YMEP FINAL REPORT

on

AUSTRALIA CREEK PLACER PROPERTY

Placer Claims

AUS 1 to AUS 10 (P 515612-P 515621)

AUS LL 1 to AUS LL 4 (P 520217 - P 520220)

For

Grim Estates Ltd.

Ву

William LeBarge Geoplacer Exploration Ltd. and Mikhaela Meznaric Yukon Alpine Heliski Ltd.

Location of 2021 work area: 63°36'51"N; 138°39'33"W

NTS map sheet: 115O/10 Mining District: Dawson Date: January 31, 2022

Table of Contents

Executive Summary	1
Introduction	2
Location and Access	2
Personnel and dates of work	2
Placer Tenure and Permitting	5
Previous Exploration and Mining - Australia Creek	6
Regional Bedrock Geology	7
Local Bedrock Geology and Mineral Occurrences	8
Quaternary History	8
Surficial Geology	8
Recent Work History	11
Geophysics	11
Trenching	11
Bulk Sampling	14
Shafting	15
Drilling	15
2021 Placer Exploration Program	19
Overview	19
Auger Drilling	19
Sonic Drilling	22
Reverse Circulation (R/C) Drilling	28
Discussion	30
Conclusions and Recommendations	33
Statement of Qualifications	34
William LeBarge	34
References	35

List of Figures

Figure 1 - Location of Australia Creek Project, Yukon
Figure 2 - Location of "Wounded Moose Option" placer claims on Australia Creek where Grim Estates
Ltd. conducted exploration drilling in 20214
Figure 3 - Bedrock Geology of 2021 exploration area on Australia Creek, after Yukon Geological Survey
(2021). Locations of drill holes also shown9
Figure 4 - Surficial Geology, Australia Creek, after Froese and Jackson (2005a, 2005b). The location of
drill holes conducted in 2021 are also shown
Figure 5 – Recent exploration on Australia Creek by Harris and associated entities, including Fry
Exploration and Mining Inc. and Metallic Minerals Corp. This area is approximately 2 km upstream of
the 2021 exploration area
Figure 6 - Placer gold recovered from bulk sample collected near Discovery Outcrop, Australia Creek. The
gold weighed 3.25 grams
Figure 7 – Placer gold recovered from auger drill hole 2018-A4, Australia Creek
Figure 8 - Location of "Wounded Moose Option" placer claims and November 2018 auger drill holes 18
Figure 9 – Placer claim map showing the location of auger, sonic and R/C drilling conducted in 2021 21
Figure 10 - Photos showing the sonic drill program conducted by Mud Bay Drilling Ltd. The drill was a
Boart Longyear LS600 mounted on a Morooka carrier, using 6" casing. The drill was supported by a
second tracked vehicle. Samples were logged at the Sulphur Creek camp, and processed using Devin
Vortex sluice boxes. The placer gold was weighed using a high precision digital scale23
Figure 11 – Map showing placer gold results compiled in mg, recovered from the auger, sonic and R/C
drill programs conducted on the "Wounded Moose Package" of claims on Australia Creek. Note that
each drilling methodology is shown with their own distinct ranges and distribution of values within the
plots
Figure 12 - Detail of upstream portion of 2021 drilling area on Australia Creek (claims AUS 6, 7, 8 and 9).
2018 auger drill holes also shown, including Discovery hole 2018-A432
List of Tables
List of Tables
Table 1 - List of subcontractors conducting drilling on the Australia Creek property in 20212
Table 2 – Placer claim status, Australia Creek "Wounded Moose Option"5
Table 3 - Results from Ground Penetrating Radar Surveys, 2017
Table 4 - November 2018 Auger Drill processing results, Australia Creek
Table 5 – Auger drilling coordinates, depths and gold results, compiled from drill logs of TMM GoldCorp
Inc, Australia Creek property, 2021
Table 6 – Sonic drilling coordinates, depths and gold results, summarized from drill logs, Mud Bay
Drilling Ltd., Australia Creek 202124
Table 7 - R/C drilling results, Vision Quest Exploration Ltd., summarized from drill logs, Australia Creek
2021

Executive Summary

The following is the final report for exploration work conducted under a YMEP grant on Australia Creek by Grim Estates Ltd. in 2021. Australia Creek is a left limit tributary of the Indian River, located in central Yukon approximately 70 km by air south of Dawson City, Yukon. The Australia Creek "Wounded Moose Package" claims are located on Australia Creek approximately 2 km from its confluence with the Indian River.

The centre of the area worked in 2021 is 63°36'51"N and 138°39'33"W, on NTS map sheet 1150/10, in the Dawson Mining District. Access to the property can be gained by a combination of summer and ATV roads from Dawson City. The route runs from Dawson City along the Klondike Highway, then along Hunker Creek to King Solomon Dome, and down Sulphur Creek near its confluence with Indian River (approximately 68 kilometres), followed by an additional 10 km along secondary roads to the work area on Australia Creek. From there, old exploration trails lead to the various parts of the property.

A program of auger drilling was conducted in November 2018 in the area of the current "Wounded Moose Package". Promising gold results from this program (especially Discovery drill hole 2018-A4) were influential in the decision to drill this area further in 2021.

The lease agreement between Metallic Minerals Corp. and Grim Estates required Grim Estates Ltd. to drill and process 150 holes on Australia Creek during the 2021 mining season. The agreement permitted a combination of Auger and Sonic drill holes; Reverse Circulation (R/C) was also later deemed an acceptable drill method. All 150 holes were drilled on the "Wounded Moose Package".

Of the three drilling methodologies employed, the sonic drill was the most successful, in respect to both the amount of sample material recovered, and in the amount of placer gold returned in the samples. Several sonic drill holes recovered gold values higher than 50 mg. The highest gold values from the sonic drilling were in drill holes L-4 (287 mg), K-4 (128 mg), A-4 (106 mg) and M-3 (90 mg). The auger drill had varying results, with 172 mg as the highest value. This was obtained in hole TWIN A4, which was drilled adjacent to Discovery drill hole 2018-A4.

Determining the actual distribution of placer gold in the valley was complicated by the lack of overlap of the different drilling methodologies. A broad zone between claims AUS 2 and AUS 6 was only drilled using the R/C drill, and the placer gold values returned in this area were much lower than the claims upstream (AUS 7, 8 and 9) which were drilled by both the auger drill and the sonic drill. To validate those results, it is recommended for the 2022 exploration program that several additional sonic drill holes be collared amongst the 2021 R/C drill holes.

Overall, the results of the drilling program were favourable, and it appears that there is a zone of economic placer gold values on the right limit of Australia Creek, near the active channel. To determine the extent and value of this zone, a significant bulk sample (> 5000 cubic yards) should be excavated and processed within the footprint of the high-grade auger and sonic drill holes on AUS 8 and AUS 9. Concurrently, a tightly-spaced grid of sonic drill holes should be extended both upstream and downstream, and if the gold values recovered from these holes prove to be economic, a full-scale mining operation should be initiated that includes this area.

No resistivity geophysical surveys were done in this program, but it is likely that immediate and future exploration drilling would benefit from targeting bedrock depressions and associated paleochannels that are often defined by such surveys.

Introduction

The following is the final report for exploration work conducted under a YMEP grant on Australia Creek by Grim Estates Ltd. in 2021.

Location and Access

Australia Creek is a left limit tributary of the Indian River, located in central Yukon approximately 70 km by air south of Dawson City, Yukon (Figure 1). The Australia Creek "Wounded Moose Option" claims are located on Australia Creek approximately 2 km from its confluence with the Indian River.

The centre of the area worked in 2021 is 63°36'51"N and 138°39'33"W, on NTS map sheet 1150/10, in the Dawson Mining District (Figure 2).

Access to the property can be gained by a combination of summer and ATV roads from Dawson City. The route runs from Dawson City along the Klondike Highway, then along Hunker Creek to King Solomon Dome, and down Sulphur Creek near its confluence with Indian River (approximately 68 kilometres), followed by an additional 10 km along secondary roads to the work area on Australia Creek. From there, old exploration trails lead to the various parts of the property.

Personnel and dates of work

The lease agreement between Metallic Minerals Corp. and Grim Estates required Grim Estates Ltd. to drill and process 150 holes on its Australia Ck lease package during the 2021 mining season. The agreement permitted a combination of Auger and Sonic drill holes; Reverse Circulation (R/C) was also later deemed an acceptable drill method. All 150 holes were drilled on the "Wounded Moose Package". Table 1 lists the subcontractors that carried out the drilling work.

 $\label{thm:conducting} \textbf{Table 1 - List of subcontractors conducting drilling on the Australia Creek property in 2021.}$

Sub-contractor	Drilling Method	Number of holes drilled	Dates Active
TMM Gold Corp	Auger (8" bit)	21	May-June 2021
Mud Bay Drilling	Sonic (6" bit)	81	July 2021
Vision Quest	Reverse Circulation (5" bit)	48	September-October 2021
Total		150	

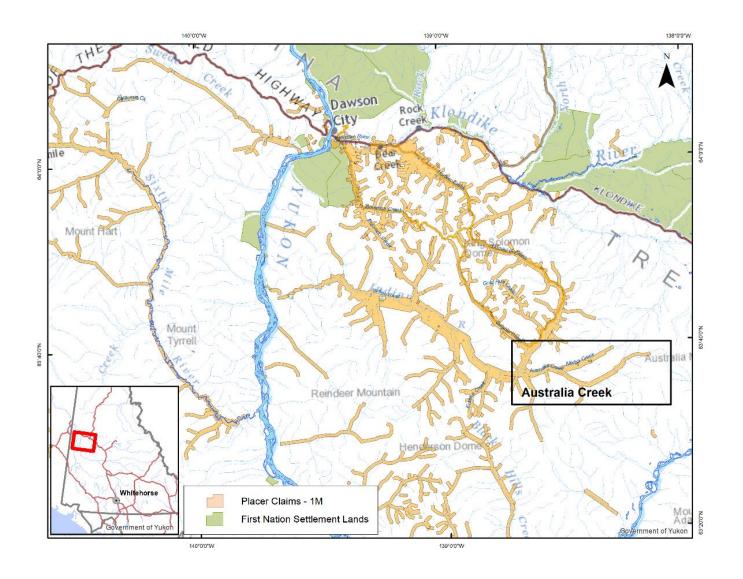


Figure 1 - Location of Australia Creek Project, Yukon.

Figure 2 - Location of "Wounded Moose Option" placer claims on Australia Creek where Grim Estates Ltd. conducted exploration drilling in 2021.

Placer Tenure and Permitting

Table 1 shows a summary of the current claim status for the Australia Creek "Wounded Moose Option" placer claim package. These claims are all under Class 4 Placer Land Use Permit LP01065 and Water License PM16-007, both good to May 4, 2026.

Table 2 – Placer claim status, Australia Creek "Wounded Moose Option".

STATUS	CLAIM NAME	GRANT NUMBER	OWNER NAME	STAKING DATE	RECORDED DATE	EXPIRY DATE
Active	Aus 1	P 515612	Bill G. Harris - 100%	2013-07-30	2013-08-08	2022-12-03
Active	Aus 2	P 515613	Bill G. Harris - 100%	2013-07-30	2013-08-08	2022-12-03
Active	Aus 3	P 515614	Bill G. Harris - 100%	2013-07-30	2013-08-08	2022-12-03
Active	Aus 4	P 515615	Bill G. Harris - 100%	2013-07-30	2013-08-08	2022-12-03
Active	Aus 5	P 515616	Bill G. Harris - 100%	2013-07-30	2013-08-08	2022-12-03
Active	Aus 6	P 515617	Bill G. Harris - 100%	2013-07-30	2013-08-08	2022-12-03
Active	Aus 7	P 515618	Bill G. Harris - 100%	2013-07-30	2013-08-08	2022-12-03
Active	Aus 8	P 515619	Bill G. Harris - 100%	2013-07-30	2013-08-08	2022-12-03
Active	Aus 9	P 515620	Bill G. Harris - 100%	2013-07-30	2013-08-08	2022-12-03
Active	Aus 10	P 515621	Bill G. Harris - 100%	2013-07-30	2013-08-08	2022-12-03
Active	Aus LL 1	P 520217	Metallic Minerals Corp 100%	2018-04-08	2018-04-13	2022-12-03
Active	Aus LL 2	P 520218	Metallic Minerals Corp 100%	2018-04-08	2018-04-13	2022-12-03
Active	Aus LL 3	P 520219	Metallic Minerals Corp 100%	2018-04-08	2018-04-13	2022-12-03
Active	Aus LL 4	P 520220	Metallic Minerals Corp 100%	2018-04-08	2018-04-13	2022-12-03

Previous Exploration and Mining - Australia Creek

Australia Creek has been explored intermittently since before the Gold Rush. Robert Henderson was the first one known to have prospected Australia Creek in 1894. During his work there he tripped, fell over and got a stick stuck through the calf of his leg (Bill Harris, pers. comm.). He wrote the creek off, saying values were too low to mine. In the early 1900's, Yukon Consolidated Gold Company (YCGC) held the ground. They controlled Australia Creek and built dams on Melba Creek, Australia Creek and Wounded Moose Creek as well as a ditch to provide water and energy for the dredges on Lower Dominion and Sulphur Creeks. YCGC did drill the mouth of Australia creek (pers. Comm. Erich Rauguth), but the records have not been obtainable. YCGC held the ground until the early 1970's, after which it came open and was staked by others over the years.

Modern exploration began in the 1980's when John Brown mined Dominion Creek near the mouth of Australia Creek. Later in the 1980's, Hughes Lang Corp and Cream Silver carried out reverse circulation drilling. Amerok Geosciences performed magnetometer and ground penetrating radar surveys in the lower reaches of Australia Creek in 1989 and 1998.

Several placer mines have been in operation in lower Australia Creek near its confluence with Dominion Creek, including Mr. John Erickson who operated for several years in the early 2000's, and Mr. George Abermeth (Gyppo Mining) who was in operation on Wounded Moose Creek between 2003 and 2017 (LeBarge, 2007; LeBarge and Nordling, 2011; Van Loon and Bond, 2014; Bond and Van Loon, 2018).

Regional Bedrock Geology

The project area is situated within the Yukon-Tanana terrane, an accreted pericratonic sequence that covers a large part of the northern Cordillera from northern British Columbia to east-central Alaska (Gordey and Ryan, 2005; Colpron and Nelson, 2006). The Yukon Tanana Terrane consists of Paleozoic schist and gneiss that were deformed and metamorphosed in the late Paleozoic, and intruded by several suites of Mesozoic intrusions that range in age from Jurassic to Eocene (Colpron and Nelson, 2006).

There are five major units in the Klondike area; the Snowcap (Nasina) Assemblage, the Klondike Series, the Slide Mountain (Moosehide) Assemblage, upper Cretaceous Carmacks Group volcanics/volcanoclastics, and Eocene intrusives. The basement unit is the Snowcap Assemblage, consisting of metamorphosed schists and quartzites. It is overlain by the Klondike Series, which is thought to be genetically related to the placer gold of the Klondike. Mid-Permian Sulphur Creek orthogneiss cuts the Klondike Schist extensively especially along Sulphur Creek.

The Klondike Series is dominantly quartzofeldspathic schists of Early Permian (280 m.y.) age. This suite underlies all of the rich placer gold deposits in the area and has been found to contain economic values of hard rock gold. To the south and west, the Klondike Series is in contact with a Late Devonian to Mississippian orthogneiss (YGS, 2021).

Structurally overlying the Klondike and Snowcap are greenstone and altered ultramafics of the Slide Mountain (Moosehide) Assemblage. In the east and south, early Tertiary andesitic volcanics and clastic sediments occur. All of the above units are intruded by diabase to rhyolite Tertiary dykes and sills.

Local Bedrock Geology and Mineral Occurrences

Figure 3 shows the local bedrock in Australia Creek as Snowcap assemblage quartzite and schist in its western reaches and Sulphur Suite intrusive rocks in the central and lower reaches including the area of 2021 exploration. The nearest known hard rock mineral occurrence is MINFILE #115O 092, GRANVILLE, a gold and silver showing underlain by quartzofeldspathic to mafic schist. Soil sampling on claims over the showings failed to return any anomalies, while a VLF-EM survey identified several sub-parallel north trending conductors under the dredged area. (Yukon Minfile, YGS, 2021).

Quaternary History

Australia Creek is a mature tributary to the Indian River, situated in a broad valley within the unglaciated Klondike Plateau. Most of the Klondike region has not been glaciated; however, the Australia Creek drainage was subjected to the marginal effects of a pre-Reid glaciation, which deposited glaciofluvial gravel sourced from meltwater channels which breached the divide in the headwaters to the east (Duk-Rodkin, 1999). There is no evidence that glacial ice advanced into the drainage, although the pre-Reid glaciofluvial terraces covered pre-existing Tertiary White Channel gravels. These are especially evident in downstream reaches above Indian River (Froese and Jackson, 2005a, 2005b).

Surficial Geology

The Australia Creek drainage is dominated by colluvium on the upper slopes and ridges, variably-buried Tertiary to Late Pleistocene alluvial terraces in mid-slope reaches, and Late Pleistocene to modern alluvial fans, stream complexes and gulch deposits in the lowermost points of the valley (Froese and Jackson, 2005a, 2005b). Recent stream action has reworked and redeposited the Tertiary (White Channel) bench gravels which lie along both the sides of the main valley (LeBarge, 2007). Figure 4 shows the surficial geology in the area of the 2021 exploration on Australia Creek.

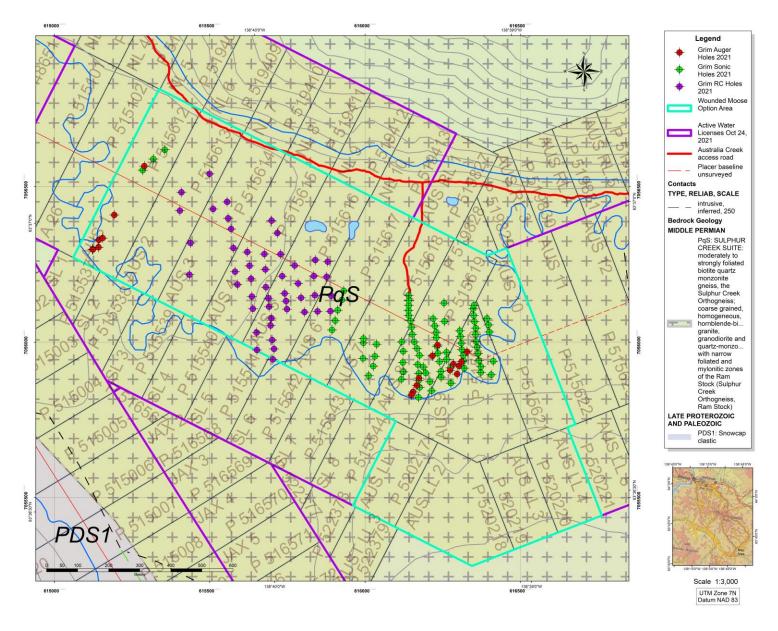


Figure 3 - Bedrock Geology of 2021 exploration area on Australia Creek, after Yukon Geological Survey (2021). Locations of drill holes also shown.

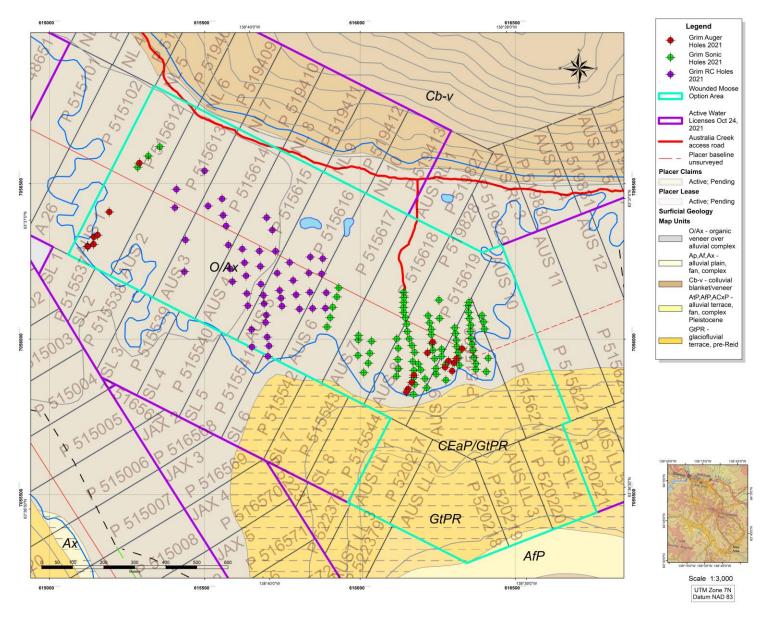


Figure 4 - Surficial Geology, Australia Creek, after Froese and Jackson (2005a, 2005b). The location of drill holes conducted in 2021 are also shown.

Recent Work History

Most of the exploration conducted on Australia Creek in recent years by Bill Harris and associated entities (including Fry Exploration and Mining Inc. and Metallic Minerals Corp.) has been conducted upstream of the 2021 exploration. The area of these activities is shown in Figure 5.

Geophysics

Magnetic Surveys

A 20-line km magnetic survey was conducted in 1998 on the lower end of Australia Creek close to its confluence with Dominion creek. The survey detected one significant magnetic anomaly which appears to be caused by a northwest-trending placer-type body about 5 m below the surface (Smith, 1998). Since that time, no magnetic surveys have been conducted on Australia Creek because they are considered ineffective due to the small amount of magnetite in the gold-bearing pay streak (pers comm. B. Harris).

Ground Penetrating Radar

A total of 10 lines (3860m) of Ground Penetrating Radar (GPR) geophysical surveys were undertaken in March of 2017, five lines and 1670m of which were on the Grim Estates lease (Harris, 2017). The survey showed significant interpreted bedrock depressions which may be remnant buried paleochannel features. Table 3 summarizes the results of the survey.

Table 3 - Results from Ground Penetrating Radar Surveys, 2017.

Line	No. of Paleochannels	No. of Faults	Bedrock depth (m)	comments
L-1	2	1	6-48	Eastern 400m on Grim Estates lease
L-2	3	1	4-18	Paleochannel overlaps with 3 and 5
L-3	1		6-25	
L-4	1		3-13	In 2020 proposed drilling area
L-5	1		3-19	

Trenching

Two trenches were completed in the area in 2015 (Harris, 2016). Trench TR2015-1 (750 cubic yards) was located 10 metres above the creek level of Australia Creek along the left limit (downstream) side of a left limit tributary of Australia Creek. An old trail had been cut into the bank and the trench was cut into the downstream side of the trail. This thawed material was excavated and the material from the deepest part of the trend was panned, yielding up to 10 colours. No bedrock was encountered. Trench TR2015-2 (700 cubic yards) was dug along the edge of the left limit bench, just downstream of a small tributary flowing into Australia Creek. Material which was excavated was thawed down to the limit of the reach of the excavator. The material excavated was thawed gravels with cobbles up to 8" in size. The material in the bottom of the trench was panned yielding up to 7 colours in the pan. Bedrock was not reached in this trench.

During the trenching program, a small (1 cu yd) bulk sample was sluiced from the bedrock of Australia Creek at the "Discovery Outcrop" location and run through a long tom sluice box. This bulk sample returned 1.2 grams of gold in the cubic yard tested.

In 2016, 5 trenches were dug totalling 10,540 cubic metres (Harris, 2017). Trench 2016-A and A1 were an extension and deepening of Trench 2015-1. Material was dug back to frost in two campaigns during the season in an ongoing effort to reach a bedrock bench edge and test it for gold values. A good long exposure has now been cut into the downstream

bank of the tributary by the Discovery Outcrop. A line of GPR was run down the extent of this trench and out into the main Australia Creek valley past the Outcrop shaft.

Trench 2016-B was a small trench cut into the upstream side of the Discovery Tributary to attempt to reach the bedrock bench edge above the Discovery Outcrop. It was dug to the frost level and will be continued by chasing the thawed material down the frost level in future trenching programs.

Trench 2016-C was excavated across the tributary at the level considered would be most likely to intercept the bench edge. It did not reach bedrock at the time.

Trench 2016-D was dug in July 2016 on the crest of the hill above a left limit tributary of Australia Creek, along the downstream hillside. The trench was dug in an attempt to find a bench edge along that area which would give information on depth of gravels, depth to bedrock, and a window into the gravels in that area to see if they contained economic quantities of gold. No gold was recovered during panning and the trench encountered frozen material that the excavator could not dig, so the trench was left open for a continuation in the future.

Trench 2016-E was a side hill trench on a small, low, intermediate bench along the left limit of the main Australia Creek valley. Within the 6.5m x 6.5m x 2.3 deep trench (90 cu m) at the end of an existing trail, materials encountered after 2 m of thaw included frozen gravel with intermittently thawed gravels within a thin overlying layer of frozen black muck. This trench will be recontoured in future programs to continue the effort to expose and test bedrock exposures along the bench.

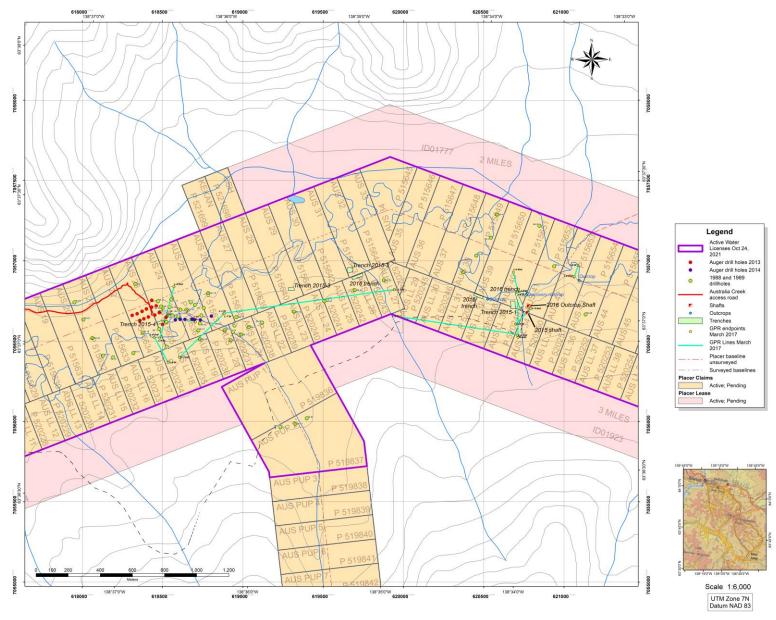


Figure 5 – Recent exploration on Australia Creek by Harris and associated entities, including Fry Exploration and Mining Inc. and Metallic Minerals Corp. This area is approximately 2 km upstream of the 2021 exploration area.

Bulk Sampling

In November 2019, Yukon Heliski Ltd. built 10 km of road and excavated three 7 cubic metre bulk samples near the Discovery outcrop. This lies approximately 3 km upstream of the area of 2021 exploration. The bulk samples were transported to Sulphur Creek and were processed in July 2020. The bulk samples returned a combined total of 3.25 grams of gold (see Figure 6)

Figure 6 - Placer gold recovered from bulk sample collected near Discovery Outcrop, Australia Creek. The gold weighed 3.25 grams.

Shafting

2016 Mark's Shaft

A 3 foot by 4-foot (1 m x 1.3 m) shaft was sunk to 17 feet in March of 2016 on a location approximately 80 metres uphill from the bedrock outcrop upon which gold was discovered in 2015. In 2015, gold was panned from a trench in the downstream bank of a small tributary of Australia Creek near the discovery outcrop. A small bulk sample was sluiced from material on the bedrock just upstream of the discovery outcrop, yielding 0.038 troy oz (1.2 grams) of gold/cu yd. The decision to locate the shaft in this area was based on these multiple locations yielding gold in good quantities. During excavation, pans recovering 10 "good sized" colours were recovered. At 14.5 to 15.5 feet, a boulder layer was encountered with up to 10" round boulders; the largest on the upstream sidewall of the shaft. At 16.5 feet the gravels changed to a golden brown and larger garnets (up to 3/16") were found.

2017-2 Outcrop Shaft

A second shaft was dug in March 2017 downstream and across Australia Creek from the Discovery Outcrop. It was dug to test the depth of material, the makeup of the soil/gravel profile and to ascertain the presence of gold in the gravels and at the bedrock interface. The shaft was dug directly in front of the tributary stream on the left limit of Australia Creek, that enters the main creek just downstream from the Discovery Outcrop. The decision was made to dig the shaft outbound of the known occurrences of gold in this area to try to expand the known gold bearing area and try to ascertain whether gold values at depth would be enough to plan a mining pit in that area of the main creek valley. The shaft was part of the 2019 bulk sample test pit.

Drilling

Reverse Circulation Drilling

A total of 66 reverse circulation rotary drill holes were drilled in 1988, and a further 22 were drilled in 1989. A Schramm T560H air rotary rig mounted on a TF 360 Nodwell carrier was used to drill 13.0 cm diameter holes. Drilling was carried out by Midnight Sun Drilling of Whitehorse, Yukon.

All holes were drilled vertically at sites marked by flagging tape. All of the holes encountered an overlying layer of black organic muck, averaging 3 to 6 metres in depth. Previous mining in the region indicates that this layer never carries economic gold, so after testing the first few holes, this layer was not recovered to facilitate drilling. Below the organic layer is a layer of clay, sand, and gravels averaging 6 to 12 m thick. These sediments were collected every 0.6 m in labelled plastic bags. At an average depth of 6 to 12 m bedrock was encountered, although a few holes extended to over 30 m. A 0.6 to 1.2 m sample of bedrock was also collected.

Holes 88-1 through 88-49 were drilled as reconnaissance holes over the entire length of the property. There were two principles for the targeting of these drill holes; first, that placer gold is concentrated where a tributary enters a stream, and second, to test tributaries for their placer gold. The first principle was tested by drilling a fence of three holes across the major stream downstream from where a large tributary entered, one fence approximately every 2 km. The second principle was tested by drilling a fence of three holes across the mouths of large tributaries.

Significant gold results included hole 88-11 (0.60 g/m3) and hole 88-15 (0.648 g/m3) on Melba Creek, and 21.68 g/m3 (hole 88-03) and 11.0 g/m3 (hole 88-04) on Australia Creek. Holes 88-50 through 88-66 were concentrated around the western limit of the property to follow up encouraging results from holes 88-3 and 88-4.

Auger Drilling

There have been several campaigns of auger drilling carried out in the Australia Creek valley. Most of the auger drilling since 1990 has been close to the mouth of Australia Creek and drilled in lines crossing the valley looking for economic deposits farther downstream.

Fry Exploration and Mining Inc. drilled a group of holes in 2013 and 2014 to try and replicate high grade results from the 1988/89 drilling, downstream from the current Grim Estates lease. As drilling progressed the values increased toward the left limit at the main valley. A further program of auger drilling in 2014 was performed on the left limit of Australia Creek and although the drilling was completed a huge flooding event occurred and the drill crew had to evacuate before the drill samples could be concentrated and panned out.

A program of auger drilling was conducted in November 2018 in the area of the current "Wounded Moose Package". Promising gold results from this program were influential in the decision to drill this area further in 2021. These holes are summarized in Table 4. The gold from drill hole 2018-A4 is shown in Figure 7, and the drill holes are plotted on Figure 8.

Table 4 - November 2018 Auger Drill processing results, Australia Creek.

Name on tag	Volume (L)	Material Description	Gold and Concentrate Description	UTM E Zone 7	UTM N Zone 7
Outcrop Pit	38	Rounded mixed gravel sand and schist bedrock pieces	Magnetite, pyrite, 1 flake of gold, 1 coarse colour, 6 medium colours, 3 fine colours		
A1	6	sandy rounded gravel chert and quartz	garnet, magnetite, 1 Fine colour	616274	7055852
A2	50	yellow-orange clay with small quartz and black chert pebbles	magnetite, garnet, 3 fine colours, 1 very fine colour	616272	7055868
АЗ	40	grey and tan clay (decomposed bedrock) rounded gravel with quartz, chert	garnets, magnetite, 1 flake, 2 coarse 1 fine colours	616270	7055893

Name on tag	Volume (L)	Material Description	Gold and Concentrate Description	UTM E Zone 7	UTM N Zone 7
A4	60	light grey silt and gravel, sand, quartz and chert pebbles	garnet, magnetite, 2 coarse colours, 4 medium colours, 6 fine colours, 6 very fine colours	616268	7055920
A4 BR	10	quartz pebbles, gravel and sand (no bedrock chips)	garnets, magnetite, 1 medium colour, 1 fine colour	616268	7055920
A5	20	klondike schist pieces and quartz pebbles, chert gravel	garnet, magnetite, 1 coarse colour, 3 medium colours, 4 fine colours, 3 very fine colours	616265	7055944
A5 BR	10	klondike schist pieces, quartz and chert.	1 coarse colour, 2 medium colours, 1 fine colour		
A6	55	gravel with grey silt and sand. Chert quartz. Klondike schist.	magnetite, garnets, 1 coarse colour, 1 medium colour, 11 fine colours	616261	7055967
A6 BR	10	some rounded gravel, most Klondike Schist bedrock chips. Chert gravel and quartz	lots of garnets, pyrite, magnetite, no gold	616261	7055967
A7	43	grey silt and clay, gravel and sand	magnetite, garnet, 1 fine, 4 very fine colours	616260	7055994
A8	40	sandy rounded gravel chert and quartz	magnetite, garnet, 1 fine colour		
A9	12		magnetite, garnet, no gold		

Figure 7 – Placer gold recovered from auger drill hole 2018-A4, Australia Creek.

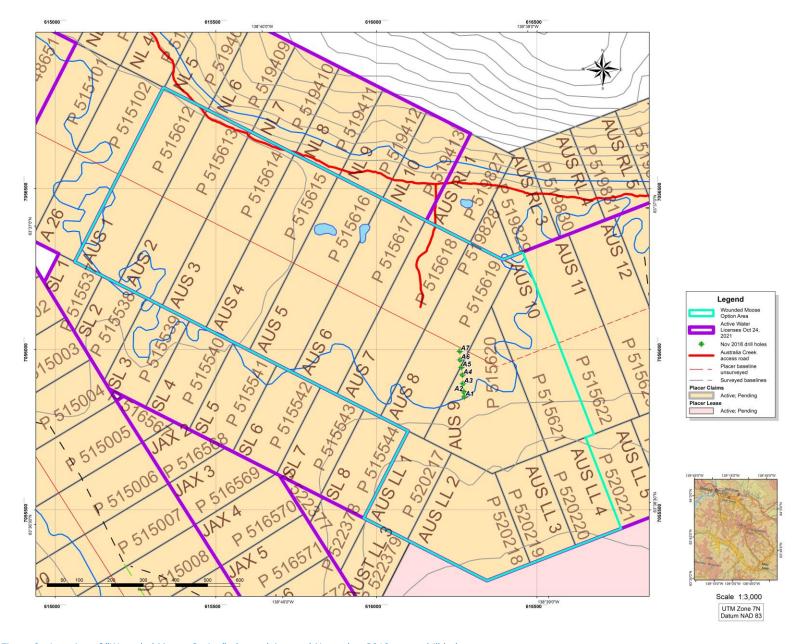


Figure 8 - Location of "Wounded Moose Option" placer claims and November 2018 auger drill holes.

2021 Placer Exploration Program

Overview

A total of 150 holes were drilled and processed by various contractors on the Australia Creek ("Wounded Moose") package during the 2021 mining season. Figure 9 is a map which shows the locations of the drilling done in 2021. Details of the drilling programs follow.

Auger Drilling

TMM Gold Corp. was contracted to carry out auger drilling. The contractor used two Nodwell FN 110 carriers. One Nodwell was equipped with a drilling system and 100 feet of eight-inch diameter continuous flight auger. The second was a support carrier with hydraulic HIAB unit (for lifting drill samples) and a large flat deck with Devin Vortex sluice box and hopper (for processing drill samples). The contractor was fully self-supported. They established their own drill lines, drilled, and processed samples, with oversight from Yukon Alpine Heliski. They had early success in confirming one of the rich drill holes from the 2018 program, finding 172 mg of gold in a single drill hole, just next to promising hole 2018-A4 (see Figures 7 and 8).

However, within two weeks of the drilling commencing, Yukon Alpine Heliski and Grim Estates determined that the performance of the Auger drill was unsatisfactory. The driller was encountering difficulties advancing past the cobble/boulder gravel layers due to 8" drill bit being too large and the drill rotating too quickly, with no option to slow it down. This led to multiple breakdowns and incomplete holes. Furthermore, there was uncertainty about the driller's ability to reliably assess the ground profile and, subsequently, appropriately determine required drilling depths for bedrock penetration.

To ensure satisfactory fulfillment of the drilling requirements under the MMG-Grim lease agreement, Grim Estates terminated the auger drilling contract on June 12, 2021. Twenty-one (21) drill holes were completed before this time.

Table 5 summarizes the results of this drilling from the drill logs.

Table 5 – Auger drilling coordinates, depths and gold results, compiled from drill logs of TMM GoldCorp Inc, Australia Creek property, 2021.

Note – 0.5 mg Au is trace gold.

Line	Hole	Latitude	Longitude	Completeness	Gold [mg]	Depth to gravel (ft)	Depth to bedrock (ft)	Gravel thickness (ft)	Total depth of drill hole (ft)
0	00+00	63.615855	-138.67779	ABANDONED	0	5	unknown	unknown	13
0	00+03N	63.615848	-138.67776		71	7	14	7	21
0	00+50N	63.615907	-138.67739		0.5	9	12	3	17
0	01+00N	63.616121	-138.67734		0.5	5	8	3	12
0	01+50N	63.616167	-138.6771		0.5	11	11	0	13

Line	Hole	Latitude	Longitude	Completeness	Gold [mg]	Depth to gravel (ft)	Depth to bedrock (ft)	Gravel thickness (ft)	Total depth of drill hole (ft)
0	04+20N	63.616823	-138.67629	NO OBV. BEDROCK	0.5	8	unknown	unknown	13
0	09+70N	63.6182	-138.67422		0.5	3	3.5	0.5	6
1100	TWIN 2018-A4	63.611986	-138.65487		172	9	19	10	23
1150	00+00	63.612727	-138.65562	unsure if bedrock	35	6	14	8	18
1150	00 +25N	63.61179	-138.65691		0.5	11	17	6	23
1150	01 +00N	63.61242	-138.65598	NO OBV. BEDROCK	0.5	6	unknown	unknown	12
1150	01 +03N	63.61242	-138.65598	NO OBV. BEDROCK	4	7	unknown	unknown	14
1150	01 +75N	63.61179	-138.65691	NO OBV. BEDROCK	0.5	5	unknown	unknown	13
1150	02 +00N	63.61158	-138.65707		7	5	12	7	17
1150	02 +25N	63.6114	-138.65732		0.5	8	15	7	18
1150	02 +50N	63.61131	-138.65744		0.5	5	14	9	18
1200	00+00	63.61187	-138.65442		26	10	14	4	23
1200	00+25N	63.6121	-138.65428		7	8	15	7	21
1200	00+50N	63.612221	-138.65411		0.5	11	19	8	23
1200	00+75N	63.612503	-138.65373	NO OBV. BEDROCK	0.5	8	unknown	unknown	19
1180	00-00	63.612162	-138.65464	NO OBV. BEDROCK	6	11	unknown	unknown	24

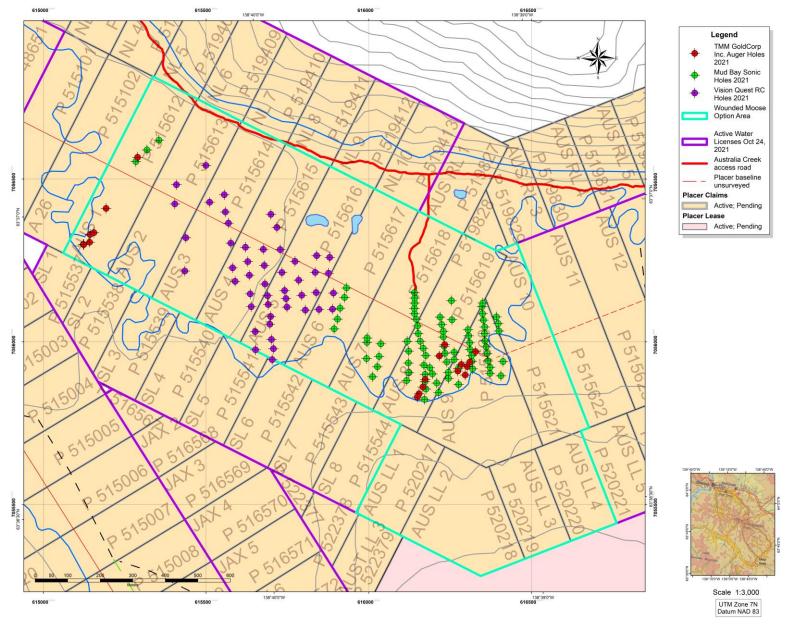


Figure 9 – Placer claim map showing the location of auger, sonic and R/C drilling conducted in 2021.

Sonic Drilling

In July, 2021, Mud Bay Drilling Ltd. from Victoria, B.C., was contracted to carry out a minimum of 50 drill holes, with possibility for extension. The contractor used a Long Stroke Track Sonic Drill (LS600 Boart Longyear, Morooka carrier), using a 6" casing (Figure 10). The drill was supported by a second tracked vehicle.

Drill roads were put in and prepared for the drill using a ZX330 excavator to build "corduroy" swamp roads, in order to prevent the drill from sinking during the warm summer month during which the drilling was taking place.

Hole locations were determined with tight spacing, following the early guidance of MMG geologist, Nicolai Goeppel. The drill produced core samples which were bagged and transported to the Sulphur Creek camp for logging and processing. The sonic drill core was initially logged and processed by Higher Ground Exploration (Heiko Schwenk) with the help of a team of 3 contract labourers, under the supervision of Yukon Alpine Heliski.

Later in the program, several sonic holes were logged and processed by TMM GoldCorp Inc. Using a Devin Vortex sluice box, the sonic drill samples were processed in sections which generally corresponded to stratigraphic contacts such as the gravel/bedrock boundary. After sluicing, the concentrates were hand-panned, dried and weighed using a high-precision laboratory scale (see Figure 10).

In total, Mud Bay drilled 81 holes, primarily concentrated within placer claims AUS 6 to AUS 9. The core samples were easy and informative to log because of the intact samples produced by the sonic drill. Several core samples contained large cobbles and boulders (often larger than the 6" diameter of the drill) suggesting high-energy gravels.

All 81 holes were processed, and multiple holes in this area produced more than 50 mg of gold. Mud Bay was not available to do any further drilling due to other contract commitments.

Table 6 summarizes the results of the sonic drilling from the drill logs, and the drill holes are plotted on Figure 9.

Figure 10 - Photos showing the sonic drill program conducted by Mud Bay Drilling Ltd. The drill was a Boart Longyear LS600 mounted on a Morooka carrier, using 6" casing. The drill was supported by a second tracked vehicle. Samples were logged at the Sulphur Creek camp, and processed using Devin Vortex sluice boxes. The placer gold was weighed using a high precision digital scale.

Table 6 – Sonic drilling coordinates, depths and gold results, summarized from drill logs, Mud Bay Drilling Ltd., Australia Creek 2021

Line	Hole	Latitude	Longitude	Depth <i>not</i> collected (ft)	Depth to gravels (ft)	Depth to Bedrock (ft)	Total hole depth (ft)	Drilling comments	Overburden thickness (ft)	Total gravel thickness (ft)	Total Au values (mg)	Comments on Au TR values
Α	1	63.6181	-138.674	4	6	12	16		6	6	4	+ TR
Α	2	63.6184	-138.674	6	9	13	16		9	4	31	
Α	3	63.6187	-138.673	0	4	19	21		4	15	3	
G	1	63.6133	-138.662	6	12	15	18		12	3	14	
G	2	63.6135	-138.662	8	10	13	18		10	3	15	
G	3	63.6138	-138.662	6	12	unknown	18	didn't hit bedrock	12	-	0.5	5 specs
G	4	63.6141	-138.662	6	6	13	18		6	7	0.5	2 specs
G	5	63.6144	-138.662	6	12	15	18		12	3	4	
Н	1	63.6124	-138.66	6	10	unknown	16	missing sample	10	-	9	
Н	2	63.6129	-138.66	6	6	13	16		6	7	20	
Н	3	63.613	-138.66	3	9	14	16		9	5	12	
I	1	63.6119	-138.66	7	7	14	16		7	7	10	
1	2	63.6122	-138.66	6	6	12	16		6	6	0.5	3 specs
I	3	63.6125	-138.66	6	8	14	18		8	6	35	
I	4	63.6128	-138.66	6	8	10	18		8	2	2	
J	1	63.6118	-138.658	6	9	13	17		9	4	3	
J	2	63.612	-138.658	3	5	16	18		5	11	0.5	6 specs
J	3	63.6123	-138.658	6	9	16	18		9	7	7	
J	4	63.6126	-138.658	4	11	15	18		11	4	3	
J	5	63.6129	-138.658	6	7	14	18		7	7	15	
K	1	63.6112	-138.657	3	4	11	20		4	7	2	

Line	Hole	Latitude	Longitude	Depth <i>not</i> collected (ft)	Depth to gravels (ft)	Depth to Bedrock (ft)	Total hole depth (ft)	Drilling comments	Overburden thickness (ft)	Total gravel thickness (ft)	Total Au values (mg)	Comments on Au TR values
К	2	63.6115	-138.657	6	6	14	21		6	8	1	+ TR
K	3	63.6117	-138.657	6	11	17	21		11	6	3	
К	4	63.6119	-138.657	8	8	15	18		8	7	128	
К	5	63.6122	-138.657	6	9	13	18		9	4	4	
L	1	63.6114	-138.656	6	8	16	21		8	8	4	+ TR
L	2	63.6117	-138.656	6	10	11	26		10	1	0.5	TR (BRC not washed)
L	3	63.6119	-138.656	6	7	12	18		7	5	39	+ TR
L	4	63.6121	-138.657	5	5	10	16		5	5	287	
L	5	63.6124	-138.657	6	6	10	16		6	4	23	+ TR
L	6	63.6126	-138.657	6	8	10	16		8	2	9	+ TR
L	7	63.6128	-138.657	2	7	13	17		7	6	18	+ TR
L	8	63.6131	-138.657	3	7	14	18		7	7	48	+ TR
L	9	63.6133	-138.657	6	9	15	18		9	6	0.5	
L	10	63.6135	-138.657	6	9	14	18		9	5	21	+ TR
L	11	63.6136	-138.657	6	12	17	19		12	5	0.5	TR
L	12	63.6138	-138.657	9	9	16	21		9	7	0.5	TR
L	13	63.6139	-138.657	6	6	16	21		6	10	4	+ TR
L	14	63.614	-138.657	6	12	19	24		12	7	10	
L	15	63.6142	-138.657	6	10.5	18	26		10.5	7.5	7	+ TR
M	2	63.6118	-138.655	6	7	15	18		7	8	0.5	TR
M	3	63.612	-138.655	3	8	14	18		8	6	90	
M	4	63.6122	-138.656	3	10	10	16		10	0	25	
M	5	63.6125	-138.656	6	6	12	16		6	6	0.5	TR

Line	Hole	Latitude 	Longitude	Depth <i>not</i> collected (ft)	Depth to gravels (ft)	Depth to Bedrock (ft)	Total hole depth (ft)	Drilling comments	Overburden thickness (ft)	Total gravel thickness (ft)	Total Au values (mg)	Comments on Au TR values
M	6	63.6127	-138.656	6	6	9	16	possible confusion of drill cores BR logged as between gravel layers	6	3	34	+ TR
M	7	63.6129	-138.656	6	11	unknown	13	inconclusive on bedrock	11	-	84	+ TR
M	8	63.6131	-138.656	6	8	14	16		8	6	0.5	TR
M	9	63.6133	-138.656	6	8	15	21		8	7	0.5	TR
M	10	63.6135	-138.656	6	9	16	18		9	7	57	
18- TWIN	A2	63.6116	-138.655	6	6	16	20		6	10	23	
18- TWIN	A4	63.6121	-138.655	6	10	16	24		10	6	106	
18- TWIN	A5	63.6123	-138.655	6	11	21	24		11	10	80	
18- TWIN	A6	63.6125	-138.655	6	10	21	26		10	11	13	+ TR
N	1	63.6134	-138.655	6	6	18	21		6	12	20	
N	2	63.6139	-138.655	6	6	17	21		6	11	0.5	TR
0	1	63.612	-138.654	6	6	unknown	16	inconclusive on bedrock	6	-	0.5	TR
0	2	63.6122	-138.654	6	8	17	18	hole deep enough? BRC not clear	8	9	7	
0	3	63.6124	-138.654	6	6	16	18	hole deep enough? BRC not clear	6	10	13	+ TR
0	4	63.6126	-138.654	6	9	17	18	hole deep enough? BRC not clear	9	8	2	+ TR
0	5	63.6128	-138.654	6	10	unknown	16	inconclusive on bedrock	10	-	2	+ TR
0	6	63.6129	-138.654	6	11	16	18		11	5	10	+ TR

Line	Hole	Latitude	Longitude	Depth <i>not</i> collected (ft)	Depth to gravels (ft)	Depth to Bedrock (ft)	Total hole depth (ft)	Drilling comments	Overburden thickness (ft)	Total gravel thickness (ft)	Total Au values (mg)	Comments on Au TR values
0	7	63.6131	-138.654	3	14	17	18		14	3	35	+ TR
P	1	63.6119	-138.653	6	8	11	18		8	3	0.5	TR
Р	2	63.6121	-138.653	6	6	13	18		6	7	9	+ TR
Р	3	63.6122	-138.653	6	6	15	18		6	9	13	+ TR
Р	4	63.6124	-138.653	6	12	unknown	18	inconclusive on bedrock	12	-	0.5	TR
Р	5	63.6126	-138.653	6	12	16	21		12	4	3	+ TR
Р	6	63.6128	-138.653	6	12	18	21		12	6	14	
Р	7	63.613	-138.653	2	15	unknown	18	inconclusive on bedrock	15	-	0.5	TR
Р	8	63.6132	-138.653	6	11	19	24		11	8	6	+ TR
Р	9	63.6134	-138.653	6	13	18	26		13	5	0.5	TR
Р	10	63.6135	-138.653	6	15	20	24		15	5	0.5	TR
Р	11	63.6137	-138.653	6	12	20	24		12	8	0.5	TR
Р	12	63.6138	-138.653	6	11	18	21		11	7	10	
Q	1	63.6118	-138.652	6	11	11	18		11	0	0.5	TR
Q	2	63.6122	-138.652	6	14	16	18		14	2	0.5	TR
Q	4	63.613	-138.652	6	9	20	26		9	11	15	+ TR
Q	5	63.6133	-138.652	6	15	21	24		15	6	9	+ TR
Q	6	63.6134	-138.652	6	10	20	26		10	10	4	+ TR

Reverse Circulation (R/C) Drilling

From September to October 2021, Vision Quest Exploration was contracted to drill 50 holes on the Wounded Moose package. The contractor used a reverse circulation drill with air compressors and a 5" casing advancer system.

Drill roads were put in and prepared using a combination of the ZX330 and a D6 dozer. Hole locations were determined by following the original drilling grid, but with increased spacing in order to cover the remaining undrilled portions of the Wounded Moose claim package.

The R/C drillers logged the ground profile as they advanced the drill, and drilled 2 feet into bedrock for all holes. The samples produced indicated that the drillers competently drilled to bedrock for all holes. However, in some areas where the ground was still very wet and muddy, the drill did experience significant clogging which slowed the drilling efficiency.

In the muddier and more water-logged areas, some drill holes may have widened and collected extra material. For some drill holes, portions of sample were lost, and undoubtedly some portions of sample remained stuck within the drilling system. The driller logs contained notes to indicate when the aforementioned sample gains or losses may have occurred. Furthermore, during processing, the approximate volume of each drill sample was calculated to make additional observations about sample sizes.

Due to the cold, below-zero fall temperatures, the drill samples were bagged and transported to Whitehorse for indoor processing in order to overcome sample and water freezing. The samples were processed under the guidance and supervision of Geoplacer Exploration Ltd. and Yukon Alpine Heliski, with the help of 2 contracted labourers. Two Letrap sluice boxes were placed in series, and the samples were washed over this system.

Due to the nature of the R/C drill, any boulders or cobbles present in the gravel column were broken up and crushed as the samples were collected. This made it difficult to discern the ground's stratigraphic layers during the processing stage. Consequently, the processing team did not break the samples into sections as they did for the sonic drill sample processing. The full sample from each drill hole was run through the sluice in a single run. The concentrates were then panned, dried, and weighed.

Table 7 summarizes the results of the R/C drilling program from the drill logs, and the drill holes are plotted on Figure 9.

Table 7 - R/C drilling results, Vision Quest Exploration Ltd., summarized from drill logs, Australia Creek 2021.

LINE	HOLE	Latitude	Longitude	Footage (ft)	Date Drilled	Sample Weight (kg)	Calculated Volume (m³)	Au mass [mg]
Х	3	63.615018	-138.671557	17	24-Oct	42.4	0.0163	TR
Х	5	63.615934	-138.671415	17	24-Oct	89.4	0.0344	18
Х	7	63.616876	-138.672022	20	24-Oct	37.9	0.0146	TR
Х	8	63.617405	-138.67188	22	24-Oct	73.1	0.0281	0
Z	8	63.616889	-138.669867	22	21-Oct	77.2	0.0297	7
Z	extra	63.617908	-138.670009	25	18-Oct	69.1	0.0266	0
Α	7	63.614683	-138.668461	18	17-Oct	52.5	0.0202	TR
Α	9	63.615057	-138.66859	20	14-Oct	57.8	0.0222	TR
Α	11	63.615741	-138.668642	20	14-Oct	58.2	0.0224	TR
Α	13	63.616295	-138.668745	20	17-Oct	55.7	0.0214	TR
Α	14	63.616605	-138.668912	21	17-Oct	89.6	0.0345	TR
Α	15	63.617082	-138.668938	18	17-Oct	59.5	0.0229	TR
В	1A	63.612776	-138.667355	12	10-Oct	56.9	0.0219	TR
В	2	63.613277	-138.667332	18	11-Oct	67.9	0.0261	6
В	5	63.613967	-138.667522	20	11-Oct	53.1	0.0204	TR
В	7	63.614323	-138.667555	18	12-Oct	57.4	0.0221	0
В	9	63.614835	-138.667566	17	12-Oct	61.7	0.0237	5
В	11	63.615213	-138.667633	25	13-Oct	79.4	0.0305	0
В	13	63.615611	-138.66775	20	14-Oct	54.5	0.021	TR
С	1A	63.612487	-138.666342	13	10-Oct	50.3	0.0193	TR
С	1	63.612787	-138.666242	13	10-Oct	44.8	0.0172	TR
С	2	63.613043	-138.666342	18	09-Oct	81.2	0.0312	TR
С	4	63.613466	-138.666409	20	09-Oct	78.9	0.0303	0
С	5	63.613678	-138.666342	18	09-Oct	62.6	0.0241	0
С	6	63.614011	-138.666464	20	09-Oct	112.5	0.0433	1
С	7	63.614256	-138.666487	17	08-Oct	62.5	0.024	0
С	9	63.614579	-138.66662	18	08-Oct	62	0.0238	TR
С	11	63.615091	-138.66662	17	08-Oct	87.2	0.0335	TR
С	13	63.615536	-138.666642	18	08-Oct	64.9	0.025	TR
D	7	63.613922	-138.665307	18	06-Oct	83.5	0.0321	6
D	8	63.614156	-138.665351	20	06-Oct	85.2	0.0328	6
D	9	63.614379	-138.665418	18	07-Oct	73.3	0.0282	3
D	10	63.61488	-138.665541	17	07-Oct	109.5	0.0421	TR
D	11	63.615514	-138.665596	18	07-Oct	59.6	0.0229	0
D	13	63.616126	-138.665752	21	18-Oct	71.7	0.0276	4
D	14	63.616493	-138.666097	19	18-Oct	34.8	0.0134	TR
E	6	63.613819	-138.664179	17	30-Sep	65.7	0.0253	TR
E	8	63.614232	-138.664366	18	30-Sep	92.3	0.0355	0
E	10	63.614651	-138.664522	22	30-Sep	82.9	0.0319	3

LINE	HOLE	Latitude	Longitude	Footage (ft)	Date Drilled	Sample Weight (kg)	Calculated Volume (m³)	Au mass [mg]
E	12	63.615173	-138.664705	22	06-Oct	122.6	0.0472	3
F	5	63.613825	-138.663328	19	25-Sep	74.5	0.0287	TR
F	7	63.614292	-138.663466	19	25-Sep	120.7	0.0464	2.5
F	9	63.61485	-138.663482	19	26-Sep	72.4	0.0278	TR
F	11	63.61531	-138.663351	17	26-Sep	100.1	0.0385	1
G	4	63.613817	-138.662494	18	19-Sep	46.8	0.018	TR
G	6	63.614261	-138.662402	20	24-Sep	66.8	0.0257	TR
G	8	63.614812	-138.662655	20	24-Sep	113.8	0.0438	0
G	10	63.615248	-138.662548	21	24-Sep	118.5	0.0456	2

Discussion

Depths to bedrock varied from 3.5 feet to 19 feet in the auger holes drilled by TMM GoldCorp. Inc, but several holes were inconclusive as to the true bedrock contact due to ongoing issues with drilling contractor's ability to assess the ground. The sonic drill (operated by Mud Bay Drilling) returned similar values of 12 to 21 feet to bedrock. The R/C drill (operated by Vision Quest Exploration) did not overlap either the auger or sonic drill in any locations, but depths to bedrock interpreted by the drillers were similar, varying from 11 to 23 feet. Gravel thicknesses in all holes varied from 1 to 12 feet, but averaged around 6 feet.

Figures 11 and 12 are maps which plot the amount of gold recovered in each of the auger, sonic and R/C drilling programs. From these plots and the results shown in Tables 5, 6 and 7, it is clear that the best gold results overall are from the sonic drilling, and the poorest results are from the R/C drilling.

The auger drill had varying gold returns, with 172 mg as the highest value. This was obtained in hole TWIN A4, which was drilled adjacent to Discovery drill hole 2018-A4.

The highest gold values from the sonic drilling were in drill holes L-4 (287 mg), K-4 (128 mg), A-4 (106 mg) and M-3 (90 mg). These holes are adjacent to and just downstream of Discovery hole 2018-A4, which is indicative of a trend of high-grade placer gold values running parallel to the current creek channel of Australia Creek.

The amount of placer gold recovered from the R/C drilling program was generally low, with a high of 18 mg returned from drill hole X-5. This hole is somewhat of an outlier, although is generally downstream and on trend with the higher-grade values observed in the sonic and auger drill programs.

There is some correlation between the gold values obtained from the auger drilling and the sonic drilling when they occur in the same location.

Many drill holes near to the active Australia Creek channel were wet, and it's likely that recovered placer gold values were lower due to this factor.

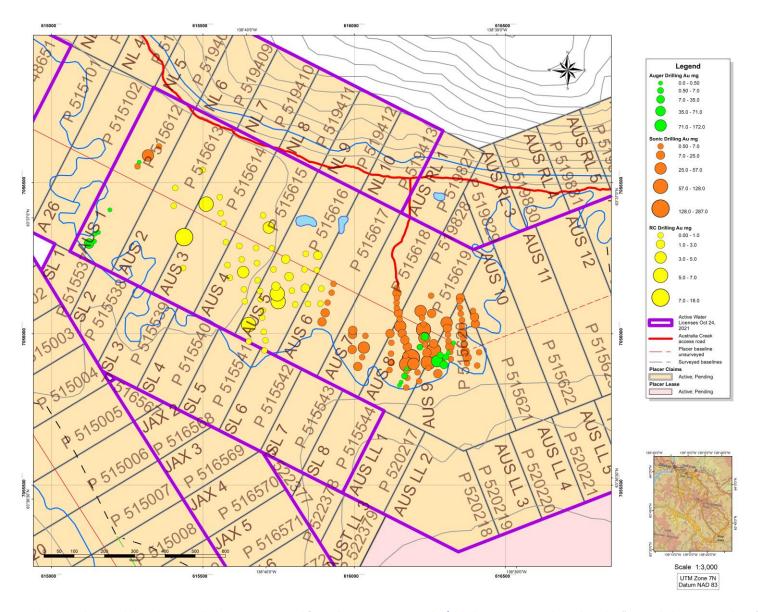


Figure 11 – Map showing placer gold results compiled in mg, recovered from the auger, sonic and R/C drill programs conducted on the "Wounded Moose Package" of claims on Australia Creek. Note that each drilling methodology is shown with their own distinct ranges and distribution of values within the plots.

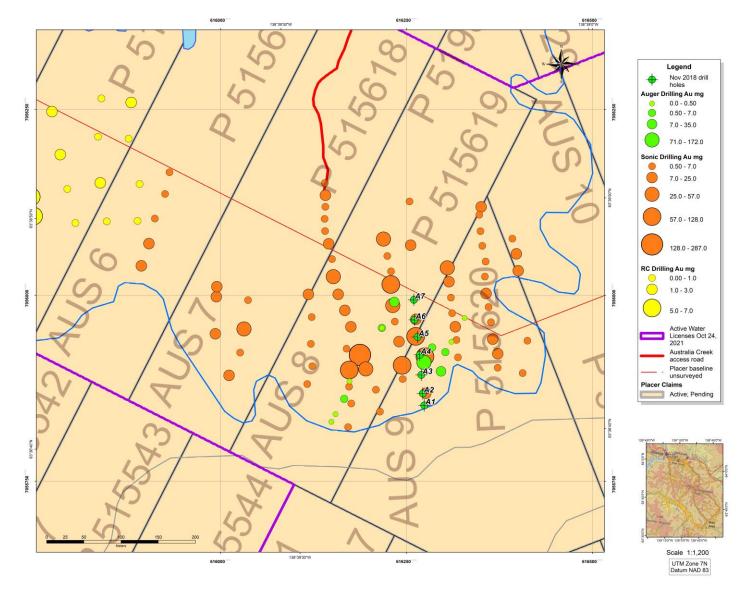


Figure 12 - Detail of upstream portion of 2021 drilling area on Australia Creek (claims AUS 6, 7, 8 and 9). 2018 auger drill holes also shown, including Discovery hole 2018-A4.

Conclusions and Recommendations

Of the three drilling methodologies employed, the sonic drill was the most successful, in respect to both the amount of sample material recovered, and in the amount of placer gold returned in the samples. Several sonic drill holes recovered gold values higher than 50 mg.

Determining the actual distribution of placer gold in the valley was complicated by the lack of overlap of the different drilling methodologies. A broad zone between claims AUS 2 and AUS 6 was only drilled using the R/C drill, and the placer gold values returned in this area were much lower than the claims upstream (AUS 7, 8 and 9) which were drilled by both the auger drill and the sonic drill.

It is difficult to conclusively state whether these results are entirely representative of the ground conditions, or whether the R/C drilling method used by Vision Quest affected the results. It is therefore recommended for the 2022 exploration program that several sonic drill holes be collared amongst the 2021 R/C drill holes, to validate or repudiate the previous results.

There is a general correlation between the gold values obtained from the auger drilling and the sonic drilling, which becomes most evident where they overlap on AUS 8 and AUS 9. Both methods appear to define a trend of high-grade placer gold values, running parallel to the current creek channel of Australia Creek. A few of the R/C holes downstream of this area were also anomalous, which may indicate an extension of this trend.

It should also be noted that a significant portion of the AUS 2, AUS 3 and AUS 4 claims – closest to the creek – was not drilled due to swampy ground conditions. This area should be drilled in early spring when the ground is frozen.

Overall, the results of the drilling program were favourable, and it appears that there is a zone of economic placer gold values on the right limit of Australia Creek, near the active channel. A significant bulk sample (> 5000 cubic yards) should be excavated and processed within the footprint of the high-grade auger and sonic drill holes on AUS 8 and AUS 9. Concurrently, a tightly-spaced grid of sonic drill holes should be extended out from these holes both upstream and downstream, and if the gold values prove to be economic, a full-scale mining operation should be initiated that includes this area.

No resistivity geophysical surveys were done in this program, but it is likely that immediate and future drill programs would benefit from targeting bedrock depressions and associated paleochannels that are often defined by such surveys.

Statement of Qualifications

William LeBarge

I, William LeBarge, of 13 Tigereye Crescent, Whitehorse, Yukon, Canada, DO HEREBY CERTIFY THAT:

- 1. I am a Consulting Geologist with current address at 13 Tigereye Crescent, Whitehorse, Yukon, Canada, Y1A 6G6.
- 2. I am a graduate of the University of Alberta (B.Sc., 1985, Geology) and the University of Calgary (M.Sc., 1993, Geology Sedimentology)
- 3. I am a Practicing Member in Good Standing (#37932) of the Association of Professional Engineers and Geoscientists of British Columbia (APEGBC).
- 4. I have practiced my Profession as a Geologist continuously since 1985.
- 5. I am President and sole shareholder of Geoplacer Exploration Ltd., a Yukon Registered Company.

Dated this 28th day of January, 2022 William LeBarge, P. Geo.

William Les Barge

References

Bond, J.D. and van Loon, S., 2018. Yukon Placer Mining Industry 2015-2017. Yukon Geological Survey, 284 p.

Colpron, M. and Nelson, J.L. (eds.), 2006. Paleozoic evolution and metallogeny of pericratonic terranes at the ancient Pacific margin of North America, Canadian and Alaskan Cordillera. Geological Association of Canada, Special Paper 45, 523 p.

Duk-Rodkin, A., 1999. Glacial Limits Map of Yukon Territory. Geological Survey of Canada, Open File 3694, Exploration and Geological Services Division, Yukon Region, Indian and Northern Affairs Canada, Geoscience Map 1999-2, 1:1 000 000 scale.

Froese, D.G. and Jackson, L.E., Jr., 2005a. Surficial Geology, Australia Mountain, Yukon Territory. Geological Survey of Canada Open File 4586, Scale 1:50 000.

Froese, D.G. and Jackson, L.E., Jr., 2005b. Surficial Geology, Granville, Yukon Territory. Geological Survey of Canada Open File 4587, Scale 1:50 000.

Fry Exploration & Mining Inc., 2016. Yukon Mining Exploration Program 2016 target Evaluation proposal Australia Creek Placer project.

Gordey, S.P. and Ryan, J.J., 2005. Geology map, Stewart River area (115 N, 115-O and part of 115 J), Yukon Territory. Geological Survey of Canada, Open File 4970, 1:250 000 scale.

Harris, B., 2017. Yukon Mineral Exploration Program 2016 Report on the Australia Creek Placer Project, Target Evaluation 16-006 for Fry Exploration and Mining.

Harris, B., 2016. Yukon Mineral Exploration Program 2015 Final Report, Australia Creek Placer Project, Target Evaluation 15-065 for Fry Exploration and Mining.

LeBarge, W.P., 2007. Yukon Placer Database 2007 – Geology and mining activity of placer occurrences, Yukon Geological Survey, 2 CD-ROMs.

LeBarge, W.P., and Nordling, M.G., 2011. Yukon Placer Mining Industry 2007-2009. Yukon Geological Survey, 151 p.

Lowey, G.W., 2004. Placer geology of the Stewart River (115 N & O) and part of the Dawson (116 B & C) map areas, west-central Yukon. Yukon Geological Survey. 275 p.

Power, M.A. 1989. Ground Probing Radar Survey of the Upper Indian River Placer Property for RK Resources Ltd.

Smith, G. 1998. Total Magnetic Field Survey of the Australia Creek Property for 15174 Yukon Inc. Assessment report #120180.

Tomlinson, S. 1989. Rotary Drilling report on the Australia Creek Property, Dawson Mining District, Yukon Territory, for Hughes Lang Corp.

Van Loon, S., and Bond, J.D., 2014. Yukon Placer Mining Industry 2010-2014. Yukon Geological Survey, 230 p.

YGS (Yukon Geological Survey) Digital Geological Files, 2021. Available at https://data.geology.gov.yk.ca