FINAL REPORT

YMEP2020-040

MAISY MAY CREEK

PLACER CLAIMS

PC 51-79 (P 12350-P 12378); PC 79A, PC 79B, PC 79C (P 12379-P 12381),

PC 80-99 (P 12382-P 12401); PC 48-50 (P 19993- P 19995); CLOUDY (P 25352)

FERN (P 44919), CLIFFORD (P 45143)

By

William LeBarge

Selena Magel

Geoplacer Exploration Ltd.

For

Bedrock Mining Company Inc.

Location of centre of property: 63°18'44"N, 138°57'22"W NTS map sheets: 115O/07 Mining District: Dawson Date: January 30, 2021

Table of Contents

Executive Summary1
Introduction2
Location and Access
Placer Tenure
Permitting7
History of Exploration and Mining – Maisy May Creek and nearby tributaries7
Regional Bedrock Geology
Local Bedrock Geology
Quaternary History
Surficial Geology
Placer Geology
2020 Exploration Program
Overview
Access Construction
Drone imagery Surveys12
Auger Drilling
Excavator Trenching17
Resistivity Geophysics
Conclusions and Recommendations
2020 Statement of Expenses, Maisy May Creek
Statements of Qualifications
References
Appendix 1 – Auger Drill logs and Results, 2020 placer exploration program
Appendix 2 – Drone Image

List of Figures

Figure 1 - General Location of Maisy May Creek Project, Yukon
Figure 2 – Location of Maisy May Creek claims and Dawson region placer tenures
Figure 3 - Bedrock Geology of Maisy May Creek area, after Yukon Geological Survey (2018)
Figure 4 - Surficial Geology, Maisy May Creek, after Jackson (2005a, 2005b)
Figure 5 – Drone imagery basemap showing 2020 Exploration work on Maisy May Creek including auger
drill holes, trenches and resistivity geophysical survey lines. Inset maps on following pages
Figure 6 – Inset map 1 showing 2020 exploration work on Maisy May Creek including auger drill holes,
trenches, and resistivity geophysical survey lines14
Figure 7 - Inset map 2 showing 2020 exploration work on Maisy May Creek including auger drill holes,
trenches, and resistivity geophysical survey lines15
Figure 8 - Trench #1 sample results: 1 large colour which shows an interesting morphology with remnant
dendritic growth patterns, suggesting a short distance of transport in the stream from the bedrock
source
Figure 9 - Trench #3 sample results: 1 medium colour, 1 fine colour
Figure 10 - Trench #4 sample results: 1 medium colour, 2 fine colours of gold
Figure 11 - Test trench #1 is located on the left limit bench of Patton Creek. This figure shows samples
being collected in pails to be tested
Figure 12 - Test trench #1. The total section is approximately 2 m to bedrock and displays (from ground
surface) 20 cm of organics, 20 cm of tan fine sand with pebbles, 40 cm of laminated fine sand and silt.
The main gravel layer is approximately 80 cm thick and consists of sub-rounded imbricated pebble-
cobble-gravel with a medium to coarse sand matrix. The clasts in the gravel layer are mostly limestone
with quartz and orthogneiss. The bedrock is soft, iron stained, slabby orthogneiss with some steel grey
clay and silt at the bedrock contact
Figure 13 - Trench #2 is located downstream of #1, on the left limit bench of Patton Creek. This pebble
cobble gravel is well stratified with a sandy matrix21
Figure 14 - Trench #3 is located downstream of Patton Creek on the right limit of Maisy May Creek, and
it is approximately 5 m to bedrock. A thin muck layer was overlying the gravel, which is 4 to 5 m thick.
The gravel is well-sorted and stratified with both planar tabular cross-bedding and massive channel-fill
cobble-boulder groups with a sandy matrix. Two main units appear to be distinguished from each other,
one has an abundance of limestone clasts and a paleoflow direction (from imbrication) which appears to
trend out of Patton Creek valley, while the other has a paleoflow trend parallel to the Maisy May Creek
valley
Figure 15 - Trench #4 is located on the right limit bench of Maisy May Creek and in some parts is 3 m to
bedrock. There was a thin muck layer removed before trenching. The gravel is approximately 2 m thick
and includes cryoturbated, frost shattered pebble-cobble-boulder gravel with a medium sand matrix.
Sand lenses are present. The bedrock is weathered orange22
Figure 16 - RES20-PC79C-01 is surveyed SW to NE on the right limit of Maisy May Creek. This survey is
roughly parallel to RES20-PC79B-01. The gravels in this section appear to be up to 8 m deep in areas,
with one drill target in a frozen bedrock depression. There is likely a thin layer of muck overlying the
bench gravels. Trench # 3 was done in the center of this line and hit bedrock at approximately 5 m24

Figure 17 - RES20-PC79B-01 is surveyed SW to NE on the right limit of Maisy May Creek. This survey is roughly parallel to RES20-PC79C-01. The gravels in this section appear to be up to 10 m deep. There is likely a thin layer of muck overlying the bench gravels......25 Figure 18 -RES20-PC78-01 is surveyed NE to SW along the left limit bench of Maisy May Creek across from Patton Creek. There are 3 drill or test pit targets identified on this survey ranging from 9-12 m Figure 19 - RES20-PC70-01 is surveyed on the right limit bench of Maisy May Creek from SW to NE. There is an additional drilling or test pitting target identified by the geophysics. Trench #4 encountered Figure 20 - RES20-PC62-01 is surveyed NE to SW. Several auger drill holes were completed in the main valley portion of this resistivity line, all of which had placer gold values. Drill hole 20-13 had 2 mg, 20-12 had 5 mg, 2-11 had 2 mg, 20-9 had 10 mg, 20-38 had 41 mg, 20-10 had 15 mg, and 20-37 had 12 mg of placer gold. An additional target is identified on the bench with an estimated depth of 8 m. This area had the most promising exploration results in 2020 on Maisy May Creek, and the interpreted bedrock Figure 21 - RES20-PC59-01 is surveyed across the main Maisy May valley from NE to SW. A line of drill holes (20-2 to 20-7) just NW of this survey reached bedrock between 15 ft and 34 ft from surface and returned placer gold values up to 23 mg. Drill hole 20-1 was drilled at the beginning of this line reaching Figure 22- RES20-CLIFFORD-01 was surveyed near to the current Maisy May camp, perpendicular to Maisy May creek valley along a left-limit bench at the confluence with tributary valley Candace Creek. Subsequent auger drill holes reached bedrock between 19-21 ft. from surface, which correlated well with the interpreted bedrock profile. Only trace amounts of placer gold were recovered in the drill

List of Tables

Table 1 - Claim status, Maisy May Creek property	.4
Table 2 - Auger drill hole coordinates, depths to bedrock, and the amount of placer gold found in each	
hole	16
Table 3 – Test trench claim locations and coordinates, Maisy May Creek	17
Table 4 Test trench volumes and sample descriptions from the 2020 exploration program, Maisy May	/
Creek	18
Table 5 - Geophysics start and end points coordinates as well as lengths of lines for 2020 exploration	
program	31
Table 6 - 2020 Drill target coordinates and depths, Maisy May Creek	31
Table 7 - 2020 Placer Exploration Program Expenses, Maisy May Creek.	33

Executive Summary

The following is the final report under the YMEP (Yukon Mining Exploration Program) for work on Maisy May Creek (YMEP#2020-040), by Geoplacer Exploration Ltd. for Bedrock Mining Company Inc. Maisy May Creek is a right limit tributary of the lower Stewart River, located in central Yukon approximately 100 km by air south of Dawson City, Yukon. The total road distance from Dawson City to the Maisy May Creek placer claims is approximately 140 kilometres.

The 2020 exploration program included access construction, 4.2 creek-miles of aerial drone imagery, 676 ft. of auger drilling, excavator trenching, and 1.59 line-km of electrical resistivity geophysical surveys. The geophysical surveys returned good quality data although discontinuous permafrost and variable groundwater saturation complicated interpretation of the geophysical results. The auger drill holes correlated well with the interpretations of the bedrock contact, which in the main valley is shallow and within easily mineable depths between 13 ft and 25 ft from surface. Drill sample gold results in the main valley were somewhat variable, with the highest values of 41 mg, 31 mg and 25 mg all found on the right limit. Thawed areas, especially near the active channel, hampered drilling and several holes which were quite prospective for finding the paleochannel were halted due to poor conditions.

Exploration on the benches showed that bedrock is shallow beneath a thin layer of overlying muck. The gravel thickness is variable, with depths ranging between 6 ft. and 22 ft. to bedrock. Low values of gold were returned from both the auger drilling and the trench sampling of the benches. The best gold (a large, coarse colour) was found in Trench #1 from the mouth of Patton Creek, on the historic bench which was hand-mined in the early 20th Century.

The overall coarseness of the gold shows that larger bulk samples are necessary to recover a representative amount of placer gold. Poor results from the 2020 drilling program are corroborated by Queenstake's drilling in 1987 (Queenstake 1987a, 1987b) where they drilled immediately adjacent to their active mining pit, and yet recovered no gold in those drill samples. However, they successfully mined the same area later in the same season, with grades averaging 0.015 oz/cubic yard (\$40/yd at today's prices). Thus, although promising placer gold results in drill programs are always a good indicator, poor gold returns in drilling are not necessarily counter indicative of the presence of an economic placer gold deposit.

Exploratory to full size mining cuts should be continued in the main valley of Maisy May creek upstream of the current workings. Further exploration is also warranted on the high-level benches, particularly on the right limit downstream of the mouth of Patton Creek, and adjacent to the areas on the right limit in the main valley where good placer gold values were returned from auger drilling. Resistivity geophysics should be used to calibrate the bedrock profile. Access construction on the benches should be initiated in the spring while there is still seasonal permafrost. Bulk samples from new and existing trenches should be at least 50 cubic yards each, and staged at regular intervals along each trench and along the trend of the Maisy May valley. Auger drilling may be used to calibrate bedrock in the geophysical surveys, but drill samples should not be used as the primary indicator of placer gold potential, especially on the benches.

Introduction

The following is the final report on placer exploration of the Maisy May Creek property conducted under grant number YMEP2020-040 of the Yukon Mineral Exploration Program (YMEP), placer module. The 2020 program included access construction, drone imagery, auger drilling, excavator trenching and resistivity surveys.

Location and Access

Maisy May Creek is a right limit tributary of the lower Stewart River, located in central Yukon approximately 100 km by air south of Dawson City, Yukon (Figure 1). The centre of the current property is 63°18'44"N and 138°57'22; on NTS map sheet 1150/07, in the Dawson Mining District (Figure 2).

Access to the property can be gained by fixed-wing air or summer road. Surface access is via secondary gravel roads - the usual route runs along Hunker Creek to King Solomon Dome, down Sulphur Creek to Indian River, then up Eureka Creek to Eureka/Black Hills Dome. From Eureka/Black Hills Dome, a relatively new access road forks right (southwest) towards Rosebute Creek and Henderson Dome. At Henderson Dome, a south-fork turn leads south across the ridgeline and then down Maisy May Creek road towards the property. The total road distance from Dawson City to the centre of the Maisy May placer property is approximately 140 kilometres.

A 600 metre-long "bush" airstrip is located in the valley of Maisy May Creek. The geographic coordinates of the airstrip are 63°20'05"N and 138°59'02"W.

An improved road is proposed as part of the Newmont Coffee mine. This road is currently routed through Maisy May Creek.

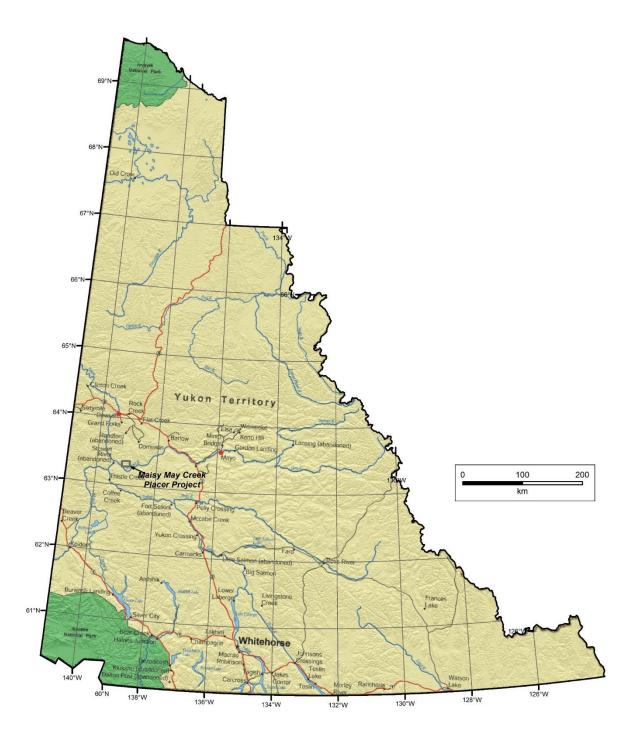


Figure 1 - General Location of Maisy May Creek Project, Yukon.

Placer Tenure

Table 1 shows a summary of the claims owned by Bedrock Mining Company Inc. on Maisy May Creek.

STATUS	CLAIM NAME	GRANT NUMBER	OWNER NAME	STAKING DATE	RECORDED DATE	EXPIRY DATE
Active	PC 51	P 12350	Bedrock Mining Company Inc 100%	5/21/1981	5/25/1981	30/01/2022
Active	PC 52	P 12351	Bedrock Mining Company Inc 100%	5/21/1981	5/25/1981	30/01/2022
Active	PC 53	P 12352	Bedrock Mining Company Inc 100%	5/21/1981	5/25/1981	30/01/2022
Active	PC 54	P 12353	Bedrock Mining Company Inc 100%	5/21/1981	5/25/1981	30/01/2022
Active	PC 55	P 12354	Bedrock Mining Company Inc 100%	5/21/1981	5/25/1981	30/01/2022
Active	PC 56	P 12355	Bedrock Mining Company Inc 100%	5/21/1981	5/25/1981	30/01/2022
Active	PC 57	P 12356	Bedrock Mining Company Inc 100%	5/21/1981	5/25/1981	30/01/2022
Active	PC 58	P 12357	Bedrock Mining Company Inc 100%	5/21/1981	5/25/1981	30/01/2022
Active	PC 59	P 12358	Bedrock Mining Company Inc 100%	5/21/1981	5/25/1981	30/01/2022
Active	PC 60	P 12359	Bedrock Mining Company Inc 100%	5/21/1981	5/25/1981	30/01/2022
Active	PC 61	P 12360	Bedrock Mining Company Inc 100%	5/21/1981	5/25/1981	30/01/2022
Active	PC 62	P 12361	Bedrock Mining Company Inc 100%	5/21/1981	5/25/1981	30/01/2022
Active	PC 63	P 12362	Bedrock Mining Company Inc 100%	5/21/1981	5/25/1981	30/01/2022
Active	PC 64	P 12363	Bedrock Mining Company Inc 100%	5/21/1981	5/25/1981	30/01/2022
Active	PC 65	P 12364	Bedrock Mining Company Inc 100%	5/21/1981	5/25/1981	30/01/2022
Active	PC 66	P 12365	Bedrock Mining Company Inc 100%	5/21/1981	5/25/1981	30/01/2022
Active	PC 67	P 12366	Bedrock Mining Company Inc 100%	5/21/1981	5/25/1981	30/01/2022
Active	PC 68	P 12367	Bedrock Mining Company Inc 100%	5/21/1981	5/25/1981	30/01/2022
Active	PC 69	P 12368	Bedrock Mining Company Inc 100%	5/21/1981	5/25/1981	30/01/2022
Active	PC 70	P 12369	Bedrock Mining Company Inc 100%	5/21/1981	5/25/1981	30/01/2022
Active	PC 71	P 12370	Bedrock Mining Company Inc 100%	5/21/1981	5/25/1981	30/01/2022
Active	PC 72	P 12371	Bedrock Mining Company Inc 100%	5/21/1981	5/25/1981	30/01/2022
Active	PC 73	P 12372	Bedrock Mining Company Inc 100%	5/21/1981	5/25/1981	30/01/2022
Active	PC 74	P 12373	Bedrock Mining Company Inc 100%	5/21/1981	5/25/1981	30/01/2022
Active	PC 75	P 12374	Bedrock Mining Company Inc 100%	5/21/1981	5/25/1981	30/01/2022
Active	PC 76	P 12375	Bedrock Mining Company Inc 100%	5/21/1981	5/25/1981	30/01/2022
Active	PC 77	P 12376	Bedrock Mining Company Inc 100%	5/21/1981	5/25/1981	30/01/2022
Active	PC 78	P 12377	Bedrock Mining Company Inc 100%	5/21/1981	5/25/1981	30/01/2022
Active	PC 79	P 12378	Bedrock Mining Company Inc 100%	5/21/1981	5/25/1981	30/01/2022
Active	PC 79A	P 12379	Bedrock Mining Company Inc 100%	5/21/1981	5/25/1981	30/01/2022
Active	PC 79B	P 12380	Bedrock Mining Company Inc 100%	5/21/1981	5/25/1981	30/01/2022
Active	PC 79C	P 12381	Bedrock Mining Company Inc 100%	5/21/1981	5/25/1981	30/01/2022
Active	PC 80	P 12382	Bedrock Mining Company Inc 100%	5/21/1981	5/25/1981	30/01/2022
Active	PC 81	P 12383	Bedrock Mining Company Inc 100%	5/21/1981	5/25/1981	30/01/2022
Active	PC 82	P 12384	Bedrock Mining Company Inc 100%	5/21/1981	5/25/1981	30/01/2022

Table 1 - Clain	n status,	Maisy May	Creek	property.
-----------------	-----------	------------------	-------	-----------

STATUS	CLAIM NAME	GRANT NUMBER	OWNER NAME	STAKING DATE	RECORDED DATE	EXPIRY DATE
Active	PC 83	P 12385	Bedrock Mining Company Inc 100%	5/21/1981	5/25/1981	30/01/2022
Active	PC 84	P 12386	Bedrock Mining Company Inc 100%	5/21/1981	5/25/1981	30/01/2022
Active	PC 85	P 12387	Bedrock Mining Company Inc 100%	5/21/1981	5/25/1981	30/01/2022
Active	PC 86	P 12388	Bedrock Mining Company Inc 100%	5/21/1981	5/25/1981	30/01/2022
Active	PC 87	P 12389	Bedrock Mining Company Inc 100%	5/21/1981	5/25/1981	30/01/2022
Active	PC 88	P 12390	Bedrock Mining Company Inc 100%	5/21/1981	5/25/1981	30/01/2022
Active	PC 89	P 12391	Bedrock Mining Company Inc 100%	5/21/1981	5/25/1981	30/01/2022
Active	PC 90	P 12392	Bedrock Mining Company Inc 100%	5/21/1981	5/25/1981	30/01/2022
Active	PC 91	P 12393	Bedrock Mining Company Inc 100%	5/21/1981	5/25/1981	30/01/2022
Active	PC 92	P 12394	Bedrock Mining Company Inc 100%	5/21/1981	5/25/1981	30/01/2022
Active	PC 93	P 12395	Bedrock Mining Company Inc 100%	5/21/1981	5/25/1981	30/01/2022
Active	PC 94	P 12396	Bedrock Mining Company Inc 100%	5/21/1981	5/25/1981	30/01/2022
Active	PC 95	P 12397	Bedrock Mining Company Inc 100%	5/21/1981	5/25/1981	30/01/2022
Active	PC 96	P 12398	Bedrock Mining Company Inc 100%	5/21/1981	5/25/1981	30/01/2022
Active	PC 97	P 12399	Bedrock Mining Company Inc 100%	5/21/1981	5/25/1981	30/01/2022
Active	PC 98	P 12400	Bedrock Mining Company Inc 100%	5/14/1981	5/25/1981	30/01/2022
Active	PC 99	P 12401	Bedrock Mining Company Inc 100%	5/14/1981	5/25/1981	30/01/2022
Active	PC 48	P 19993	Bedrock Mining Company Inc 100%	12/10/1981	12/14/1981	30/01/2022
Active	PC 49	P 19994	Bedrock Mining Company Inc 100%	12/10/1981	12/14/1981	30/01/2022
Active	PC 50	P 19995	Bedrock Mining Company Inc 100%	12/10/1981	12/14/1981	30/01/2022
Active	Cloudy	P 25352	Bedrock Mining Company Inc 100%	7/25/1984	7/27/1984	30/01/2022
Active	Fern	P 44919	Bedrock Mining Company Inc 100%	9/19/2000	9/27/2000	30/01/2022
Active	Clifford	P 45143	Bedrock Mining Company Inc 100%	6/10/2002	6/12/2002	30/01/2022

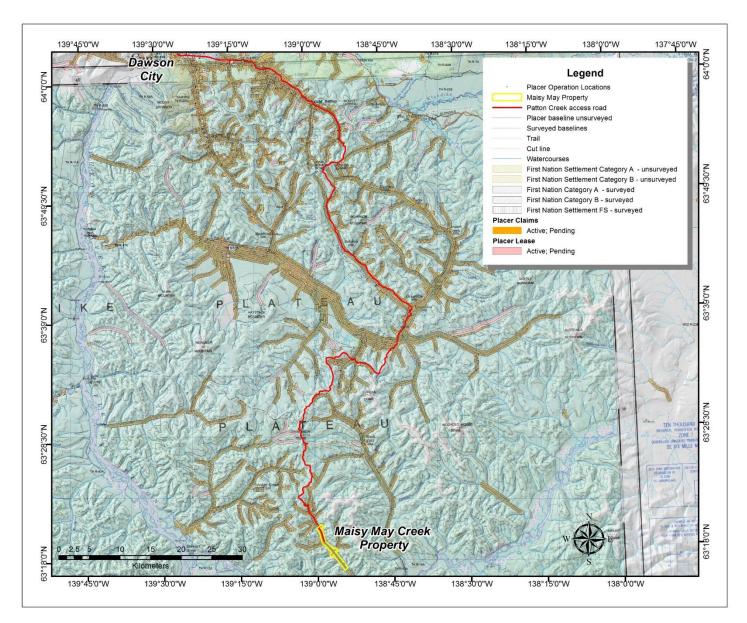


Figure 2 – Location of Maisy May Creek claims and Dawson region placer tenures.

Permitting

The Maisy May property is currently permitted under Class 4 water license PM13-052 and Class 4 Mining Land Use Permit AP13052. Both permits are valid until March 5, 2024.

History of Exploration and Mining - Maisy May Creek and nearby tributaries

According to Government royalty records, Maisy May Creek produced at least 25,926 crude ounces of gold between 1980 and 2010 (LeBarge, 2007; LeBarge and Nordling, 2011). The majority of that gold (19,202 crude ounces) was produced by Queenstake Resources in the period 1984 to 1989 (LeBarge, 2007). Based on the work done during the 1984 season, Queenstake estimated that with selective mining, there were (pre NI43-101, non "compliant") "reserves" of 200,000 cubic yards (152, 911 cubic metres) of gravel with a recoverable grade of 0.012 ounces of fine gold per cubic yard (0.488 grams per cubic metre) at the property (LeBarge, 2007). This estimate was limited to their claim holdings at the time.

In the early 1930s and again in the late 1970s, Mr. J. McDiarmid and partners (Maisy-May Mines Ltd.) dug hand shafts on Maisy May Creek beginning 1 mile from the confluence with Stewart River (Queenstake 1987a, 1987b). The best values encountered both times were at the mouth of left-limit tributary Patton Creek (Queenstake, 1987a). The Queenstake reports also mention that hand-mining took place on a left-limit bench at the mouth of Patton Creek, beginning in the 1920s. This work was done by a Mr. Patton, for whom the creek is named. Reportedly 500 crude ounces were recovered during this time, although this is not recorded in any government royalty records.

Maisy May Mines Ltd. operated on Maisy May Creek from 1980 to 1983 at a location about 11.7 km upstream of the confluence with the Stewart River.

From 1990-1994, Jasper Equipment continued mining upstream from where Queenstake had finished mining in 1989, recovering approximately 2,650 crude ounces (LeBarge, 2007).

From 1993 to 1998, John VanEvery and Richard Fitch intermittently mined under VanEvery Inc. upstream near the headwaters of Maisy May Creek (LeBarge, 2007). Art Christiansen operated a small mine in the same area from 2007 to 2009 (LeBarge and Nordling, 2011). Mr. Christiansen was again active in the area intermittently until 2019.

35249 Yukon Inc. mined Maisy May Creek approximately 3.5 miles (5 km) upstream from its confluence with the Stewart River from 2001 until 2003. Maisy Mae Mining Inc. bought the operation in 2006 and processed a mine cut in 2007 and 2008 located about 4 miles (7 km) upstream of the confluence (LeBarge and Nordling, 2011). The claims were later returned to 40419 Yukon Inc., which conducted a limited test program in late 2014.

H.C. Mining Ltd. conducted a test mining program on an upper right-limit Maisy May tributary in 2012, 2013 and 2014.

In 2013, Bedrock Mining Company Inc. bought many of the Maisy May Creek claims (in the middle reaches) from 40419 Yukon Inc., and subsequently conducted a program of camp and access construction as well as limited test mining. In 2014, the test mining was expanded to an area on Maisy May creek downstream of the confluence of Candace Creek and just upstream of the 2014 test cut of 40419 Yukon Inc. The operation was active again from 2015 to 2020.

Candace Creek Mining Ltd. conducted a placer testing program on left-limit tributary Candace Creek (also known as Moosetooth Creek) in 2013, 2014 and 2015. The program consisted of access construction, resistivity geophysics, sonic drilling, auger drilling, bulldozer trenching and excavator test-pitting.

Regional Bedrock Geology

The project area is situated within the Yukon-Tanana terrane, an accreted pericratonic sequence that covers a large part of the northern Cordillera from northern British Columbia to east-central Alaska (Gordey and Ryan, 2005; Colpron and Nelson, 2006). The Yukon Tanana Terrane consists of Paleozoic schist and gneiss that were deformed and metamorphosed in the late Paleozoic, and intruded by several suites of Mesozoic intrusions that range in age from Jurassic to Eocene (Colpron and Nelson, 2006). The Paleozoic rocks are pervasively foliated with at least two overprinting fabrics (MacKenzie and Craw, 2010; MacKenzie et al, 2008). During Late Permian to Early Jurassic time these rocks were tectonically-stacked along thrust faults which were parallel to regional foliation. Later tensionalextensional tectonics occurred during the mid-Cretaceous, and this resulted in brittle fracture of the Paleozoic rocks, which is likely responsible for structurally-controlled gold mineralization in the south Klondike area including the White Gold exploration camp (MacKenzie et al, 2008; MacKenzie and Craw, 2010; MacKenzie and Craw, 2012).

Local Bedrock Geology

Maisy May Creek area bedrock is mapped as several metamorphic, metaplutonic and volcanic bedrock types (Figure 3). These include Late Proterozoic clastics and marble (map units PDS1 and PDS2); Devonian-Mississippian mafic volcanic rocks and serpentinite (map units DMF1 and DMF6); Late Devonian tonalite and diorite - orthogneiss (map unit MgSR); middle Permian Sulphur Creek quartz monzonite gneiss (map unit PgS); Late Triassic/early Jurassic Minto Suite intrusives (map unit LTrEJgM); and Upper Cretaceous Carmacks volcanics (map unit uKC3). Geological contacts generally trend N-S and NNW-SSE, and recent mapping by MacKenzie and Craw (2012) show a thrust fault trending SE-NW along Maisy May Creek and several associated E-W and W-NW trending faults.

Quaternary History

Most of the south Klondike region has not been glaciated (Duk-Rodkin, 1999) and in fact strong evidence exists that all of Maisy May creek and most of Black Hills Creek escaped glaciation altogether (Jackson et al., 2001). As such, the south Klondike region is dominated by colluvium on the upper slopes and ridges, variably-buried Tertiary to Late Pleistocene alluvial terraces in mid-slope reaches and Late Pleistocene to modern alluvial fans, stream complexes and gulch deposits in the lowermost points of valleys (Jackson, 2005a; 2005b). Major trunk valleys such as the Stewart River were the locale for meltwater channels during the Pleistocene glaciations and contain glaciofluvial terraces well beyond the maximum extent of the Cordilleran ice, however these did not affect most major tributaries (such as Black Hills, Maisy May and Henderson creeks) except at their confluence.

Surficial Geology

Jackson (2005a, 2005b) mapped several types and ages of surficial units along Maisy May Creek and its tributaries, which are shown in Figure 4. The dominant units include CEaP/AtT (Pleistocene Colluvial-Aeolian sediments overlying Tertiary Alluvial Terrace sediments), which occurs on the left limit of Patton at the confluence with Maisy May Creek and extensively along the left limit of Maisy May Creek; and CEaP (Pleistocene Colluvial-Aeolian sediments) which occurs along the right limit of Patton Creek and in many places on the left limit of Maisy May Creek. At higher elevations, Cb-v (Colluvial blanket-veneer) covers most of the hills above the main Maisy May creek valley.

Placer Geology

LeBarge and Nordling (2011) described the stratigraphic section at the lower part of the claims in 2008 as 1 foot (0.3 m) of vegetation underlain by up to 20 feet (6 m) of frozen black muck and 5 to 6 feet (1.5 to 1.8 m) of frozen sandy cobble gravel. The bottom 4 feet (1.2 m) of gravel and 3 feet (0.9 m) of bedrock were sluiced.

Van Loon and Bond (2014) described a right limit exposure in the 2014 cut as 0.7 m (2.5 ft) of pebble-cobble-boulder gravel with medium to coarse grained, sandy matrix on bedrock, which was overlain by a well sorted, compact, moderately oxidized, pebble gravel 0.76 to 0.86 m (2.5 to 2.8 ft) thick. This was overlain by an undulating silty-organic lens with woody fragments and pebbles from 0.86 to 1.0 m (2.8 to 3.3 ft). Pebble gravel was present 1.0 to 1.6 m (3.3 to 5.2 ft) and was imbricated down-valley, well sorted, and pervasively oxidized with 5% cobbles and 65% pebbles. On average, 3 m (10 ft) of overburden was stripped. Sluiced material consisted of 1.5 to 1.8 m (5 to 6 ft) of gravel and 0.3 to 0.6 m (1 to 2 ft) of bedrock.

Bond and Van Loon (2018) described a drainage ditch exposure in the 2016 cut which consisted of 1.2 m (4 ft) of pebblecobble gravel. The gravel contained 2% boulders, 40% cobbles and 60% pebbles and was matrix-supported with a silty, medium-grained sand with discontinuous lenses of silty-sand up to 5 cm in thickness. Sporadic boulders up to 0.6 m (2 ft) in diameter were present in the section. On average, 3 m (10 ft) of overburden was stripped. Up to 0.6 m (2 ft) of bedrock and all coarse gravel, up to 1.8 m (6 ft) thick was sluiced. Gold was described as chunkier on the left limit and flat on the right limit, with a purity averaging 790.

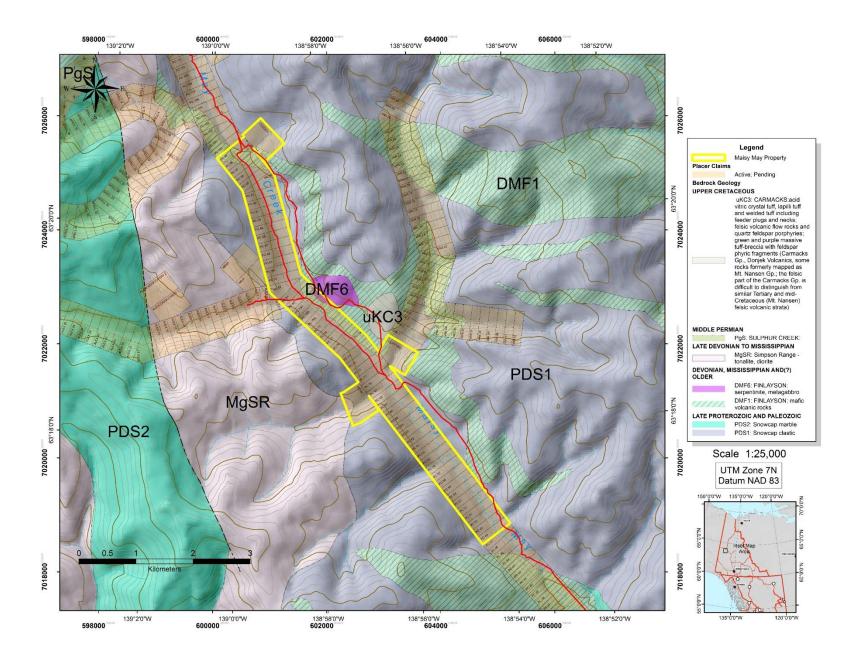


Figure 3 - Bedrock Geology of Maisy May Creek area, after Yukon Geological Survey (2018).

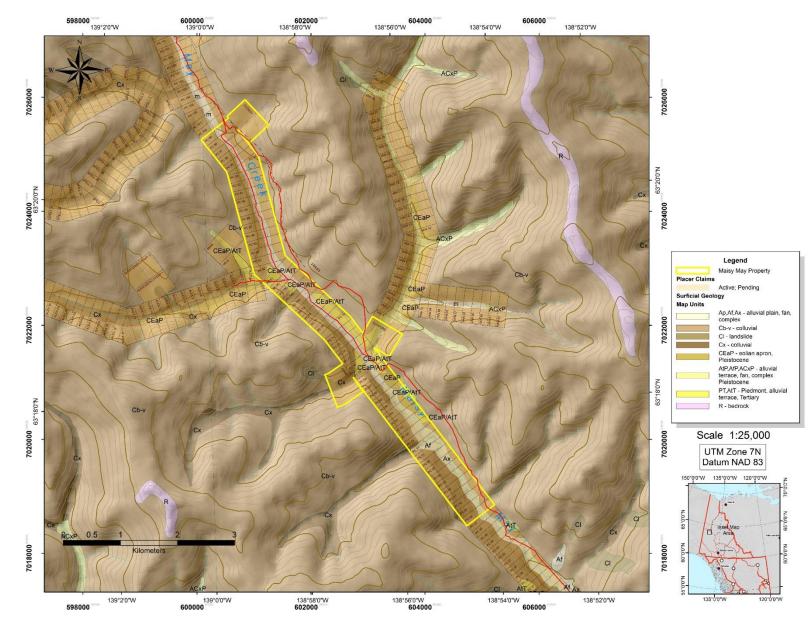


Figure 4 - Surficial Geology, Maisy May Creek, after Jackson (2005a, 2005b).

2020 Exploration Program

Overview

The 2020 exploration program included access construction, 4.2 creek-miles of aerial drone imagery, 676 feet of auger drilling, excavator trenching, and 1.59 line-km of electrical resistivity geophysical surveys.

Access Construction

Several roads were constructed to access the benches on Maisy May Creek where trenches were excavated. Most of the roads were steep, frozen, and muck-covered, which made construction and maintenance of this access challenging. Future development of the bench areas will need to account for these logistical difficulties.

Drone imagery Surveys

High-resolution satellite imagery and recent airphoto coverage are not available for many parts of the Yukon. Much of the imagery available online is unusable due to its low resolution, the presence of cloud cover, or it is simply outdated and no longer representative of the current infrastructure or geomorphology. Therefore, to aid in exploration and mine planning, a program of aerial imaging surveys was conducted.

Personnel and Methodology

The aerial imaging surveys were conducted and processed by William LeBarge and Selena Magel of Geoplacer Exploration Ltd.

The type of drone used is a DJI Mavic 2 Pro, which has a high-resolution Hasselblad camera with a 1-inch photo sensor. Flight planning was done with the Pix4D capture program, and at least 80% overlap of photos was planned between photos within a flight line and between flight lines. Initial processing of the aerial survey is done in the field to check for integrity and data quality.

Final processing of air photos began with image editing software to normalize any extreme contrasts or unusual color balancing needed within the photo sets. A georeferenced orthophoto mosaic was then generated using proprietary software.

Results

The high-resolution imagery obtained by the drone allows for identification of landforms, old roads and trails and previous workings which are not visible with existing available public online satellite imagery.

The drone survey in 2020 captured the new mining pit and test trenches which were not yet constructed or not visible in the earlier imagery. Up to date imagery is essential for mine planning and later phases of exploration of the property.

The drone surveys are used as a basemap in Figures 5-7, and the full image is included in Appendix 2.

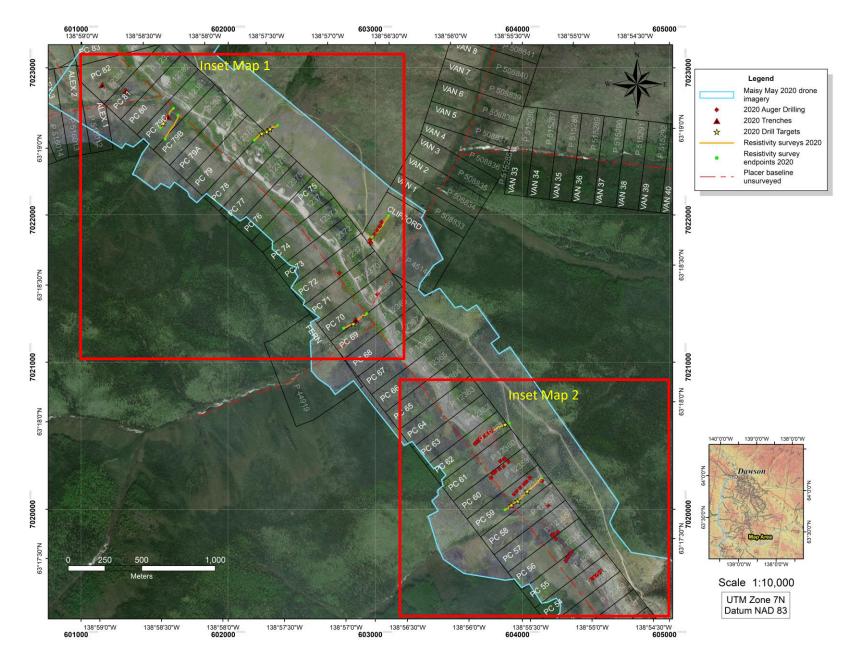


Figure 5 – Drone imagery basemap showing 2020 Exploration work on Maisy May Creek including auger drill holes, trenches and resistivity geophysical survey lines. Inset maps on following pages.

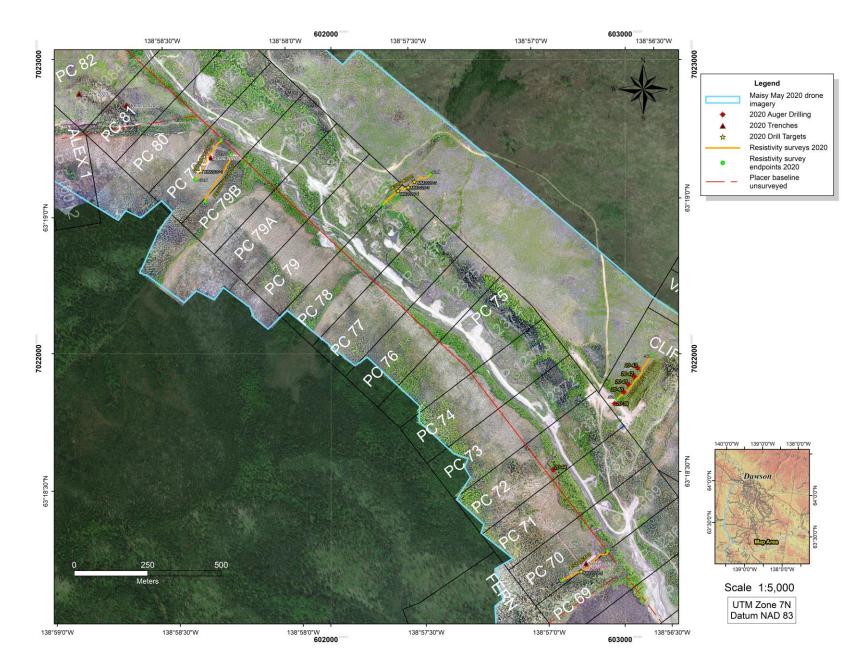


Figure 6 – Inset map 1 showing 2020 exploration work on Maisy May Creek including auger drill holes, trenches, and resistivity geophysical survey lines.

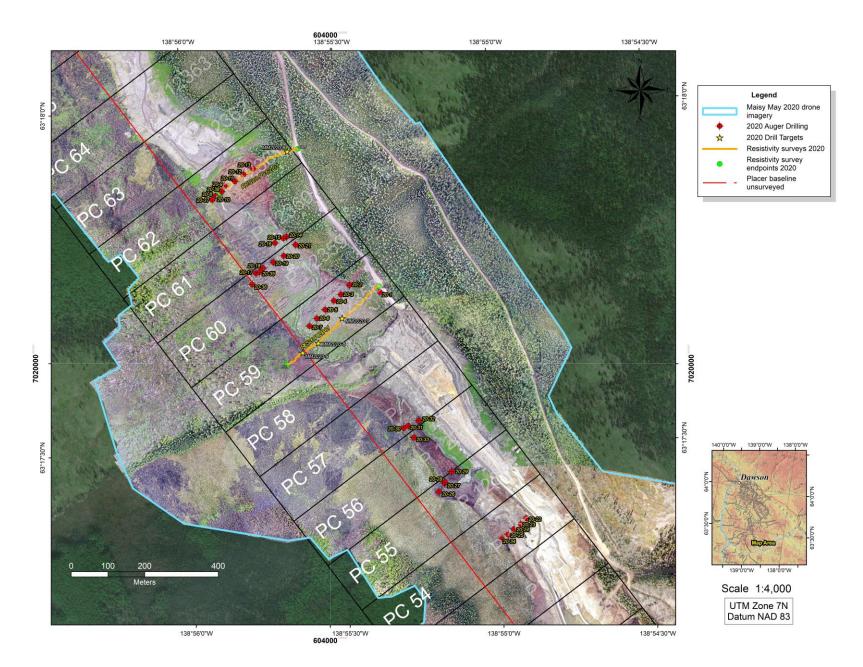


Figure 7 - Inset map 2 showing 2020 exploration work on Maisy May Creek including auger drill holes, trenches, and resistivity geophysical survey lines.

Auger Drilling

There were 36 auger drill holes completed on the Maisy May Creek property totalling 676 ft of sampled holes. Table 2 outlines the depths and gold values in the drill holes, as well as their locations; the drill holes are plotted on Figures 5 to 7. There were 8 drill additional holes that were cancelled due to excessive water. Depths to bedrock varied from 13 ft. to 34 ft. but for the most part were in the 18-22 ft. range.

The best gold results were from drill holes in the main valley on the right limit. Drill hole 20-38 recovered 41 mg of gold in 7 ft of gravel, while drill hole 20-17 had 4 ft of gravel with 31 mg of placer gold. Drill hole 20-25 recovered 25 mg of gold in 4 ft of gravel. Full drill logs are found in Appendix 1.

Drill Hole	Depth to	Gold Weight	UTM_N	UTM_E	LAT_DD	LONG_DD
Name	Bedrock (ft)	(mg)				
20-1	24	0	7020195	604135	63.295453	-138.922842
20-2	34	0	7020214	604052	63.295648	-138.924484
20-3	25	23	7020188	604029	63.295421	-138.92496
20-4	23	6	7020171	604010	63.295275	-138.925349
20-5	23	15	7020147	603986	63.295066	-138.925843
20-6	18	2	7020123	603964	63.294857	-138.926297
20-7	15	14	7020102	603944	63.294675	-138.926709
20-8	?	trace	7020456	603688	63.297924	-138.931584
20-9	18	10	7020483	603713	63.298159	-138.931068
20-10	17	15	7020456	603688	63.297924	-138.931584
20-11	19	2	7020496	603741	63.298267	-138.930502
20-12	18	5	7020514	603764	63.298422	-138.930032
20-13	24	2	7020530	603790	63.298558	-138.929503
20-14	car	ncel	7020345	603881	63.296873	-138.927808
20-15	car	ncel	7020341	603873	63.296839	-138.92797
20-16	car	ncel	7020328	603850	63.296729	-138.928437
20-17	18	31	7020246	603798	63.296009	-138.929526
20-18	18	7	7020260	603817	63.296129	-138.929139
20-19	22	trace	7020276	603845	63.296264	-138.92857
20-20	car	ncel	7020293	603874	63.296408	-138.927981
20-21	car	ncel	7020323	603906	63.296668	-138.927324
20-22	18	trace	7019580	604533	63.289822	-138.915308
20-23	14	trace	7019564	604518	63.289683	-138.915618
20-24	11	10	7019551	604500	63.289571	-138.915985
20-25	17	25	7019536	604484	63.289441	-138.916313
20-26	14	4	7019652	604296	63.290536	-138.919985
20-27		ncel	7019675	604311	63.290738	-138.919671
20-28	15	7	7019678	604312	63.290765	-138.919649
20-29	16	5	7019707	604330	63.29102	-138.919271
20-30	car	ncel	7019825	604200	63.292116	-138.921786
20-31	car	ncel	7019831	604212	63.292166	-138.921543
20-32	16	4	7019845	604241	63.292283	-138.920956
20-33	13	2	7019799	604228	63.291875	-138.921245
20-34	19	trace	7019523	604467	63.28933	-138.916661
20-35	21	trace	7020249	603808	63.296033	-138.929325

Table 2 - Auger drill hole coordinates, depths to bedrock, and the amount of placer gold found in each hole.

Drill Hole Name	Depth to Bedrock (ft)	Gold Weight (mg)	UTM_N	UTM_E	LAT_DD	LONG_DD
20-36	29	0	7020215	603788	63.295734	-138.929746
20-37	21	12	7020445	603679	63.297828	-138.93177
20-38	17	41	7020468	603705	63.298027	-138.931237
20-39	21	0	7021831	602965	63.310465	-138.945117
20-40	20	0	7021870	602996	63.310806	-138.944474
20-41	19	trace	7021896	603011	63.311035	-138.944158
20-42	22	0	7021923	603031	63.311271	-138.943742
20-43	19	0	7021952	603043	63.311528	-138.943484
20-44	18	3	7021606	602756	63.308507	-138.949428

Excavator Trenching

Four excavator trenches were dug on the benches of Maisy May to investigate the depths to bedrock, and to do small bulk samples to recover placer gold. Table 3 shows the claim locations and coordinates for the trenches.

Table 3 – Test trench claim locations and coordinates, Maisy May Creek.

Trench #	Claim	Latitude	Longitude
Trench 2020-1	PC 82	63.320419	-138.980761
Trench 2020-2	PC 81	63.320025	-138.977566
Trench 2020-3	PC 79C	63.318344	-138.971982
Trench 2020-4	PC 70	63.305615	-138.947401

Table 4 gives the trench sample descriptions including volumes which were processed through the test plant. Samples were taken from the trenches as near as possible to the bedrock contact, the gravel was run through a test trommel and long tom by hand. The concentrate from the long tom was panned to recover the placer gold.

The excavator test trenching and testing of material found small amounts of gold in small samples. The best result was from Trench #1 on the Patton Creek bench with one large colour recovered in the sample.

Table 4 -- Test trench volumes and sample descriptions from the 2020 exploration program, Maisy May Creek.

Test Trench Name	Depth to Bedrock (m)	Description of Material	Volume Sampled (yd³)	Gold and Concentration Description
2020-1	2	sandy gravel, limestone clasts with gritty matrix	0.08	pyrite, magnetite, 1 large gold colour
2020-2	3	coarse sand, limestone gravel clasts	0.08	magnetite, 1 fine gold colour
2020-3	5	coarse sand and gravel	0.63	1 medium gold colour, 1 fine gold colour
2020-4	3	taken from bouldery area near bedrock boundary	0.05	1 medium gold colour, 2 fine colours

Figure 8 - Trench #1 sample results: 1 large colour which shows an interesting morphology with remnant dendritic growth patterns, suggesting a short distance of transport in the stream from the bedrock source.

Figure 9 - Trench #3 sample results: 1 medium colour, 1 fine colour.

Figure 10 - Trench #4 sample results: 1 medium colour, 2 fine colours of gold.

Figure 11 - Test trench #1 is located on the left limit bench of Patton Creek. This figure shows samples being collected in pails to be tested.

Figure 12 - Test trench #1. The total section is approximately 2 m to bedrock and displays (from ground surface) 20 cm of organics, 20 cm of tan fine sand with pebbles, 40 cm of laminated fine sand and silt. The main gravel layer is approximately 80 cm thick and consists of sub-rounded imbricated pebble-cobble-gravel with a medium to coarse sand matrix. The clasts in the gravel layer are mostly limestone with quartz and orthogneiss. The bedrock is soft, iron stained, slabby orthogneiss with some steel grey clay and silt at the bedrock contact.

Figure 13 - Trench #2 is located downstream of #1, on the left limit bench of Patton Creek. This pebble cobble gravel is well stratified with a sandy matrix.

Figure 14 - Trench #3 is located downstream of Patton Creek on the right limit of Maisy May Creek, and it is approximately 5 m to bedrock. A thin muck layer was overlying the gravel, which is 4 to 5 m thick. The gravel is well-sorted and stratified with both planar tabular cross-bedding and massive channel-fill cobble-boulder groups with a sandy matrix. Two main units appear to be distinguished from each other, one has an abundance of limestone clasts and a paleoflow direction (from imbrication) which appears to trend out of Patton Creek valley, while the other has a paleoflow trend parallel to the Maisy May Creek valley.

Figure 15 - Trench #4 is located on the right limit bench of Maisy May Creek and in some parts is 3 m to bedrock. There was a thin muck layer removed before trenching. The gravel is approximately 2 m thick and includes cryoturbated, frost shattered pebble-cobble-boulder gravel with a medium sand matrix. Sand lenses are present. The bedrock is weathered orange.

Resistivity Geophysics

Overview

A total of 1.59 line-km of resistivity geophysics was done to further explore the main Maisy May valley, as well as the benches of the valley. The interpreted profiles are shown as Figures 16-22.

Methodology

The resistivity technique injects an electrical current into the subsurface through stainless steel spikes and then measures the remaining voltage at various distances away from the injection point. Ground materials have different resistances to the current and give data points in a cross section of the subsurface. With the data points, a tomogram or pseudo section can be created representing changes of resistivity in the ground. Data was collected using Geotest software, while the inversion and data filtering was completed with RES2DINV software. Data points with poor data quality were exterminated and noisy data was filtered statistically with root mean squared data trimming. Two-dimensional tomograms were produced using least squares damped inversion parameters to display the resistivity properties and to display potential contacts.

The two-dimensional images are used for preliminary interpretations of bedrock structure. The images were interpreted by Selena Magel and William LeBarge.

General principles and assumptions:

- 1. Low resistivity can indicate thawed and water saturated areas, as well as fine grained material.
- 2. Very high resistivity values can be due to ice rich material and frozen or highly disturbed ground.
- 3. Dry gravels, cobbles and boulders generally have high resistivity values.
- 4. The contrasts between values are more important in determining contacts than the absolute values found with resistivity data.

Limitations and Disclaimer

The interpreted sections provide an estimate of the conditions beneath the surface to the depths conducted and are within the accuracy of the system and methods. The data becomes more uncertain with depth and are more accurate toward the surface and is further complicated with permafrost present in the region. The materials are interpreted based upon local geology observed, as well as geologic knowledge of the area. Certain materials may be similar in composition and result in uncertain results. The accuracy of the information presented is not guaranteed and all mine development is the client's responsibility. William LeBarge and Selena Magel accept no liability for any use or application by any and all authorized or unauthorized parties.

SW

RES20-PC79C-01

NE

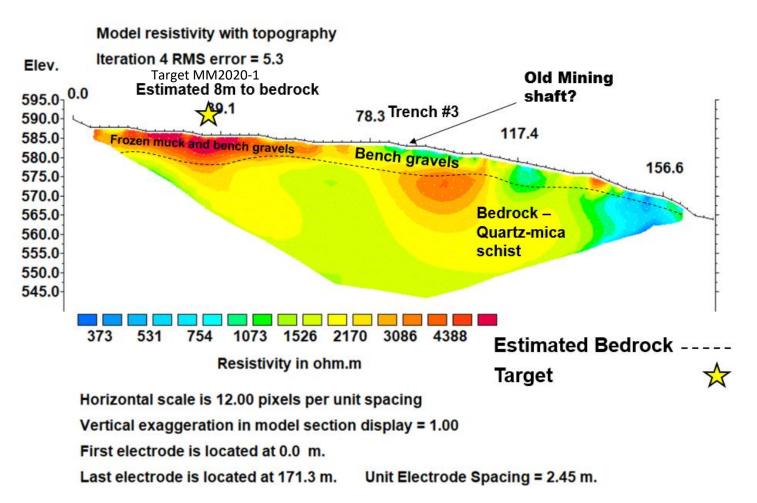


Figure 16 - RES20-PC79C-01 is surveyed SW to NE on the right limit of Maisy May Creek. This survey is roughly parallel to RES20-PC79B-01. The gravels in this section appear to be up to 8 m deep in areas, with one drill target in a frozen bedrock depression. There is likely a thin layer of muck overlying the bench gravels. Trench # 3 was done in the center of this line and hit bedrock at approximately 5 m.

SW

RES20-PC79B-01

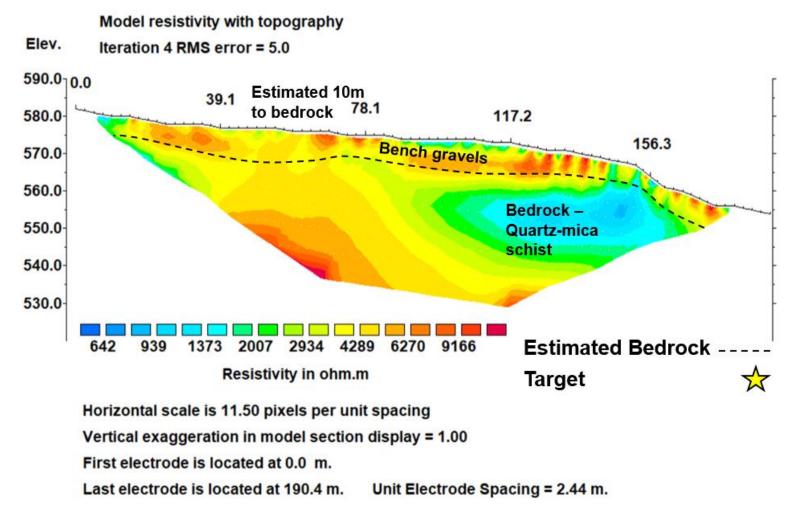


Figure 17 - RES20-PC79B-01 is surveyed SW to NE on the right limit of Maisy May Creek. This survey is roughly parallel to RES20-PC79C-01. The gravels in this section appear to be up to 10 m deep. There is likely a thin layer of muck overlying the bench gravels.

RES20-PC78-01

SW

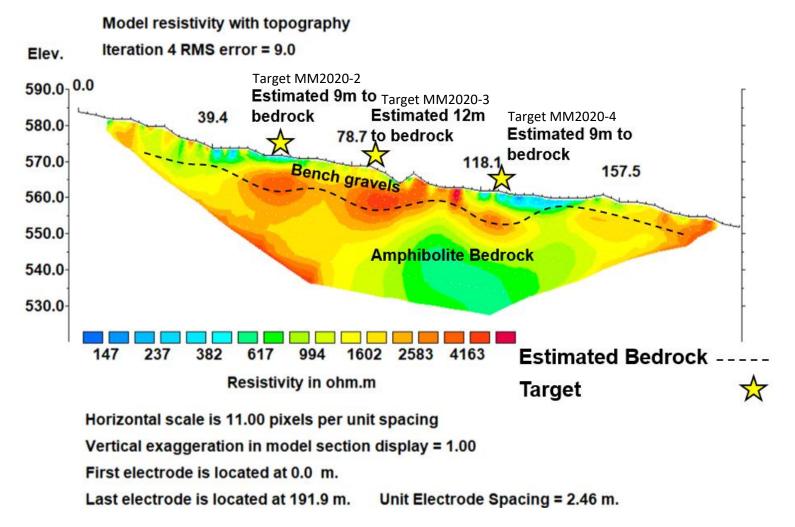
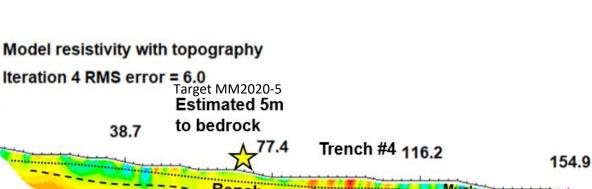



Figure 18 -RES20-PC78-01 is surveyed NE to SW along the left limit bench of Maisy May Creek across from Patton Creek. There are 3 drill or test pit targets identified on this survey ranging from 9-12 m estimated depth to bedrock. The bench gravels are likely overlain by a thin layer of muck.

NE

RES20-PC70-01

NE

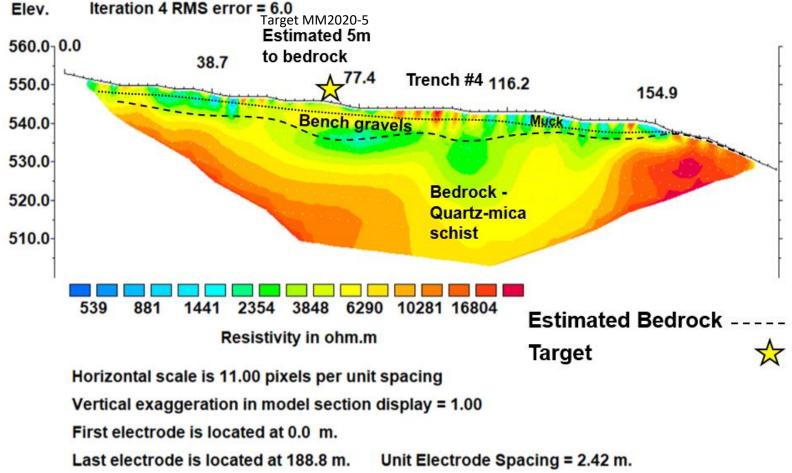


Figure 19 - RES20-PC70-01 is surveyed on the right limit bench of Maisy May Creek from SW to NE. There is an additional drilling or test pitting target identified by the geophysics. Trench #4 encountered bedrock approximately 3 m deep and has about 2 m of gravel under a thin muck layer.

SW

NE

RES20-PC62-01

SW

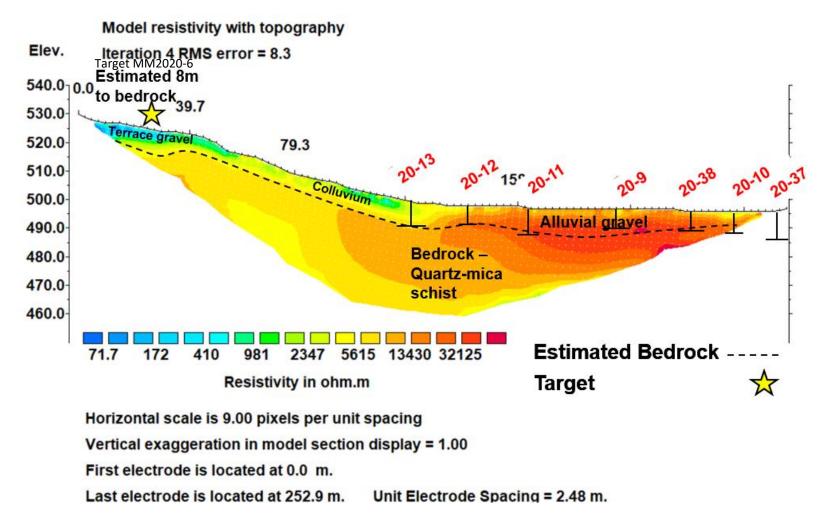


Figure 20 - RES20-PC62-01 is surveyed NE to SW. Several auger drill holes were completed in the main valley portion of this resistivity line, all of which had placer gold values. Drill hole 20-13 had 2 mg, 20-12 had 5 mg, 2-11 had 2 mg, 20-9 had 10 mg, 20-38 had 41 mg, 20-10 had 15 mg, and 20-37 had 12 mg of placer gold. An additional target is identified on the bench with an estimated depth of 8 m. This area had the most promising exploration results in 2020 on Maisy May Creek, and the interpreted bedrock depths from the geophysics correlated well with the drill hole data.

NE

RES20-PC59-01

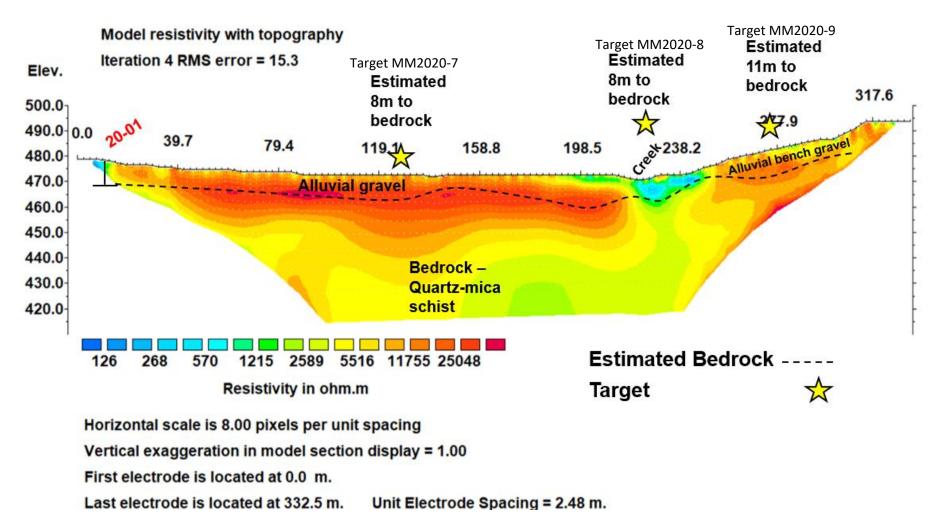


Figure 21 - RES20-PC59-01 is surveyed across the main Maisy May valley from NE to SW. A line of drill holes (20-2 to 20-7) just NW of this survey reached bedrock between 15 ft and 34 ft from surface and returned placer gold values up to 23 mg. Drill hole 20-1 was drilled at the beginning of this line reaching 24 ft to bedrock, with no placer gold found in the gravel.

SW RES20-CLIFFORD-01 NE Model resistivity with topography Iteration 4 RMS error = 6.6 Elev. 155.6 77.8 560.0 10.0 555.0 Bench gravel overlain by silt 550.0 545.0 540.0 535.0 **Amphibolite Bedrock** 530.0 525.0 520.0 186 297 473 753 1199 1909 3039 117 Estimated Bedrock -----Resistivity in ohm.m Target X Horizontal scale is 12.50 pixels per unit spacing Vertical exaggeration in model section display = 1.00 First electrode is located at 0.0 m. Last electrode is located at 189.7 m. Unit Electrode Spacing = 2.43 m.

Figure 22- RES20-CLIFFORD-01 was surveyed near to the current Maisy May camp, perpendicular to Maisy May creek valley along a left-limit bench at the confluence with tributary valley Candace Creek. Subsequent auger drill holes reached bedrock between 19-21 ft. from surface, which correlated well with the interpreted bedrock profile. Only trace amounts of placer gold were recovered in the drill samples.

Resistivity Results

The resistivity surveys returned good quality data with low contact resistances, which were aided by the presence of a thin muck layer which was overlying most areas surveyed. Discontinuous permafrost and variably-saturated ground near the active creek made interpretation of lithological contacts more complicated, but auger drilling nearby assisted the process significantly.

Table 5 gives the coordinates of the 7 resistivity surveys, which are shown on the maps given in Figures 5 to 7. Figures 16-22 show the interpreted resistivity profiles with bedrock contacts and drill targets.

Nine drill targets were identified on the resistivity profiles, with the geographic coordinates and depths given in Table 6. These targets are generally picked in depressions in the interpreted bedrock profiles which could be interpreted as paleochannels.

Resistivity Line Name	Length (m)	Start	Start Point		Point
RES20-CLIFFORD-01	200	63.311	-138.945	63.312	-138.943
RES20-PC59-01	360	63.296	-138.923	63.294	-138.928
RES20-PC62-01	260	63.299	-138.927	63.298	-138.931
RES20-PC70-01	200	63.305	-138.949	63.306	-138.946
RES20-PC78-01	210	63.318	-138.957	63.317	-138.960
RES20-PC79B-01	190	63.317	-138.972	63.318	-138.971
RES20-PC79C-01	170	63.318	-138.973	63.319	-138.971

Table 6 - 2020 Drill target coordinates and depths, Maisy May Creek.

Target Name	Claim Location	Resistivity Line	Target Depth (m)	Latitude	Longitude
MM2020-1	PC79C	RES20-PC79C-01	8	63.317953	-138.972653
MM2020-2	PC78	RES20-PC78-01	9	63.317423	-138.958217
MM2020-3	PC78	RES20-PC78-01	12	63.317261	-138.958649
MM2020-4	PC78	RES20-PC78-01	9	63.317163	-138.959344
MM2020-5	PC70	RES20-PC70-01	5	63.305384	-138.947754
MM2020-6	PC62	RES20-PC62-01	8	63.298952	-138.927619
MM2020-7	PC59	RES20-PC59-01	8	63.294844	-138.924933
MM2020-8	PC59	RES20-PC59-01	8	63.294258	-138.926263
MM2020-9	PC59	RES20-PC59-01	11	63.294033	-138.927127

Conclusions and Recommendations

The 2020 geophysical surveys returned good quality data although discontinuous permafrost and variable groundwater saturation complicated interpretation of the geophysical results. A number of new drill targets were identified both in the valley and on the benches.

The auger drill holes completed in 2020 correlated well with the interpretations of the bedrock contacts especially on resistivity lines RES20-PC62-01 and RES20-CLIFFORD-01.

Exploration results show that the bedrock in the main Maisy May creek valley is shallow and within easily mineable depths between 13 ft and 25 ft from surface. The valley edges have sloping muck layers which increased the overall depths to bedrock from surface.

Trenching, geophysics and auger drilling on the benches showed that bedrock is relatively shallow beneath a thin layer of overlying muck. The gravel thickness is surprisingly variable, with depths ranging between 6 ft. and 22 ft. to bedrock. The gold sampling results from both the auger drilling and the trench sampling on the benches returned low values, with no gold returned in the auger drill samples and only a few colours found in the trench samples. The best gold (a large, coarse colour) was found in Trench #1 from the mouth of Patton Creek, on the historic bench which was hand-mined in the early 20th Century. Sample volumes were quite low however, even in the trench samples which were only between 0.05 and 0.63 cubic yards each.

Gold results from auger drilling in the main valley were somewhat variable, with the highest values of 41 mg, 31 mg and 25 mg all found on the right limit. Thawed areas, especially near the active channel, hampered drilling and several holes which were quite prospective for finding the paleochannel were halted due to poor conditions.

The overall coarseness of the gold (as demonstrated particularly from Trench 2020-1 at the mouth of Patton Creek) shows that larger bulk samples are necessary to recover a representative amount of placer gold. This is also likely the reason that some of the drill samples (especially on the bench) recovered no gold at all, as it is well-documented that the coarser the placer gold is within a drainage, the more difficult it is to sample accurately with a drill program. Queenstake (1987a, 1987b) encountered a similar situation, where they drilled immediately adjacent to their active mining pit on Maisy May creek in 1987, and recovered no gold in drill samples, although they successfully mined the same area later in the same season. In fact, the production grades in that part of the creek at the time were 0.015 oz/cubic yard (\$40/yd at today's prices). Thus, although promising placer gold results in drill programs are always a good indicator, poor gold returns in drilling are not necessarily counter indicative of the presence of an economic placer gold deposit.

The 2020 placer exploration program demonstrated that there are enough indicators of placer gold potential in the main valley of Maisy May creek to continue exploratory to full size mining cuts upstream of the current workings. Further exploration is also warranted on the high-level benches of Maisy May Creek, particularly on the right limit downstream of the mouth of Patton Creek, and adjacent to the areas on the right limit in the main valley where good placer gold values were returned from the 2020 auger drilling program. Resistivity geophysics should be used to distinguish the boundaries between the bench gravels and the rising bedrock rim, and to determine overall depths to bedrock. Access construction on the benches should be at least 50 cubic yards each, and staged at regular intervals along each trench and along the trend of the Maisy May valley. Auger drilling may be used to calibrate bedrock in the geophysical surveys, but drill samples should not be used as the primary indicator of placer gold potential, especially on the benches.

2020 Statement of Expenses, Maisy May Creek

Table 7 - 2020 Placer Exploration Program Expenses, Maisy May Creek.

Equipment	Unit	Rate	Total
D10N Dozer test pitting	46hr	\$485/hr	\$23,425.50
D8R dozer test pitting	31hr	\$300/hr	\$9,765.00
Cat 345CL excavator	35hr	\$320/hr	\$11,760.00
D8 Drill support	22hr	\$300/hr	\$6,930.00
ATV	30 day	\$40/day	\$1,260.00
ATV transport trailer	30 day	\$16/day	\$504.00
4 inch pump	30 day	\$15/day	\$472.50
Personnel - Daily Field expenses	30 day	\$100/day	\$3,150.00
Personnel - Mike Friesen	12 day	\$350/day	\$4,410.00
Personnel - Paul Friesen	18 day	\$350/day	\$6,615.00
Sylvain Fleurant drilling invoice #7			\$17,721.21
Geoplacer Exploration Ltd. Invoice #2020-006			\$21,756.00
Bedrock Mining Company Inc. Invoice #145			\$2,520.00
		Total	\$110,289.21

Statements of Qualifications

William LeBarge

I, William LeBarge, of 13 Tigereye Crescent, Whitehorse, Yukon, Canada, DO HEREBY CERTIFY THAT:

- 1. I am a Consulting Geologist with current address at 13 Tigereye Crescent, Whitehorse, Yukon, Canada, Y1A 6G6.
- 2. I am a graduate of the University of Alberta (B.Sc., 1985, Geology) and the University of Calgary (M.Sc., 1993, Geology Sedimentology)
- 3. I am a Practicing Member in Good Standing (#37932) of the Association of Professional Engineers and Geoscientists of British Columbia (APEGBC).
- 4. I have practiced my Profession as a Geologist continuously since 1985.
- 5. I am President and sole shareholder of Geoplacer Exploration Ltd., a Yukon Registered Company.

Dated this 28th day of January, 2021

William LeBarge, P. Geo.

William LeBarge

Selena Magel

I, Selena Magel, of 80B - 18 Azure Road, Whitehorse, Yukon, Canada, DO HEREBY CERTIFY THAT:

- 1. I am a Geologist in Training, registered with APEGA with current address at 80B 18 Azure Road, Whitehorse, YT, Y1A 0L2
- 2. I am a graduate of the University of Calgary (B.Sc., 2017, Geology).
- 3. I have practiced Geology since May 2017.
- 4. I have conducted and interpreted over 100 km of resistivity surveys since the summer of 2017.

Dated this 28th day of January, 2021 Selena Magel, G. I. T.

SeleraMagel

References

Bond, J.D., and Van Loon, S., 2018. Yukon Placer Mining Industry 2015-2017, Yukon Geological Survey, 284 p.

Colpron, M. and Nelson, J.L. (eds.), 2006. Paleozoic evolution and metallogeny of pericratonic terranes at the ancient Pacific margin of North America, Canadian and Alaskan Cordillera. Geological Association of Canada, Special Paper 45, 523 p.

Duk-Rodkin, A., 1999. Glacial Limits Map of Yukon Territory. Geological Survey of Canada, Open File 3694, Exploration and Geological Services Division, Yukon Region, Indian and Northern Affairs Canada, Geoscience Map 1999-2, 1:1 000 000 scale.

Gordey, S.P. and Ryan, J.J., 2005. Geology map, Stewart River area (115 N, 115-O and part of 115 J), Yukon Territory. Geological Survey of Canada, Open File 4970, 1:250 000 scale.

Jackson, L.E., Jr., Shimamura, K., and Huscroft, C.A., 2001. Late Cenozoic geology, Ancient Pacific Margin NATMAP Report 3: A re-evaluation of glacial limits in the Stewart River basin of Stewart River map area, Yukon Territory. Geological Survey of Canada, Current Research, 2001-A3, 8 p.

Jackson, L.E., Jr., 2005a. Surficial Geology, Stewart River, Yukon Territory; Geological Survey of Canada, Open File 4583, scale 1:50 000.

Jackson, L.E., Jr. 2005b. Surficial Geology, Black Hills Creek, Yukon Territory; Geological Survey of Canada, Open File 4584, scale 1:50 000.

Kartashov, I.P., 1971. Geological Features of Alluvial Placers, Economic Geology, Vol. 66, pp. 879-885.

LeBarge, W.P., 2007. Yukon Placer Database–Geology and mining activity of placer occurrences, Yukon Geological Survey, 2 CD-ROMs.

LeBarge, W.P., and Nordling, M.G., 2011. Yukon Placer Mining Industry 2007-2009. Yukon Geological Survey, 151 p.

MacKenzie, D., Craw, D., and Mortensen, J.K., 2008. Structural controls on orogenic gold mineralisation in the Klondike goldfield, Canada. Mineralium Deposita, vol. 43, p. 435-448.

MacKenzie, D.J. and Craw, D., 2010. Structural controls on hydrothermal gold mineralization in the White River area, Yukon. *In*: Yukon Exploration and Geology 2009, K.E. MacFarlane, L.H. Weston and L.R. Blackburn (eds.), Yukon Geological Survey, p. 253-263.

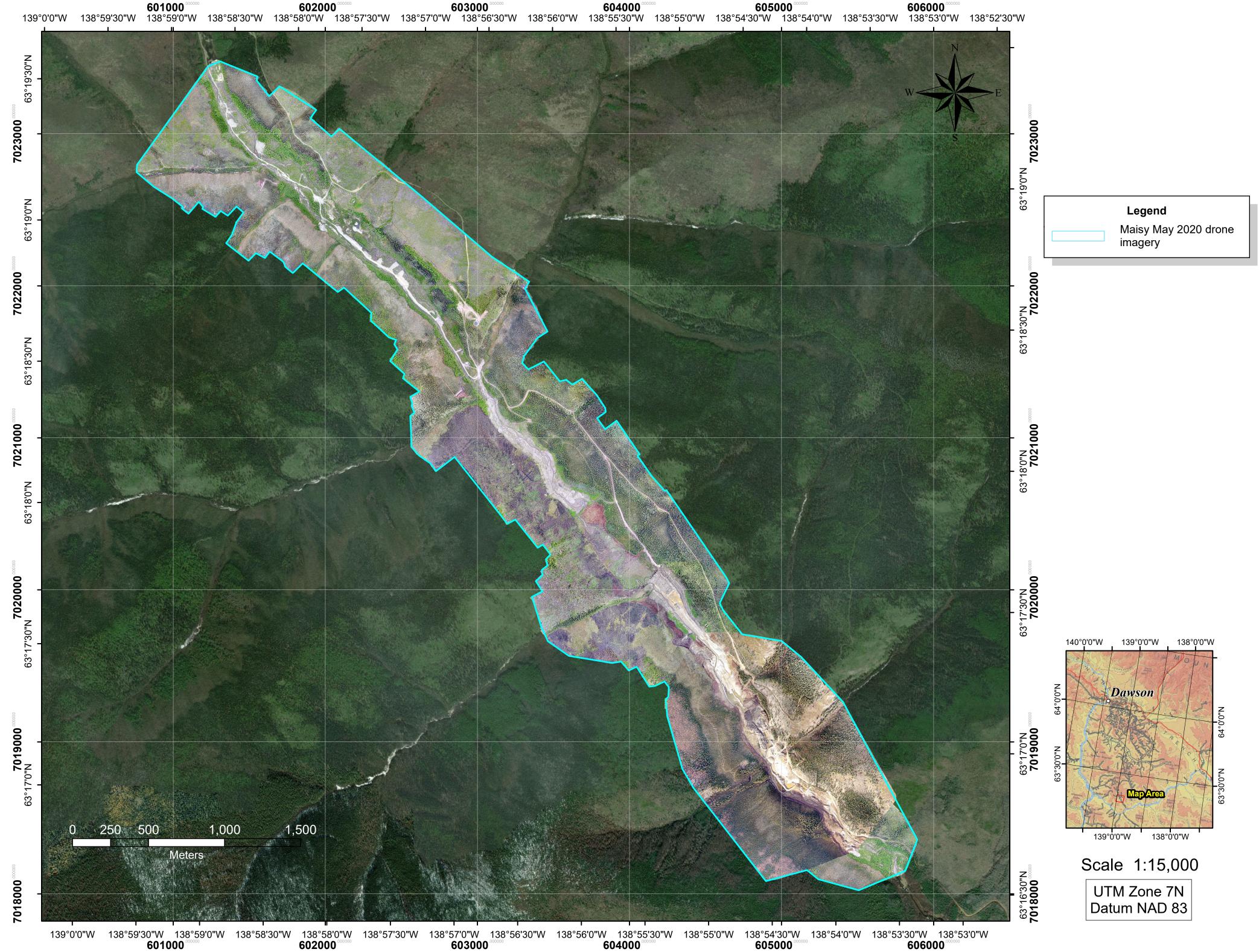
MacKenzie, D. and Craw, D., 2012. Contrasting structural settings of mafic and ultramafic rocks in the Yukon-Tanana terrane. *In:* Yukon Exploration and Geology 2011, K.E. MacFarlane and P.J. Sack (eds.), Yukon Geological Survey, p. 115-127.

Queenstake Resources, 1987a. "Exploration Incentives Program Scope of Work for Exploration Drilling and Bulk Sample Excavation in the Maisy May Creek Placer Deposit". Placer assessment report 87-007, volume 1.

Queenstake Resources, 1987b. "Exploration Incentives Program Scope of Work for Exploration Drilling and Bulk Sample Excavation in the Maisy May Creek Placer Deposit". Placer assessment report 87-007, volume 2.

Van Loon, S., and Bond, J.D. 2014. Yukon Placer Mining Industry 2010-2014, Yukon Geological Survey, 230 p.

Yukon Geological Survey (YGS), 2018. Update of the Yukon Bedrock Geology Digital Map, release date January 2018.


Appendix 1 – Auger Drill logs and Results, 2020 placer exploration program

		PLACER DRILL LOG		
Date: 18/06/2 24/06/2020	2020 to	Driller: Sylvain Fleurant		
Type of Drill: auger		Inside Diameter of Drill: 6 inch		
Location: M	aisy May Creek			
Map : 115-O	-07p			
Drill Hole Total		Remarks: samples/results		
Number	Footage			
20-1	29ft	3ft thawed muck 3ft soft bedrock slide yellow 11ft thawed muck little water 2ft soft gravel 5ft medium hard bedrock slide gravel (bedrock at 24ft) 4ft soft no crunch bedrock 1ft soft crunchy bedrock yellow little water good recovery (no gold)		
20-2	39ft	31ft frozen muck 1ft soft gravel 2ft hard gravel (bedrock at 34ft) 3ft soft no crunch bedrock 2ft soft crunchy bedrock yellow (no gold)		
20-3	33ft	20ft frozen muck 5ft very hard gravel (bedrock at 25ft) 3ft soft no crunch bedrock yellow 1ft crunchy medium hard bedrock (pull out at 29ft) 1ft medium hard bedrock 3ft soft no crunch bedrock yellow (gold 23mg)		
20-4	28ft	19ft frozen muck 2ft soft gravel 2ft very hard gravel (bedrock at 23ft) 3ft soft no crunch bedrock yellow 2ft hard crunchy bedrock yellow (gold 6mg)		
20-5	26ft	14ft frozen muck 9ft very hard gravel (bedrock at 23ft) 3ft very hard bedrock green some pyrite (gold 15mg)		
20-6	22ft	13ft frozen muck 2ft soft gravel 3ft very hard gravel (bedrock at 18ft) 4ft soft no crunch bedrock yellow (gold 2mg)		
20-7	19ft	3ft frozen muck 4ft soft sand 5ft soft no crunch small gravel muck mix 2ft medium hard gravel 1ft hard gravel (bedrock at 15ft) 4ft soft bedrock grey (gold 14mg)		
20-8	15ft	3ft thawed sand 7ft frozen muck 5ft soft gravel 3ft very hard gravel (could not penetrate further) (gold trace)		
20-9	24ft	9ft frozen muck 4ft soft gravel 1ft hard gravel 2ft medium hard gravel (bedrock at 18ft) 1ft soft no crunch bedrock 3ft soft broken bedrock (pull out at 22ft) 1ft hard bedrock 1ft soft no crunch bedrock yellow pyrite (gold 10mg)		
20-10	22ft	7ft frozen muck 3ft soft gravel 4ft medium hard gravel 1ft very hard bolder 2ft hard broken bedrock (bedrock at 17ft) 2ft hard broken bedrock red orange some pyrite 3ft very hard bedrock quartz red orange (gold 15mg)		
20-11	23ft	12ft frozen muck 2ft soft gravel muck mix 3ft hard gravel 2ft very hard gravel (bedrock at 19ft) 1ft soft bedrock 3ft hard bedrock red some pyrite (gold 2mg)		
20-12	21ft	15ft frozen muck 3ft very hard gravel (bedrock at 18ft) 2ft soft no crunch bedrock 4ft medium hard bedrock yellow (gold 5mg)		

		PLACER DRILL LOG
Date: 18/06/ 24/06/2020	2020 to	Driller: Sylvain Fleurant
Type of Dril	l: auger	Inside Diameter of Drill: 6 inch
Location: M	aisy May Creek	
Map : 115-0	-07p	
Drill Hole	Total	Remarks: samples/results
Number	Footage	
20-13	28ft	17ft frozen muck 1ft soft gravel 1ft hard gravel 5ft very hard gravel (bedrock at 24ft) 2ft soft little crunchy 2ft hard bedrock red orange (gold 2mg)
20-14	9ft	9ft thawed muck water cancel
20-15	9ft	9ft thawed muck water cancel
20-16	14ft	12ft frozen muck 2ft thawed gravel
20-17	21ft	14ft frozen muck 4ft hard gravel (bedrock at 18ft) 2ft soft no crunch bedrock 1ft soft little crunchy bedrock orange (gold 31mg)
20-18	23ft	13ft frozen muck 2ft hard gravel 3ft very hard gravel (bedrock at 18ft) 3ft soft no crunch bedrock 2ft crunchy medium hard bedrock orange (gold 7mg)
20-19	24ft	12ft frozen muck 2ft medium hard gravel 8ft very hard gravel (bedrock at 22ft) 2ft soft no crunch yellow (gold trace)
20-20	9ft	7ft thawed muck 2ft thawed gravel water Cancel
20-21	14ft	13ft frozen muck 1ft thawed gravel water Cancel
20-22	24ft	7ft frozen muck 1ft hard gravel 1ft hard gravel 2ft medium hard gravel 3ft sand 4ft hard gravel (bedrock at 18ft or 21ft) 3ft soft crunchy bedrock 3ft soft no crunch bedrock grey green (gold trace)
20-23	18ft	8ft frozen muck 4ft soft gravel 2ft very hard gravel (bedrock at 14ft) 3ft soft crunchy bedrock 1ft very hard bedrock (could not penetrate further) (gold trace)
20-24	15ft	2ft frozen muck 3ft medium hard gravel 1ft muck 1ft very hard gravel 2ft soft gravel muck mix 2ft hard gravel (bedrock maybe at 11ft) 1ft soft broken bedrock yellow 3ft very hard bedrock (could not penetrate further) (gold 10mg)
20-25	24ft	1ft frozen muck 7ft soft decompose bedrock 2ft soft gravel 3ft muck (13ft) 2ft soft gravel muck mix 2ft hard gravel (bedrock at 17ft) 2ft soft no crunch bedrock 5ft soft crunchy bedrock yellow (gold 25mg)
20-26	20ft	7ft frozen muck 1ft soft gravel 2ft hard gravel 2ft sand 2ft hard gravel (bedrock maybe at 14ft) 1ft soft bedrock 6ft hard broken bedrock (gold 4mg)
20-27	8ft	7ft frozen muck 1ft thawed gravel water Cancel
20-28	23ft	7ft frozen muck 4ft soft gravel 4ft very hard gravel (bedrock at 15ft) 8ft soft little crunchy bedrock yellow (gold 7mg)

		PLACER DRILL LOG
Date: 18/06/ 24/06/2020	2020 to	Driller: Sylvain Fleurant
Type of Dril	l: auger	Inside Diameter of Drill: 6 inch
Location: M	aisy May Creek	
Map : 115-0	-07p	
Drill Hole	Total	Remarks: samples/results
Number	Footage	
20-29	19ft	9ft frozen muck 7ft hard gravel (bedrock at 16ft) 2ft soft bedrock no crunch 1ft soft bedrock little crunchy green (gold 5mg)
20-30	9ft	8ft frozen muck 1ft thawed gravel water cancel
20-31	9ft	8ft frozen muck 1ft thawed gravel water cancel
20-32	20ft	8ft frozen muck 4ft soft gravel 4ft hard gravel (bedrock at 16ft) 1ft hard broken bedrock red 3ft very hard bedrock or broken bedrock (could not penetrate further) (gold 4mg)
20-33	19ft	5ft frozen muck 2ft soft gravel 6ft hard gravel (bedrock at 13ft) 5ft soft no crunch red bedrock 1ft soft bedrock little crunchy (gold 2mg)
20-34	22ft	8ft frozen muck 7ft soft sand small gravel 2ft gravel medium hard 2ft hard gravel (bedrock at 19ft) 3ft very hard bedrock (could not penetrate further) (gold trace)
20-35	27ft	13ft frozen muck 8ft hard gravel (bedrock at 21ft) 3ft hard broken bedrock yellow 3ft soft no crunch bedrock (gold trace)
20-36	34ft	26ft frozen muck 3ft hard gravel (bedrock maybe at 29ft or not reach) 5ft very hard bedrock or bedrock slide (no gold)
20-37	24ft	bedrock yellow (gold 12mg) use casing 3ft thawed muck 5ft frozen muck 10ft hard gravel (bedrock at 18ft) 1ft soft yellow bedrock 4ft very hard
20-38	22ft	10ft frozen muck 7ft very hard gravel (bedrock at 17ft) 3ft soft no crunch bedrock yellow red 2ft soft bedrock crunchy (gold 41mg)
20-39	39ft	21ft thawed soft gravel (bedrock maybe at 21ft) 8ft soft no crunch decompose bedrock (pull out at 29ft some gravel mix with bedrock) 4ft frozen soft no crunch bedrock 2ft medium hard crunchy bedrock (pull) 2ft hard crunchy bedrock 2ft no crunch bedrock (no gold 2 tbs black sand)out at 35ft gravel mix with bedrock
20-40	24ft	5ft thawed silt 15ft thawed gravel (bedrock at 20ft) 5ft soft no crunch bedrock red (no gold)
20-41	27ft	6ft thawed silt 13ft thawed gravel (bedrock at 19ft) 6ft soft little crunchy bedrock red 2ft soft no crunch bedrock (gold trace)
20-42	29ft	10ft thawed silt 12ft thawed gravel (bedrock at 22ft) 7ft crunchy medium hard bedrock red (no gold)
20-43	24ft	12ft thawed silt 7ft thawed medium hard gravel (bedrock at 19ft) 3ft medium hard bedrock 2ft hard bedrock (no gold)
20-44	22ft	14ft frozen muck 4ft hard gravel (bedrock at 18ft) 1ft soft bedrock 3ft hard broken bedrock (gold 3mg)

Appendix 2 – Drone Image

139°0'0"W 138°59'30"W 138°59'0"W 138°58'30"W 601000

138°54'30"W 138°54'0"W 138°53'30"W 138°53'0"W 605000^{......}606000^{.....}