM Z8N
		July 1st	silicate					pyrite, trace galena Old claim post 02 (YA51445-YA51444, post 1 (YA51442, missing tag)-	515254	6972247	NAD83_011VI_281
JDP02	JDP	2020						probably from 1981	513782	6973248	NAD83 UTM Z8N
		July 1st						Bedding: 128/052 in black shale, rusty weathereing, strongly pitted. Joint			
JDP03	JDP	2020	shale	ро	0.1			set: 240/80	513511	6973360	NAD83_UTM_Z8I
		1.1.4.4.4						Float, Rusty quartz vein, marcasite (?) in gully of the Main Showing taken			
JDP04	JDP	July 1st 2020						for HS. Euhedral quartz crystals up to 1 cm, 20% sulphides (semi-			
		2020						massive). Proximal oi sample: Y647757 (Roger)	513534	6973350	NAD83_UTM_Z8
JDP05	JDP	July 1st	massive	ро				Semi-massive sulphide outcrop/subcrop below black shale outcrop, rusty			
301.02	101	2020	sulphide	po				weathering, unmineralized	513594	6973293	NAD83_UTM_Z8
								Bedding: 110/080. 50*50%50 cm outcrop. Discontinuous outcrop in the			
JDP06	JDP	July 2nd	calc-					area, mainly scree and boulders. Thinly bedded metasediments (0.5 cm			
		2020	silictate					bands). Blocky, grey-light grey-off white, 5% calcite veinlets along	542044	6070000	
								foliation.	513944	6972322	NAD83_UTM_Z8
JDP07	JDP	July 2nd	calc-					Bedding: 135/065. Outcrop 50*5 m along the ridge. Thinly bedded			
JDP07	JDP	2020	silictate					metasediments showing limestone along bedding. Platy, light grey-beige, shally parting	514066	6972424	NAD83 UTM Z8
								Sharry barting	514000	0372424	NAD05_01M_20
								Bedding: 135/070. outcrop 3*3*2 metres. Located about 10 metres south			
		July 2nd	calc-					of DDH81-05. Blocky, jointed, grey-beige-greenish-pinkish metasediment.			
JDP08	JDP	2020	silictate	ру	0.1			Siliceous, oxidation staining, some dark grey siltstone lenses, fine grained			
								disseminated pyrite trace. Rare cross-cutting quartz veinlets and py			
								veinlets-quartz in selvage (2 mm). Calcite in fracture	514336	6972357	NAD83_UTM_Z8
								Numerous boulders in the watershed averaging 80*80*80 cm. Intrusion			
		July 3rd	feldspar-					shows significant variations from equigranular to megacrystic (feldspar			
JDP09	JDP	2020	quartz					up 1.5 cm) +/- biotite. Biotite (up to 10%) is locally weakly chloritized.			
			porphyry					Quartz crystals average 0.5 cm, up to 30%. No magnetite observed	545454	6070000	
									515151	6973280	NAD83_UTM_Z8
JDP10	JDP	July 3rd	metasedi					Contact between QF monzonite and hornfeld. Rusty quartz veinlets.			
JDP10	JDP	2020	ment					Monzonite dikes, 20 cm wide. Two quartz veinlets set averaging 0.5 cm wide: 260/35 and 040/50. No mineralization observed	514996	6973430	NAD83 UTM Z8
									514550	0373430	NAD05_01101_201
								Float, 40*30*20 cm. Rusty brown weathering, quartz vein (1 to 4 mm).			
JDP11	JDP	July 3rd	intrusion/	ру	0.1			Fresh surface: beige, medium grained (0.5 mm), equigranular, mangasese			
		2020	dike	67	0.12			oxide-oxidation trace-quartz-possibly tremolite. Crosscuttng quartz			
								veinlets (1 mm) and fine grained disseminated pyrite trace	514333	6973546	NAD83_UTM_Z8
		hale Atl						Bedding: 060/75. Outcrop, 5*3*2 m. Grey, rusty weathering, jointed			
JDP12	JDP	July 4th	hornfeld					(060/85). Fractured quartzite. Similar to sample W641874. Weakly			
		2020						bleached, rare white quartz veinlets (1 cm wide striking 148/90)	515754	6972603	NAD83_UTM_Z8
								From this location, going downhill, quartz become more abundant. The			
JDP13	JDP	July 4th	calc-					rock turns to clac-silicate, banded, including quartz lenses up to 3 cm			
10113	JDL	2020	sillicate					wide, greenish-purpulish colour, rare sulphide observed and crosscutting			
								quartz veinlets (1 cm wide)	515613	6972326	NAD83_UTM_Z8

JDP14	JDP	July 4th 2020	intrusion			Float/boulder, 60*50*40 cm. Grey, weakly oxidized, massive, subrounded. Fresh suface: equigranular, feldspar-30% quartz-5% biotite. Could be exotic but similar to Rosie intrusion. Multiple boluder of the same nature around BMS Showing. Dikes nearby?	515175	6972375	NAD83_UTM_Z8N
JDP15	JDP	July 4th 2020	intrusion			Float, 2*1*0.5 m. Similar to JDP14	514974	6972334	NAD83_UTM_Z8N
JDP16	JDP	July 4th 2020	feldspar- quartz porphyry			Boulder or subcrop, 3*3*1 m, subrounded, weakly oxidized, megacrystic. Feldspar up to 3 cm long-quartz crystal (30%)-5% biotite (possibly 2 phases). No magneitite observed	515215	6973313	NAD83_UTM_Z8N
JDP17	JDP	July 4th 2020	feldspar- quartz porphyry			Feldspar megacrystic-quartz prophyry boulder, 1*1*1 m-same for JDP17B	515303	6973389	NAD83_UTM_Z8N
JDP18	JDP	July 4th 2020	feldspar- quartz porphyry			Following the creek towrad the west, boulders are present going up hill. It consists of feldspar megacrystic-quartz porphyry of the same nature than Rosie intrusion. Same lithology for JDP18B	515453	6973355	NAD83_UTM_Z8N
JDP19	JDP	July 4th 2020	feldspar- quartz porphyry			QF porphyry boulder mixed with hornfeld float (grey, siliceous, massive, trace disseminated pyrite)	515397	6973473	NAD83_UTM_Z8N
JDP20	JDP	July 4th 2020	feldspar- quartz porphyry			Boulder, 1*1*0.5 m. It constitutes the highest (in elevation) QF porphyry boulder recorded in the area. Rock above consists of hornfeld	513760	6973318	NAD83_UTM_Z8N
JDP21	JDP	July 5th 2020	shale			Bedding: 256/90	515876	6974036	NAD83_UTM_Z8N
JDP22	JDP	July 5th 2020	shale	ру	0.5	Bedding: 280/90. Rusty, hightly fractured outcrop	515674	6974015	NAD83_UTM_Z8N
JDP23	JDP	July 5th 2020	shale			Bedding: 100/70	515647	6974022	NAD83_UTM_Z8N
JDP24	JDP	July 5th 2020	shale	ру	1	Bedding: 105/85. black shale, very rusty weathering	515225	6974277	NAD83_UTM_Z8N
JDP25	JDP	July 5th 2020	argillite			Bedding: 304/78. Massive, jointed, siltstone or argillite-siliceous metasediment	515888	6974239	NAD83_UTM_Z8N
JDP26	JDP	July 5th 2020	shale			Bedding: 305/50. irregular, weakly rusty, jointed, possibly graphitic	515181	6973926	NAD83 UTM Z8N
DDH81-02	JDP	June 30th 2020				Azimuth and dip from casing: 050/-60 and DDH81-01: 120/-60	513699	6973190	NAD83 UTM Z8N
Main Showing	JDP	July 1st 2020				Relocated. Massive sulphide at contact between shale and calc-sillicate	513588	9723256	NAD83_UTM_Z8N
Discovery Showing ?	JDP	July 2nd 2020	calc- silicate			Multiple rusty boulder in the slope. Grey, quartz-calcite veinlets, foliaform lenses, mineralized py-po-cpy. See ample W196410 description (Roger)	513696	6972341	NAD83_UTM_Z8N
Silver Creek Showing	JDP	July 2nd 2020	massive sulphide			Relocated. Bedding (rough measurement): 145/55. Rusty, rounded. The massive sulphide consists of 40 cm wide subrounded rusty-vuggy, grey massive sulphide within metasediment	514491	6972739	NAD83_UTM_Z8N
Rosie Sample 1	JDP	July 3rd 2020	feldspar- quartz porphyry			Quartz-monzonite: equigranular, 40% feldspar-30% quartz porphyry (glassy, fractured, subrounded, 0.5 to 1 cm)-5 to 10% biotite). Absence of magnetite, toumaline trace Sampled for YGS, zircon dating. Delivered to Maurice Colpron on July 7th 2020	515025	6973400	NAD83_UTM_Z8N


Bottom of		feldspar-					1
QF	JDP	July 3rd quartz	Rosie outcrop sits in a narrow gully, 5 m wide, trending 326				
outcrop	JDr	2020 porphyry	Rose outcrop sits in a narrow gury, 5 in wide, trending 520	515028	6973398	NAD83 UTM Z8N	
Top of the		feldspar-		515028	0373330	NAD05_01101_2010	-
QF	JDP	July 3rd quartz	Contact betwen QF porphyry and hornfeld				
ouitcrop	JDF	2020	contact betwen Qr porphyry and normena	514900	6973443	NAD83_UTM_Z8N	
BMS		porphyry		514900	0973443	NAD85_01WI_28N	-
-	JDP	July 4th massive	Relocated. Massive sulphide, sampled by Roger	515172	6972404	NAD83 UTM Z8N	
Showing		2020 sulphide		515172	0972404	NAD85_01WI_28N	-
RH20001	RH	30-Jun-20 quartzite	Cite of DMC min population (minute)	515298	6972195	NAD83 UTM Z8N	1397
RH20001	RH	30-Jun-20	Site of BMS min occurrence (misplot) Site of old 1980's drill camp, 3 plywood floors, beds and junk.	514906	6972220		1397
RH20002	RH	30-Jun-20	online with picket approx 105m at 040deg to drill pad (DDH81-03?)	514900	6972821	NAD83_UTM_Z8N	1593
КП20005	КП	30-Juli-20	onnine with picket approx 105m at 040deg to drin pad (DDH81-05?)	514240	0972021	NAD65_01WI_26N	1595
	RH	20 km 20	Deill and with assing DDU91 01 (A= 200 din CO) and 02 (A= 049 din CO)	F12C00	072100		1671
RH20004		30-Jun-20	Drill pad with casing; DDH81-01 (Az 300, dip -60) and 02 (Az 048, dip -60).	513699	6973189	NAD83_UTM_Z8N	10/1
BUDDOOF	RH		Striped calc-silicate, bedding at 125/56S, rusty lamination <1cm - 1cm,	542604	6072007		1642
RH20005		01-Jul-20 calc-silicat(py	2 po 2 Crosscutting fracture with qtz-FeOx 352/52E	513604	6972987	NAD83_UTM_Z8N	1643
	RH		ACTA 7 Post 2, ACTA 8 Post 1, outcrop of calcsilicate continues from		~~~~~~		
RH20006		01-Jul-20	RH20005.Bedding 140/42S.	513365	6972928	NAD83_UTM_Z8N	1549
			near vertical, S0 104/90, bedded calc-silicate, rare chert lenses, X/C by				
	RH		near horizontal latest white qtz veinlets that cut bedding parallel qtz-carb				
RH20007		01-Jul-20 calc-silicate	veinlets.	513449	6973067	NAD83_UTM_Z8N	1562
	RH		S0=S1 110/75S; ridge spur of grey shale, rusty shale - sltst to S and grey				
RH20008		01-Jul-20 shale - siltst	calc -silicate to north. Best mineralized FeOx is at W641866.	513425	6973246	NAD83_UTM_Z8N	1507
	RH		South end of old blast trench that trends 020 deg for 28m. In ferricrete				
RH20009		01-Jul-20 ferricrete	and colluvium.	513758	6973275	NAD83_UTM_Z8N	1659
	RH		on ridge spur above DDH81-05, 2x2m o/c of grey wea dark grey				
RH20010		02-Jul-20 argillite - shale	hornfelsed argillite-shale-siltstone, slight purple color.	514218	6972405	NAD83_UTM_Z8N	1565
RH20011	RH	02-Jul-20	presumed drill pad of DDH81-05, Az 020? Wood H frame in place.	514344	6972373	NAD83_UTM_Z8N	1511
RH20012	RH	03-Jul-20 qtz - monz	large angular bouders of qtz monz in creek	515150	6973284	NAD83_UTM_Z8N	1412
	RH		2 m exposed slabby recrystallized limestone with FeOx weathering				
RH20013		03-Jul-20 limestone	hornfelsed siltstone - quartzite. Bedding 293/75N.	513670	6973769	NAD83_UTM_Z8N	1584
			Float of banded calc-silicate similar to that seen on south side of Drom				
	RH		mtn and south of DDH81-05. Calc-sil is qtz lenses - bands seperated by				
			green - grey tremolite -chlorite bands x-cut by white crystaline qtz				
RH20014		04-Jul-20 calc-silicate	veinlets.	515582	6972228	NAD83_UTM_Z8N	1509
	RH		Drill hole DDH81-06; Az 100 deg, -50deg, casing present and making a				
RH20015		04-Jul-20 DDH81-06	little water. Drill pad cut into bank.	515111	6972391	NAD83_UTM_Z8N	1353
	RH		large boulders of qtz monzonite at base of scree slope of same. Photo				
RH20016		04-Jul-20 qtz monz	from other side of creek of rosie occ.	515170	6973338	NAD83_UTM_Z8N	1423
			Qtzite - qtz-monzonite contact in creek at approx. 050/60E. QM has 1 cm				
			chill margin and qtzite exhibits recrystallization - hornfelsing. Qtz monz				
			boulders in creek but fewer in number and likely sourced from W. bank.				
	RH		Creek boulders are white stained. NOTE: QM boulders end about 25-50				
			m upstream where there is outcrop of grey weathering, grey weakly				1
			sulfidic+/-chl-trem recrystallized qtzite x/c by occasional white qtz				1
RH20017		04-Jul-20 QtzMonz-Qtzite	veinlets, trem on fracture.	515321	6973529	NAD83_UTM_Z8N	1454
	рц		Last of white stained boulders in creek. Might mark end of sulfide aurole				
RH20018	RH	04-Jul-20 metaseds	around intrusion?	515569	6973671	NAD83_UTM_Z8N	1492

Acta1p1	RH	30-Jun-20	ACTA 1&2, post 1 (YD17521 and 522) at station Po69.	515100	6972338	NAD83_UTM_Z8N	1340
RH20023	RH	05-Jul-20	Photos from peak on spur (NE point of traverse).	516510	6973846	NAD83_UTM_Z8N	1766
RH20022	ĸН	05-Jul-20 limy siltst	crystalline. Bedding 096/70S.	515264	6974291	NAD83_UTM_Z8N	1591
	RH		pod - bed of white weathering white limy sandst-siltst. Fine grained				
RH20021		05-Jul-20 siltstone	qtz veining +/- aspy.	515284	6974117	NAD83_UTM_Z8N	1687
	RH		grey siltst. Bedding 133/87N. Unit to south is grey qtzite x/c by crustiform				
			back up on next ridge spur. Outcrop of lamin bedded rusty weathered				
			going down n trending ridge spur then trav east along contour and then				
RH20020		05-Jul-20 siltstone	out now FeOx veinlets. Strong joint set 084/40S.	515844	6974053	NAD83_UTM_Z8N	1700
	RH		siltstone. MnOx stained locally, jarosite on fracture, 1-2mm weathered				
			on ridgetop, scree and rubble outcrop of rusty weathering fractured grey				
RH20019		04-Jul-20 qtz monz	camp. JDP has high point on hillside of QM.	515720	6973376	NAD83_UTM_Z8N	1590
	RH		qtz veinlet. Float of QM continues from station for abouot 75m towards				
			50x50x3m boulder of qtz monzonite cross cut by 1 cm coarse coxcomb				

APPENDIX E

2020 Photographs

2020 Goldorak Report

Photo 10. Dromedary Mountain looking west Discovery (at the back of the ridge and Silver Creek Showings, drill hole DDH81-01/DDH81-02 and DDH81-05 locations

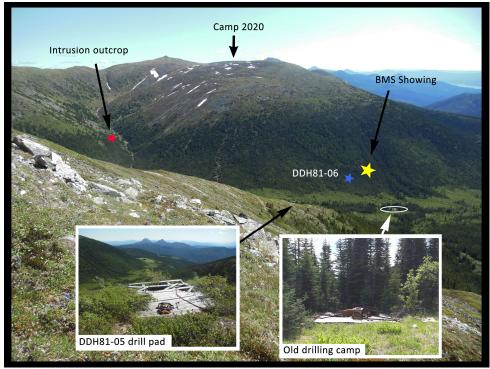
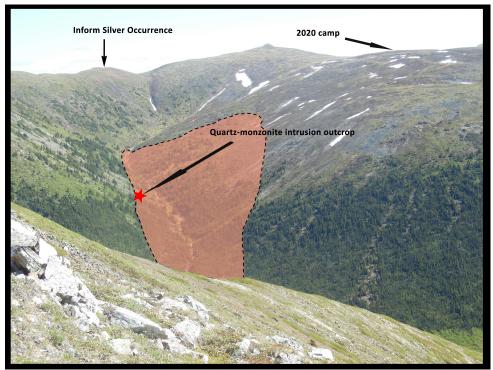
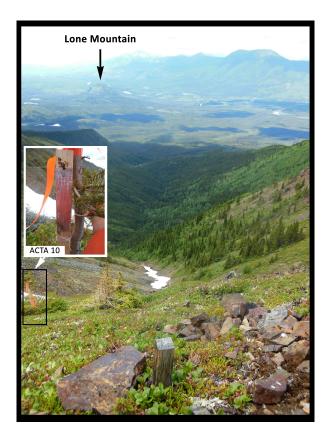




Photo 11. Looking North West from Dromedary Mountain.

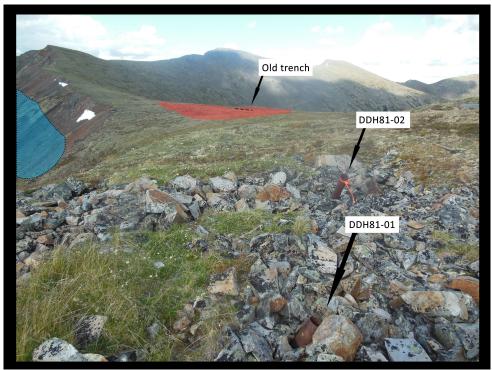

The picture shows the location of drill pad DDH81-05, the location of an old drilling camp (thought to be of the 80's). The red star indicates the location of the intrusion exposure, the blue star indicates the location of drill hole DDH81-06 and the yellow star represents the approximate location of the BMS Showing.

Photo 12. Looking north-east from drill pad DDH81-05. Red star indicates the location of the main quartz-monzonite outcrop. The red polygon represents the presumed extent of the intrusion based on boulders and float train mapping.

Figure 10. MacMillan River looking west. Front to back, old post marking 1980's baseline, Acta claim post 10, Lone Mountain.

Photo 13. Drill hole DDH81-01 and DDH81-02 area Front, drill hole casings. Red polygon represents ferricrete area, dash line represents the old blasting trench. Blue polygon represents the West facing slope showing copper soil anomaly.

Photo 14. Drill hole DDH81-06 collar DDH81-06 drill pad consists of excavated material. The hole was making a trickle of water when visited.

Photo 15. North Ridge target.

Six soil samples along a contour line on the under-explored North facing slope of the property. The yellow dash line represents the traverse, the red stars represent the approximate location s of the samples.

Photo 16. Sheeted vein scree slope. South facing slope of the North part of the property. Abundant quartz occurs within a large area. (a) drusy quartz float, (b) low sulfide quartz vein-selective sample W641872, (c) sheeted vein in float.

Photo 17. Semi-massive sulfide float on the top of the Goldorak North Ridge. Sample W641877 shows chloritic groundmass. High grade arsenopyrite sample was taken in the vicinity of the boulder.

Photo 18. Calc-silicate outcrop. Geostation RH20-005: (a) crosscutting fracture with quartz-FeOx 352/52E, (b) rusty lamination <1cm - 1cmmineralized pyrrhotite, (c) banded calc-silicate-bedding at 125/56S.

Photo 19. Sample W641916. Semi-massive sulphide float in creek bed, north of quartz-monzonite intrusion MAP

POCKET

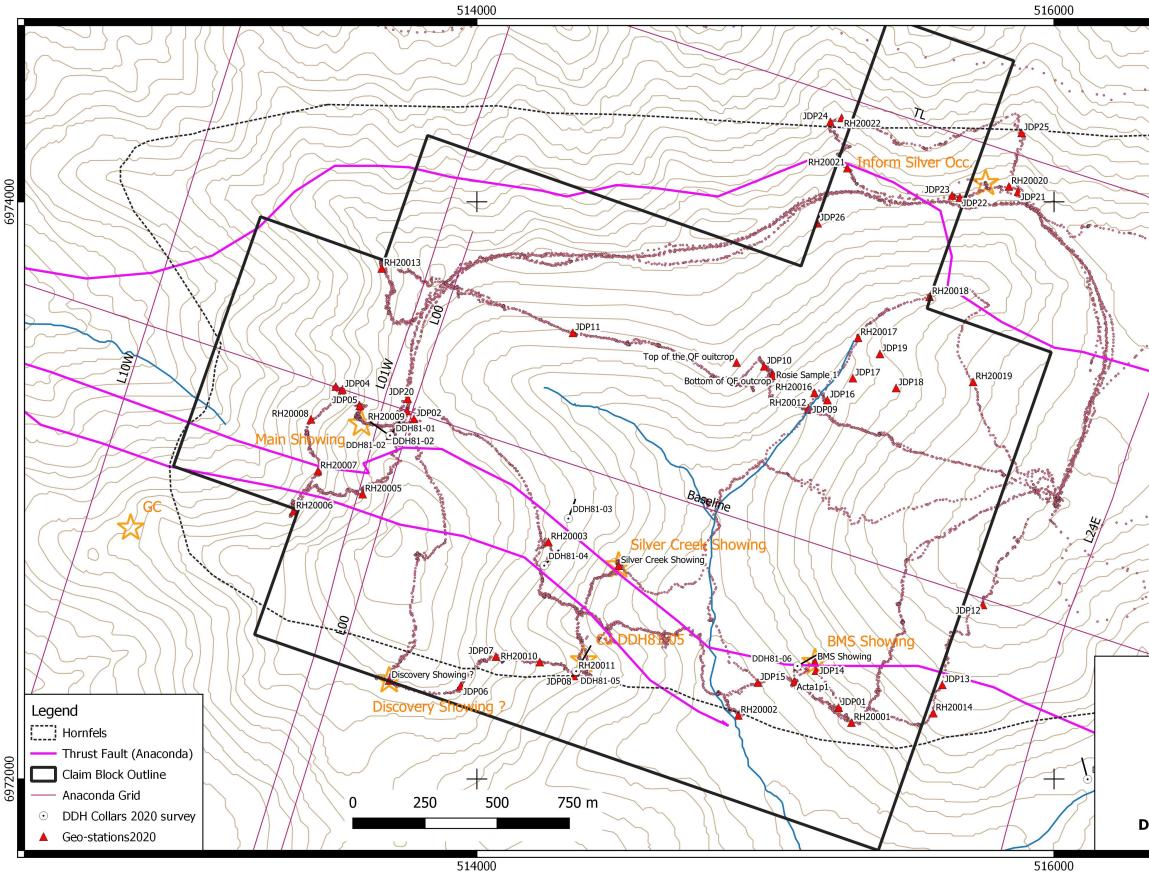


Figure 11. 2020 Field stations and traverses.

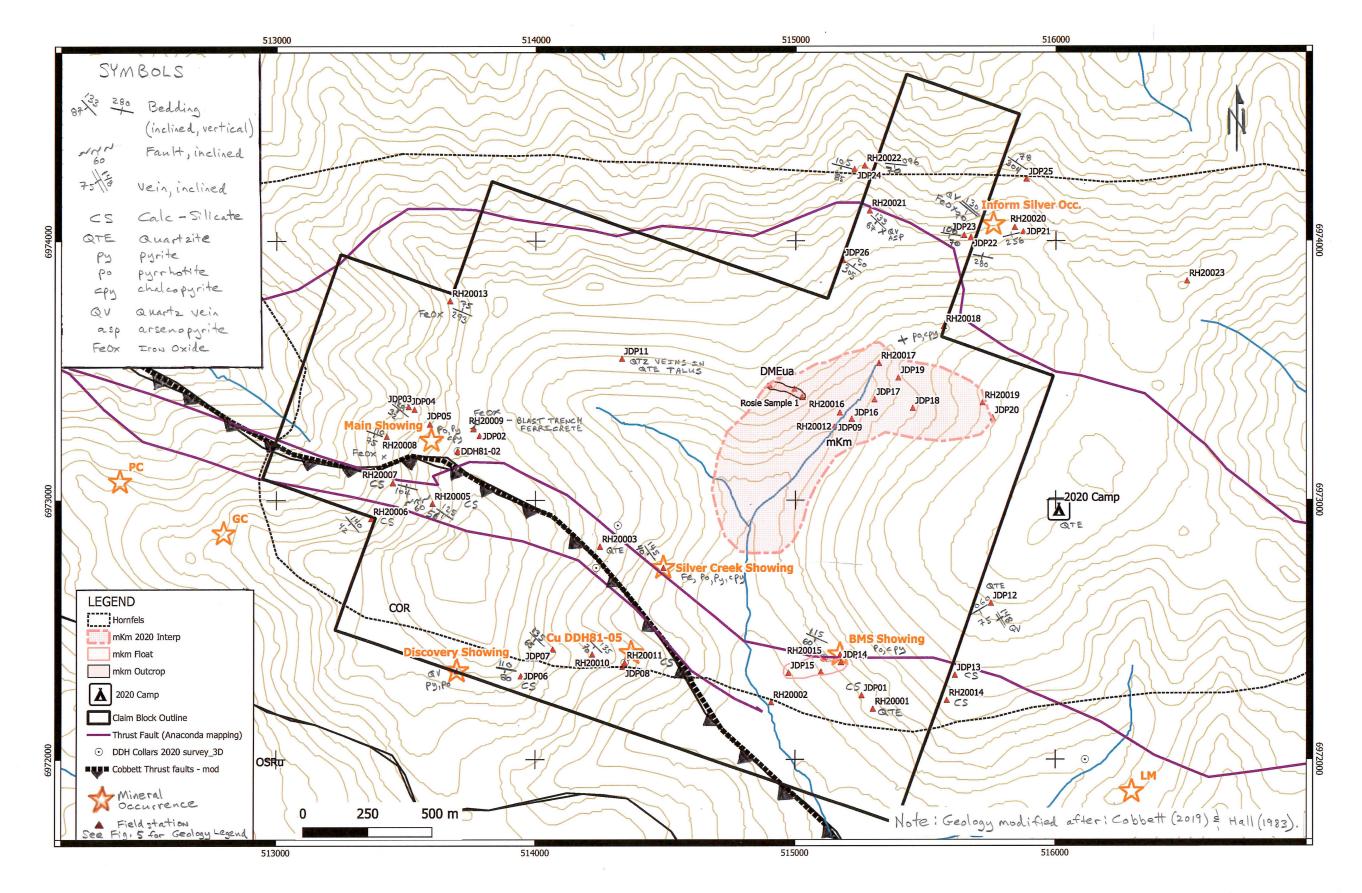


Figure 12 Property Geology

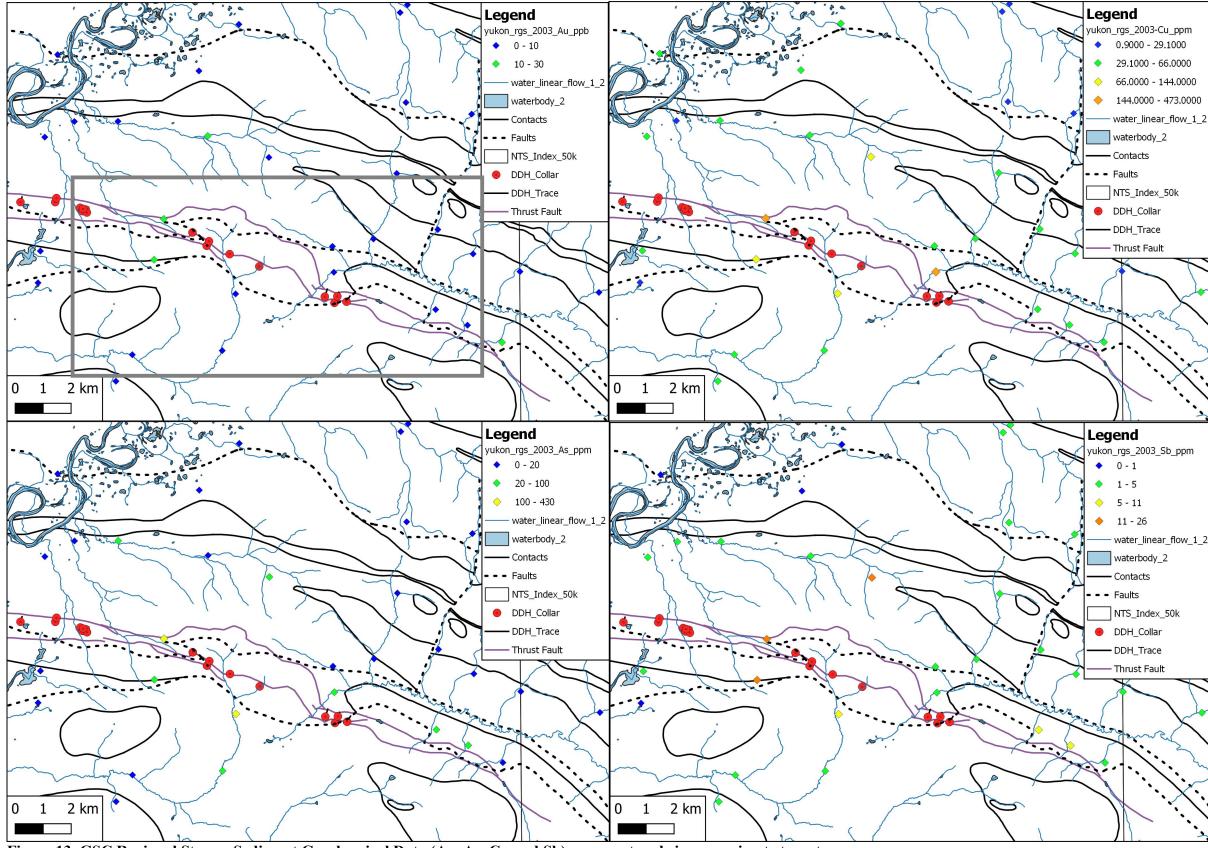


Figure 13. GSC Regional Stream Sediment Geochemical Data (Au, As, Cu and Sb), grey rectangle is approximate target area

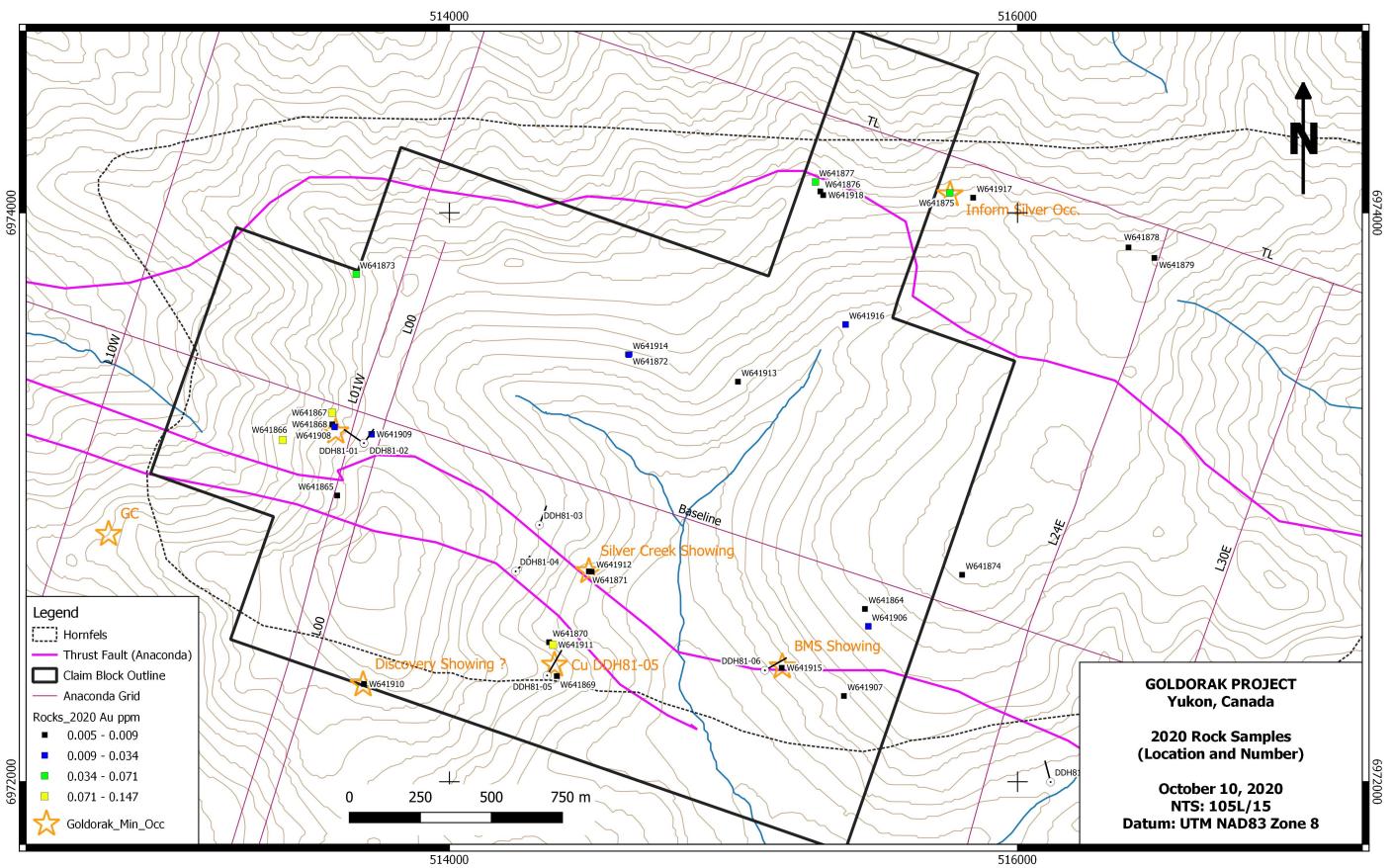


Figure 14. 2020 Rock sample locations, numbers and gold geochemistry.

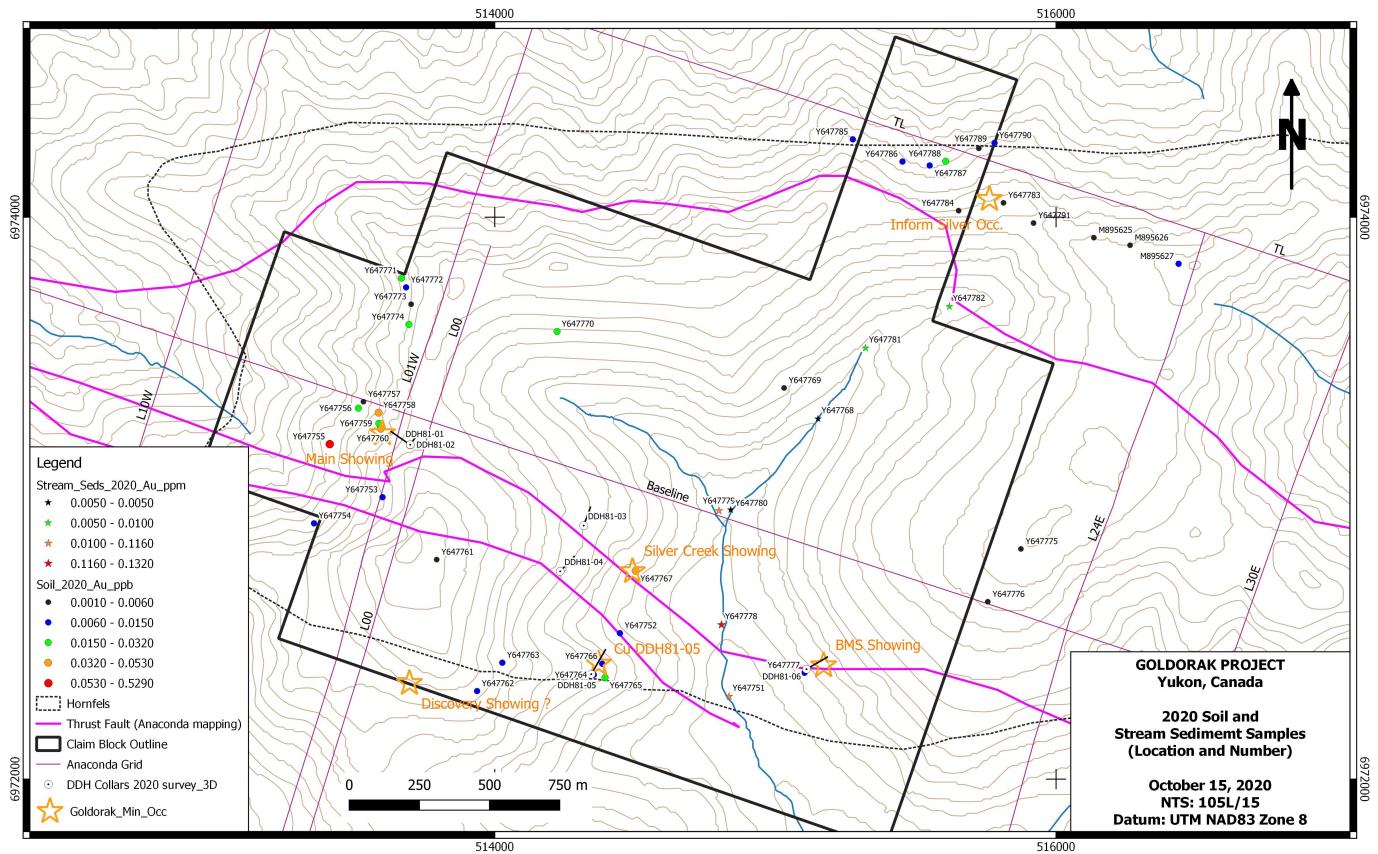


Figure 15. 2020 Soil and stream sediment locations, numbers and gold geochemistry.

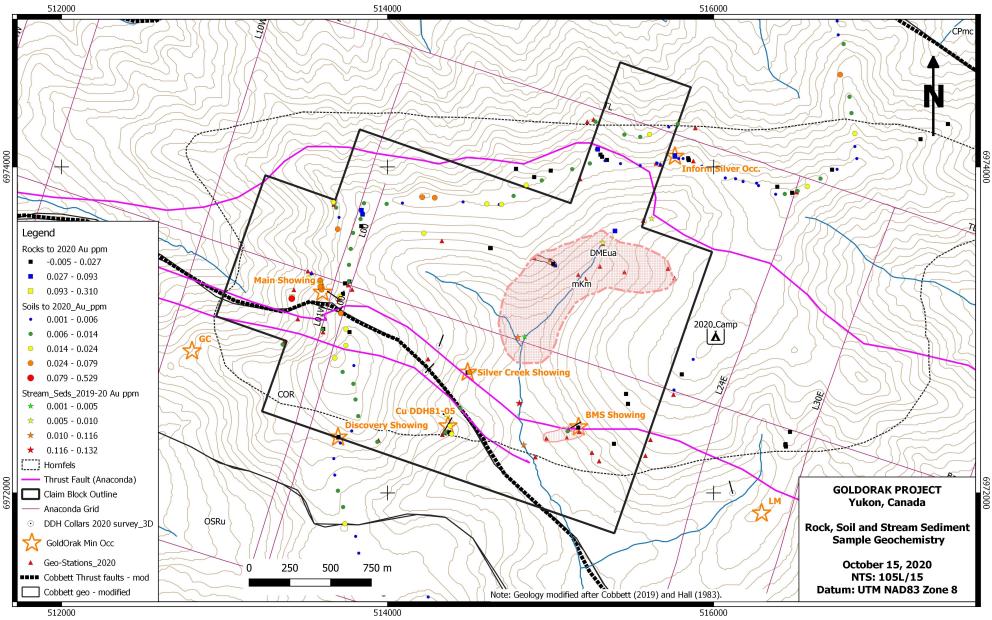


Figure 11. 2020 Goldorak Gold Geochemistry

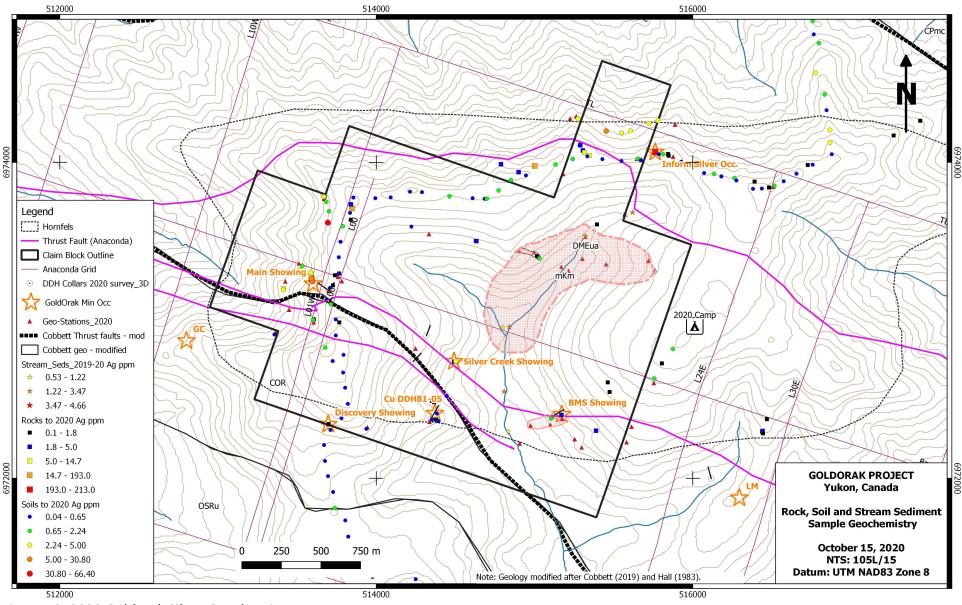


Figure 12. 2020 Goldorak Silver Geochemistry

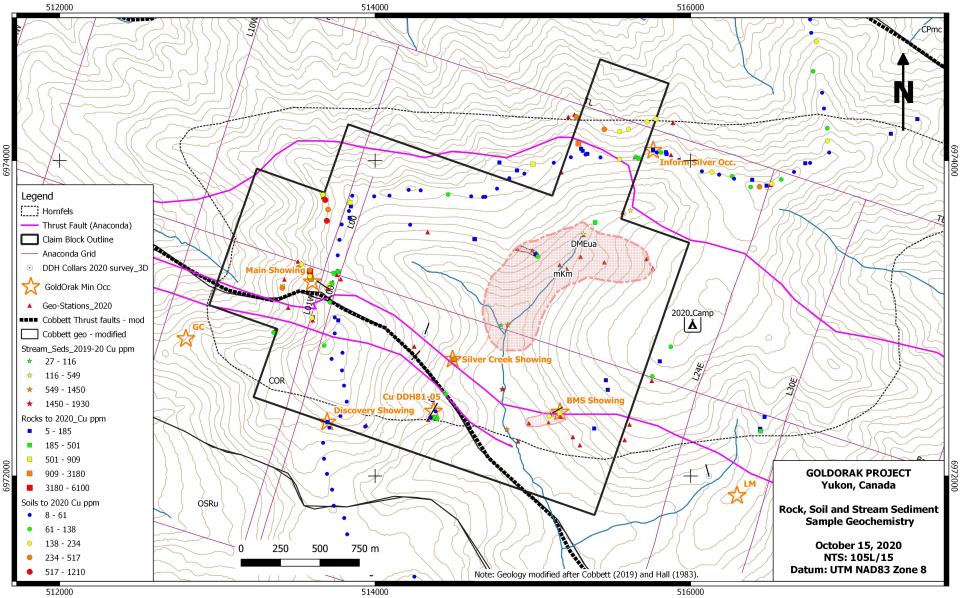


Figure 13. 2020 Goldorak Copper Geochemistry

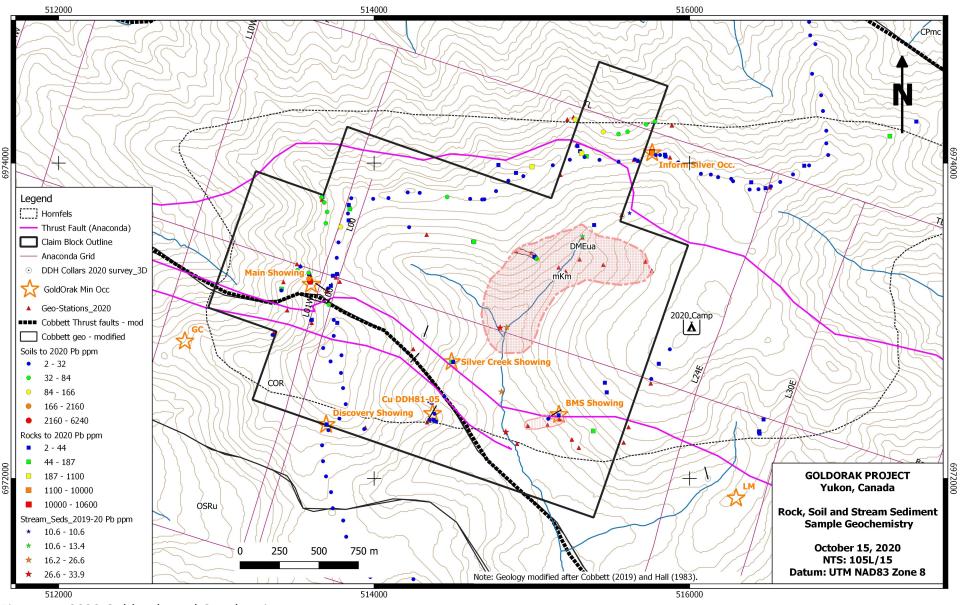


Figure 14. 2020 Goldorak Lead Geochemistry

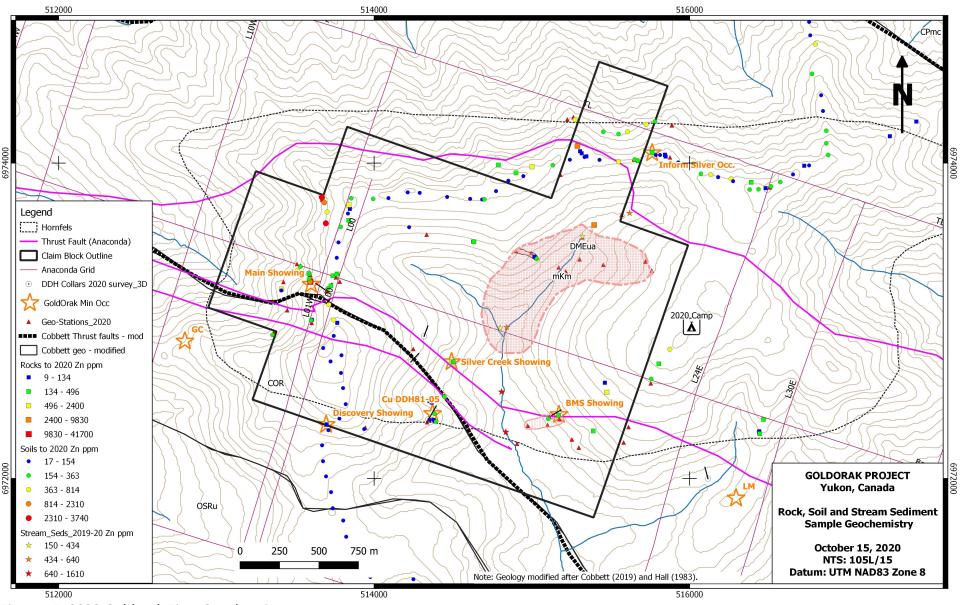


Figure 15. 2020 Goldorak Zinc Geochemistry

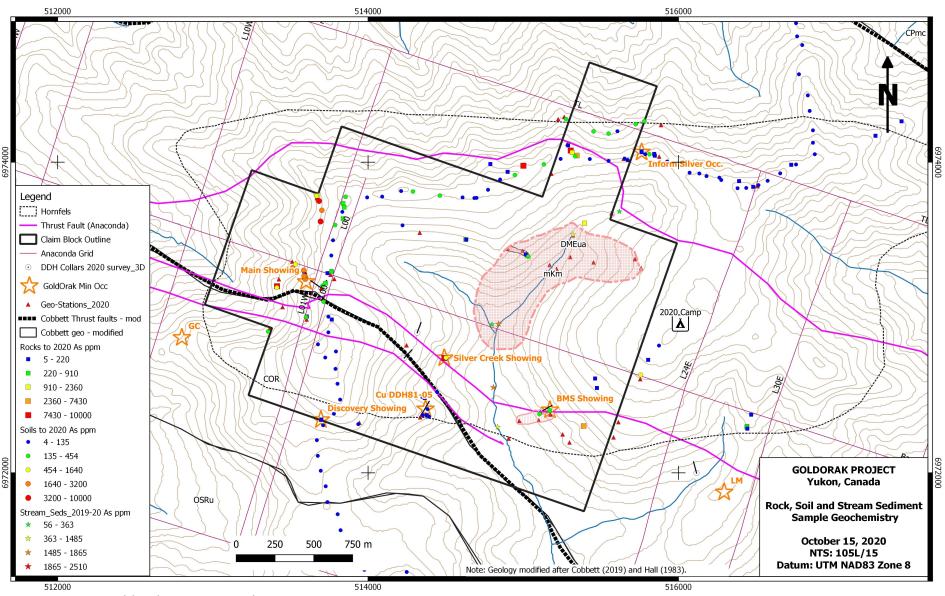


Figure 16. 2020 Goldorak Arsenic Geochemistry

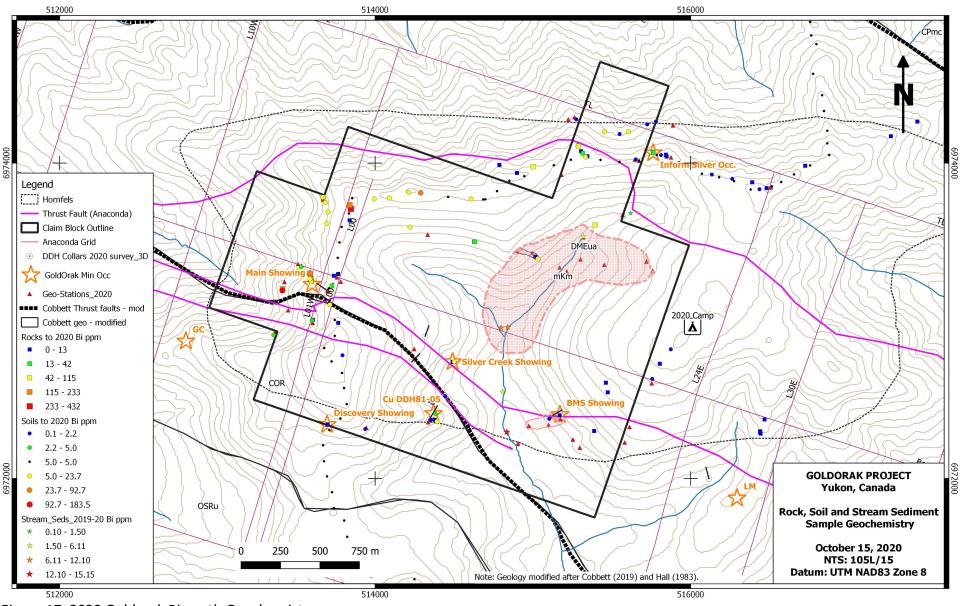


Figure 17. 2020 Goldorak Bismuth Geochemistry

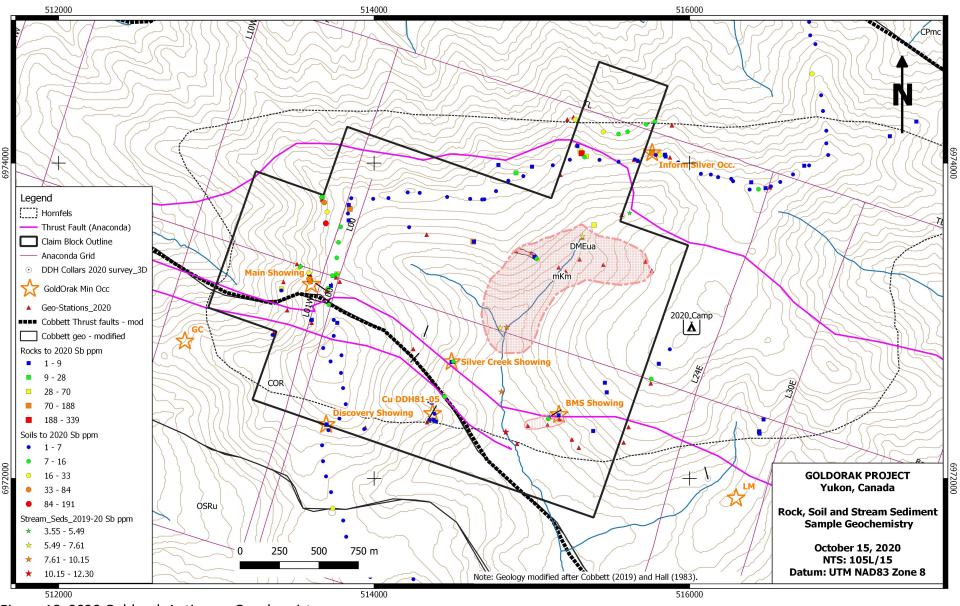


Figure 18. 2020 Goldorak Antimony Geochemistry