YMEP 2021 - 054

## **GOLDORAK PROJECT**

WHITEHORSE MINING DISTRICT

NTS 105L/15

UTM NAD 83 ZONE 8: 514400E, 6973150N



BY: JÉRÔME DE PASQUALE

&

ROGER HULSTEIN, P. GEO.

JANUARY 17, 2022

2021 Goldorak Report

## TABLE OF CONTENTS

Frontispiece photo: argillite-hosted semi-massive sulphide pod at the Inform Silver showing

## Contents

| SUMMARY                                                | 5    |
|--------------------------------------------------------|------|
| Previous Work                                          |      |
| Mineralization                                         |      |
| Mineral Tenure                                         |      |
| 2021 Work                                              |      |
| 2021 Work                                              |      |
| Other results                                          |      |
| Conclusions                                            |      |
| INTRODUCTION                                           |      |
| 1. LOCATION, ACCESS, AND LAND STATUS                   |      |
| 2. 2021 PROGRAM DESCRIPTION                            |      |
| 3. TOPOGRAPHY, VEGETATION AND CLIMATE                  |      |
| 4. PREVIOUS WORK                                       |      |
| 5. TENURE                                              |      |
| 6. REGIONAL GEOLOGY                                    | . 19 |
| 7. 2021 LOCAL PROJECT AREA, GEOLOGY AND MINERALIZATION | 24   |
| 7.1. 2021 Geological Mapping and Prospecting           |      |
| 7.2. Property Geology                                  |      |
| 7.3. Mineralization                                    |      |
| 7.3.1. SEDEX Mineralization                            | . 26 |
| 7.3.2. Skarn - Replacement style                       | . 27 |
| 7.3.3. Vein Type                                       | . 28 |
| 8. GEOCHEMICAL DATA                                    |      |
| 8.1. Regional and Historical Data                      | . 31 |
| 8.2. 2019 and 2020 Programs                            |      |
| 8.3. 2021 Program                                      |      |
| 8.3.1. Rock Sample Geochemistry                        | . 32 |
| 8.3.2. Soil Sample Geochemistry                        |      |
| 8.3.3. Stream Sediment Geochemistry                    |      |
| 9. DRILLING                                            |      |
| 10. GEOPHYSICAL DATA                                   |      |
| 11. 2021 PROGRAM AND RESULTS                           |      |
| 11.1. Acta Claims                                      |      |
| 11.2. Main Showing                                     |      |
| 11.3. Copper Soil Anomaly                              |      |
| 11.4. Mizar Showing                                    |      |
| 11.5. Silver Creek Showing                             |      |
| 11.6. GC and PC Showings                               |      |
| 11.7. Cu DDH81-05                                      |      |
| 11.8. LM Showing                                       | . 43 |

| 11.9. BMS Showing                                | 44 |
|--------------------------------------------------|----|
| 11.10. Inform Silver Showing                     |    |
| 11.11. Nagai Zone                                |    |
| 11.12. KSF Zone                                  |    |
| 12. CONCLUSIONS and RECOMMENDATIONS              |    |
| 13. BUDGET                                       |    |
| 14. REFERENCES                                   |    |
| STATEMENT of QUALIFICATIONS (Roger Hulstein)     |    |
| STATEMENT of QUALIFICATIONS (Jérôme de Pasquale) |    |
|                                                  |    |

## Tables

| Table 1. Claims held within Goldorak Project Area 15                                                   |
|--------------------------------------------------------------------------------------------------------|
| Table 2. Table of Goldorak Mineral Occurrences.    23                                                  |
| Table 3. Drill holes within Goldorak Project Area (coordinates in NAD83, Zone8)                        |
| Table 4. Significant geochemistry from drill holes in 2021 project area (not including Fran claims) 36 |
| Table 5. 2021 Expenditures.   49                                                                       |

# Figures

| Figure 1. Goldorak Project Location – centred over Dromedary Mountain.            |    |
|-----------------------------------------------------------------------------------|----|
| Figure 2. Claim Map, Goldorak Project                                             | 17 |
| Figure 3. Goldorak claims and zone names, NTS 105L/15                             |    |
| Figure 4. Regional Geology (geology after Cobbett and Keevil, 2019).              |    |
| Figure 5. Diagrammatic stratigraphic column for Glenlyon area, from Cobbett, 2019 |    |
| Figure 6. GSC Regional Aeromagnetics                                              |    |
| Figure 7. GSC Aeromagnetics (total field) over project area                       |    |
|                                                                                   |    |

# Appendices

| Appendix A | 2020 Analytical Certificates                                                |
|------------|-----------------------------------------------------------------------------|
| Appendix B | 2020 Rock Sample Descriptions & Analytical Results                          |
| Appendix C | 2020 Soil and Stream Sediment Descriptions, Statistics & Analytical Results |
| Appendix D | 2020 Field Station Locations and Descriptions                               |
| Appendix E | 2021 Thin Section Descriptions                                              |

# Photo Folder

| hoto 1: GeoStation RH21125                                         | 60 |
|--------------------------------------------------------------------|----|
| hoto 2: GeoStation RH21126                                         | 60 |
| hoto 3: Late Cretaceous quartz-monzonite.                          | 61 |
| hoto 4: Rock sample W425861                                        | 61 |
| hoto 5: Rock sample W641880 and sample area                        | 62 |
| hoto 6: Rusty-stained creek on the west side of Dromedary Mountain | 63 |
| hoto 7: DDH81-03                                                   | 64 |
| hoto 8: DDH81-07                                                   | 64 |
| hoto 9: Soil sample M896036                                        | 65 |
| hoto 10: Soil sample M896026                                       | 65 |

| Photo 11: Looking south: view of Dromedary Mountain and showing locations             | 66 |
|---------------------------------------------------------------------------------------|----|
| Photo 12: Looking north from the GC showing: Dromedary Mountain and showing locations | 66 |
| Photo 13: Rock sample W641892                                                         | 67 |
| Photo 14: Copper Soil Anomaly - looking south                                         | 68 |
| Photo 15: Mizar Showing: semi-massive to massive sulphide                             | 69 |
| Photo 16: Rock sample W425854 at the Mizar Showing                                    | 69 |
| Photo 17: GC Showing                                                                  | 70 |
| Photo 18: PC Showing.                                                                 |    |
| Photo 19: LM Showing                                                                  | 72 |
| Photo 20: Inform Silver Showing                                                       | 73 |
| Photo 21: Nagai Zone                                                                  | 74 |
| Photo 22: Hand trench at the Nagai Showing                                            |    |
| Photo 23: KSF Showing                                                                 |    |
|                                                                                       |    |

# Map Pocket

| Figure 8a. Acta Claims, 2021 Geochemistry Samples and Field Stations            | in pocket |
|---------------------------------------------------------------------------------|-----------|
| Figure 8b. Nagai Zone, 2021 Geochemistry Samples and Field Stations             | in pocket |
| Figure 9a., Acta Claims Geology Map                                             | in pocket |
| Figure 9b. Nagai Zone Geology Map,                                              | in pocket |
| Figure 10. Geological Symbols and Abbreviations                                 | in pocket |
| Figure 11. Acta Claims, 2021 Sample Locations, Numbers & Gold Geochemistry      | in pocket |
| Figure 12. Nagai Zone, 2021 Sample Locations, Numbers & Gold Geochemistry       | in pocket |
| Figure 13. Acta Claims, Gold Geochemistry                                       | in pocket |
| Figure 14. Nagai Zone, Gold Geochemistry                                        | in pocket |
| Figure 15. Acta Claims, Silver Geochemistry                                     | in pocket |
| Figure 16. Nagai Zone, Silver Geochemistry                                      | in pocket |
| Figure 15. Acta Claims, Copper Geochemistry                                     | in pocket |
| Figure 18. Nagai Zone, Copper Geochemistry                                      | in pocket |
| Figure 19. Acta Claims, Lead Geochemistry                                       | in pocket |
| Figure 20. Nagai Zone, Lead Geochemistry                                        | in pocket |
| Figure 21. Acta Claims, Zinc Geochemistry                                       | in pocket |
| Figure 22. Nagai Zone, Zinc Geochemistry                                        | in pocket |
| Figure 23. Acta Claims, Arsenic Geochemistry                                    | in pocket |
| Figure 24. Nagai Zone, Arsenic Geochemistry                                     | in pocket |
| Figure 25. Acta Claims, Bismuth Geochemistry                                    | in pocket |
| Figure 24. Nagai Zone, Bismuth Geochemistry                                     | in pocket |
| Figure 27. Acta Claims, Antimony Geochemistry                                   | in pocket |
| Figure 28. Nagai Zone, Antimony Geochemistry                                    | in pocket |
| Figure 29. Grid Survey HLEM Conductors, magnetic Highs and Arsenic Geochemistry | in pocket |
|                                                                                 |           |

# SUMMARY

The Goldorak Project (YMEP 2021-54) is located in central Yukon, 240 kilometres north of Whitehorse on the west side of the Selwyn Basin and east of the Tintina Trench. It is a gold-silver project focused on a previously unrecognized intrusive-related gold target centred over Dromedary Mountain. Significant results from the 2021 work include:

- The discovery of the Mizar showing, where a rock grab sample of an oxidized sulphide-bearing limestone/marble assayed 2490 ppm silver.
- Approximately 9 km east of the Mizar showing, at the Nagai Zone (discovered in in 2019 by the authors), three rock grab samples of quartz-sulphide breccia returned between 2.75 ppm and 7.36 ppm Au.

## Previous Work

Anaconda Canada Exploration Ltd. conducted the first recorded exploration in the area. The company staked claims in 1980 and explored until 1982 for sedimentary exhalative (SEDEX) Pb-Zn-Ag deposits. Anaconda drilled ten holes in 1981 for a total of 1,900 m, testing selected sections of an 18 km long thrust-fault-bounded belt of prospective Devonian to Ordovician basinal sedimentary rocks.

In the 1990s, Dromedary Exploration Company Ltd. and Blackstone Resources Inc. tested the same belt of rocks with diamond drilling at the François Zone, intersecting syngenetic SEDEX and (probably) Cretaceous replacement-style massive and semi-massive sulphide mineralization. The upper SEDEX sulphide lens returned up to 8.4% Zn, 2.4% Pb and 29.8 ppm Ag over 2 m, while the lower replacement-style horizon, dominated by pyrrhotite, is characterized by its gold-rich signature (up to 2.2 g/t Au over 4.4 m) and a strong gold-arsenic correlation.

With the exception of some widely-spaced geochemical sampling carried out by Inform Resources Corp. in 2012, the belt has never been explored for gold. Anaconda focused on silver and selected base metals; they did not systematically analyze for gold or for pathfinders, as their work pre-dated ICP analyses. Geochemistry carried out by later workers (Dromedary Exploration and Blackstone Resources) was focused on lead-zinc SEDEX mineralization on the François and Dromedary Creek Zones and did not target gold mineralization.

### Mineralization

The 18 km long northwest-trending mineralized belt is defined by anomalous geochemistry (Au, Cu, Pb, Zn, Sb, As) of soils, stream sediments, and rocks, HLEM conductors, magnetic anomalies, and numerous mineralized outcrops (or showings). In addition to the SEDEX-type mineralization, two other important types of mineralization have been documented:

- Replacement-type mineralization hosting gold, silver, and (to a lesser extent) base metals at the Main, BMS, Silver Creek, GC, PC, LM showings; at the newly discovered Mizar showing; and in historical drill hole intercepts of the François and Dromedary Creek zones.
- Precious metal mineralization in veins or vein-faults cutting metasediments, as found at the Inform Silver and Nagai showings and possibly at the LM and Mizar showings.

Regional-scale structures are favourable to mineralization:

- The south-dipping Twopete Fault, which forms the southern boundary of the prospective belt, could represent a conduit for mineralizing fluids.
- A magnetic high surrounds the annular magnetic low at Dromedary Mountain; this magnetic signature is typical of shallow buried reduced Tombstone Belt intrusions in Selwyn Basin; these intrusions are known to host or be related to the formation of distal disseminated-replacement-style gold mineralization.

### Mineral Tenure

The Goldorak project consists of four non-contiguous groups of claims, for a total of 38 quartz claims owned 100% by Hulstein and de Pasquale.

- In 2019, two groups of claims, the Fran 1-4 claims and the Orak 5-8 claims were staked to cover historical drill holes at the François and Dromedary Creek Zones, respectively.
- The La Liga Zone and the newly discovered Nagai Zone were staked in 2019 as the Orak 1-4, 9, and 10 claims.
- The Acta 1-24 claims were staked in 2020 over Dromedary Mountain. This group of claims covers the granitic intrusion and surrounding area; several of the historical mineral occurrences such as the Main, BMS, and Silver Creek showings; six of the 1981 Anaconda drill holes; as well as what is now called the Inform Silver showing, where silver mineralization in outcrop grades up to 646 ppm Ag.

## 2021 Work

The 2021 exploration program was carried out from July 1 to July 12 by Hulstein and de Pasquale from two fly camps, one on the Acta claims and the other one near the Nagai Zone. A total of 64 rock, 38 soil, and 12 stream sediment samples were collected and analyzed. The 2021 program followed up on results obtained in 2019 and 2020 and also focused on locating the PC, GC, and LM showings noted by Anaconda but not described. Three Anaconda drill hole collars, DDH81-03, -04, and -07 were located and all locations were recorded by GPS.

## 2021 Results

### Nagai Zone

The highest gold values obtained in 2021 were from the Nagai Zone, where three consecutive grab samples of brecciated quartz-sulphide veining cutting variably limy slate, shale, and phyllite returned between 2.75 ppm and 7.36 ppm gold. The current distribution of rock samples defines an anomalous east-west band, 130 m long by 25 to 45 m wide, with >10% Fe. A ground magnetic anomaly identified by Anaconda partially overlaps with this area, and an HLEM conductor about 30 m to the north parallels the zone. About 100 m south of the gold-bearing rocks at the Nagai, a 2021 soil sample returned 0.138 ppm for gold, which represents the highest gold value in the 2021 soil survey. Two lines of six soil samples each, located northwest of the Nagai, returned a coherent six-sample arsenic anomaly (> 50 ppm to 758 ppm) and low values for gold (<0.025 ppm).

### Mizar showing

The single rock grab sample of sulphides in limestone/marble collected at the Mizar showing was

highly anomalous, assaying 2490 ppm Ag, 0.51 ppm Au, 9900 ppm As, 4460 Bi, 580 ppm Cd, 342 ppm Cu, 8.78% Fe, 5.92% Pb, 1035 ppm Sb and 4.71% Zn. Due to time constraints, the nearby outcrop in the creek gully was not examined in 2021. The Mizar showing corresponds to a broad east-west HLEM conductor identified by Anaconda, parallel to a prominent creek gully.

### Main Zone

A rock sample from a band of semi-massive sulphides from the Main Zone returned 3.31 ppm Au and highly anomalous Bi and Cu. This northeast-trending, moderately south-dipping, intermittent band of massive to semi-massive sulphide,  $\geq 2$  m thick, has been traced over a distance of 400 m. Ferricrete on the east side of the ridge suggests it may extend further east. An HLEM conductor, approximately coincident with the band of sulphides, extends west of the Main Zone at least as far as the Silver Creek showing, a distance of about 900 m. This conductor was the target of drill holes DDH81-01, -02, and -03.

### LM showing

Two rock samples from the LM showing returned up to 0.356 ppm Au, 28 ppm Ag, and 4079 ppm Cu from disseminated and vein-hosted mineralization cutting argillite-chert and calc-silicate rocks. This description of the host rock and mineralization is similar to that described in drill hole DDH81-07, where a 37.08 m interval averaged 1341 ppm Cu but with no analyses for Au or As. Both the LM showing and DDH81-07 lie near a HLEM conductor.

### Inform Silver showing

Follow-up sampling and prospecting in 2021 at the Inform Silver showing returned 0.186 ppm Au, 646 ppm Ag, 3.81% Pb, 2.666% Zn, 229 ppm Bi and 558 ppm Sb from a grab sample of a band of finegrained stratabound sulphides in siltstone. Nearby, samples of quartz veining collected in 2020 returned up to 193 ppm Ag, 1.06% Pb, 42 ppm Bi and 188 ppm Sb from a 10 cm wide (approximate true thickness) weathered gossanous crustiform quartz vein cutting the siltstones. Six soil/talus fine samples collected in 2020 downslope from the outcrops were anomalous; no follow-up was carried out in 2021.

### GC and PC showings

Selected grab samples collected in 2021 of skarn and quartz veining at the GC and PC showings returned up to 0.177 ppm Au, 4300 ppm As, and 4.32% Zn at the GC showing and 9.2 ppm Ag, 562 ppm Pb and 9.17% Zn at the PC showing. This lead-zinc mineralization is fairly well exposed on the ridge spur and appears to be limited in extent.

## Other results

About 800 m east of the Mizar and on trend (as indicated by the HLEM conductors) and 400 m north of the Main Zone is a copper soil anomaly that extends approximately 400 m across the scree slope. In addition to copper (>900 ppm Cu), the anomaly is defined by highly anomalous values of >1000 ppm As and spotty anomalous values for Ag (>3 ppm), Pb (>60 ppm), Zn (>400 ppm), Bi (>12.3), and Sb (>10 ppm). A 2021 soil sample returned 29.6 ppm Ag within the anomaly and this sample is 110 m south of a soil sample that returned 66.4 ppm Ag in 2020 and remains to be followed up.

In 2019 three rock grab samples at the KSF Zone of siliceous hornfelsed to fine-grained calc-silicate skarn, locally quartz veined, were collected from the north contact of a small diorite body. The highest gold value returned was 0.165 g/t with low arsenic from a grab sample. Six rock samples collected in 2021 returned low values for gold, silver, arsenic, and base metals. Both the 2019 and 2021 samples line up with an HLEM conductor identified by Anaconda.

#### Stream Sediment Sampling

Stream sediment samples collected in 2021 returned up to 0.031 ppm Au with 12.35 ppm Bi from a sample collected from the drainage on the east side of the Main showing, the northeast side of Dromedary Mountain. Other samples collected above the Mizar showing and below the Main showing and the copper in soil anomaly returned highly anomalous values for As, Bi, Cu, Pb, Sb, and Zn. Panned stream sediment samples yielded abundant scheelite from the drainages near and below the quartz monzonite and returned anomalous values for tungsten.

### Conclusions

Given that highly anomalous gold, silver, copper, lead, and zinc values have been identified in drill holes, surface showings, and in soil and stream sediment samples, further work is warranted and recommended on the Goldorak project. The following additional work is recommended: prospecting, geological mapping and geochemical sampling is recommended with a high priority given to the Mizar showing, Nagai Zone, Inform Silver showing, and LM showing and surrounding areas. More claims should be staked to cover the Mizar showing and to extend the existing claims at the Inform Silver showing and Nagai Zone. If sufficient funds are available, both airborne and ground geophysics should be carried out and the Nagai Zone should be tested by drilling.

# INTRODUCTION

The purpose of this report on the Goldorak project (YMEP 2021-054) is to fulfill obligations arising from funding obtained through the Yukon Mineral Exploration Program (YMEP). The report describes and summarizes the geological and geochemical results obtained in 2021 from a twelve-day program carried out from July 1 to July 12, 2021. An exploration program of prospecting, reconnaissance geological mapping and geochemical sampling was carried out within a portion of the recently mapped (Cobbett, 2018) Dromedary Mountain area. The principals behind the Goldorak project, Roger Hulstein and Jérôme de Pasquale, were attracted to the area by the results of the recent Yukon Geological Survey mapping, the availability of open ground, and lack of exploration for gold on what is believed to be a prospective target area for gold deposits.

This report also describes the location, access, history, geological setting, known mineral occurrences for the area and outlines a proposed exploration program to further explore the project area for intrusive-hosted and intrusive-related gold deposits.

# 1. LOCATION, ACCESS, AND LAND STATUS

The Goldorak project is centred over the Dromedary Mountain, located approximately 73 miles from Carmacks, 65 miles from Mayo, 68 miles from Faro, and the area is accessible by helicopter (**Figure 1**). Fireweed Helicopters based out of Mayo (seasonal base) provided transport to and from the project along with a camp move (thank you Steve Goodliffe!).

The main portion of the target area examined in 2021 is approximately centred over Dromedary Mountain on the Acta 1-24 claims and approximately five kilometres to the east on and near the Orak 1-4, 9, 10 claims. In 2019 the area east of Dromedary Mountain was examined and the Orak and Fran claims staked while in 2020 the Dromedary Mountain area was explored, and the Acta claims staked.

The prospective Goldorak gold exploration target, as defined by aeromagnetics, mineral occurrences and anomalous geochemistry, extends from Lone Mountain to the northwest to Earn Lake in the southeast, an overall distance of approximately 18 km.

The entire target area lies within the Traditional Territory of the Selkirk First Nation Territory. Category A First Nations Settlement Lands (Surface and Subsurface Rights, no staking permitted) are located on the west side of Dromedary Mountain (west of Clarke Creek) and over Lone Mountain and Category B (Surface Rights) land is located to the southeast and surrounds Earn Lake.

No active mineral claims (Yukon Quartz claims) other than the Fran 1-4, Orak 1-10, and Acta 1-24, all owned by Roger Hulstein and Jérôme de Pasquale and described within this report, are recorded in the area as of November 4, 2021.

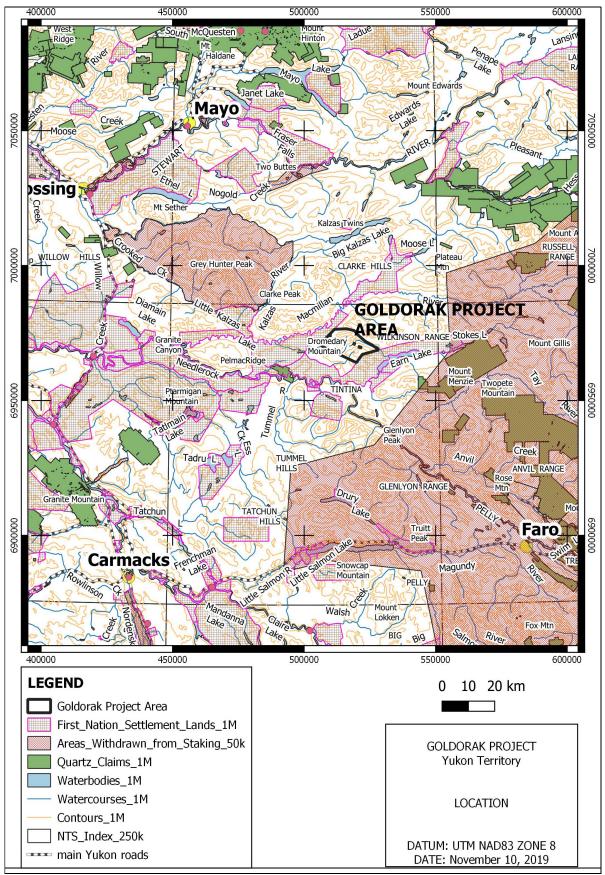



Figure 1. Goldorak Project Location – centred over Dromedary Mountain.

# 2. 2021 PROGRAM DESCRIPTION

The 2021 field program was carried out by Roger Hulstein, Jérôme de Pasquale, and bear dog Newt between July 1 to July 12, 2021, including mobilization and demobilization. Two camps were established, the first on the flank of Dromedary Mountain at UTM 513755E and 6973273N (NAD83, Zone 8V). The second camp near the Orak claims is at UTM 520554E and 6970096N. Traverses were carried out daily from each camp.

The following is a day-by-day summary of field activities in 2021:

- July 1: drive from Whitehorse to Mayo, mobilize by helicopter and set up camp near the Main (Discovery) showing, traverse on northwest ridge in late afternoon.
- July 2: traverse west of Main showing, rock soil and stream sediment sample, discover new sulphide showing (Mizar Ag showing).
- July 3: traverse north and west of Main showing following up on copper in soil anomaly identified in 2020.
- July 4: search and locate drill hole collars for DDH81-03 & 04. Prospect and sample in area and traverse up creek (silt sampling) draining east side of the Main showing and locating granitoid contact.
- July 5: traverse to and locate GC and PC showings, sample and prospect.
- July 6: traverse to and locate drill hole collar DDH81-07. Prospect and sample in area of LM showing
- July 7: examine Inform Silver Showing, traverse ridge towards Barite Occurrence
- July 8: move from Camp 1 to Camp 2 by helicopter, soil sample traverse north of Camp 2.
- July 9: prospect and sample Nagai and KSF Zones.
- July 10: traverse to 2019 soil sample W641978, prospect and sample. Examine and sample intrusive and surrounding rocks at KSF Zone.
- July 11: age date sample from KSF Zone, sample and prospect around 2019 soil sample W641978.
- July 12: pack camp and samples, demobilize to Mayo by helicopter and drive to Whitehorse.

Weather was exceptionally good, mostly warm to hot, with only rare intermittent showers during the field program.

All sample and field station locations were collected by GPS, Garmin model's 60CSx or better, with an accuracy commonly of +/- 3 m, and location information was stored using a UTM grid, NAD83 Datum in Zone 8V. Following the fieldwork 10 thin and polished sections from rock samples were sent to Dr. Tim Liverton for petrographic examination (Appendix E).

# 3. TOPOGRAPHY, VEGETATION AND CLIMATE

Topography in the region is typical of central Yukon, incised valleys with steep hillsides and rounded crests. Elevations range from approximately 650-800 m above sea level in the McMillan River Valley to about 1800 m at the crest of Dromedary Mountain. Areas of high elevation locally consist of rugged alpine terrain with rare patches of stagnant ice and abundant evidence of recently departed alpine

glaciers. Areas of lower elevation and the valleys, approximately below 1350 m elevation are moderately to densely vegetated. Larger valleys such as the McMillan River Valley and Dromedary Creek are broad and filled with glacial debris.

The climate in the project area is variable with warm summers and long cold winters. Precipitation is light, with moderate snowfalls during the winter months. Depending on the elevation the typical field season extends from late May to middle - late September. Permafrost can be expected anywhere within the project area, particularly on northerly facing slopes. Permafrost, thick ash and organic horizons and glacial till cover posed significant problems in 2019 while attempting to collect meaningful soil and stream sediment samples and to some extent in 2020 and 2021.

# 4. PREVIOUS WORK

The area was explored intermittently for SEDEX Pb-Zn deposits in the 1980s to late 1990s. The latest work in the area was by Inform Resources in 2012 that carried out a ridge line soil traverse and some prospecting, likely exploring for gold. The gold potential was recognized during lead–zinc exploration but this was never consistently followed up on. Anaconda carried out work in the area extending from the Cave mineral showing west of Dromedary Mountain, north of the McMillan River, to Earn Lake, to the east. A summary of previous work is as follows (work completed outside the immediate Goldorak target area carried out by Anaconda and others is included):

1980: Program by Anaconda Canada Exploration Ltd., Assessment report 090888 (Carlson, 1981):

- Prospecting and mapping
- Discovery of Fe, Zn, and Pb sulphides on Dromedary Mountain
- Staked Ace 1-724 and Earn 1-4 claims

1981: Program by Anaconda Canada Exploration Ltd., Assessment report 090888 (Carlson, 1981), and internal Anaconda report (Carlson, 1982):

- 3500-line km airborne magnetometer and EM survey
- Geological mapping, prospecting (Cave showing discovery)
- Geochemical survey (rock, soil, drill core)
- Seven diamond drill holes on Dromedary Mountain and three drill holes on Dromedary Creek totalling of 1950 metres NQ core

1982: Program by Anaconda Canada Exploration Ltd., Assessment report 091468 (Hall, 1983):

- 123 km Line-cutting and surveyed grid establishment
- 45 line-km of gravity survey
- 3500 soil samples on grid at 25 m centres
- 156 km of ground horizontal-loop EM and magnetic geophysics survey
- Geological mapping
- Overburden mechanical hand drill soil sampling

1984: Anaconda Canada Exploration Ltd. ceased exploration activities

1985: Fleck Resources Ltd. acquired 1,436 claims from Anaconda

1988: Program by Dromedary Exploration Company Ltd. acquired the Ace and Bum claims by option agreement from Fleck Resources Ltd.

1988: Program by Dromedary Exploration Company Ltd., company prospectus (Rebagliati, 1988):

- Claim staking
- Geological mapping, prospecting
- Geochemical survey (rock and soil)
- Ground geophysics
- Trenching

Data was reviewed by Rebagliati Geological Consulting Ltd. and work program was conducted by Aurum Geological Consultants Inc.

1990: Program by Dromedary Exploration Company Ltd., Assessment report 092882 (Hulstein 1990):

- Two diamond drill holes on the Ace Clams (François grid) totalizing 434 metres
- Geochemical survey (drill core), gold potential was recognized

1990: Placer Dome Inc. examined the property, sampled limited drill core, and recommended a large drill program which was not undertaken.

1992: Kennecott Canada Inc. examined the property for Pb-Zn potential.

• Soil sampling (Cave grid)

1993: Energold Minerals Inc. optioned the property.

1993: Program by Energold Minerals Inc.:

- Geological mapping
- Soil sampling
- Ground Mag geophysics

Due to insufficient financing, the proposed drilling program was not undertaken

1996: Blackstone Resources Ltd. optioned the property

1996: Program by Blackstone Resources Ltd., program conducted by Equity Engineering Ltd., Assessment report 093595 (Caulfield, 1997):

- Geological mapping, prospecting (DMC claims)
- One diamond drill hole at Dromedary Creek and four on the Fran Zone totalling 936 metres, Geochemical survey (rock and drill core).

1997: Program by Blackstone Resources Ltd., program funded by Geologix Explorations Inc. and conducted by Equity engineering Ltd., Assessment reports 093755 and 093764 (Jones, 1998a, Jones 1998b):

- Additional claim staking
- Geological mapping, prospecting (François grid, King claims, DMS claims)

- Gravity and Mag geophysical survey
- Geochemical survey (rock and soil sampling)
- Hand trenching

1998: Program by Blackstone Resources Ltd., program conducted by Equity Engineering Ltd. Assessment report 093945 (Jones, 1999):

- Three diamond drill holes totalizing 354.6 metres on the Fran Zone
- Geochemical survey (drill core)
- X-ray fluorescence analysis

2012: Program by Inform Resources Corp., Assessment report 096377 (Gibson, 2013):

- Ridge and spur soil sampling
- Limited rock sampling

2019: Roger Hulstein and Jérôme de Pasquale staked the Fran 1-4 quartz claims over anomalous drill holes DDH96-02 and 04 on the Francois Grid located west of Dromedary Mountain. East of Dromedary Mountain the Orak 5-8 claims were staked to cover the drill holes at the Dromedary Creek Zone. Also, in the Dromedary Creek area the Nagai, KSF, and La Liga Zones were explored by prospecting and geochemical sampling. The Nagai Zone was a new 2019 discovery with anomalous gold values in rock samples (De Pasquale and Hulstein, 2019).

2020: Roger Hulstein and Jérôme de Pasquale staked the Acta 1-24 claims over Dromedary Mountain covering drill holes DDH81-01 to DDH81-06, the Main or Discovery showing, the Silver Creek and BMS showings, Inform Silver showing, and a copper in soil anomaly on the west-facing slope. These showings and anomalies were explored and sampled with rock samples returning <0.147 ppm gold but up to 193 ppm silver, 6,000 ppm copper, 1.06% lead, and 4.17% zinc. Soil samples returned up to 0.529 ppm gold and 1210 ppm copper while stream sediment samples contained up to 0.132 ppm gold, 4.66 ppm silver, 1930 ppm copper, 33.9 ppm lead, 1,610 ppm zinc and highly anomalous values for pathfinder elements such as bismuth, arsenic, and antimony (de Pasquale and Hulstein, 2020).

The results of the above work indicate that Dromedary Mountain is approximately centred within an 18 km long northwest-trending mineralized belt defined by geochemically anomalous stream sediment, soil, and rock samples (including drill results), EM conductors, magnetic linears, over a shallow, almost entirely buried, granitoid intrusion.

# 5. TENURE

The Goldorak project encompasses a total of 38 quartz claims in four separate groups; the claims are held by Hulstein and de Pasquale. All the claims are registered in the name of Roger Hulstein who holds them in a 49%/51% partnership with Jérôme de Pasquale.

Table 1. Claims held within Goldorak Project Area.

| Grant<br>Number | Name | Number | Registered owner<br>(100%) | Recording<br>Date | Staking<br>Date | Expiry<br>Date* |
|-----------------|------|--------|----------------------------|-------------------|-----------------|-----------------|
| YD18081         | ORAK | 1      | Roger Hulstein - 100%      | 8/15/2019         | 7/24/2019       | 8/15/2026       |
| YD18082         | ORAK | 2      | Roger Hulstein - 100%      | 8/15/2019         | 7/24/2019       | 8/15/2026       |
| YD18083         | ORAK | 3      | Roger Hulstein - 100%      | 8/15/2019         | 7/24/2019       | 8/15/2026       |
| YD18084         | ORAK | 4      | Roger Hulstein - 100%      | 8/15/2019         | 7/24/2019       | 8/15/2026       |
| YD18085         | ORAK | 5      | Roger Hulstein - 100%      | 8/15/2019         | 7/26/2019       | 8/15/2022       |
| YD18086         | ORAK | 6      | Roger Hulstein - 100%      | 8/15/2019         | 7/26/2019       | 8/15/2022       |
| YD18087         | ORAK | 7      | Roger Hulstein - 100%      | 8/15/2019         | 7/26/2019       | 8/15/2022       |
| YD18088         | ORAK | 8      | Roger Hulstein - 100%      | 8/15/2019         | 7/26/2019       | 8/15/2022       |
| YD18089         | ORAK | 9      | Roger Hulstein - 100%      | 8/15/2019         | 7/28/2019       | 8/15/2026       |
| YD18090         | ORAK | 10     | Roger Hulstein - 100%      | 8/15/2019         | 7/28/2019       | 8/15/2026       |
| YC94546         | FRAN | 1      | Roger Hulstein - 100%      | 8/15/2019         | 7/23/2019       | 8/15/2022       |
| YC94547         | FRAN | 2      | Roger Hulstein - 100%      | 8/15/2019         | 7/23/2019       | 8/15/2022       |
| YC94548         | FRAN | 3      | Roger Hulstein - 100%      | 8/15/2019         | 7/23/2019       | 8/15/2022       |
| YC94549         | FRAN | 4      | Roger Hulstein - 100%      | 8/15/2019         | 7/23/2019       | 8/15/2022       |
| YD17521         | ACTA | 1      | Roger Hulstein - 100%      | 7/7/2020          | 6/30/2020       | 7/7/2025        |
| YD17522         | ACTA | 2      | Roger Hulstein - 100%      | 7/7/2020          | 6/30/2020       | 7/7/2025        |
| YD17523         | ACTA | 3      | Roger Hulstein - 100%      | 7/7/2020          | 6/30/2020       | 7/7/2025        |
| YD17524         | ACTA | 4      | Roger Hulstein - 100%      | 7/7/2020          | 6/30/2020       | 7/7/2025        |
| YD17525         | ACTA | 5      | Roger Hulstein - 100%      | 7/7/2020          | 6/30/2020       | 7/7/2025        |
| YD17526         | ACTA | 6      | Roger Hulstein - 100%      | 7/7/2020          | 6/30/2020       | 7/7/2025        |
| YD17527         | ACTA | 7      | Roger Hulstein - 100%      | 7/7/2020          | 7/1/2020        | 7/7/2025        |
| YD17528         | ACTA | 8      | Roger Hulstein - 100%      | 7/7/2020          | 7/1/2020        | 7/7/2025        |
| YD17529         | ACTA | 9      | Roger Hulstein - 100%      | 7/7/2020          | 7/1/2020        | 7/7/2025        |
| YD17530         | ACTA | 10     | Roger Hulstein - 100%      | 7/7/2020          | 7/1/2020        | 7/7/2025        |
| YD92181         | ACTA | 11     | Roger Hulstein - 100%      | 7/7/2020          | 7/3/2020        | 7/7/2025        |
| YD92182         | ACTA | 12     | Roger Hulstein - 100%      | 7/7/2020          | 7/3/2020        | 7/7/2025        |
| YD92183         | ACTA | 13     | Roger Hulstein - 100%      | 7/7/2020          | 7/3/2020        | 7/7/2025        |
| YD92184         | ACTA | 14     | Roger Hulstein - 100%      | 7/7/2020          | 7/3/2020        | 7/7/2025        |
| YD92185         | ACTA | 15     | Roger Hulstein - 100%      | 7/7/2020          | 7/3/2020        | 7/7/2025        |
| YD92186         | ACTA | 16     | Roger Hulstein - 100%      | 7/7/2020          | 7/3/2020        | 7/7/2025        |
| YD92187         | ACTA | 17     | Roger Hulstein - 100%      | 7/7/2020          | 7/3/2020        | 7/7/2025        |
| YD92188         | ACTA | 18     | Roger Hulstein - 100%      | 7/7/2020          | 7/3/2020        | 7/7/2025        |
| YD92189         | ACTA | 19     | Roger Hulstein - 100%      | 7/7/2020          | 7/3/2020        | 7/7/2025        |
| YD92190         | ACTA | 20     | Roger Hulstein - 100%      | 7/7/2020          | 7/3/2020        | 7/7/2025        |
| YD17531         | ACTA | 21     | Roger Hulstein - 100%      | 7/7/2020          | 7/4/2020        | 7/7/2025        |
| YD17532         | ACTA | 22     | Roger Hulstein - 100%      | 7/7/2020          | 7/4/2020        | 7/7/2025        |
| YD17533         | ACTA | 23     | Roger Hulstein - 100%      | 7/7/2020          | 7/5/2020        | 7/7/2025        |
| YD17534         | ACTA | 24     | Roger Hulstein - 100%      | 7/7/2020          | 7/3/2020        | 7/7/2025        |

\*Expiry date conditional upon acceptance of assessment work filed in 2021.

The four claim blocks are all located within the Yukon Whitehorse Mining District on NTS map sheet

105L/15 (**Figure 2**). The claims cover a total of 790 hectares (1950 acres). A total of 24 claims (ACTA 1-24) were staked in 2020 to cover the granitic intrusion and surrounding area including most of the 1981 Anaconda drill holes. In 2019 in three groups of claims were staked to cover other historical drill holes (Fran 1-4 & Orak 5-8 claims), the La Liga Zone and the Nagai Zone discovered in 2019 (Orak 1-4, 9, 10 claims).

The claims and zone names are shown on Figure 3.

The Fran 1-4 claims cover the area of diamond drilling carried out by Blackstone Resources Ltd. and Dromedary Exploration Company Ltd. Additional historical drilling is found to the west of the Fran Zone located within Category A land belonging to the Selkirk First Nation.

The Orak 1-4, 9 and 10 claims cover the La Liga Zone, located on the creek banks of a steep northerly drainage, the newly identified Nagai Zone and the KSF zone (**Figure 4**). The Orak 5-8 claims cover the historical Dromedary Creek Zone previously drilled by Anaconda and Blackstone.

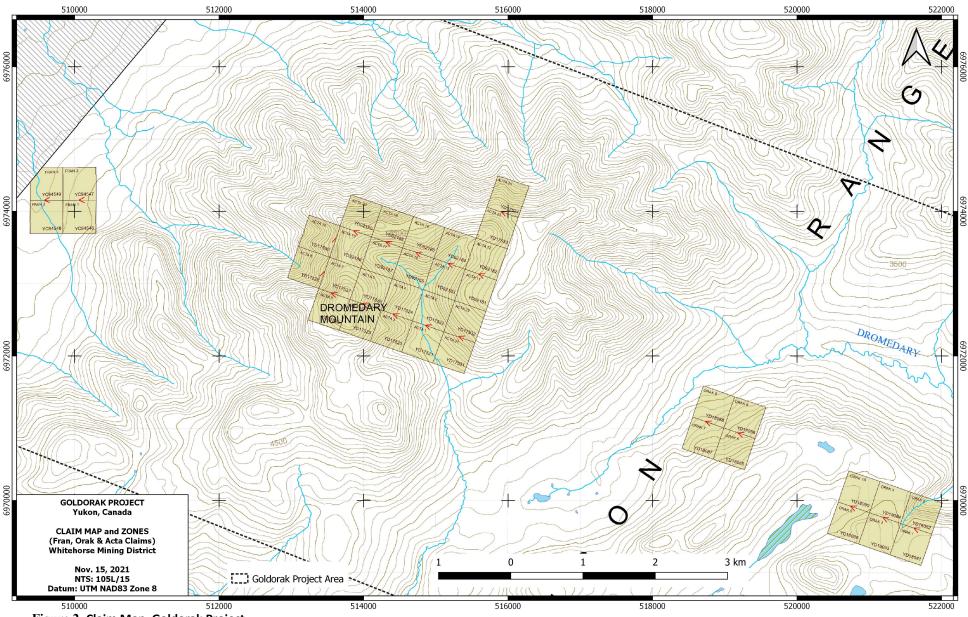



Figure 2. Claim Map, Goldorak Project.

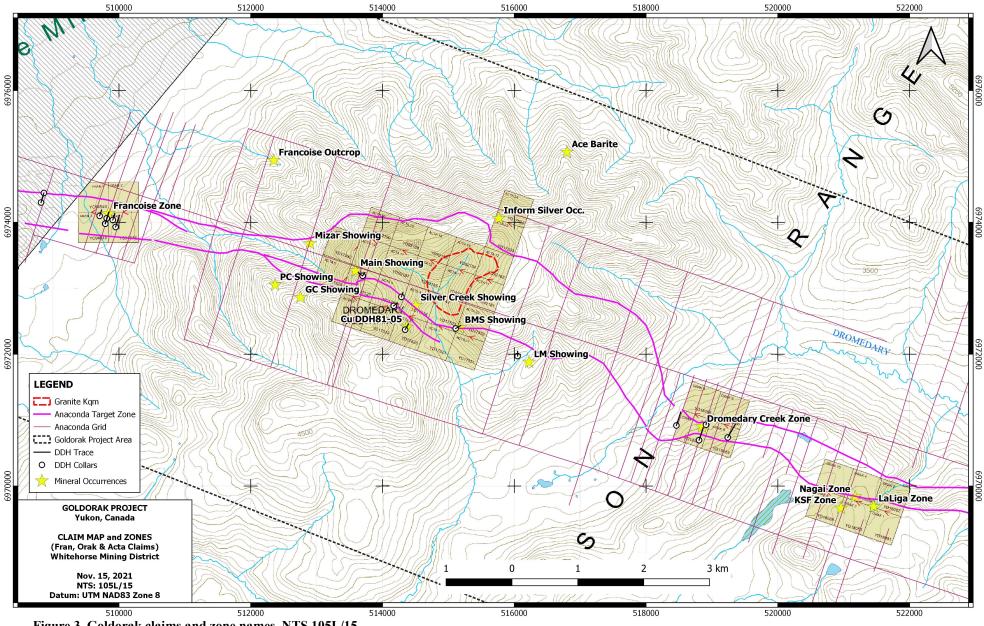



Figure 3. Goldorak claims and zone names, NTS 105L/15.

# 6. REGIONAL GEOLOGY

The project area was remapped by Rosie Cobbett in 2018 of behalf of the Yukon Geological Survey and the results are shown in **Figure 4**. The following information is extracted from: *Preliminary observations on the geology of northeastern Glenlyon area, Central Yukon* (Cobbett, 2019, Cobbett and Keevil, 2019).

- Three structural panels separate subparallel thrust faults (Duo fault on the south/Twopete fault on the north) and subdivide the stratigraphy as shown diagrammatically in **Figure 5**.
- The Southern Panel consists of volcanic and volcaniclastic rocks and sedimentary strata; it is assigned to the Vangorda Formation (interpreted to be metamorphic equivalent to Rabbitkettle formation (Jennings, 1986, Godfrey and Anderson, 1994, Pigage, 2004)) and Menzie Creek.
- The Central Panel (fault bounded) comprised of siliciclastic and carbonate rocks and phyllites. Rocks exposed in the Dromedary Mountain area are assigned to Rabbitkettle Formation based on lithology similarities to the other parts of the Selwyn Basin. It underlays rocks from Road River Group. The contact is to date considered as unconformable based on observations made in Nahanni, Flat River and Glacier Lake areas (Gabrielse et al., 1973; Gordey and Anderson, 1993).
- Late Devonian dioritic intrusions (364 Ma) outcrop within the Central Panel. They are laterally cut-out where the Duo fault merges with the Twopete fault.
- The Northern Panel consists of Mid to Upper Paleozoic siliciclastic rocks, carbonate and chert assigned to Road River Group/Steel Formation, Earn Group, Tay River Formation, and Mount Christie Formation unconformably underlain by Jones Lake Formation.
- Intrusive rocks are represented by Mid-Cretaceous MacArthur batholith to the west of the target area. It is considered as part of the Mayo suite, based U-Pb zircon dating (98-93 Ma) on a sample collected about 30 km to the northwest (Colpron et al., 2016). A similar intrusion is thought to underlie Dromedary Mountain.
- The area is deformed by a northwest-trending fold and post-Triassic thrust belt. Thrust faults are offset by steeply dipping, north-south oriented faults that have both strike-slip and dip-slip displacement.

The Goldorak project area is interpreted to straddle the northerly directed Twopete fault. The Rabbitkettle Formation of the Road River Group makes up the upper panel and the Earn Group the lower panel on the west side (Dromedary Mountain and François Grid) of Dromedary Creek. East of the northeast trending fault in Dromedary Creek, the Mount Christie and Tay Formations form the lower plate, with the Road River Group, without the Rabbitkettle Formation, forming the upper plate. From Cobbett (2018):

"Detailed mapping along the Twopete fault provides evidence that it was a syn-sedimentary fault that controlled deposition of Upper Devonian clastic sedimentary and volcanic rocks. Fossils collected during mapping provide constraints on the position of the Twopete fault; Ordovician fossils were found in its hanging wall and Late Devonian fossils in the footwall. This in turn shows that known mineralization is hosted in Upper Devonian sedimentary strata in the immediate footwall of the Twopete fault, suggesting a genetic link between mineralization and the fault, a relationship that can be traced for approximately 100 km to the southeast.

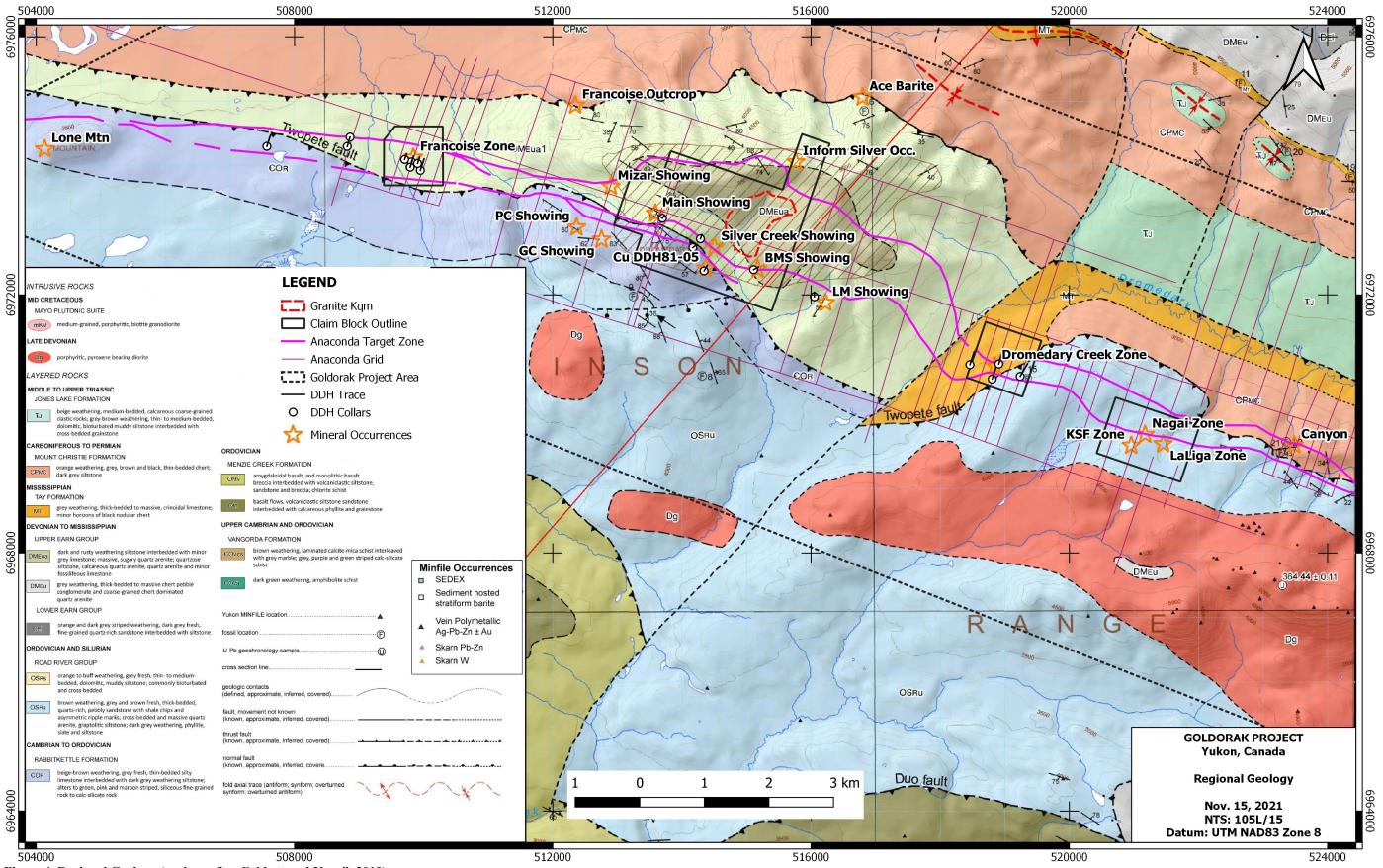



Figure 4. Regional Geology (geology after Cobbett and Keevil, 2019).

20

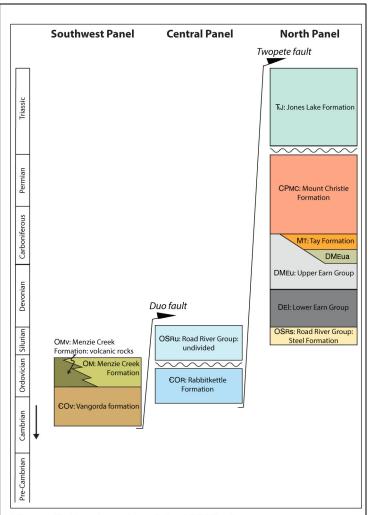



Figure 5. Diagrammatic stratigraphic column for Glenlyon area, from Cobbett, 2019.

Mid-Cretaceous plutons exposed in the footwall of the Twopete fault are locally coincident with mineral occurrences. At Dromedary Mountain, a buried intrusion is imaged in regional aeromagnetic surveys and coincides with occurrences of polymetallic veins and a pyrrhotite-pyrite halo at surface. This relationship between epigenetic mineralization and Cretaceous intrusions continues to the southeast.

These features suggest that the Twopete fault is a long-lived, crustal-scale structure that defines a prospective corridor with potential for Late Devonian syngenetic mineralization similar to Macmillan Pass, replacement-style mineralization, and mid-Cretaceous vein-style mineralization similar to the Keno Hill district."

Located approximately 75 km to the southeast, the Keg deposit shares some similarities with the geological setting at the Goldorak Project. These include structural complexity involving thrust faults, normal faults, juxtaposition of siliciclastic rocks and spatial association with a granitic intrusion. At the Keg, a small Cretaceous granitoid within two kilometres of mineralization may have provided heat and or fluids to the mineralizing system (Giroux and Melis, 2014).

Known mineral occurrences within the project area are shown on **Figure 4** and listed in **Table 2**. Mineralization can be grouped into three main types: sedimentary exhalative (SEDEX), replacement, and vein type.

#### Table 2. Table of Goldorak Mineral Occurrences.

| Occurrence<br>Name       | UTM NAD 83<br>Easting | UTM NAD 83<br>Northing | Lithology                    | Description                                                                                                                                                                                | Rock<br>Geochemistry | Number                   | Au<br>ppm             | Ag<br>ppm            | As<br>ppm                             | Bi<br>ppm                 | Cu<br>ppm           | Fe<br>%          | Pb<br>ppm             | Zn<br>ppm           | Reference<br>(information from<br>others) |
|--------------------------|-----------------------|------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------|-----------------------|----------------------|---------------------------------------|---------------------------|---------------------|------------------|-----------------------|---------------------|-------------------------------------------|
| Main Showing             | 513590                | 6973265                | Hornfels                     | Meter scale, semi massive - massive iron sulphide 'lozenges' at contact between shale and calc-silicate (along or near an E-W trending fault zone?)                                        | 2021 Rock grab       | W425861                  | 3.32                  | 7.1                  | 46                                    | 674                       | 2130                | 27.2             | 4                     | 260                 |                                           |
|                          |                       |                        |                              |                                                                                                                                                                                            | 2021 Rock grab       | W641892                  | 0.964                 | 4.4                  | 3180                                  | 215                       |                     | 11.05            |                       | 116                 | ·                                         |
|                          |                       |                        |                              | Description as: Discovery, main showing area on Dromedary                                                                                                                                  | 1997 Rock grab       | 010451                   | 1.51                  | 4.6                  | 34                                    |                           | 2570                | 13.7             | 2                     |                     | Jones, 1998                               |
| Silver Creek<br>Showing  | 514505                | 6972740                | massive sulphide             | Approximate bedding 145/55 S. Rusty-vuggy, rounded massive sulphide, about 40 cm<br>thick, grey massive sulphide within metasediment.                                                      | 2020 Rock grab       | W641871                  | 0.008                 | 1.8                  | 8850                                  | 2                         | 3180                | 19.65            | 159                   | 944                 |                                           |
|                          |                       |                        | }                            |                                                                                                                                                                                            |                      | W641912                  | 0.005                 | 1.5                  | 32                                    | 2                         | 442                 | 7.7              | 4                     | 215                 | /<br>/<br>/                               |
| BMS Showing              | 515175                | 6972400                | massive sulphide             | Massive sulphide, small exposure and up to 60 cm thick quartzite-siltstone wallrock.<br>Rusty weathering fine-med grained granular dark grey sulphide in groundmass of<br>quartz-chlorite. | 2020 Rock grab       | W641915                  | 0.005                 | 3.3                  | 343                                   | 2                         | 870                 | 16.2             | 7                     | 319                 |                                           |
|                          |                       |                        |                              | Massive sulphide in drill holes including: 8.4% Zn, 2.4% Pb and 29.8 ppm Ag over                                                                                                           |                      | <br> <br> <br> <br> <br> |                       |                      | · · · · · · · · · · · · · · · · · · · | L<br> <br> <br> <br> <br> |                     |                  |                       |                     | Caulfield, 1997;<br>Jones, 1999;          |
| François Zone            | 509840                | 6974130                | massive sulphide             | 2.0m in FRN96-04 and 2.2 g/t Au over 4.4 m in FREN96-02.<br>Inform Resources rock grab A00044558 & JDP rock samples: Crustiform quartz veins                                               |                      | <br>                     | +                     |                      |                                       | <br> <br> <br>            | •<br>•              | •                |                       |                     | Hulstein, 1990                            |
| Inform Silver<br>Showing | 515765                | 6974060                | Quartz Veins                 | and veinlets with diss arsenopyrite, pyrite and Fe oxides crosscutting shale and siltstone. W641900 cm scale fine-grained massive sulphide pod/lens.                                       | 2012 Rock grab       | A00044558                | 0.064                 | 213                  | 86                                    | 15.6                      | 142                 | 6.12             | >1%                   | 496                 | Gibson, 2013                              |
|                          |                       |                        |                              |                                                                                                                                                                                            | 2020 Rock grab       | W641875                  | 0.067                 | 193                  | 13                                    | 42                        | 113                 | 6.59             | >1%                   | 374                 |                                           |
|                          |                       |                        | ¦<br>                        |                                                                                                                                                                                            | 2021 Rock grab       | W641900                  | 0.186                 | 646                  | 35                                    | 229                       | 334                 | 9.84             | 3.80%                 | 2.66%               |                                           |
| Cu DDH81-05              | 514370                | 6972410                | Siliceous skarn              | DDH81-05; 1300ppm Cu over 37m. Siliceous skarn and calc-silicate                                                                                                                           | ·                    | ¦                        | ¦<br>¦<br>+           | ¦<br>                | ;<br>;<br>;                           | ¦<br>                     | ,<br>,<br>,<br>,    | ¦<br>¦           | ¦<br>                 | ¦                   | Carlson, 1982                             |
| Dromedary Creek<br>Zone  | 518850                | 6970900                | massive sulphide             | Four drill holes with low-mod grade Pb-Zn-Ag-Fe-Mn-Ni intersections                                                                                                                        |                      |                          |                       |                      | <br> <br> <br> <br>                   | <br> <br> <br> <br>       | <br> <br> <br> <br> |                  | ,<br>,<br>,<br>,<br>, | <br> <br> <br> <br> | Carlson, 1982 &<br>Caulfield, 1997        |
| Nagai Zone               | 521175                | 6969835                | siliciclastic rocks          | Qtz veined chlorite altered siliciclastic rocks with variable arsenopyrite.                                                                                                                | 2019 Rock grab       | W641854                  | 0.572                 | 0.5                  | 69                                    | 6                         | 112                 | 21.39            | 6                     | 83                  |                                           |
|                          |                       |                        |                              |                                                                                                                                                                                            | 2021 Rock grab       | W425904                  | 7.19                  | 0.5                  | >10k                                  | 17                        | 73                  | 13.6             | 10                    | 59                  |                                           |
|                          |                       |                        | ¦                            |                                                                                                                                                                                            | 2021 Rock grab       | W425905                  | 7.36                  | 0.5                  | >10k                                  | 19                        | 45                  | 12.35            | 14                    | 45                  | ¦<br>                                     |
| ·                        |                       |                        | ,<br>,<br>,<br>,             |                                                                                                                                                                                            | 2021 Rock grab       | W425906                  | 2.75                  | 0.5                  | >10k                                  | 8                         | 9                   | 9.81             | 7                     | 78                  |                                           |
| La Liga Zone             | 521455                | 6969690                | Iron oxide in siltstone      | small lens of iron oxide in siltstone                                                                                                                                                      | 2012 Rock grab       | A00044574                | 0.99                  | 1.76                 | 103                                   | 0.25                      | 333                 | 15               | 3.8                   | 37                  | Gibson, 2013                              |
|                          |                       |                        |                              |                                                                                                                                                                                            | 2019 Rock grab       | W641901                  | 0.606                 | 2                    | 66                                    | 2                         | 265                 | 29               | 6                     | 58                  |                                           |
| Canyon                   | 523485                | 6969670                | pyrite in shale-<br>mudstone | Bedded Py <10 cm thick in graphitic shale, chert, mudstone & marble in creek bed.<br>Anomalous soil (Cu, Pb, Zn, Ag) on L102 & L110.                                                       |                      |                          |                       |                      |                                       |                           |                     |                  |                       |                     | Hall, 1983                                |
| François Outcrop         | 512350                | 6974940                | pyrite in shale-<br>mudstone | <ul> <li>Bedded Py &lt;10 cm thick in graphitic shale, chert, mudstone &amp; marble in creek bed.</li> <li>Between L1800 - L2200W at about 1200m N</li> </ul>                              | <br> <br> <br>       |                          | 1<br>1<br>1           | 1<br>1<br>1          | 1<br>1<br>1                           | 1<br>1<br>1               | 1<br>1<br>1         | 1<br>1<br>1      | 1<br>1<br>1           | 1                   | Hall, 1983                                |
| Lone Mtn                 | 504130                | 6974260                | Qtz-Aspy veins               | Qtz-Aspy veins cutting hornfels grading up to 1.24% Pb, 0.41% Zn, 1012 g/t Ag over 0.3 m. Skarn in area and within soil anomaly.                                                           |                      |                          | •<br>•<br>•<br>•<br>• | 1<br> <br> <br> <br> | •                                     | <br> <br> <br> <br> <br>  | •                   | •<br>•<br>•<br>• |                       |                     | Eaton, 1989; Hall,<br>1983                |
| PC Showing               | 512370                | 6973050                | Skarn, shale,<br>limestone   | Narrow bands of massive-semi massive skarn sulphide mineralization.                                                                                                                        | 2021 Rock grab       | W425864                  | 0.024                 | 9.2                  | 105                                   | 2                         | 172                 | 19.5             | 1520                  | 1.13%               |                                           |
|                          | 512367                | 6973053                |                              | ·<br>·                                                                                                                                                                                     | 2021 Rock grab       | W641898                  | 0.019                 | 6.1                  | 43                                    | 2                         | 155                 | 20.1             | 562                   | 9.17%               |                                           |
| GC Showing               | 512755                | 6972860                | Skarn, shale,<br>limestone   | Narrow bands of massive-semi massive skarn sulphide mineralization.                                                                                                                        | 2021 Rock grab       | W425863                  | 0.177                 | 0.7                  | 863                                   | 2                         | 212                 | 32.6             | 60                    | 4.32%               |                                           |
|                          |                       |                        |                              |                                                                                                                                                                                            | 2021 Rock grab       | W641897                  | 0.082                 | 0.5                  | 4300                                  |                           | 6                   | 32.3             |                       | 367                 |                                           |
| LM Showing               | 516225                | 6971880                | Argillite, shale,            | Qtz veins and rusty iron-oxide-filled fractures and narrow faults cutting metasedimentary rocks.                                                                                           | 2021 Rock grab       | W425866                  | 0.356                 |                      | 58                                    | 2                         |                     | 13.35            |                       | 69                  | · · · · · · · · · · · · · · · · · · ·     |
|                          |                       |                        |                              |                                                                                                                                                                                            | 2021 Rock grab       | W641899                  | 0.244                 | 1.4                  | >10k                                  | 2                         | 53                  | 8.14             | 8                     | 199                 | <br> <br> <br>                            |
| KSF                      | 520960                | 6969665                | diorite, hornfels            | Calc-silicate, hornfels with crosscutting qtz-py veinlets, <1% diss fine-grained<br>pyrrhotite.                                                                                            | 2019 Rock grab       | W641863                  | 0.165                 | 0.5                  | 11                                    | 2                         | 235                 | 3.84             | 6                     | 73                  |                                           |
| Ace Barite               | 516800                | 6975065                |                              | Bedded Barite                                                                                                                                                                              |                      |                          |                       |                      |                                       |                           |                     |                  |                       |                     | Hall, 1983                                |
| Mizar Showing            | 512900                | 6973680                | Limestone, graphitic shale   | Limestone-carbonate bed (10 m width?) hosting pod of Fe-oxide and 5% crystalline sphalerite, 1-3% fine-grained grey sulphide? - arsenopyrite?                                              | 2021 Rock grab       | W425854                  | 0.51                  | 2490                 | 9900                                  | 4460                      | 342                 | 8.78             | 5.92%                 | 4.71%               |                                           |

# 7. 2021 LOCAL PROJECT AREA, GEOLOGY AND MINERALIZATION

## 7.1. 2021 Geological Mapping and Prospecting

Outcrop is generally restricted to the ridges, ridge spurs, gullies on hillsides, knobby outcroppings on hillsides and as exposures in the upper reaches of creek drainages. Outcrops were examined, given a station number, data recorded in notebooks and locations recorded by GPS. Field station data is presented in Appendix D and locations are shown on **Figure 8a** and **8b** with results incorporated in the geology maps, **Figures 9a** and **9b** (geological symbols shown on **Figure 10**). Most outcrops consisted of foliated, quartzite, siltstone to shale, locally calcareous or limy. Local limestone beds were noted but are not common. Both foliations and bedding generally strike east–west and dip moderately to the south. As described above, three mineral occurrences, the LM, GC, and PC and three of the 1981 Anaconda drill holes (DDH81-3, 4 and 7) were relocated in 2021. The Mizar showing was found in 2021 and the Main, Inform Silver, KSF and Nagai showings were re-examined along with the copper soil anomaly north of the Main showing along with the ridge east of the Inform Silver showing. Geological observations are further described under '2021 Exploration Results'.

### 7.2. Property Geology

According to the YGS geology map, the project area is comprised of five units described by Cobbett (2019) and shown on maps by Cobbett and Keevil (2019) and Hall (1983). Units as encountered from north to south across the project area consist of:

- 1. Carboniferous to Permian Mount Christie formation consisting of thinly bedded chert and grey siltstone (CPMC),
- 2. Upper Devonian Group siltstone interbedded with gray limestone, calcareous quartz arenite and quartz arenite of the Earn Group (DMEua),
- 3. Cretaceous quartz monzonite pluton (mKm) (Carlson, 1980; Hall, 1983), intruding the Earn Group,
- 4. COR Cambrian to Ordovician Rabbitkettle Formation, silty limestone, grey weathering siltstone; altered to green, pink, and maroon striped, siliceous, fine-grained rock to calc-silicate in the project area,
- 5. Ordovician Road River Group silica-rich pebbly sandstone and cross-bedded quartz arenite with phyllite, slate and siltstone (OSRu),
- 6. Devonian porphyritic, pyroxene bearing diorite intruding the Road River Group (OSRu).

The rock units encountered in 2021 were the Earn Group, Road River Rabbitkettle formation, the quartz monzonite pluton, and Late Devonian diorite.

Mapping by Anaconda in 1980 - 1982 (Carlson 1981 and Hall, 1983) has geological discrepancies when compared to Cobbett's 2019 map (Cobbett, 2019). Most geological units are similar but geological contacts do differ significantly between Anaconda and Cobbetts's mapping and Anaconda's work

includes more subunits. Significantly, they both recognize the Twopete Fault although Cobbett has it offset by a significant NE trending fault in the upper section of Dromedary Creek. While both Cobbett and Keevil's (2019) and Anaconda's mapping both show the Twopete Fault, Anaconda's map also shows a prospective zone of Earn Group rocks bounded by the Twopete Fault and a splay to the north. It is along the Twopete Fault and its splay to the north that most of the replacement mineral occurrences are found.

Significantly, geological mapping by Anaconda located a Cretaceous quartz monzonite intrusion east of Dromedary Mountain which was not located by Cobbett and Keevil (2019) but was relocated by Hulstein and de Pasquale in 2020. A rock sample from outcrop (Rosie Sample 1) was collected for possible whole rock analysis and age dating. Cobbett and Keevil (2019) show the intrusion being approximately bounded by the Twopete Fault on the south side and underlying Earn Group rocks to the north which is consistent with the known exposure and the mapped hornfels zone.

The intrusion (mKm) is a biotite-quartz monzonite, porphyritic granite and where observed in outcrop and float it was very fresh and contained only rare unmineralized quartz veins (**Photo 3**). The quartz monzonite contains about 5% megacrystic up 2-3 cm size feldspar crystals, approximately 20% smoky rounded 3-4 mm quartz phenocrysts, about 5% prismatic 1-2 mm biotite, all in a groundmass of <1 -1 mm quartz and feldspar.

Hand samples and a sample selected for possible age dating of the quartz monzonite (mKm) has been tested by a magnetic susceptibility meter. The Terraplus KT-10 magnetic susceptibility meter yielded a measurement of 0.000 SI units while the more sensitive meter SM 30 (ZH Instruments) recorded a maximum measurement of 0.717 SI units. According to Hart and Goldfarb (2005) this low measurement, lack of observed magnetite in the rock and in the panned stream sediment samples draining the intrusion, is consistent with the quartz monzonite being a reduced intrusion. Examination of thin sections made from samples of the intrusion, examined by Rosie Cobbett of the Yukon Geological Survey, indicate it is similar to the Mayo Suite (95-96 Ma).

According to Rowins (2000):

"The low-grade Cu-Au core is an expected consequence of both the fluid evolution in reduced porphyry Cu-Au deposits and the initial metal budget of the hydrothermal ore system. The recognition of a reduced porphyry Cu-Au system should prompt the mineral explorationist to search at distal sites deemed favorable for focusing and precipitating Au and Cu-rich vapors.

The recent thermodynamic and experimental studies documenting relatively high Au solubility in reduced saline fluids, coupled with the vapor transport of Au and Cu during subsequent fluid immiscibility, raise the possibility that reduced ore fluids in a boiling porphyry environment can, under favorable circumstances, transport large quantities of Au (and Cu) as reduced S complexes to distal sites far from the causative porphyry. Mineralization in this peripheral environment may take several forms, including structurally controlled, sheeted sulfide veins in hornfels and sulfide replacement bodies (mantos) in calcareous metasedimentary rocks.".

In 2021, Tim Liverton identified intrusive rocks in two thin sections (Apprendix E). Sample W641867 collected in 2020 on the west slope of Dromedary Mountain (0.147 g/t Au, 233 ppm Bi, 6100 ppm Cu, 1380 ppm W) shows granitic texture and it may be a mineralized dike. On the northern ridge, east of the Inform Silver showing, a hand sample collected in 2021 at GeoStation JDP21-029 reveals a fine-grained sub-volcanic intrusive texture. These two intrusions may be derived for the Late Cretaceous central plug or may constitutes a distinct fluid injection phase, structurally controlled.

### 7.3. Mineralization

Mineralization as described above in Regional Geology (Section 6) consists of three types:

SEDEX (sedimentary exhalative) type: typified by mineralization found in drill core on the François grid and the Dromedary Creek Zone. Included with the SEDEX type mineralization is the bedded barite found at the Ace barite occurrence

Skarn and replacement type: typified by the Main showing but also includes the PC, GC, Silver Creek and BMS showing skarn. The massive pyrrhotite found in drill core on the François grid and Dromedary Creek is also likely of replacement type (and not SEDEX). The LM and Mizar showings are possibly replacement type, but they also have characteristics of vein type mineralization.

Vein-type: commonly quartz-low sulfidation veins and veinlets as found at the Inform Silver, Nagai, KSF and reportedly (Hall, 1983) at Lone Mountain. Prominent barren quartz veins are found on the west-facing scree slope 500 m north of the Main showing. To date only minor non-mineralized quartz veining has been noted in the quartz monzonite.

The Mizar showing was discovered in 2021 and the Nagai, KSF, LM, PC, GC, Main and Inform Silver showings were examined in 2021 along with the copper soil anomaly north of the Main showing and the ridge east of the Inform Silver showing. Three of the 1981 Anaconda drill holes (DDH81-3, 4 and 7) were also relocated in 2021. All the above showings had their locations accurately located by GPS and were prospected and sampled. Following receipt of positive geochemical results, it is apparent much work remains to be done, particularly at the Mizar, Inform Silver, LM, and Nagai showings. Only the showings and zones examined in 2021 will be described in detail below.

### 7.3.1. SEDEX Mineralization

The best SEDEX mineralization as reported by previous workers is restricted to the diamond drill results from the François and Dromedary Creek Zones. Other than staking and some soil and rock sampling at the Dromedary Creek Zone Hulstein and de Pasquale have not carried out any work on these zones.

A description of the mineralization intersected in drill holes at the Francois Grid and Dromedary Creek

is provided by Jones (1998). In summary, at Dromedary Creek massive pyrrhotite mineralization is found in close association with fossiliferous argillite. Mineralization intersected in diamond drill holes on the François grid, over two kilometres of strike length, consists of massive to laminated sulphide mineralization including gold-rich pyrrhotite (now thought to be possibly Cretaceous replacement type) and laminated to massive galena–sphalerite, found in association with cherty argillite.

Although not all the sample locations are known, the lead isotope dating reported by Jones (1998) from the François grid (including DDH FRN96-02 at 146.4m depth), confirms that most of the lead-zinc mineralization is syngenetic. The lead isotope data is less radiogenic than that found at the Devono-Mississippian Tom-Jason deposits but is similar to the Ordovician–Silurian Howards Pass deposit. This implies that the lead isotope samples were collected from mineralization within the Road River Group. Other galena samples collected from Dromedary Mountain, presumably from the Main showing area, have much more radiogenic compositions and likely represent younger (Cretaceous granitoid related?) mineralization and are not SEDEX type.

### 7.3.2. Skarn - Replacement style

The BMS, Silver Creek, PC, GC, and Main showings all consist of rusty iron oxide weathering bands, mostly bedding conformable, of grey semi-massive pyrite-pyrrhotite with minor disseminated chalcopyrite (generally <1%), galena and sphalerite all in a dark green groundmass of quartz–diopside. Locally there are commonly cross-cutting variably mineralized quartz veins that cut or are in close proximity to the sulphide bands. The thickest unit appears to be at the Main showing where sulphide 'lozenges' are up to 10 m long and up a maximum of 2 to 3 m thick (**Photo 13**).

Ferricrete occurs in the ridge saddle upslope of the Main showing at a historical blast trench, over a distance of > 25 m, located approximately 100 m north of drill hole collar DDH81-01 and -02, and in the creeks draining to the east and west of the showing. The creeks themselves are in close proximity or are possible surface expressions of an east-west trending fault zone(s). Further east sulphides at the Silver Creek and BMS showings are poorly exposed although ferricrete and disseminated sulphide mineralization, now mostly iron oxide, indicate more extensive mineralization along strike.

Diamond drilling in 1981 by Anaconda (Carlson, 1982) intersected mineralization described as massive to semi-massive skarn like sulphide mineralization in drill holes DDH81-01 and DDH81-02 at the Main showing and in DDH81-06 at the BMS showing. Mineralization is described as consisting largely of pyrrhotite and pyrite with trace to generally less than 3% disseminated chalcopyrite, galena, sphalerite and occasionally arsenopyrite. This is similar to what was observed at the mineral occurrences in 2020 - 2021.

Equity Exploration Ltd. submitted two samples (Dromedary Main and 010451) to Harris Exploration Services from the Dromedary Main showing in 1997 for thin section examination. Harris described them as follows (in Jones, 1998):

The silicate components are mosaic aggregates of anhedral quartz and intimately intergrown diopside

- the latter occurring partly as tiny, included granules in the quartz, and partly as vari-sized prismatic subhedra. Minor associated silicates are epidote and chlorite in 010451, and garnet in the Dromedary Main sample.

Pyrrhotite (plus minor chalcopyrite) occurs evenly intergrown with the silicates, in apparent co-genetic relationship, in 010451; a few laminae of fine-grained plagioclase are also present. In the Dromedary Main sample, where sulphides (possible tuff intercalations?) are the dominant component (75% of the rock), the accessories are arsenopyrite, sphalerite and galena as well as a little chalcopyrite. The sectioned portion includes two textural variants: an intimate non-foliated intergrowth of pyrrhotite and diopside; and a foliated variant in which laminar segregations of monomineralic pyrrhotite alternate with bands composed of fine-grained intergrowths of pyrrhotite and sphalerite with quartz and garnet.

Of note is that sample 010451 described above contained 1510 ppb Au, 4.6 ppm Ag, 2570 ppm Cu and 2220 ppm Zn (Jones, 1998).

The Mizar showing found in 2021 consisting of a pod (approx. 25 x 30 x 50 cm?) of iron oxide and 5% crystalline sphalerite, 0.5% fine-grained arsenopyrite and 1-3% unidentified grey sulphide (now thought to be silver-bearing), is hosted grey dirty limestone/marble. It lies outside the hornfels zone and is currently thought to be replacement style mineralization although it could be part of a vein-fault structure. Anaconda identified an approximate E-W trending HLEM conductor at the Mizar which also approximates the trend of the nearby creek gully.

Skarn type mineralization at both the GC and PC showings consists of narrow bands (<30 cm) of quartz–actinolite–chlorite-pyrite with minor sphalerite, galena hosted by shale, argillite, siltstone, hornfels, and minor limestone that is locally replaced or skarnified. Prospecting in 2021 indicated that mineralization at both showings appears to be limited in extent.

Mineralization described by Carlson (1982) in Anaconda diamond drill hole DDH81-05 consists of carbonate-sulphide veinlets and sulphide disseminations in calc-silicate quartzite rocks. Sulfides are reported to be preferentially associated with actinolite rich sections. The drill hole collar on a ridge spur east of Dromedary Mountain was likely targeting an EM conductor. The drill core samples returned copper values averaging 1341 ppm over 37.08 m from a calc-silicate unit containing chalcopyrite. This mineralized calc-silicate was not located in 2020 and is thought to be covered by extensive scree. This occurrence, named "Cu DDH81-05", has characteristics of both skarn/replacement type and vein-type mineralization. The LM showing is similar is that disseminated sulphides are found in calc-silicate and in weathered quartz-sulphide veinlets in minor shears. A thin skarn unit intersected in nearby drill hole DDH81-07 returned 335 ppm lead, 114 ppm copper, 6.0 ppm silver and 5.5% iron, the highest values for those elements in the drill hole.

### 7.3.3. Vein Type

Outcrop at the Nagai Zone consists of argillite, shale, limy shale with the shale commonly chlorite altered where mineralization is found. Mineralization commonly consists of irregular quartz veining, breccia filling or quartz veinlets with variable amounts of arsenopyrite, pyrrhotite and pyrite. Locally

the pyrite and arsenopyrite are semi-massive and the outcrop is pervasively altered/weathered to iron oxide. The better mineralization consists of several percent arsenopyrite in brecciated quartz veining.

Mineralization at the LM showing consists of disseminated pyrrhotite-pyrite, arsenopyrite and chalcopyrite in argillite and banded calc-silicates cut by thin (<1 cm) quartz veins. Host rocks are locally brecciated with quartz filling and a narrow (<10 cm) wide fault–shear zone with boxwork iron oxides and vuggy quartz breccia with trace malachite and azurite (<0.5% overall) was found in 2021.

The description of mineralization and calc-silicate, quartzite and siliceous argillite logged in drill hole DDH81-05 is similar to that found at the LM showing. The drill hole collar on a ridge spur east of Dromedary Mountain was likely targeting an EM conductor. The drill core samples returned copper values averaging 1341 ppm over 37.08 m from a calc-silicate unit containing disseminated chalcopyrite, commonly in bands with actinolite and chalcopyrite in sulphide and carbonate veinlets (Carlson, 1982). This mineralized calc-silicate was not located in 2020 and is thought to be covered by extensive scree so a direct visual comparison can't be made. It should be noted that DDH81-05 was not analyzed for gold and silver values reached a high of 10 ppm.

Vein type mineralization was located at the Inform Silver showing over a discrete area measuring 10's of meters and on the ridge to the west (i.e., samples A00044557 and W641880). Mineralization consists of disseminated arsenopyrite, pyrite and iron oxides in discontinuous crustiform quartz veins and veinlets crosscutting shale and siltstone and as thin semi massive pods conformable to bedding/foliation (**Photo 20**). The vein has a maximum width of about 25 cm and are commonly coarse grained, up to cm scale. The conformable mineralization in cm size pods consists of pyrrhotite, sphalerite, galena mineralization and iron oxide and was identified in 2021 for the first time in a small iron oxide weathered outcrop of shale-argillite. Semi-massive sulphide float of mineralized pyrite-pyrrhotite-arsenopyrite (and scorodite) found on the north facing slope and consistent anomalous soil sample suggest that this mineralization style may be common in the area.

Abundant white barren quartz veining cutting quartzite was noted on the south facing scree slope between the Inform Silver showing and the Main showing. Although visually barren, the veins returned up to 3180 ppm tungsten (2020 rock sample W641914) and the amount of veining is considered anomalous and indicative of a widespread hydrothermal system peripheral to the exposed quartz monzonite.

The quartz monzonite is nonmagnetic, no visible magnetite was observed, it did not respond to a swing magnet and panned samples collected in the drainage below the outcrop contained only traces of magnetite. Magnetic susceptibility measurements averaged 0.7 S.I. which corresponds to the reduced intrusion range (Sack et al., 2020). Only rare quartz veins have been noted in the quartz monzonite outcrop or float and, where sampled to date, have returned low to background values for gold, arsenic, bismuth, and tungsten.

The KSF Zone is underlain by Devonian diorite (Cobbett, 2019 – field mapping and thin section examination) that is locally crosscut by grey quartz veinlets. Calc-silicates to skarny looking rocks within the hornfels zone and metasedimentary rocks on the margin are locally cut by narrow shear zones, quartz and or calcite veins. The intrusion contact zone is moderately calcite altered and locally

mafic minerals are partially replaced by pyrrhotite.

At Lone Mountain samples of quartz arsenopyrite vein mineralization reported by Hall (1983) and summarized by Eaton (1989) contained up to 2012.6 g/t silver (58.7 oz/ton), 1.24% lead, 0.41% zinc and 32 ppm copper. The veins cut silty shale and other rocks in the area consisting of slate, phyllite, marble and calc-silicate hornfels, likely of the Road River Group. Local magnetic highs identified by grid ground surveys were attributed to quartz-chlorite-actinolite-pyrrhotite skarns that contain minor chalcopyrite. Hall (1983) reports the vein as being 'flat' lying and Eaton (1989) notes that flat lying veins are uncommon and perhaps the mineralization has been misinterpreted and is actually part of a stratabound system (such as a manto deposit). Based on the descriptions the mineralization seems to be typical of that found proximal to a reduced intrusion. The high silver to lead ratio is similar to that found at the Mizar showing and both have metal ratios that are similar to those found at the Keno Hill silver camp.

# 8. GEOCHEMICAL DATA

## 8.1. Regional and Historical Data

Results from the Geological Survey of Canada's Regional Geochemical Survey (GSC, RGS) for the project area for Au, As, Cu and Sb define an anomalous NW trend, parallel to the stratigraphy and thrust faults that also appear to be boundaries for SEDEX style mineralization, the identified skarn/replacement and vein-type mineralization. This is the same belt of rocks that was identified by Anaconda as being prospective for SEDEX deposits and tested by diamond drilling in the 1980's and 1990's.

In 1981 Anaconda Canada Exploration Ltd. established a surveyed cut line grid east and west of Dromedary Mountain from Earn Lake to the McMillan River (Carlson, 1981 and Hall, 1983) that was used for access and location (**Figure 3**). The reader is referred to Carlson (1981) and Hall (1983) for details on the geochemistry carried out in the 1980's. Anaconda and others (chiefly Dromedary Exploration Company Ltd. and Blackstone Resources Inc.) used the grid for soil geochemical survey and geophysical survey control and for location during geological mapping. In treed areas the cut lines can still be located and used to locate previous work sites.

A limited ridge and spur soil sampling and rock sampling program was conducted in 2012 (La Liga Project) by Inform Resources Corp. (Gibson, 2013) and this work is available digitally. Inform Resources geochemical results have been incorporated with the work carried out in 2019, 2020 and 2021 by the authors.

### 8.2. 2019 and 2020 Programs

A total of 47 rock, 103 soil and 13 stream sediment samples were collected in 2019 and 2020 by Hulstein and de Pasquale (Hulstein and de Pasquale, 2020 and Hulstein and de Pasquale, 2021). Work was focused on the Nagai, Dromedary Creek and La Liga Zones in 2019 and in 2020 on the Main Silver Creek, Inform Silver, and BMS showings. Results of these programs along with those of Inform Resources Corp. (Gibson, 2013), 25 rock and 66 soil samples, were incorporated in the sample database and are plotted alongside the 2021 results (**Figures 13 to 28**).

### 8.3. 2021 Program

A total of 64 rock, 38 soil and 12 stream sediment samples were collected in 2021. These sample locations and gold results are shown on **Figure 11** for rocks and **Figure 12** for soil and stream sediment samples. Geochemical results from the 2021 program, previous programs in 2019 and 2020 and Inform Resources 2012 work are shown for gold, silver, copper, lead, zinc, arsenic, bismuth, and antimony on **Figures 13 to 28** respectively in the map pocket. Data from 2021 including analytical certificates are presented in Appendix A, rock sample results merged with location and sample description data are presented in Appendix B, for soil and stream sediment samples in Appendix C.

All samples were submitted to ALS Canada Ltd.'s preparation laboratory in Whitehorse and analyzed in Vancouver. Rock and soil samples were analyzed for gold by method Au-AA24 using a 50 grams fire assay and AA finish. An additional 33 other elements were analyzed in rock samples by method ME-ICP61 which uses four acid ICP-AES. Soil and stream sediment samples were analyzed for 43 other elements by ALS Canada method AuME-TL44. This method for Au + Multi-Element package employs a single Aqua Regia digest with 50g charge weight to combat nugget effect. Gold, in conjunction with a wide range of base metal and pathfinder elements, are determined from the same digested solution via a combination of ICP-MS and ICP-AES.

Rock samples, averaging 1–2 kg, were collected by GeoTul hammer from surface outcrops or float where mineralization was noted or suspected.

All soil samples were collected by shovel or GeoTul at depths generally of 25cm or greater except in areas of rock talus where talus fines were collected. Many of the samples can be best described as talus fines and are not true soils. Soil sampling in many areas is difficult as the siliceous rocks, calc-silicates, quartzites and siliceous argillites, have not weathered sufficiently since the last glaciation to form proper soils.

Stream sediment samples consisted of about 0.5 kg screened <2 mm stream sediment material. Samples M896015 and M896016 had the 'heavies' of one panned <2mm screened material added (amounting to a few to 10's of grams of iron oxides, scheelite, etc.). These two samples can be said to be `enhanced' stream sediment samples.

### 8.3.1. Rock Sample Geochemistry

Rock sampling at the Nagai Zone returned with 7.36 ppm gold from grab sample W425905 (**Photo 21**), the highest gold value from the 2021 rock samples. It consisted of a dark grey-green, fine-grained, brecciated chlorite altered shale, with scorodite stained brecciated quartz veins containing several percent arsenopyrite. Adjacent samples (W425904 and W425906) of similar type returned 7.19 ppm gold and 2.75 ppm gold along with anomalous arsenic, >10,000 ppm, up to 939 ppm cobalt, 13.6% iron, 103 ppm antimony. Other elements such as silver, bismuth, copper, lead, and zinc returned low to background values.

Two rock samples, W425861 (**Photo 4**) and W641892 (**Photo 13**), from the Main showing area returned 3.31 g/t and 0.964 g/t gold respectively, along with highly anomalous values for arsenic (3,180 ppm), bismuth (674 ppm), copper (2,130), iron (32.3%), tungsten (1,760) and zinc (260 ppm) while values for silver and lead are low. Both samples are from conformable bands of semi-massive to massive fine-grained pyrite-quartz-diopside containing variable amounts of visible chalcopyrite and arsenopyrite, hosted by bedded argillite.

In 2021 the newly discovered Mizar showing returned the highest silver value of 2,490 ppm from sample W425854 (**Photos 15 and 16**). It consists of grey limestone/marble with disseminated medium- to coarse-grained crystalline sphalerite and fine-grained arsenopyrite and unknown (silver

bearing) sulphide(s). Of note is the low lead to silver ratio, as the same sample returned 59,200 ppm (5.92%) lead along with 0.510 ppm gold, 1,035 ppm antimony, 47,100 ppm (4.71%) zinc, 9,900 ppm arsenic, 580 ppm cadmium and 8.78% iron.

At the Inform Silver showing, a rock sample (W641900) from a thin (<10 cm thick?) pod or lens of finegrained massive sulphide hosted by shale-argillite returned 646 ppm silver, 0.186 ppm gold, 229 ppm bismuth, 173.5 ppm cadmium, 9.84% iron, 38,100 ppm lead, 558 ppm antimony, and 26,660 ppm zinc (**Photos 20 and frontispiece photo**). This is within 15 m metres of two quartz vein samples that returned 193 ppm and 213 ppm silver with a similar pathfinder element signature.

Two other significant silver values of 213 ppm and 43.1 ppm were returned from samples W641880 (**Photo 5**) and W425856, respectively, located on the ridgetop approximately 600 m to the northeast of the Main showing. They have an anomalous signature of As, Bi, Pb, Sb and Zn, similar to the Inform Silver showing.

### 8.3.2. Soil Sample Geochemistry

Of the 38 soil samples collected in 2021 the second highest gold value of 0.089 ppm (sample M896063) was returned from a `C' horizon sample collected within 10 m of the high gold in rock samples at the Nagai Zone. The highest gold value of 0.138 ppm was also returned from a `C' horizon sample (M896033), collected approximately 90 m south of M896063 and the high gold in rock samples, in an area where no anomalous rock samples have been located to date.

Three samples between the Nagai Zone and a small lake to the northwest, approximately 1.2 km, are notable for being red-brown and orange-brown in color (**Photos 9 and 10**). These and other samples in the area returned spotty anomalies for silver, cobalt, copper, iron, antimony, and zinc while arsenic defined a more coherent anomaly. This anomalous signature is similar to the one found in the rock samples with the high-grade gold at the Nagai Zone.

North of the Main Zone, on the west-facing slope and directly uphill from the Mizar showing, a copper in soil anomaly located in 2020 was traversed and sampled in 2021. Multiple samples returned anomalous values from talus fines for copper (>160-1210 ppm), iron (>4%), antimony (>10-191 ppm), selenium (>3.6-55.1 ppm), lead (>60-95.1 ppm) and zinc (>400-3740 ppm) over a north-south distance in excess of 400 m.

### 8.3.3. Stream Sediment Geochemistry

A total of twelve stream sediment samples were collected in 2021. Six were from creeks and gullies draining the west and northwest side of the Main showing. Five samples were from the creek draining the east side of the Main showing and one was from the creek draining the west side of the LM showing.

The highest gold values were from samples M896017 and M896015 which returned values of 0.031

and 0.026 ppm respectively, both collected from the creek draining the east side of the Main showing. Samples from both the east and west flowing creeks contained anomalous amounts of As, Bi, Pb, Zn and Se with the east creek also being anomalous in Au and W. The west flowing drainages were also anomalous in Ag, Cu, Co, Sb and Zn with the most anomalous samples being in the area of the Cu in soil anomaly east of the Mizar showing. Scheelite was also noted in samples M896015 and M896016 which returned 220 ppm and 360 ppm W respectively. The anomalous W values correlate with the nearby mapped quartz monzonite.

On the west side of Dromedary Mountain, a strong orange-rusty staining is observed in the east-west drainage lining up with the Main showing (**Photo 6**). Samples M896001 and M896002 were anomalous in Cu and As; sample M896001 returned 33% Fe and 2.8% S; sample M896002 returned 40.4% Fe and 4% S.

One sample collected from the creek draining the west side of the LM showing was anomalous in As, Co, Se, and Zn.

# 9. DRILLING

There have been several drill campaigns within the Goldorak project area totalling 20 drill holes and 3718 m (**Table 3**). The first drill program by Anaconda in 1981 consisted of 10 diamond drill holes totalling 1811 m. Six of these drill holes (DDH81-01 to DDH81-06) are located on the ACTA claims staked in 2020 over Dromedary Mountain. A total of nine drill holes (DDH90-01, 02 and DCK91-01) are on Category A land of the Selkirk First Nation. Drill hole DDH81-07 (**Photo 8**) proximal to the LM showing was relocated in 2021 and is presumed to have targeted an east - west trending HLEM conductor. Four drill holes tested the prospective horizon at the Dromedary Creek Zone at the eastern side of the project area. Drill holes DDH81-03 (**Photo 7**) and 04 near the Silver Creek showing were also located in 2021.

All of the Anaconda drill holes located to date (DDH81-01 to 07) were found to be marked by steel casing pipe.

| DDH Number | Zone            | Easting | Northing | Az degree | Dip -degree | Length (m) | Elevation (m) |
|------------|-----------------|---------|----------|-----------|-------------|------------|---------------|
|            |                 |         |          |           | P 0         | - 0- ( /   |               |
| DDH81-01   | Dromedary Mtn   | 513699  | 6973189  | 305       | 58          | 157        | 1672.63       |
| DDH81-02   | Dromedary Mtn   | 513699  | 6973190  | 35        | 50          | 90.22      | 1672.63       |
| DDH81-03   | Dromedary Mtn   | 514287  | 6972870  | 20        | 60          | 139.2      | 1581          |
| DDH81-04   | Dromedary Mtn   | 514170  | 6972734  | 52        | 50          | 111.86     | 1650          |
| DDH81-05   | Dromedary Mtn   | 514344  | 6972373  | 30        | 45          | 142.04     | 1511          |
| DDH81-06   | Dromedary Mtn   | 515111  | 6972391  | 60        | 50          | 133.19     | 1353          |
| DDH81-07   | Dromedary Mtn   | 516051  | 6971972  | 360       | 48          | 105.8      | 1345          |
| DDH81-08   | Dromedary Creek | 519240  | 6970737  | 30        | 45          | 322.2      | 1247          |
| DDH81-09   | Dromedary Creek | 518461  | 6970919  | 18        | 45          | 301.8      | 1108          |
| DDH81-10   | Dromedary Creek | 518805  | 6970696  | 18        | 50          | 307.93     | 1214          |
| DDH90-01   | François        | 507572  | 6974303  | 18        | 47          | 274.6      | 655           |
| DDH90-02   | François        | 508817  | 6974302  | 18        | 55          | 159.4      | 663           |
| DCK96-1    | Dromedary Creek | 518910  | 6970930  | 16        | 46          | 204.2      | 1088          |
| FRN96-01   | François        | 508860  | 6974446  | 198       | 54.5        | 135        | 651           |
| FRN96-02   | François        | 509790  | 6973981  | 18        | 45          | 199.9      | 678           |
| FRN96-03   | François        | 509949  | 6973930  | 18        | 45          | 264        | 687           |
| FRN96-04   | François        | 509814  | 6974062  | 18        | 45          | 135.9      | 678           |
| FRN98-05   | François        | 509793  | 6973979  | 18        | 65          | 257.2      | 685           |
| FRN98-06   | François        | 509707  | 6974099  | 18        | 45          | 131.83     | 678           |
| FRN98-07   | François        | 509906  | 6974036  | 18        | 45          | 145.54     | 690           |

Table 3. Drill holes within Goldorak Project Area (coordinates in NAD83, Zone8).

Significant results returned from the 1981 drilling on Dromedary Mountain are tabulated below in **Table 4**. With the exception of 19 samples from DDH81-01 being tested for gold, gold was not analyzed. Results for gold from the 19 samples were <45 ppb gold (Carlson, 1982).

Drill hole DDH81-05 likely targeted an EM conductor as it too far south to effectively test the Silver Creek Zone located approximately 400 m to the north. An inspection of the drill site and area did not locate any mineralization, nothing that can explain the 37.08 m intersection of 1341 ppm Cu. Presumably the copper rich unit is covered by scree.

Drill holes DDH81-01, 02, 03, 04, 05, 06 and 07 all test EM conductors and in the case of DDH81-01, 02 and 06, coincident mineralized showings.

| DDH No.   | Zone        | From_m | To_m   | Interval_m | Ag_ppm | Cu_ppm | Pb_ppm           | Zn_ppm      | Comments                                                           |
|-----------|-------------|--------|--------|------------|--------|--------|------------------|-------------|--------------------------------------------------------------------|
| D81-01    | Drom. Mtn   | 77.35  | 79.95  | 2.60       | 22.42  | 2138   | 4365             | 30253       | 75.2-127.0 m Spotty<br>anomalous Ag, Cu, Pb, Zn<br>throughout      |
| D81-02    | Drom. Mtn   | 43.00  | 48.00  | 5.00       | 1.9    | 605    | 36               | 2399        | Overall, 43-48 m is best<br>interval                               |
| D81-03    | Drom. Mtn   | 37.00  | 41.00  | 4.00       | 2.4    | 1000   | 82               | 1700        | Overall, 37-41 m is best<br>interval                               |
| D81-04    | Drom. Mtn   | 9.10   | 111.86 | 102.76     | < 3.8  | < 400  | < 115            | < 1960      |                                                                    |
| D81-05    | Drom. Mtn   | 39.20  | 76.28  | 37.08      | 2.8    | 1341   | 40               | 434         | Overall, low Pb and Zn<br>values, local highs                      |
| including |             | 39.20  | 52.00  | 12.90      | 3.22   | 1448   | ,<br>,<br>,<br>, | ,<br>,<br>, | ,<br>,<br>,<br>,                                                   |
| Including |             | 57.00  | 76.28  | 19.28      | 2.86   | 1524   |                  | ,<br>,<br>, | <br> <br> <br>                                                     |
| D81-06    | Drom. Mtn   | 24.75  | 26.86  | 2.16       | 6.51   | 1511   | 497              | 1928        | Spotty Ag, Cu, Pb, Zn<br>anomalies throughout. Up<br>to 20.22% Fe. |
|           |             | 38.40  | 43.40  | 5.00       | 2.2    | 697    | 30               | 136         | Up to 21.42% Fe                                                    |
|           |             | 64.10  | 69.00  | 4.90       | 3.4    | 824    | 165              | 140         | Up to 13.18% Fe                                                    |
|           |             | 123.00 | 128.00 | 5.00       | 52.45  | 32     | 15500            | 480         | trace arsenopyrite in<br>fractured argillite.                      |
| D81-07    | Drom. Mtn   | 83.50  | 88.50  | 5.00       | 1.1    | 46     | 17               | 1360        | only Zn is elevated, 1.6%<br>Fe                                    |
|           |             | 90.60  | 92.60  | 2.00       | 6      | 335    | 335              | 465         | skarn unit, 5,.5% Fe                                               |
| D81-08    | Drom. Creek | 69.80  | 80.25  | 10.45      | 6.18   | 76     | 1142             | 1498        | up to 21.86% Fe                                                    |
|           |             | 128.90 | 133.00 | 4.10       | 6.06   | 68     | 1281             | 509         | up to 23.69% Fe                                                    |
|           |             | 155.50 | 161.50 | 6.00       | 3.33   | 76     | 870              | 1250        | up to 14.11% Fe                                                    |
|           |             | 194.50 | 202.50 | 8.00       | 3.25   | 87     | 800              | 1340        | up to 15.18% Fe                                                    |
| D81-09    | Drom. Creek | 202.50 | 215.50 | 13.00      | 3.4    | 78     | 988              | 1187        | up to 31.45% Fe                                                    |
| D81-10    | Drom. Creek | 250.30 | 257.30 | 7.00       | 3.05   | 64     | 773              | 857         | >10% Fe                                                            |
| DCK96-1   | Drom. Creek | 104.30 | 105.80 | 1.50       | 3      | 75     | 150              | 964         | upper sulphide unit                                                |
|           |             | 137.50 | 138.80 | 1.30       | 9.75   | 101    | 1221             | 2469        | lower sulphide unit                                                |

Table 4. Significant geochemistry from drill holes in 2021 project area (not including Fran claims).

# **10. GEOPHYSICAL DATA**

Regionally the aeromagnetic signature over Dromedary Mountain quartz monzonite intrusion is similar to the MacArthur batholith (**Figure 6**) assigned to the Mayo Suite. Both are aeromagnetic lows (blue) surround by an oval-shaped (extended along the Twopete fault) magnetic high (yellow - red - maroon) that corresponds to a pyrrhotite-rich contact aureole. This is a characteristic of exposed to shallowly buried plutons.

Among the mid-Cretaceous Tintina Gold Belt plutonic suites, the Tombstone, Mayo, and Tungsten are considered the most metallogenically prolific. The Mayo suite intrusions are characteristically gold-enriched, with As-Bi-Te and W associations (Hart, 2007).

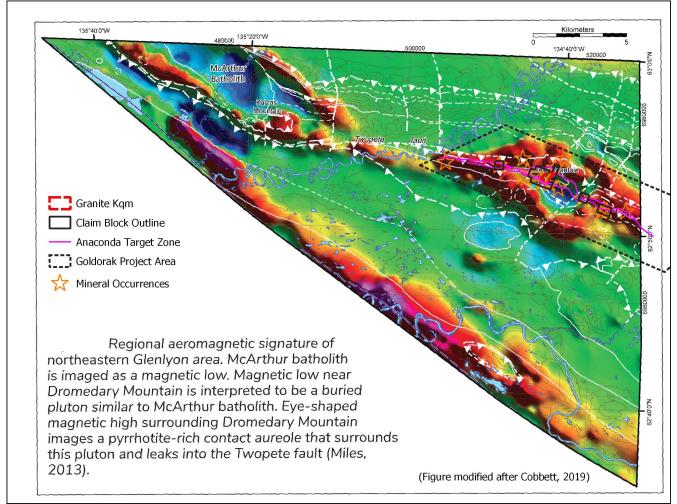



Figure 6. GSC Regional Aeromagnetics

Within the project area most of the replacement type mineralization, the massive to semi-massive sulphide bodies, is on the margins of the aeromagnetic highs (**Figure 7**). The thrust faults mapped by

both Cobbett & Keevil (2019) and Hall (1983), generally lie within aeromagnetic lows. Given the coarse nature of the magnetic survey of one half-mile spaced flight lines, this can be considered a close approximation.

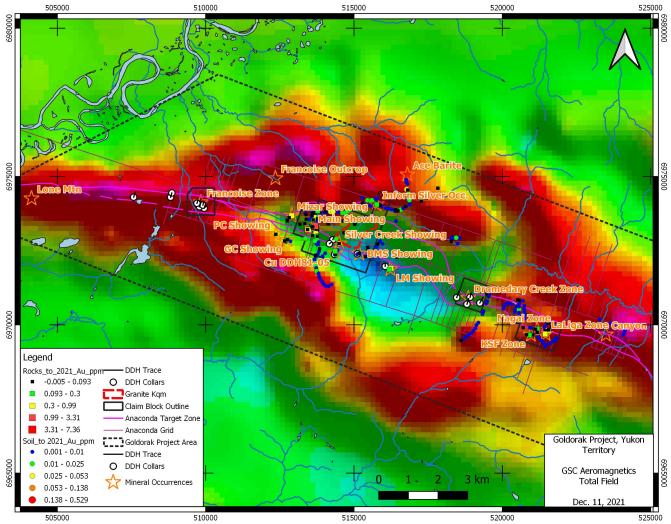



Figure 7. GSC Aeromagnetics (total field) over project area

In 1981 Anaconda carried out a horizontal loop electro-magnetic (HLEM) survey totalling 156-line km utilizing an Apex Parametrics MaxMin II electro magnetometer and a 100 to 150 m coil separation (Carlson, 1991, Hall, 1983). An additional 98-line km of magnetometer survey was completed in 1981. In 1982 an additional 109-line km of horizontal loop and magnetometer survey was completed along with 45-line km of gravity/levels survey was carried out (Hall, 1983). Portions of these surveys have been scanned and digitized and the results incorporated in this report (**Figure 29**).

Alan Scott (in Hall, 1983) states that the HLEM conductors are believed to be an accurate representation of the strike of the underlying metasedimentary units. Furthermore, he notes that for the main part the HLEM conductors are believed to represent graphitic horizons, particularly any horizons along which movement may have occurred and hence 'smeared' the graphitic material into highly conductive 'sheets'. Carlson (1981) states that: ``An accurate limit to the thermal effect of a

major intrusive can be located easily since the conductors of apparently – graphitic origin abruptly culminate." This can be seen on **Figure 29** and importantly, conductors that cut across the thermal halo of the intrusion deserve attention as they are less likely to be due to graphite. Where they are coincident with magnetic anomalies the chance of the anomaly being underlain by conductive sulphides is greater.

# 11. 2021 PROGRAM AND RESULTS

In 2021 the Main, Mizar, PC, GC, Inform Silver, and LM showings were examined from Camp 1 located on the west side of the Acta claims (**see panorama photos 11 and 12**). The Nagai and KSF Zones were examined from Camp 2 located just to the west of the Orak 9 & 10 claims. The work carried out in 2021 and the results will be described along with some of the work and significant results from 2019 and 2020. Historical work by other operators, including work and results from showings and zones not examined in 2021, will also be included where required to give additional context to the 2021 program.

## 11.1. Acta Claims

The Acta 1-24 quartz claims were staked over Dromedary Mountain in 2020 to cover:

- a number of mineral occurrences identified by Anaconda in the 1980's
- six drill holes with anomalous geochemistry the high silver value in quartz veining identified by Inform Resources in 2012
- the creek drainage with anomalous geochemistry identified by the GSC
- prospective Earn Group rocks with anomalous soil geochemistry bounded by thrust faults near outcropping quartz monzonite
- a significant portion of the oval aeromagnetic high and low.

### 11.2. Main Showing

Rock sampling at the Main showing returned a high gold value of 3.31 g/t (W425861) from a weathered 25 cm thick bed of semi-massive to massive pyrite–quartz–diopside containing 1-3% fine disseminated chalcopyrite, in outcrop of bedded argillite (**Photo 4**). The same sample also contained 674 ppm Bi, 2730 ppm Cu, 32.3% Fe and 690 ppm W.

Two out of five other rock samples of similar stratabound semi-massive to massive sulphide in the area (W641892 and W425860) returned high values of 0.964 g/t and 0.314 g/t Au, respectively. The samples also returned values of 47.8 ppm Ag, >10,000 ppm As, 215 ppm Bi, 4570 ppm Cu, 594 ppm Pb, 404 ppm Sb, 1760 ppm W and 1210 ppm Zn. The band of stratabound sulphide strikes approximately 70° and dips moderately to the south. This sulphide band, hosted by rusty weathering siltstones and shales, marks the contact zone between the hornfelsed argillite–siltstone to the north (Earn Group) and the over-thrust calc-silicate (Road River Group) to the south. The trace of the thrust fault, or one fault splay, follows a gully trending approximately east-west and is located near coincident HLEM conductor.

Siliciclastic rocks to the south of the fault, in the hanging wall, are sparsely mineralized. Given the collar location and length of drill holes DDH81-01 and DDH81-02, it is likely this mineralized fault zone was only partially tested as DDH 81-02 does not go below the blast trench with 25+ m of ferricrete

located about 100 m northeast of the drill hole collars. Gold values reported by Anaconda for the drill holes are sparse with only 19 samples from DDH81-01 being analyzed for gold with a high value of 45 ppb reported (Carlson, 1982).

# 11.3. Copper Soil Anomaly

Approximately 400 m north of the Main showing four soil/talus fine samples in 2020 returned up to 0.032 ppm Au, 66.4 ppm Ag, 10,000 ppm As (detection limit), 21 ppm Bi, 1210 ppm Cu, 80.8 ppm Pb and 3510 ppm Ag. The area is a scree slope of iron oxide stained formerly sulphide bearing hornfelsed siltstone and possibly some replaced or altered limestone. This area and the Main showing are within a 900 m x 400 m copper in soil anomaly (>100 ppm) reported by Carlson (1981) that has no record of being followed up on until 2020 (**Photo 14**).

In 2021, eleven rock, seven soil and three stream sediment samples were collected in the copper soil anomaly area. Gold values in the rock samples were less than 0.161 ppm. Soil sample M896013 returned 0.021 ppm, the highest gold value in the area, from an iron oxide rich sample collected downslope of a sulphide band. Stream sediment samples collected in dry gullies also returned low gold values of <0.011 ppm.

A rock float sample (W641890), on the south side of the anomaly, of massive sulphide contained; 0.041 ppm Au, 23.89 ppm Ag, >10,000 ppm As, 47 ppm Bi, 5370 ppm Cu, 430 ppm W and 9900 ppm Zn, a geochemical signature similar to that of the Main Zone. Other than one talus - soil sample that returned 0.032 ppm all the soil and stream sediment samples returned low values for gold. The same talus fines/soil sample with the anomalous gold (W647774) returned 66.4 ppm Ag, >10,000 ppm As, 18.8 ppm Bi, 1210 ppm Cu, 191 ppm Sb, 80.79 ppm Pb, 106.5 ppm W, and 3740 ppm Zn. This sample was collected downslope of a rusty weathering (formerly sulphidic) siltstone and limestone possibly replaced (mineralized). The high silver-to-lead ratio is similar to that in mineralization found at the Mizar showing, located about 800 m to the west. Three talus fines/soil samples from the north ridge spur returned 3.32 to 6.32 ppm Ag.

The talus fines/soil samples in the copper soil anomaly area all returned between 162 ppm to 1210 ppm Cu. All but one sample returned >1000 ppm As, all samples had >3.5 ppm to 75.3 ppm Bi, most samples contained >27.4 ppm to 266 ppm Pb and numerous samples contained >21 ppm to 55.1 ppm Se, >10 to 191 ppm Sb, and > 400 ppm to 3740 ppm Zn. Taken together, the 2021 anomalous samples define an area measuring about 300 x 300 m which is open the north and west towards the Mizar showing.

## 11.4. Mizar Showing

The Mizar showing was found in 2021 on a traverse and lies outside the hornfels zone and is currently thought to be replacement style mineralization. Exploration was limited to examining one outcrop on the edge of a steep creek drainage or gully. Mineralization consisted of a pod (approx. 25x30x50cm?)

of iron oxide and 5% crystalline sphalerite, 0.5% fine-grained arsenopyrite and 1-3% unidentified grey sulphide is hosted by limestone/marble. A single grab sample of the above oxide–sulphide–limestone returned 2,490 ppm Ag, 0.51 ppm Au, 4,460 ppm Bi, 342 ppm Cu, 59,200 ppm (5.92%) lead, 1,035 ppm Sb, 47,100 ppm (4.71%) Zn, and 9,900 ppm As. The low Pb to Ag ratio is similar to that of the Keno Hill silver deposits and mineralization reported at the Lone Mountain occurrence (Hall, 1983). The actual mineralized unit is of unknown thickness and orientation (**Photos 15 and 16**).

Numerous additional outcrops were noted in the westerly flowing creek gullies which were not examined in 2021. An outcrop of nearby graphitic shale has a strike of 095° and dips 70° south. The showing and gully are coincident with the location of an east-west trending HLEM conductor (Anomaly C of Carlson, 1981) identified by Anaconda. This HLEM conductor was traced 500 m to the east, to the copper soil anomaly described above which includes a talus fine-soil sample that returned 66.4 ppm.

In the same creek gully and approximately 110 m southwest of the Mizar showing, a single rock sample (W641884) of argillite containing 1-2% blebby pyrite and 1% fine-grained pyrite stringers returned low values for all elements of interest, except arsenic at 247 ppm. Approximately 220 m southwest of the Mizar showing, three rock samples (W641882, W641883, and W425853) were collected from outcrops of argillite containing variable amounts of disseminated pyrite and pyrite veinlets or limonite-goethite. One sample (W641882) containing <3% disseminated pyrite-pyrrhotite-arsenopyrite returned anomalous values up to 7.4 ppm silver, 1440 ppm arsenic, 297 ppm lead and 89 ppm antimony. The one stream sediment sample from the drainage below the Mizar showing returned 0.001 ppm gold, 1.68 ppm silver, 191 ppm arsenic, 410 ppm zinc and low to weakly anomalous values for other elements of interest from a dry gully filled with float of argillite, quartz pebbles, chert, and siltstone.

## 11.5. Silver Creek Showing

The Silver Creek showing is poorly exposed over about 30 m in a creek gully on the east side of Dromedary Mountain and was examined in 2020. Rock exposures consist of strongly oxidized iron oxide replaced and coated calc-silicate to skarn composed of dense sugary white quartz and green chloritized metasedimentary rock with about 20% disseminations and blebs of pyrrhotite and trace chalcopyrite. In appearance it looks totally recrystallized. A massive to semi-massive sulphide bed of pyrrhotite and pyrite, about 30-40 cm thick, strikes about SE at 145° and dips 50° south, although at one location its dip appears near vertical. In 2020, a rough chip rock sample (W641871) of the sulphide bed returned 3180 ppm Cu, 74 ppm Bi, 1300 ppm As, 19.95% Fe, and 944 ppm Zn. A grab rock sample (W641912) of iron oxide–pyrite–pyrrhotite calc-silicate returned 442 ppm Cu and 7.75% Fe. Results for other elements of interests were low in both samples (see photo in de Pasquale and Hulstein, 2019, YMEP 2020-037).

A soil sample of gossanous soil from the north creek bank contained 0.044 ppm Au, 4.73 ppm Ag, 1075 ppm As, 12.1 ppm Bi, 413 ppm Cu, 13.05% Fe, 20.19 ppm Pb, 16.25 ppm Sb and 207 ppm Zn. It is possible that this sample was collected very close to a (different) band of massive sulphide as both Au and Ag values are higher in soil than in the rock samples. Thick spruce vegetation on a steep slope on

either side of the exposure in the creek hinders exploration in this area.

## 11.6. GC and PC Showings

The GC and PC skarn showings are about 425 m apart on a westerly trending ridge spur on the west side of Dromedary Mountain. The ridge is underlain by the Rabbitkettle Formation of the Road River Group. The Rabbitkettle consists of thin-bedded limestone interbedded with siltstone which alters to green, pink and maroon striped siliceous fine-grained rock to calc-silicate rock.

Mineralization at both the GC and PC showings consists of narrow bands (<30 cm) of quartz-actinolitechlorite-pyrite with minor sphalerite, galena hosted by shale, argillite, siltstone, hornfels and minor limestone that is locally replaced to skarnified (see photo in de Pasquale and Hulstein, 2019, YMEP 2020-037). Three mineralized rock samples from outcrop (W641896, W641897, W425863) collected from the GC showing contained up to; 4300 ppm arsenic, 32.6% iron, 77 ppm antimony, and 43,200 ppm (4.32%) zinc (**Photo 17**). Two rock samples (W641898, W4525864) collected from bedrock at the PC showing contained up to; 9.19 ppm Ag, 105 ppm arsenic, 20.1% iron, 1520 ppm lead, 37 ppm antimony and 91,700 ppm (9.17%) zinc (**Photo 18**). Other values for elements of interest were of low to background from both showings. Results indicate that the mineralization is of the lead–zinc skarn type.

### 11.7. Cu DDH81-05

Mineralization at the presumed drill collar DDH81-05 is reported in the drill logs by Carlson (1982) and was not located in outcrop in 2020 during a site examination and was not investigated in 2021. Mineralization is described as disseminated chalcopyrite and chalcopyrite in carbonate and sulphide veinlets and overall averages about 1% from 39.2 m to 76.28 m. Sulphides vary from 1% up to 50% over narrow intervals and consist of pyrite, pyrrhotite, and chalcopyrite are richer sections are associated with actinolite. The drill hole from 39.2 m to 76.28 m (37.08 m) averaged 1341 ppm Cu, 2.8 ppm Ag with no analysis being made for Au. It seems likely that the copper-bearing calc-silicate is buried under talus that is mostly non-mineralized (see photo in de Pasquale and Hulstein, 2019, YMEP 2020-037).

In 2020, 4 soil and 3 rock samples were collected around the drill hole location. Soil returns up to 0.019 ppm Au, 125 ppm As, 94.5 ppm Cu associated with anomalous Bi, Sb, and W. Rock sample W641911 (float) returned 0.122 ppm Au, 195 ppm As, 18.9%, 10% S, and negligible base metals.

### 11.8. LM Showing

The description of mineralization and calc-silicate, quartzite, and siliceous argillite units logged in drill hole DDH81-07 is similar to the rocks found at the LM showing. Mineralization at the LM showing

consists of disseminated pyrrhotite–pyrite, arsenopyrite, and chalcopyrite in argillite and banded calcsilicates cut by thin (<1 cm) quartz veins. Host rocks are locally brecciated with quartz filling and a narrow (<10 cm wide) fault/shear zone with boxwork iron oxides and vuggy quartz breccia with trace malachite and azurite (<0.5% overall) was noted in 2021.

Two rock samples W641899 and W425866 were collected about 65 m apart and 175 m southeast of drill hole DDH81-07 from poorly exposed outcrops on the west flank of a well-treed ridge spur. Sample W641899 returned 0.224 g/t Au, 1.4 ppm Ag, >10,000 ppm As, and 45 ppm Sb from a rusty decomposed argillite—shale outcrop crosscut by quartz veinlets up to 1 cm wide, and includes 40 cm of brecciated quartz—argillite with minor pyrite-pyrrhotite-arsenopyrite. Sample W425866 returned 0.356 g/t Au, 28.0 ppm Ag, 58 ppm As, and 4070 ppm Cu from a rusty-weathering argillite crosscut by a narrow (<10 cm) fault structure filled with vuggy quartz-iron oxide boxwork textured breccia with minor malachite and azurite. Trace pyrite and pyrrhotite in fresh grey argillite (**Photo 19**).

Other outcrops in the area consist of argillite, locally silicified, chert and calc-silicate. All units are variably and weakly mineralized (<1-3%) with disseminated pyrite, pyrrhotite, and rarer arsenopyrite. These same sulphides are locally found in quartz segregations along foliation which is likely also bedding. Locally bleaching was noted adjacent to quartz filled fractures. The HLEM survey carried out by Anaconda identified east-west trending conductors in the area of the 2021 rock sampling and one of these was also likely the target of drill hole DDH81-07.

### 11.9. BMS Showing

Mineralization at the BMS showing relocated and sampled in 2020 is similar to the massive and semimassive sulphide bands found at the Main and Silver Creek showings. It was not examined in 2021.

Exposure at the BMS is limited to a small outcrop less than 3 m by 3 m of quartzite, locally leached and punky adjacent to the apparent stratabound sulphide band. The 60 cm thick sulphide band, striking 110 degrees and dipping 56 degrees to the south, consists of about 60% pyrrhotite and 2% - 5% disseminated chalcopyrite with a groundmass of chlorite and quartz. A rock chip sample (W641915) across the 60 cm sulphide band contained low gold, silver, bismuth, lead values, 870 ppm Cu, 10.1% Fe, 343 ppm As, and 319 ppm Zn. A single soil sample (Y647777) collected from the excavated material used to make the drill platform low values for gold, silver, lead, 190.5 ppm As, 149 ppm Cu, 2.24 ppm Bi, 9.7 ppm Sb and 199 ppm Zn (see photo in de Pasquale and Hulstein, 2019, YMEP 2020-037).

### 11.10. Inform Silver Showing

The showing consists of discontinuous crustiform quartz–sulphide veins cutting bedded siltstones, quartzite and lesser shales exposed on the ridge on the north side of the Acta claims. Inform Resources (Gibson, 2013) reported finding vein material here in 2013 over a 700 m distance and three rock samples of vein material returned highs of 0.064 ppm Au, 213 ppm Ag, 10,000 ppm As, 89.29 ppm Bi, 634 ppm Cu, 10,600 ppm Pb 188 ppm Sb and 1160 ppm Zn. Several soil samples collected by Inform Resources along the ridge in the same area also returned anomalous values for the same

elements of interest. In 2021 a thin (<10 cm thick?) sulphide band or pod/lens was located in a small shale–argillite outcrop within 10 m of the previously found mineralized veining.

In 2020 six rock samples of vein material returned similar values as those reported by Inform Resources including two, samples W641875 and W641918 that contained 193 ppm Ag and 10.1 ppm Ag respectively. A 500 m line of six contour soil/talus fine samples (Y647785 to 7790) collected below the rock samples returned: >2.43 to 8.21 ppm Ag, >124 to 220 ppm As, >20.2 to 74.1 ppm Mo, >36.9 to 165.5 ppm Pb, >7.7 to 23.5 ppm Sb, >20.9 to 65.9 ppm Se, and >210 to 504 ppm Zn.

In 2021 a grab sample (W641900) of the fine-grained sulphide pod/lens returned; 0.186 g/t Au, 646 ppm Ag, 229 ppm Bi, 173.5 Cd, 334 ppm Cu, 9.84% Fe, 38,100 ppm (3.81%) Pb, 558 ppm Sb and 26,660 ppm (2.666%) Zn (**Photo 20**).

The quartz sulphide veins, where measurements were possible, strike NW and dip steeply south. Bedding in the area is generally similar although bedding was also observed to dip north implying that there are a series of minor folds with short north dipping limbs.

### 11.11. Nagai Zone

The Nagai showing was discovered in 2019 following the receipt of 0.572 g/t gold from sample W641854 consisting of rusty weathering vuggy, weakly sheared chloritic siliciclastic crosscut by quartz veinlets. This prompted a follow-up examination in 2021. Outcrop is restricted to 'humps' of whales back glacially scoured outcrops between recessive zones filled with overburden/glacial till.

Sampling at the Nagai Zone in 2021 returned a sample (W425905) with 7.36 g/t gold, the highest gold value of all the 2021 rock samples. It consisted of a dark grey-green, fine-grained, brecciated chlorite altered shale, with scorodite stained brecciated quartz veins containing several percent arsenopyrite. Adjacent samples, W425904 and W425906, of similar material returned 7.19 g/t gold and 2.75 g/t gold, respectively, along with anomalous arsenic (>10,000 ppm), up to 939 ppm cobalt, 13.6% iron, 103 ppm antimony values. Other elements such as silver, bismuth, copper, lead, and zinc returned low to background values. Sample W425902, collected within 10 m of W641854 (0.572 g/t Au) returned 0.854 g/t Au and 471 ppm As from an oxidized, rusty weathering, chlorite altered shale–argillite crosscut by disrupted quartz veinlets. All the samples anomalous in gold to date lie within an east - west oriented zone approximately 130 m by 30 m defined by high iron values returned from rock and soil samples. The anomalous zone also lies immediately south of an HLEM conductor identified by Anaconda and an east-west trending ground magnetic anomaly, also identified by Anaconda, bisects the high iron anomaly (**Photos 21 and 22**).

Of the 38 soil samples collected in 2021, the second-highest gold value of 0.089 ppm (sample M896063) was returned from a 'C' horizon sample collected within 10 m of the high gold in rock samples at the Nagai Zone. The highest gold value of 0.138 ppm was also returned from a 'C' horizon sample (M896033), collected approximately 90 m south of the high gold in rock samples, in an area where to date no gold anomalous rock samples have been located. Two sulphide-bearing rock samples

from this area did return >12% iron indicating a highly prospective environment.

Three soil samples between the Nagai Zone and a small lake to the northwest, a distance of approximately 1.2 km, are notable for being red-brown and brown-orange in colour. These and other samples in the area returned spotty anomalies for silver, arsenic, cobalt, copper, iron, antimony, and zinc. This is an anomalous signature similar to the high-grade gold in rock samples found at the Nagai Zone.

### 11.12. KSF Zone

The KSF Zone is named after the granitoid outcrop found on top of a small hill first located and mapped by Anaconda (Hall, 1983). The granitoid is thought to be a Devonian diorite (Cobbett, 2019 – field mapping and thin section examination, pers. comm.) and it is locally crosscut by grey quartz veinlets. Calc-silicates to skarny looking rocks within the hornfels zone and metasedimentary rocks on the margin are locally cut by narrow shear zones, quartz and or calcite veins. The intrusion contact zone is moderately calcite altered and mafic minerals are partially pyrrhotite replaced.

In 2019 three rock grab samples of siliceous hornfelsed to fine-grained calc-silicate skarn, locally quartz veined, were collected from the north contact. The highest gold value returned was 0.165 ppm and arsenic values were less than 34 ppm from a grab sample. Six rock samples collected in 2021 returned low values for gold, silver, arsenic, and base metals. Coincidentally the 2019 and 2021 samples are aligned along an HLEM conductor identified by Anaconda (**Photo 23**).

# 12. CONCLUSIONS and RECOMMENDATIONS

The 2021 field program built on the work carried out in 2019–2020 and confirmed anew that the area has potential to host significant gold, silver and base metal mineralization. The model developed in 2019 was confirmed by the relocation of the Cretaceous quartz monzonite in 2020 which appears to be a reduced intrusion. There is an apparent linkage between the aeromagnetic signature, the reduced intrusion, the Twopete thrust fault and mineralization over a strike length of 18 km. The 1981-1982 Anaconda data, particularly the geophysical HLEM and geochemical data, continues to be useful in identifying targets. The deposit model is distal mineralization related to a mostly buried reduced intrusion utilizing the structural preparation provided by the Twopete Fault.

From the 2019 to 2021 results combined with historical data, two main target types have been identified:

- Replacement type deposits hosting gold, silver, and to a lesser extent base metals as indicated by drill holes on the François Zone and at the Main, BMS, Silver Creek, LM showings and the new Mizar showing found by prospecting in 2021.
- Vein or vein-fault hosted precious metal mineralization as found at the Inform Silver, Nagai Zone and possibly at the LM and Mizar showings which have characteristics of both deposit types.

Given that highly anomalous gold, silver, copper, lead and zinc has been identified in drill holes, surface showings and in soil and stream sediment samples further work is warranted and recommended on the Goldorak project. The highest priority targets are the ones that returned the highest silver and gold grades in 2021, namely the Mizar showing which returned 2490 ppm Ag from a rock grab sample of sulphides in limestone/marble, and the Nagai Zone where three consecutive grab samples of brecciated quartz sulphide veining cutting variably limy slate, shale, phyllite returned between 2.75 g/t and 7.36 g/t Au. Currently rock samples from the Nagai with >10% Fe define an area of approximately 130 m long in an east-west direction by 30 m wide. A ground magnetic anomaly located by Anaconda partially overlaps this area and an HLEM conductor about 30 m to the north parallels the zone.

Other priority targets are the Inform Silver and the LM showings where early-stage sampling has returned encouraging results of up to 646 ppm Ag at the Inform Silver showing from quartz veining and fine-grained sulphide stratabound mineralization in siltstone. Only two rock samples were collected at the LM showing and they returned up to 0.356 g/t Au, 28 ppm Ag and 4079 ppm Cu from disseminated and vein hosted mineralization cutting argillite—chert and calc-silicate rocks. This mineralization of copper grade is similar to that described in DDH81-05 (the "Cu DDH81-05" Zone) where the hole intersected 37 m at 1341 ppm Cu.

Approximately 800 m east of the Mizar showing and north of the Main showing the there is a coherent Cu, As, Pb and Zn anomaly (Cu in soil anomaly) that extends at least 400 m north-south across the west-facing slope. A 2021 talus-fine soil sample within the anomaly and 110 m south of a soil sample collected below a sulphidic stratabound unit that returned 66.4 ppm Ag in 2020, returned 29.6 ppm Ag in 2021.

Two previously diamond-drilled zones, the François Zone and "Cu DDH81-05" Zone, are, with a little preparatory work, essentially 'drill-ready'. These zones and most of the other ones as well are spatially related to HLEM conductors.

As a result of the work carried out in 2021, the following is recommended:

### <u>1. Low budget, Phase 1:</u>

These recommendations consist mainly of field work requiring minimal logistics and expenses and should provide sufficient information to evaluate drilling targets. It includes additional claim staking and additional follow-up of anomalous results from 2019 to 2021.

- Additional prospecting, geological mapping and geochemical sampling are recommended at the Mizar, Nagai, Inform Silver and LM Zones and surrounding areas.
- At the Nagai in particular, work should focus on extending the known mineralization in all directions including the gap between it and the La Liga Zone and the attendant arsenic in soil anomaly on the south and east sides of the La Liga and north and west margins of the Nagai Zone.
- The two talus-fine soil samples grading 29.6 ppm and 66.4 ppm Ag located east of the Mizar showing, within the Cu Soil Anomaly, require additional prospecting, geological mapping and geochemical sampling.
- The west-facing slope Dromedary Mountain between the Main showing and François Grid, including the Cu soil anomaly and Mizar showing, should be prospected, and sampled as far as practicable given the vegetation and overburden at lower elevations. Numerous coherent soil geochemical anomalies for Cu, Pb, Ag and Zn reported by Anaconda from this area remain unexamined and require follow-up.
- Special attention, prospecting, mapping, and sampling, should be paid to the HLEM conductors where they are within or proximal to geochemically anomalous areas, keeping in mind that the pre-GPS 1980–1981 HLEM conductors may not be accurately located.
- Claims should be staked to cover the Mizar and LM showings and additional claims need to be staked around the Inform Silver and Nagai zones.

### <u>2. Phase 2</u>

These recommendations consist of field works and property-scale survey requiring a substantial budget. They are intended as guidelines for a junior exploration company.

- Airborne magnetic and EM over the property to refine major fault structures
- Ground geophysics including magnetics, Max Min and I.P. surveys should provide good data to delineate the extent of the Nagai Zone.
- Two Geoprobe or RAB drill holes (or diamond drilling) to test mineralization at the Nagai Zone.

# 13. BUDGET

The table below (**Table 5**) details the 2021 project expenditures. Compared to the proposed budget costs incurred are approximately in line with what was anticipated when the slightly shorter program, and lower than anticipated helicopter costs are taken into account. Geochemical costs are lower than anticipated due to the lack of appropriate medium for soil samples.

| Goldorak Proj                                                                                                  | ect - 2021 YMEP Expendi           | tures                            |       |       |              |
|----------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------------------|-------|-------|--------------|
| Twelve Day Field                                                                                               | l Program (July 1 - July 12, 2    | 2021)                            |       |       |              |
| Catagory                                                                                                       | Person/Company                    | Activity                         | Units | Rate  | Total        |
|                                                                                                                |                                   |                                  |       |       |              |
| Labour                                                                                                         | J. De Pasquale                    | Field prep mob and demob         | 1.5   | 500   | \$ 750.00    |
|                                                                                                                | R. Hulstein                       | Field prep mob and demob         | 1.5   | 500   | \$ 750.00    |
|                                                                                                                | J. De Pasquale                    | Prospecting/Sampling/Travel      | 12 ¦  | 500 ; | \$ 6,000.00  |
|                                                                                                                | R. Hulstein                       | Prospecting/Sampling/Travel      | 12    | 500   | \$ 6,000.00  |
| Field Costs                                                                                                    | \$100 per worker-day              | 11 nights in field x 2           | 22    | 100   | \$ 2,200.00  |
| Trucks                                                                                                         | \$.60 per km                      | Whitehorse to Mayo rtn           | 810   | 0.6   | \$ 486.00    |
| Helicopter                                                                                                     | Fireweed Heli                     | Fireweed inv 5708                | 4.4   |       | \$ 7,225.68  |
| Assays                                                                                                         | ALS Laboratory                    | soils ALS inv 5610390            | 51    |       | \$ 2,094.45  |
|                                                                                                                | ALS Laboratory                    | soils ALS inv 5653622            | 7     |       | \$ 279.67    |
|                                                                                                                | ALS Laboratory                    | rocks ALS inv 5629353            | 64    |       | \$ 4,440.59  |
| Thin Sections                                                                                                  | Van. Petrographics                | thin and polished sections       |       |       | \$ 350.70    |
|                                                                                                                | Dr. Tim Liverton                  | examination and report           |       | 1     | \$ 1,443.75  |
|                                                                                                                | Postage                           | rocks to Vancouver Petrographics |       | ·     | \$ 51.27     |
| Report                                                                                                         | J. De Pasquale and R.<br>Hulstein | writing, GIS-maps, photos, etc   | 6     | 500   | \$ 3,000.00  |
|                                                                                                                | Reprographics                     | Map plotting                     |       |       | \$ 50.43     |
| Denkemmen i stationen i st |                                   |                                  | 2     | TOTAL | \$ 35,122.54 |

Table 5. 2021 Expenditures.

Respectfully submitted,

Jerome De Pasquale

Roger Hulstein, P.Geo.

# 14. REFERENCES

- Butterworth, B.P. and Jones, M., 1998. Geology and mineralization on the Dromedary property, central Yukon. In: Yukon Exploration and Geology 1997, Exploration and Geological Services Division, Yukon, Indian and Northern Affairs Canada, p. 121-124.
- Carlson, G.G., 1981. Anaconda Canada Exploration Ltd., Assessment Report #090888.
- Caulfield, D.A. and Weber, J., 1997. Blackstone Resources Ltd., Assessment Report #093618.
- Caulfield, D.A. and Weber, J., 1997. Blackstone Resources Ltd., Assessment Report #093595.
- Cobbett, R., 2019. Preliminary observations on the geology of northeastern Glenlyon area, Central Yukon (parts of NTS 105L/10, 14, 15). In: Yukon Exploration and Geology 2018, K.E. MacFarlane (ed.), Yukon Geological Survey, p. 43–60.
- Cobbett, R., and Keevil, H., 2019. Geology of northeastern Glenlyon area ((Sheets 1 and 2), NTS 105L/13,14,15 (scale 1:50:000). Yukon Geological Survey, Open File 2019-3.
- Colpron, M., Israel, S., Murphy, D., Pigage, L. and Moynihan, D., 2016a. Yukon bedrock geology map. Yukon Geological Survey, Open File 2016-1, scale 1:5,000,000.
- De Pasquale, J. and Hulstein, R., 2019. YMEP 2019 013, Goldorak Project, Report prepared for Yukon Geological Survey, Yukon Mineral Exploration Program.
- De Pasquale, J. and Hulstein, R., 2020. YMEP 2020 037, Goldorak Project, Report prepared for Yukon Geological Survey, Yukon Mineral Exploration Program.
- Gibson, J., 2013. Inform Resources Corp., Assessment Report #096377.
- Giroux, G.H. and Melis, L.A., 2013. Geology, Mineralization, Geochemical Surveys, Diamond Drilling, Metallurgical Testing, and Mineral Resources at the Keg Property. 43-101 report for Silver range Resources Ltd. Available on SEDAR.
- Hall, R.D., 1983. Anaconda Canada Exploration Ltd., Assessment Report #091468.
- Hart, C. and Goldfarb, R., 2005. Distinguishing intrusion-related from orogenic gold systems. Proceedings of Scientific Conference on Minerals, New Zealand.
- Hart, C.J.R., 2007. Reduced intrusion-related gold systems, *in* Goodfellow, W.D., ed., Mineral deposits of Canada: A synthesis of Major Deposit Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods: Geological Association of Canada, Mineral Deposits Division, Special Publication No. 5, p. 95-112.
- Jones, M.J., 1998a. Blackstone Resources Ltd., Assessment Report #093755 (Mayo Mining District).
- Jones, M.J., 1998b. Blackstone Resources Ltd., Assessment Report #093764 (Whitehorse Mining District).

- Miles, W., (compiler) 2013. Aeromagnetic map compilation, Geological Survey of Canada, <u>ftp://ftp.agg.nrcan.gc.ca/public/gdc/YUKON</u>, (accessed June 2014).
- Rebagliati, C.M., 1989. Dromedary Exploration Co. Ltd., Prospectus Report.
- Rowins, S.M., 2000, Reduced porphyry copper-gold deposits: A variation on an old theme: Geology, 28, 491-494
- Sack, P.J., Colpron, M., Crowley, J.L., Ryan, J.J., Allan, M.M., Beranek, L.P. and Joyce, N.L., 2020. Atlas of Late Triassic to Jurassic plutons in the Intermontane terranes of Yukon. Yukon Geological Survey, Open File 2020-1, 365 p.
- Scott, A.R., 1982. Anaconda Canada Exploration Ltd., Assessment Report #091039.
- Sellmer. H. and R. Zuran, R., 1993. Energold Minerals Inc., Assessment Report #093148.
- Sellmer, H., 1993. Energold Minerals Inc., Assessment Report #093157.

# STATEMENT of QUALIFICATIONS (Roger Hulstein)

I, Roger W. Hulstein, of:

106 Wilson Drive

Whitehorse, Yukon Territory

Y1A 0C9,

do hereby certify that:

- 1. I am an independent, self-employed, mineral exploration geologist with over 30 years of experience working in the Yukon.
- 2. I am a graduate of Saint Mary's University, Halifax, with a degree in geology (B.Sc., 1981) and have been involved in geology and mineral exploration continuously since 1978.
- 3. I am a fellow of the Geological Association of Canada (F3572).
- 4. I am registered as a professional geoscientist (No. 19127) with the Association of Professional Engineers and Geoscientists of the Province of British Columbia.
- 5. I am the author of this application report on the Goldorak Project in the Whitehorse Mining District, Yukon.
- 6. The report is based on personal examination of selected areas within the project area in 1993, 1994, 2020–2021 and on referenced sources.

Roger Hulstein, P.Geo.

January 17, 2022

# STATEMENT of QUALIFICATIONS (Jérôme de Pasquale)

I, Jérôme de Pasquale, of:

Box 21201

Whitehorse, Yukon Territory

Y1A 6R8,

do hereby certify that:

- 1. I am an independent, self-employed, geologist with over 11 years of experience working in Canada.
- 2. I graduated from Université d'Orléans-La-Source with a Maîtrise des Sciences de la Terre Option Géologie, and have been involved in geology and mineral exploration continuously since 2011.
- 3. I am the co-author of this report as well as of the 2019, 2020, and 2021 reports on the Goldorak Project in the Whitehorse Mining District, Yukon.

Jérôme de Pasquale

January 17, 2022

# APPENDIX A

**Analytical Certificates** 



ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

# CERTIFICATE WH21182911

Project: Goldorak

This report is for 64 samples of Rock submitted to our lab in Whitehorse, YT, Canada on 15-JUL-2021.

The following have access to data associated with this certificate:

JEROME DE PASQUALE

ROGER HULSTEIN

#### To: HULSTEIN, ROGER 106 WILSON DR. WHITEHORSE YT Y1A 5R2

Page: 1 Total # Pages: 3 (A - C) Plus Appendix Pages Finalized Date: 18-SEP-2021 This copy reported on 20-SEP-2021 Account: HULROG

|           | SAMPLE PREPARATION                |  |
|-----------|-----------------------------------|--|
| ALS CODE  | DESCRIPTION                       |  |
| WEI-21    | Received Sample Weight            |  |
| LOG-21    | Sample logging – ClientBarCode    |  |
| BAG-01    | Bulk Master for Storage           |  |
| OA-HSUL10 | Handling of High Sulphide Samples |  |
| CRU-QC    | Crushing QC Test                  |  |
| PUL-QC    | Pulverizing QC Test               |  |
| CRU-32    | Fine Crushing 90% <2mm            |  |
| SPL-21    | Split sample – riffle splitter    |  |
| PUL-32a   | Pulverize 1000g to 90% < 75um     |  |

|          | ANALYTICAL PROCEDURE           | S          |
|----------|--------------------------------|------------|
| ALS CODE | DESCRIPTION                    | INSTRUMENT |
| Pb-OG62  | Ore Grade Pb – Four Acid       |            |
| Zn-OG62  | Ore Grade Zn – Four Acid       |            |
| Ag-GRA21 | Ag 30g FA-GRAV finish          | WST-SIM    |
| Au-AA24  | Au 50g FA AA finish            | AAS        |
| Au-GRA22 | Au 50 g FA-GRAV finish         | WST-SIM    |
| ME-ICP61 | 33 element four acid ICP-AES   | ICP-AES    |
| Ag-OG62  | Ore Grade Ag – Four Acid       |            |
| ME-OG62  | Ore Grade Elements – Four Acid | ICP-AES    |

Signature:

samples as submitted.All pages of this report have been checked and approved for release. Sig

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to

Saa Traxler, General Manager, North Vancouver



2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

### To: HULSTEIN, ROGER 106 WILSON DR. WHITEHORSE YT Y1A 5R2

Page: 2 – A Total # Pages: 3 (A – C) Plus Appendix Pages Finalized Date: 18-SEP-2021 Account: HULROG

Project: Goldorak

|                               | Method  | WEI-21               | ME-ICP61             | ME-ICP61             | ME-ICP61       | ME-ICP61          | ME-ICP61            | ME-ICP61     | ME-ICP61             | ME-ICP61             | ME-ICP61     | ME-ICP61       | ME-ICP61        | ME-ICP61              | ME-ICP61  | ME-ICP61       |
|-------------------------------|---------|----------------------|----------------------|----------------------|----------------|-------------------|---------------------|--------------|----------------------|----------------------|--------------|----------------|-----------------|-----------------------|-----------|----------------|
|                               | Analyte | Recvd Wt.            | Ag                   | Al                   | As             | Ва                | Ве                  | Bi           | Ca                   | Cd                   | Со           | Cr             | Cu              | Fe                    | Ga        | ĸ              |
| Sample Description            | Units   | kg<br>0.02           | ppm<br>0.5           | %<br>0.01            | ppm<br>5       | ppm<br>10         | ppm<br>0.5          | ppm<br>2     | %<br>0.01            | ppm<br>0.5           | ppm<br>1     | ppm<br>1       | ppm<br>1        | %<br>0.01             | ppm<br>10 | %<br>0.01      |
| · ·                           | LOD     | 0.02                 | 0.5                  | 0.01                 | 2              | 10                | 0.5                 | 2            | 0.01                 | 0.5                  |              |                |                 | 0.01                  | 10        | 0.01           |
| W425851                       |         | 1.43                 | 0.5                  | 1.78                 | 284            | 290               | 1.0                 | 7            | 0.04                 | 0.5                  | 1            | 30             | 86              | 1.20                  | <10       | 0.79           |
| W425852                       |         | 1.39                 | 1.3                  | 1.99                 | 8              | 70                | 0.8                 | <2           | 20.6                 | 20.2                 | 3            | 52             | 59              | 2.55                  | <10       | 0.03           |
| W425853                       |         | 0.99                 | 1.9                  | 6.55                 | 77             | 530               | 2.4                 | <2           | 2.64                 | <0.5                 | 3            | 86             | 23              | 3.18                  | 20        | 0.93           |
| W425854                       |         | 1.21                 | >100                 | 1.96                 | 9900           | 50                | 0.6                 | 4460         | 2.96                 | 580                  | 37           | 78             | 342             | 8.78                  | 10        | 1.02           |
| W425855                       |         | 1.80                 | 6.9                  | 0.63                 | 24             | 30                | <0.5                | 7            | 0.04                 | 1.4                  | <1           | 12             | 107             | 8.69                  | <10       | 0.10           |
| W425856                       |         | 1.07                 | 11.6                 | 4.03                 | 58             | 1340              | 1.2                 | 17           | 8.03                 | 1.9                  | 6            | 113            | 554             | 4.74                  | 10        | 1.37           |
| W425857                       |         | 1.26                 | 1.7                  | 4.39                 | 297            | 950               | 1.3                 | <2           | 7.23                 | <0.5                 | 8            | 119            | 288             | 2.72                  | 10        | 1.66           |
| W425858                       |         | 1.43                 | 1.1                  | 3.40                 | 434            | 1320              | 1.1                 | <2           | 11.60                | 1.6                  | 4            | 43             | 77              | 1.93                  | 10        | 1.92           |
| W425859                       |         | 1.30                 | 2.0                  | 4.81                 | 91             | 760               | 3.7                 | 4            | 0.49                 | 2.5                  | 1            | 16             | 10              | 0.82                  | 10        | 2.43           |
| W425860                       |         | 1.38                 | 6.2                  | 1.65                 | 228            | 50                | 1.2                 | 55           | 7.35                 | 2.4                  | 20           | 17             | 3940            | 22.9                  | <10       | 0.02           |
| W425861                       |         | 1.45                 | 7.1                  | 1.44                 | 46             | 30                | 1.7                 | 674          | 4.17                 | 2.7                  | 38           | 35             | 2130            | 32.3                  | 10        | 0.01           |
| W425862                       |         | 1.47                 | 1.8                  | 4.76                 | 609            | 150               | 0.5                 | 3            | 2.08                 | <0.5                 | 11           | 37             | 132             | 14.90                 | 10        | 0.84           |
| W425863                       |         | 1.15                 | 0.7                  | 0.43                 | 863            | 20                | <0.5                | <2           | 1.71                 | 95.3                 | 6            | 5              | 212             | 32.6                  | <10       | 0.07           |
| W425864                       |         | 1.94                 | 9.2                  | 3.39                 | 105            | 350               | 0.8                 | <2           | 1.01                 | 33.7                 | 4            | 35             | 172             | 19.50                 | 20        | 1.50           |
| W425865                       |         | 1.23                 | 1.5                  | 7.38                 | 6              | >10000            | 2.1                 | <2           | 3.18                 | 3.2                  | 12           | 70             | 72              | 3.42                  | 20        | 2.94           |
| W425866                       |         | 1.14                 | 28.0                 | 2.21                 | 58             | 190               | <0.5                | <2           | 1.95                 | 0.6                  | 1            | 37             | 4070            | 13.35                 | 10        | 0.75           |
| W425867                       |         | 1.81                 | 1.4                  | 6.49                 | 12             | 6340              | 1.4                 | <2           | 0.66                 | <0.5                 | <1           | 36             | 46              | 2.28                  | 20        | 2.62           |
| W425868                       |         | 1.63                 | 2.0                  | 8.22                 | 30             | 2110              | 1.7                 | <2           | 0.73                 | <0.5                 | 19           | 56             | 126             | 3.63                  | 20        | 3.07           |
| W425869                       |         | 1.20                 | 3.8                  | 7.16                 | 8              | 1820              | 1.6                 | <2           | 2.36                 | 3.2                  | 2            | 54             | 140             | 3.35                  | 20        | 1.34           |
| W425870                       |         | 1.21                 | 1.7                  | 2.45                 | 32             | 2280              | 0.6                 | <2           | 0.19                 | <0.5                 | <1           | 93             | 34              | 2.02                  | 10        | 0.78           |
| W425871                       |         | 1.43                 | <0.5                 | 2.62                 | 6              | 460               | 0.8                 | <2           | 2.15                 | <0.5                 | 4            | 43             | 6               | 1.48                  | <10       | 1.14           |
| W425872                       |         | 1.47                 | <0.5                 | 1.57                 | <5             | 180               | <0.5                | <2           | 24.7                 | <0.5                 | 3            | 9              | 3               | 1.22                  | <10       | 0.60           |
| W425873                       |         | 1.45                 | <0.5                 | 3.52                 | 1115           | 420               | 0.5                 | 2            | 0.09                 | <0.5                 | 8            | 29             | 115             | 8.19                  | 10        | 0.57           |
| W425874                       |         | 1.19                 | <0.5                 | 4.10                 | 16             | 130               | 0.5                 | 2            | 0.14                 | <0.5                 | 7            | 37             | 91              | 25.0                  | 10        | 0.36           |
| W425875                       |         | 1.75                 | <0.5                 | 2.40                 | <5             | 80                | <0.5                | <2           | 0.11                 | <0.5                 | 17           | 20             | 240             | 33.4                  | 10        | 0.02           |
| W425876                       |         | 1.53                 | 1.1                  | 3.70                 | 9              | 890               | 1.0                 | <2           | 9.08                 | 0.5                  | 7            | 34             | 344             | 2.57                  | 10        | 0.71           |
| W425877                       |         | 2.12                 | <0.5                 | 5.45                 | 5              | 5120              | 1.1                 | <2           | 7.47                 | <0.5                 | 9            | 53             | 71              | 3.36                  | 10        | 0.70           |
| W425878                       |         | 1.24                 | 0.6                  | 4.73                 | 169            | 170               | 0.6                 | <2           | 0.21                 | <0.5                 | 15           | 61             | 98              | 25.2                  | 20        | 1.01           |
| W425901                       |         | 1.19                 | <0.5                 | 2.26                 | 8              | 390               | 0.6                 | <2           | 5.75                 | <0.5                 | 1            | 32             | 4               | 1.11                  | <10       | 1.05           |
| W425902                       |         | 1.56                 | 0.7                  | 1.02                 | 471            | 20                | <0.5                | <2           | 0.02                 | <0.5                 | <1           | 21             | 96              | 24.5                  | 10        | 0.03           |
| W425903                       |         | 1.05                 | <0.5                 | 3.06                 | 7              | 230               | 0.5                 | <2           | 3.80                 | <0.5                 | 9            | 33             | 46              | 5.56                  | 10        | 0.46           |
| W425904                       |         | 1.21                 | <0.5                 | 4.00                 | >10000         | 310               | 0.5                 | 17           | 0.04                 | <0.5                 | 562          | 37             | 73              | 13.60                 | 10        | 0.61           |
| W425905                       |         | 1.40                 | <0.5                 | 2.79                 | >10000         | 250               | <0.5                | 19           | 0.08                 | <0.5                 | 939          | 28             | 45              | 12.35                 | 10        | 0.37           |
| W425906                       |         | 1.79                 | <0.5                 | 5.39                 | >10000         | 490               | 0.9                 | 8            | 1.09                 | <0.5                 | 368          | 58             | 9               | 9.81                  | 10        | 0.95           |
| W425907                       |         | 1.89                 | <0.5                 | 4.90                 | 133            | 180               | <0.5                | <2           | 0.54                 | <0.5                 | 6            | 48             | 54              | 17.90                 | 10        | 0.29           |
| W425908                       |         | 1.41                 | <0.5                 | 1.03                 | 66             | 130               | <0.5                | 3            | 0.42                 | 0.6                  | 8            | 7              | 71              | 32.1                  | 10        | 0.03           |
| W425909                       |         | 1.37                 | <0.5                 | 4.43                 | 465            | 170               | <0.5                | 2            | 0.04                 | <0.5                 | 7            | 43             | 73              | 18.45                 | 10        | 0.46           |
| W425910                       |         | 2.16                 | <0.5                 | 1.85                 | <5             | 30                | <0.5                | 3            | 0.30                 | <0.5                 | 3            | 15             | 57              | 37.9                  | 10        | 0.03           |
| W425911                       |         | 1.40                 | <0.5                 | 7.36                 | 7              | 2240              | 0.7                 | <2           | 1.55                 | <0.5                 | 11           | 15             | 186             | 3.75                  | 20        | 1.83           |
| W425912                       |         | 1.41                 | <0.5                 | 8.08                 | <5             | 2090              | 0.8                 | <2           | 4.19                 | <0.5                 | 14           | 17             | 81              | 4.22                  | 20        | 1.17           |
| W425909<br>W425910<br>W425911 |         | 1.37<br>2.16<br>1.40 | <0.5<br><0.5<br><0.5 | 4.43<br>1.85<br>7.36 | 465<br><5<br>7 | 170<br>30<br>2240 | <0.5<br><0.5<br>0.7 | 2<br>3<br><2 | 0.04<br>0.30<br>1.55 | <0.5<br><0.5<br><0.5 | 7<br>3<br>11 | 43<br>15<br>15 | 73<br>57<br>186 | 18.45<br>37.9<br>3.75 |           | 10<br>10<br>20 |



2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

### To: HULSTEIN, ROGER 106 WILSON DR. WHITEHORSE YT Y1A 5R2

Page: 2 - B Total # Pages: 3 (A - C) Plus Appendix Pages Finalized Date: 18-SEP-2021 Account: HULROG

Project: Goldorak

| Sample Description                                             | Method<br>Analyte<br>Units<br>LOD | ME-ICP61<br>La<br>ppm<br>10      | ME-ICP61<br>Mg<br>%<br>0.01                  | ME-ICP61<br>Mn<br>ppm<br>5           | ME-ICP61<br>Mo<br>ppm<br>1  | ME-ICP61<br>Na<br>%<br>0.01                   | ME-ICP61<br>Ni<br>ppm<br>1     | ME-ICP61<br>P<br>ppm<br>10               | ME-ICP61<br>Pb<br>ppm<br>2       | ME-ICP61<br>S<br>%<br>0.01                     | ME-ICP61<br>Sb<br>ppm<br>5       | ME-ICP61<br>Sc<br>ppm<br>1 | ME-ICP61<br>Sr<br>ppm<br>1         | ME-ICP61<br>Th<br>ppm<br>20                   | ME-ICP61<br>Ti<br>%<br>0.01                  | ME-ICP61<br>TI<br>ppm<br>10                   |
|----------------------------------------------------------------|-----------------------------------|----------------------------------|----------------------------------------------|--------------------------------------|-----------------------------|-----------------------------------------------|--------------------------------|------------------------------------------|----------------------------------|------------------------------------------------|----------------------------------|----------------------------|------------------------------------|-----------------------------------------------|----------------------------------------------|-----------------------------------------------|
| W425851<br>W425852<br>W425853<br>W425854                       |                                   | 10<br>10<br>20<br>20             | 0.11<br>0.34<br>1.85<br>2.02                 | 91<br>1300<br>898<br>2310<br>109     | 4<br>2<br>24<br>33<br>1     | 0.02<br>0.05<br>1.51<br>0.09                  | 35<br>27<br>18<br>83           | 330<br>990<br>440<br>590                 | 6<br>14<br>14<br>>10000          | 0.01<br>1.43<br>2.43<br>7.94<br>0.06           | 20<br>5<br>84<br>1035            | 3<br>13<br>15<br>6<br>2    | 6<br>272<br>402<br>79              | <20<br><20<br><20<br><20                      | 0.08<br>0.11<br>0.31<br>0.16                 | <10<br><10<br><10<br>10                       |
| W425855<br>W425856<br>W425857<br>W425858<br>W425859<br>W425860 |                                   | 10<br>40<br>50<br>20<br>10<br>10 | 0.04<br>3.34<br>2.48<br>3.24<br>0.19<br>0.85 | 818<br>487<br>745<br>351<br>7670     | 1<br>4<br>11<br>1<br>1<br>1 | <0.01<br>0.47<br>0.33<br>0.24<br>0.04<br>0.02 | 6<br>17<br>80<br>19<br>7<br>34 | 660<br>1970<br>3730<br>570<br>150<br>470 | 69<br>224<br>18<br>18<br>60<br>6 | 1.11<br>0.95<br>0.41<br>0.03<br>>10.0          | <5<br>7<br><5<br>7<br>20<br><5   | 10<br>13<br>5<br>3<br>6    | 4<br>267<br>230<br>227<br>14<br>59 | <20<br><20<br><20<br><20<br><20<br><20<br><20 | 0.03<br>0.31<br>0.26<br>0.04<br>0.08         | <10<br><10<br><10<br><10<br><10<br><10<br><10 |
| W425860<br>W425861<br>W425862<br>W425863<br>W425864<br>W425865 |                                   | 10<br>20<br><10<br>30<br>40      | 0.53<br>0.54<br>1.28<br>1.32<br>0.77<br>2.24 | 1620<br>220<br>16850<br>13050<br>330 | 3<br>1<br><1<br><1<br>8     | 0.02<br>0.01<br>0.31<br>0.03<br>0.07<br>0.52  | 54<br>30<br>13<br>20<br>38     | 740<br>350<br>70<br>300<br>1000          | 4<br>5<br>60<br>1520<br>53       | >10.0<br>>10.0<br>8.04<br>5.12<br>0.78<br>0.17 | <5<br><5<br>77<br>37<br>20       | 4<br>5<br>2<br>5<br>11     | 98<br>93<br>11<br>22<br>411        | <20<br><20<br><20<br><20<br><20<br><20<br><20 | 0.08<br>0.10<br>0.17<br>0.01<br>0.17<br>0.36 | <10<br><10<br><10<br><10<br><10<br><10<br><10 |
| W425866<br>W425867<br>W425868<br>W425869<br>W425870            |                                   | 20<br>20<br>20<br>10<br>10       | 0.70<br>0.90<br>1.36<br>1.60<br>0.74         | 1370<br>812<br>2780<br>1350<br>210   | <1<br>1<br>2<br>3<br>10     | 0.07<br>0.96<br>1.78<br>1.84<br>0.42          | 3<br>3<br>43<br>8<br>10        | 170<br>670<br>410<br>550<br>340          | 9<br>10<br>38<br>16<br>10        | 1.13<br>0.17<br>1.48<br>0.35<br>0.36           | <5<br><5<br>7<br><5<br>11        | 5<br>14<br>15<br>14<br>11  | 47<br>235<br>251<br>449<br>150     | <20<br><20<br><20<br><20<br><20<br><20        | 0.17<br>0.25<br>0.29<br>0.24<br>0.13         | <10<br><10<br><10<br><10<br><10               |
| W425871<br>W425872<br>W425873<br>W425874<br>W425875            |                                   | 10<br>10<br>30<br>20<br>10       | 0.15<br>0.57<br>0.80<br>0.63<br>0.42         | 214<br>890<br>139<br>8300<br>14550   | 1<br><1<br>1<br><1<br><1    | 0.02<br>0.03<br>0.03<br>0.01<br>0.01          | 23<br>4<br>4<br>19<br>28       | 300<br>730<br>390<br>190<br>150          | 12<br>4<br>6<br>5<br>7           | 0.02<br>0.02<br>0.11<br>0.43<br>2.43           | 6<br><5<br>7<br><5<br><5         | 2<br>2<br>4<br>8<br>6      | 127<br>722<br>12<br>9<br>8         | <20<br><20<br><20<br><20<br><20<br><20        | 0.12<br>0.06<br>0.12<br>0.16<br>0.09         | <10<br><10<br><10<br><10<br><10               |
| W425876<br>W425877<br>W425878<br>W425901<br>W425902            |                                   | 20<br>30<br>20<br>10<br>10       | 1.72<br>2.24<br>0.96<br>0.17<br>0.10         | 520<br>533<br>3260<br>249<br>1170    | 1<br>2<br><1<br><1<br><1    | 0.67<br>2.23<br>0.02<br>0.02<br>0.01          | 17<br>36<br>25<br>10<br>1      | 360<br>2560<br>480<br>190<br>240         | 12<br>5<br>7<br>6<br>9           | 0.05<br>0.07<br>0.09<br>0.05<br>0.39           | <5<br><5<br><5<br><5<br><5<br><5 | 5<br>8<br>8<br>2<br>3      | 190<br>354<br>33<br>256<br>1       | <20<br><20<br><20<br><20<br><20<br><20        | 0.15<br>0.25<br>0.34<br>0.10<br>0.11         | <10<br><10<br><10<br><10<br><10<br><10        |
| W425903<br>W425904<br>W425905<br>W425906<br>W425907            |                                   | 20<br>30<br>20<br>30<br>30       | 1.12<br>0.80<br>0.70<br>1.44<br>0.68         | 584<br>173<br>168<br>423<br>2790     | <1<br><1<br><1<br><1<br><1  | 0.09<br>0.15<br>0.15<br>0.31<br>0.01          | 17<br>14<br>21<br>27<br>18     | 270<br>250<br>130<br>370<br>360          | 4<br>10<br>14<br>7<br>3          | 0.02<br>2.89<br>4.38<br>1.76<br>0.60           | <5<br>103<br>98<br>46<br><5      | 4<br>4<br>3<br>7<br>7      | 93<br>23<br>27<br>68<br>17         | <20<br><20<br><20<br><20<br><20               | 0.12<br>0.15<br>0.09<br>0.20<br>0.21         | <10<br><10<br><10<br><10<br><10               |
| W425908<br>W425909<br>W425910<br>W425911<br>W425912            |                                   | 10<br>20<br>10<br>10<br>10       | 0.73<br>0.52<br>0.53<br>1.61<br>1.68         | 37300<br>3040<br>18800<br>666<br>786 | <1<br><1<br><1<br><1<br><1  | 0.01<br>0.01<br><0.01<br>1.58<br>1.57         | 27<br>16<br>14<br>8<br>10      | 80<br>260<br>80<br>230<br>250            | 11<br>3<br>5<br>8<br>20          | 2.72<br>1.44<br>1.38<br>0.52<br>0.45           | <5<br><5<br><5<br><5<br><5       | 5<br>7<br>6<br>19<br>21    | 6<br>5<br>5<br>162<br>180          | <20<br><20<br><20<br><20<br><20               | 0.04<br>0.20<br>0.07<br>0.20<br>0.24         | <10<br><10<br><10<br><10<br><10               |



2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

### To: HULSTEIN, ROGER 106 WILSON DR. WHITEHORSE YT Y1A 5R2

Page: 2 - C Total # Pages: 3 (A - C) Plus Appendix Pages Finalized Date: 18-SEP-2021 Account: HULROG

WH21182911

Project: Goldorak

| Sample Description                                             | Method<br>Analyte<br>Units<br>LOD | ME-ICP61<br>U<br>ppm<br>10             | ME-ICP61<br>V<br>ppm<br>1      | ME-ICP61<br>W<br>ppm<br>10             | ME-ICP61<br>Zn<br>ppm<br>2           | Ag-OG62<br>Ag<br>ppm<br>1 | Pb-OG62<br>Pb<br>%<br>0.001 | Zn-OG62<br>Zn<br>%<br>0.001 | Ag-GRA21<br>Ag<br>ppm<br>5 | Au-AA24<br>Au<br>ppm<br>0.005                | Au-GRA22<br>Au<br>ppm<br>0.05 |
|----------------------------------------------------------------|-----------------------------------|----------------------------------------|--------------------------------|----------------------------------------|--------------------------------------|---------------------------|-----------------------------|-----------------------------|----------------------------|----------------------------------------------|-------------------------------|
| W425851<br>W425852<br>W425853<br>W425854<br>W425855            |                                   | <10<br><10<br>10<br><10<br><10         | 110<br>42<br>391<br>233<br>86  | <10<br>20<br><10<br><10<br><10         | 134<br>3110<br>51<br>>10000<br>480   | >1500                     | 5.92                        | 4.71                        | 2490                       | 0.006<br>0.008<br>0.025<br>0.008             | 0.51                          |
| W425856<br>W425857<br>W425858<br>W425858<br>W425859<br>W425860 |                                   | <10<br><10<br><10<br><10<br><10<br><10 | 102<br>140<br>47<br>6<br>134   | <10<br><10<br><10<br>10<br>200         | 218<br>55<br>133<br>33<br>395        |                           |                             |                             |                            | <0.005<br><0.005<br>0.009<br><0.005<br>0.314 |                               |
| W425861<br>W425862<br>W425863<br>W425864<br>W425865            |                                   | <10<br><10<br><10<br><10<br><10        | 67<br>37<br>5<br>33<br>219     | 690<br><10<br><10<br><10<br><10        | 260<br>24<br>>10000<br>>10000<br>372 |                           |                             | 4.32<br>1.135               |                            | 3.31<br>0.020<br>0.177<br>0.024<br>0.005     |                               |
| W425866<br>W425867<br>W425868<br>W425869<br>W425870            |                                   | <10<br><10<br><10<br><10<br><10        | 30<br>103<br>166<br>143<br>272 | <10<br><10<br><10<br><10<br><10        | 69<br>38<br>49<br>60<br>36           |                           |                             |                             |                            | 0.356<br><0.005<br>0.009<br><0.005<br>0.011  |                               |
| W425871<br>W425872<br>W425873<br>W425874<br>W425875            |                                   | <10<br><10<br><10<br><10<br><10        | 107<br>7<br>24<br>32<br>25     | <10<br><10<br><10<br><10<br><10        | 112<br>12<br>59<br>96<br>76          |                           |                             |                             |                            | 0.006<br>0.006<br>0.151<br>0.017<br>0.033    |                               |
| W425876<br>W425877<br>W425878<br>W425901<br>W425902            |                                   | <10<br>10<br>10<br><10<br>10           | 81<br>218<br>49<br>95<br>27    | <10<br><10<br><10<br><10<br><10<br><10 | 110<br>123<br>97<br>74<br>32         |                           |                             |                             |                            | 0.085<br>0.015<br>0.085<br><0.005<br>0.854   |                               |
| W425903<br>W425904<br>W425905<br>W425906<br>W425907            |                                   | <10<br><10<br><10<br><10<br><10<br><10 | 22<br>37<br>23<br>44<br>48     | <10<br><10<br><10<br><10<br><10<br><10 | 55<br>59<br>45<br>78<br>118          |                           |                             |                             |                            | 0.016<br>7.19<br>7.36<br>2.75<br>0.014       |                               |
| W425908<br>W425909<br>W425910<br>W425911<br>W425912            |                                   | <10<br><10<br><10<br><10<br><10<br><10 | 10<br>43<br>19<br>141<br>155   | <10<br><10<br><10<br><10<br><10<br><10 | 56<br>91<br>53<br>72<br>80           |                           |                             |                             |                            | 0.023<br>0.106<br>0.016<br>0.064<br>0.025    |                               |



2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

### To: HULSTEIN, ROGER 106 WILSON DR. WHITEHORSE YT Y1A 5R2

Page: 3 - A Total # Pages: 3 (A - C) Plus Appendix Pages Finalized Date: 18-SEP-2021 Account: HULROG

Project: Goldorak

| Sample Description | Method  | WEI–21    | ME-ICP61 |
|--------------------|---------|-----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|                    | Analyte | Recvd Wt. | Ag       | AI       | As       | Ba       | Be       | Bi       | Ca       | Cd       | Co       | Cr       | Cu       | Fe       | Ga       | K        |
|                    | Units   | kg        | ppm      | %        | ppm      | ppm      | ppm      | ppm      | %        | ppm      | ppm      | ppm      | ppm      | %        | ppm      | %        |
|                    | LOD     | 0.02      | 0.5      | 0.01     | 5        | 10       | 0.5      | 2        | 0.01     | 0.5      | 1        | 1        | 1        | 0.01     | 10       | 0.01     |
| W425913            |         | 1.91      | 0.7      | 4.05     | 11       | 1860     | 1.1      | <2       | 14.85    | 0.5      | 7        | 42       | 287      | 2.08     | 10       | 0.83     |
| W425914            |         | 1.63      | <0.5     | 6.56     | 14       | 3050     | 1.7      | <2       | 7.50     | 0.6      | 13       | 46       | 47       | 3.32     | 20       | 2.43     |
| W425915            |         | 1.93      | <0.5     | 3.65     | <5       | 190      | <0.5     | <2       | 13.30    | 0.6      | 3        | 26       | 11       | 12.10    | 10       | 1.15     |
| W641880            |         | 1.45      | >100     | 1.30     | 98       | 280      | 0.5      | 59       | 4.59     | 43.1     | <1       | 25       | 2020     | 1.17     | <10      | 0.35     |
| W641881            |         | 1.06      | 2.2      | 2.16     | 25       | 230      | 0.6      | <2       | 0.28     | 0.5      | 4        | 58       | 72       | 3.52     | 10       | 0.27     |
| W641882            |         | 1.36      | 7.4      | 4.16     | 1440     | 1190     | 1.3      | 2        | 6.22     | 2.6      | 9        | 92       | 83       | 2.42     | 10       | 1.41     |
| W641883            |         | 1.45      | 2.6      | 5.21     | 109      | 2290     | 2.4      | <2       | 5.42     | 5.2      | 16       | 89       | 143      | 4.91     | 10       | 1.25     |
| W641884            |         | 1.08      | 1.7      | 5.44     | 247      | 380      | 1.2      | <2       | 2.71     | 0.5      | 12       | 72       | 69       | 4.05     | 20       | 0.64     |
| W641885            |         | 1.41      | 5.7      | 1.38     | 84       | 110      | 1.0      | 2        | 12.50    | 6.4      | 8        | 15       | 1680     | 7.13     | 10       | 0.09     |
| W641885            |         | 1.18      | 43.1     | 0.21     | 92       | 20       | <0.5     | 713      | 2.54     | 5.2      | <1       | 25       | 31       | 0.86     | <10      | 0.05     |
| W641887            |         | 1.49      | 0.9      | 3.74     | 145      | 1660     | 1.1      | <2       | 7.17     | 0.7      | 4        | 74       | 90       | 1.83     | 10       | 2.58     |
| W641888            |         | 1.86      | 1.3      | 7.65     | 12       | 780      | 2.0      | 3        | 1.01     | <0.5     | 20       | 54       | 134      | 4.01     | 20       | 4.02     |
| W641889            |         | 1.08      | 1.5      | 4.63     | 2890     | 40       | 3.7      | 3        | 9.23     | 7.7      | 7        | 61       | 289      | 2.66     | 20       | 0.05     |
| W641890            |         | 2.94      | 23.9     | 4.28     | >10000   | 180      | 7.6      | 47       | 9.25     | 392      | 3        | 15       | 5370     | 11.20    | 20       | 0.07     |
| W641891            |         | 1.31      | <0.5     | 0.45     | 383      | 70       | 0.5      | <2       | 0.03     | 2.0      | 3        | 33       | 66       | 2.14     | <10      | 0.18     |
| W641892            |         | 1.67      | 4.4      | 1.52     | 3180     | 40       | 1.2      | 215      | 2.35     | 1.0      | 12       | 29       | 1570     | 11.05    | 10       | 0.15     |
| W641893            |         | 1.31      | 1.8      | 2.53     | 14       | 50       | 1.5      | 16       | 5.52     | 2.5      | 7        | 37       | 1170     | 13.15    | 10       | 0.02     |
| W641894            |         | 2.09      | 20.7     | 5.21     | 7050     | 1190     | 1.4      | 49       | 0.45     | 22.3     | 18       | 39       | 629      | 13.35    | 30       | 4.53     |
| W641895            |         | 1.14      | 47.8     | 3.85     | >10000   | 520      | 2.1      | 51       | 4.36     | 33.5     | 8        | 33       | 4570     | 8.46     | 20       | 3.41     |
| W641895            |         | 1.56      | 0.5      | 8.30     | 45       | 1570     | 2.5      | <2       | 7.49     | 1.4      | 11       | 75       | 23       | 4.89     | 20       | 3.82     |
| W641897            |         | 1.77      | <0.5     | 2.14     | 4300     | 130      | 0.5      | 2        | 1.31     | 1.0      | 29       | 18       | 6        | 32.3     | 10       | 1.06     |
| W641898            |         | 1.97      | 6.1      | 2.56     | 43       | 200      | 0.6      | 2        | 1.23     | 232      | 3        | 28       | 155      | 20.1     | 30       | 0.92     |
| W641899            |         | 1.01      | 1.4      | 4.39     | >10000   | 460      | 0.8      | 2        | 3.61     | 0.6      | 42       | 44       | 53       | 8.14     | 10       | 2.06     |
| W641900            |         | 1.28      | >100     | 3.76     | 35       | 120      | 0.6      | 229      | 1.97     | 173.5    | 46       | 27       | 334      | 9.84     | 20       | 0.91     |
|                    |         |           |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
|                    |         |           |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
|                    |         |           |          |          |          |          |          |          |          |          |          |          |          |          |          |          |



2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

### To: HULSTEIN, ROGER 106 WILSON DR. WHITEHORSE YT Y1A 5R2

Page: 3 - B Total # Pages: 3 (A - C) Plus Appendix Pages Finalized Date: 18-SEP-2021 Account: HULROG

Project: Goldorak

| Sample Description                                  | Method  | ME-ICP61                    | ME-ICP61                             | ME-ICP61                          | ME-ICP61                 | ME-ICP61                             | ME-ICP61                   | ME-ICP61                         | ME-ICP61                     | ME-ICP61                             | ME-ICP61                    | ME-ICP61                 | ME-ICP61                      | ME-ICP61                        | ME-ICP61                             | ME-ICP61                               |
|-----------------------------------------------------|---------|-----------------------------|--------------------------------------|-----------------------------------|--------------------------|--------------------------------------|----------------------------|----------------------------------|------------------------------|--------------------------------------|-----------------------------|--------------------------|-------------------------------|---------------------------------|--------------------------------------|----------------------------------------|
|                                                     | Analyte | La                          | Mg                                   | Mn                                | Mo                       | Na                                   | Ni                         | P                                | Pb                           | S                                    | Sb                          | Sc                       | Sr                            | Th                              | Ti                                   | TI                                     |
|                                                     | Units   | ppm                         | %                                    | ppm                               | ppm                      | %                                    | ppm                        | ppm                              | ppm                          | %                                    | ppm                         | ppm                      | ppm                           | ppm                             | %                                    | ppm                                    |
|                                                     | LOD     | 10                          | 0.01                                 | 5                                 | 1                        | 0.01                                 | 1                          | 10                               | 2                            | 0.01                                 | 5                           | 1                        | 1                             | 20                              | 0.01                                 | 10                                     |
| W425913                                             |         | 30                          | 1.09                                 | 342                               | 2                        | 1.69                                 | 20                         | 390                              | 9                            | 0.08                                 | <5                          | 7                        | 311                           | <20                             | 0.18                                 | <10                                    |
| W425914                                             |         | 30                          | 2.77                                 | 806                               | 1                        | 0.05                                 | 25                         | 530                              | 7                            | 0.12                                 | 6                           | 9                        | 188                           | <20                             | 0.28                                 | <10                                    |
| W425915                                             |         | 20                          | 0.73                                 | 11850                             | <1                       | 0.01                                 | 12                         | 260                              | 6                            | 0.02                                 | <5                          | 7                        | 243                           | <20                             | 0.17                                 | <10                                    |
| W641880                                             |         | 10                          | 0.80                                 | 762                               | 2                        | 0.03                                 | 9                          | 880                              | 5580                         | 0.01                                 | 382                         | 2                        | 38                            | <20                             | 0.04                                 | <10                                    |
| W641881                                             |         | 10                          | 1.08                                 | 232                               | 1                        | 0.12                                 | 21                         | 770                              | 15                           | 1.10                                 | <5                          | 6                        | 48                            | <20                             | 0.07                                 | <10                                    |
| W641882<br>W641883<br>W641884<br>W641885<br>W641885 |         | 20<br>20<br>20<br>30<br><10 | 2.97<br>2.11<br>1.54<br>8.23<br>0.08 | 1290<br>1255<br>568<br>953<br>380 | 19<br>11<br>1<br>2<br>24 | 0.20<br>0.07<br>0.56<br>0.03<br>0.01 | 61<br>138<br>40<br>24<br>3 | 1310<br>1930<br>400<br>500<br>60 | 297<br>92<br>11<br>21<br>120 | 0.75<br>0.13<br>2.70<br>2.37<br>0.03 | 89<br>35<br>19<br><5<br>113 | 11<br>10<br>14<br>2<br>1 | 236<br>227<br>233<br>44<br>13 | <20<br><20<br><20<br><20<br><20 | 0.27<br>0.25<br>0.21<br>0.09<br>0.01 | <10<br><10<br><10<br><10<br><10<br><10 |
| W641887                                             |         | 40                          | 2.87                                 | 617                               | 5                        | 0.25                                 | 47                         | 1810                             | 15                           | 0.35                                 | <5                          | 10                       | 215                           | <20                             | 0.27                                 | <10                                    |
| W641888                                             |         | 20                          | 1.26                                 | 697                               | 1                        | 1.73                                 | 53                         | 500                              | 18                           | 1.45                                 | <5                          | 16                       | 240                           | <20                             | 0.29                                 | <10                                    |
| W641889                                             |         | 20                          | 2.58                                 | 2540                              | 1                        | 0.19                                 | 29                         | 690                              | 10                           | 0.30                                 | 26                          | 8                        | 403                           | <20                             | 0.37                                 | <10                                    |
| W641890                                             |         | 20                          | 0.70                                 | 8800                              | <1                       | 0.03                                 | 21                         | 1230                             | 9                            | 5.54                                 | 13                          | 12                       | 82                            | <20                             | 0.27                                 | <10                                    |
| W641891                                             |         | <10                         | 0.05                                 | 204                               | 4                        | 0.01                                 | 15                         | 40                               | 4                            | 0.03                                 | 11                          | 1                        | 3                             | <20                             | 0.01                                 | <10                                    |
| W641892                                             |         | 10                          | 0.34                                 | 1380                              | 4                        | 0.05                                 | 21                         | 450                              | 6                            | 5.02                                 | <5                          | 3                        | 53                            | <20                             | 0.10                                 | <10                                    |
| W641893                                             |         | 10                          | 0.38                                 | 4640                              | 2                        | 0.01                                 | 19                         | 330                              | 3                            | 5.54                                 | 6                           | 4                        | 97                            | <20                             | 0.12                                 | <10                                    |
| W641894                                             |         | 10                          | 5.74                                 | 1510                              | 40                       | 0.03                                 | 64                         | 370                              | 594                          | 1.82                                 | 404                         | 7                        | 24                            | <20                             | 0.23                                 | 10                                     |
| W641895                                             |         | 20                          | 6.91                                 | 2710                              | 16                       | 0.03                                 | 41                         | 630                              | 301                          | 2.51                                 | 14                          | 6                        | 27                            | <20                             | 0.23                                 | <10                                    |
| W641895                                             |         | 50                          | 1.76                                 | 1500                              | <1                       | 0.28                                 | 34                         | 1010                             | 27                           | 0.15                                 | 16                          | 12                       | 236                           | <20                             | 0.39                                 | <10                                    |
| W641897                                             |         | 10                          | 1.23                                 | 22800                             | <1                       | 0.05                                 | 22                         | 410                              | 11                           | 0.28                                 | 67                          | 4                        | 4                             | <20                             | 0.09                                 | <10                                    |
| W641898                                             |         | 20                          | 0.73                                 | 11600                             | <1                       | 0.07                                 | 21                         | 150                              | 562                          | 5.10                                 | 28                          | 4                        | 17                            | <20                             | 0.12                                 | <10                                    |
| W641899                                             |         | 30                          | 1.68                                 | 950                               | <1                       | 0.12                                 | 19                         | 220                              | 8                            | 2.05                                 | 45                          | 8                        | 187                           | <20                             | 0.19                                 | <10                                    |
| W641900                                             |         | 20                          | 2.00                                 | 15100                             | 6                        | 0.28                                 | 97                         | 5750                             | >10000                       | 6.37                                 | 558                         | 9                        | 118                           | <20                             | 0.16                                 | <10                                    |
|                                                     |         |                             |                                      |                                   |                          |                                      |                            |                                  |                              |                                      |                             |                          |                               |                                 |                                      |                                        |
|                                                     |         |                             |                                      |                                   |                          |                                      |                            |                                  |                              |                                      |                             |                          |                               |                                 |                                      |                                        |
|                                                     |         |                             |                                      |                                   |                          |                                      |                            |                                  |                              |                                      |                             |                          |                               |                                 |                                      |                                        |



2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

### To: HULSTEIN, ROGER 106 WILSON DR. WHITEHORSE YT Y1A 5R2

Page: 3 - C Total # Pages: 3 (A - C) Plus Appendix Pages Finalized Date: 18-SEP-2021 Account: HULROG

Project: Goldorak

| (ALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ,                                 |                            |                           |                            |                            |                           |                             |                             | C                          | ERTIFIC                       | CATE OF A                     | NALYSIS | WH211829 | 1 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------------|---------------------------|----------------------------|----------------------------|---------------------------|-----------------------------|-----------------------------|----------------------------|-------------------------------|-------------------------------|---------|----------|---|
| Sample Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Method<br>Analyte<br>Units<br>LOD | ME-ICP61<br>U<br>ppm<br>10 | ME-ICP61<br>V<br>ppm<br>1 | ME-ICP61<br>W<br>ppm<br>10 | ME-ICP61<br>Zn<br>ppm<br>2 | Ag-OG62<br>Ag<br>ppm<br>1 | Pb-OG62<br>Pb<br>%<br>0.001 | Zn-OG62<br>Zn<br>%<br>0.001 | Ag-GRA21<br>Ag<br>ppm<br>5 | Au-AA24<br>Au<br>ppm<br>0.005 | Au-GRA22<br>Au<br>ppm<br>0.05 |         |          |   |
| Sample Description           W425913           W425914           W425915           W641880           W641881           W641882           W641883           W641884           W641885           W641887           W641889           W641889           W641891           W641892           W641893           W641894           W641893           W641894           W641895           W641896           W641897           W641897           W641897           W641897           W641897           W641897           W641897           W641897           W641899           W641899 | Units                             | ppm                        | ppm                       | ppm                        | ppm                        | ppm                       | %                           | %                           | ppm                        | ppm                           | ppm                           |         |          |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                            |                           |                            |                            |                           |                             |                             |                            |                               |                               |         |          |   |



ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

### To: HULSTEIN, ROGER 106 WILSON DR. WHITEHORSE YT Y1A 5R2

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 18-SEP-2021 Account: HULROG

Project: Goldorak

|                    |                                                           | CERTIFICATE COM                                             | IMENTS                                           |                     |
|--------------------|-----------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------|---------------------|
|                    |                                                           | LABOR                                                       | ATORY ADDRESSES                                  |                     |
| Applies to Method: | Processed at ALS Whiteho<br>BAG-01<br>OA-HSUL10<br>WEI-21 | rse located at 78 Mt. Sima Rd, Whiteh<br>CRU-32<br>PUL-32a  | orse, YT, Canada.<br>CRU-QC<br>PUL-QC            | LOG-21<br>SPL-21    |
| Applies to Method: | Processed at ALS Vancouv<br>Ag-GRA21<br>ME-ICP61          | ver located at 2103 Dollarton Hwy, No<br>Ag-OG62<br>ME-OG62 | rth Vancouver, BC, Canada.<br>Au-AA24<br>Pb-OG62 | Au–GRA22<br>Zn–OG62 |
|                    |                                                           |                                                             |                                                  |                     |
|                    |                                                           |                                                             |                                                  |                     |
|                    |                                                           |                                                             |                                                  |                     |
|                    |                                                           |                                                             |                                                  |                     |
|                    |                                                           |                                                             |                                                  |                     |
|                    |                                                           |                                                             |                                                  |                     |



ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

#### To: HULSTEIN, ROGER 106 WILSON DR. WHITEHORSE YT Y1A 5R2

Page: 1 Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 29-AUG-2021 This copy reported on 30-AUG-2021 Account: HULROG

# CERTIFICATE WH21182905

Project: Goldorak

This report is for 51 samples of Soil submitted to our lab in Whitehorse, YT, Canada on 15-JUL-2021.

The following have access to data associated with this certificate:

JEROME DE PASQUALE

ROGER HULSTEIN

|           | SAMPLE PREPARATION               |            |
|-----------|----------------------------------|------------|
| ALS CODE  | DESCRIPTION                      |            |
| WEI-21    | Received Sample Weight           |            |
| LOG-21    | Sample logging – ClientBarCode   |            |
| SCR-41    | Screen to -180um and save both   |            |
|           | ANALYTICAL PROCEDURES            |            |
| ALS CODE  | DESCRIPTION                      | INSTRUMENT |
| AuME-TL44 | 50g Trace Au + Multi Element PKG |            |

This is the Final Report and supersedes any preliminary report with this certificate number.Results apply to samples as submitted.All pages of this report have been checked and approved for release. \*\*\*\*\* See Appendix Page for comments regarding this certificate \*\*\*\*\*

Saa Traxler, General Manager, North Vancouver



2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

### To: HULSTEIN, ROGER 106 WILSON DR. WHITEHORSE YT Y1A 5R2

Page: 2 - A Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 29-AUG-2021 Account: HULROG

Project: Goldorak

| Sample Description | Method  | WEI-21    | AuME-TL44 |
|--------------------|---------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
|                    | Analyte | Recvd Wt. | Au        | Ag        | Al        | As        | B         | Ba        | Be        | Bi        | Ca        | Cd        | Ce        | Co        | Cr        | Cs        |
|                    | Units   | kg        | ppm       | ppm       | %         | ppm       | ppm       | ppm       | ppm       | ppm       | %         | ppm       | ppm       | ppm       | ppm       | ppm       |
|                    | LOD     | 0.02      | 0.001     | 0.01      | 0.01      | 0.1       | 10        | 10        | 0.05      | 0.01      | 0.01      | 0.01      | 0.02      | 0.1       | 1         | 0.05      |
| M896001            |         | 0.16      | 0.005     | 2.76      | 0.24      | 258       | <10       | 20        | 0.07      | 2.07      | 0.03      | 0.12      | 2.12      | 1.0       | 9         | 1.56      |
| M896002            |         | 0.20      | 0.001     | 0.94      | 0.20      | 303       | <10       | 20        | 0.10      | 0.34      | 0.04      | <0.01     | 3.86      | 0.9       | 8         | 0.56      |
| M896003            |         | 0.43      | NSS       |
| M896004            |         | 0.26      | NSS       |
| M896005            |         | 0.41      | NSS       |
| M896006            |         | 0.33      | 0.011     | 3.55      | 1.60      | 1770      | <10       | 160       | 0.98      | 9.42      | 0.58      | 12.10     | 14.55     | 19.4      | 20        | 4.80      |
| M896007            |         | 0.41      | 0.006     | 6.32      | 2.50      | 1390      | <10       | 80        | 1.16      | 6.77      | 0.88      | 53.5      | 14.70     | 20.1      | 28        | 6.73      |
| M896008            |         | 0.41      | NSS       |
| M896009            |         | 0.46      | 0.003     | 1.71      | 0.95      | 2420      | <10       | 60        | 0.26      | 0.97      | 0.05      | 2.11      | 8.74      | 11.3      | 19        | 5.16      |
| M896010            |         | 0.47      | 0.011     | 2.97      | 1.08      | 3060      | 10        | 130       | 0.99      | 10.05     | 0.68      | 50.7      | 19.65     | 26.0      | 28        | 5.56      |
| M896011            |         | 0.32      | NSS       |
| M896012            |         | 0.40      | 0.009     | 2.71      | 2.43      | 7460      | <10       | 170       | 1.72      | 7.83      | 0.70      | 8.22      | 15.40     | 18.3      | 17        | 5.95      |
| M896013            |         | 0.49      | 0.021     | 29.6      | 0.31      | >10000    | <10       | 50        | 0.85      | 75.3      | 0.07      | 21.4      | 17.10     | 4.1       | 8         | 3.11      |
| M896014            |         | 0.25      | 0.012     | 0.93      | 1.54      | 312       | <10       | 170       | 0.59      | 6.19      | 0.16      | 1.23      | 23.5      | 8.4       | 26        | 2.13      |
| M896015            |         | 0.35      | 0.026     | 0.93      | 1.40      | 313       | <10       | 200       | 1.17      | 10.10     | 0.46      | 9.17      | 25.1      | 15.9      | 22        | 3.22      |
| M896016            |         | 0.38      | 0.010     | 0.66      | 1.45      | 269       | <10       | 180       | 1.08      | 12.90     | 0.46      | 6.17      | 24.8      | 14.3      | 22        | 2.50      |
| M896017            |         | 0.19      | 0.031     | 0.64      | 1.07      | 158.0     | <10       | 190       | 0.84      | 12.35     | 0.42      | 6.37      | 23.5      | 13.8      | 20        | 2.15      |
| M896018            |         | 0.27      | 0.005     | 0.48      | 1.08      | 239       | <10       | 190       | 0.68      | 2.05      | 0.30      | 4.37      | 26.2      | 9.8       | 23        | 3.38      |
| M896019            |         | 0.41      | 0.007     | 0.86      | 1.18      | 220       | <10       | 150       | 0.41      | 3.48      | 0.17      | 0.77      | 16.70     | 6.6       | 21        | 2.53      |
| M896020            |         | 0.41      | 0.002     | 0.20      | 3.46      | 19.5      | <10       | 400       | 1.36      | 0.25      | 4.38      | 0.37      | 19.70     | 15.8      | 44        | 24.6      |
| M896021            |         | 0.32      | 0.005     | 1.18      | 1.48      | 101.0     | <10       | 200       | 0.68      | 3.29      | 0.35      | 3.57      | 14.35     | 7.7       | 24        | 3.80      |
| M896022            |         | 0.37      | NSS       |
| M896023            |         | 0.43      | 0.025     | 1.50      | 1.12      | 45.3      | <10       | 100       | 0.57      | 0.46      | 0.08      | 0.22      | 27.4      | 10.8      | 29        | 1.81      |
| M896024            |         | 0.52      | 0.004     | 0.29      | 0.91      | 54.1      | <10       | 150       | 0.48      | 0.16      | 0.09      | 0.30      | 26.3      | 8.9       | 15        | 1.45      |
| M896025            |         | 0.42      | 0.003     | 0.25      | 1.40      | 151.5     | <10       | 220       | 0.46      | 0.26      | 0.02      | 0.43      | 22.3      | 5.3       | 19        | 2.52      |
| M896026            |         | 0.50      | 0.006     | 1.30      | 0.66      | 758       | <10       | 200       | 0.43      | 12.35     | 0.30      | 0.66      | 24.1      | 4.9       | 18        | 1.54      |
| M896027            |         | 0.46      | 0.006     | 0.56      | 0.51      | 49.1      | <10       | 640       | 0.35      | 0.18      | 0.06      | 0.24      | 31.8      | 6.3       | 11        | 1.97      |
| M896028            |         | 0.39      | 0.002     | 1.42      | 0.74      | 30.5      | <10       | 470       | 0.84      | 0.27      | 0.05      | 0.20      | 165.5     | 7.6       | 19        | 2.34      |
| M896029            |         | 0.47      | 0.007     | 0.44      | 1.07      | 67.1      | <10       | 330       | 0.68      | 0.19      | 0.50      | 0.59      | 41.3      | 17.4      | 20        | 3.32      |
| M896030            |         | 0.33      | 0.089     | 0.39      | 2.52      | 1435      | <10       | 120       | 0.66      | 1.52      | 0.19      | 0.42      | 31.9      | 19.3      | 22        | 3.50      |
| M896031            |         | 0.28      | 0.003     | 1.17      | 2.98      | 23.7      | <10       | 350       | 1.95      | 0.33      | 0.88      | 0.46      | 62.5      | 20.6      | 26        | 9.32      |
| M896032            |         | 0.51      | 0.002     | 0.03      | 3.51      | 16.9      | <10       | 380       | 1.07      | 0.08      | 0.14      | 0.14      | 33.9      | 14.2      | 40        | 20.3      |
| M896033            |         | 0.42      | 0.138     | 0.43      | 3.69      | 13.2      | <10       | 370       | 0.60      | 0.13      | 0.68      | 0.23      | 31.1      | 16.0      | 34        | 35.5      |
| M896034            |         | 0.25      | 0.001     | 0.03      | 1.51      | 10.0      | <10       | 120       | 0.39      | 0.16      | 0.05      | 0.09      | 27.6      | 4.9       | 17        | 2.40      |
| M896035            |         | 0.35      | 0.001     | 0.30      | 1.40      | 11.5      | <10       | 140       | 0.79      | 0.18      | 0.21      | 0.85      | 37.7      | 10.4      | 20        | 3.43      |
| M896036            |         | 0.28      | 0.004     | 0.13      | 1.57      | 12.6      | <10       | 630       | 1.34      | 0.13      | 0.16      | 1.27      | 88.9      | 15.2      | 25        | 2.29      |
| M896037            |         | 0.44      | 0.002     | 0.02      | 1.47      | 11.8      | <10       | 150       | 0.64      | 0.18      | 0.10      | 0.18      | 37.5      | 13.3      | 22        | 3.76      |
| M896038            |         | 0.50      | 0.003     | 0.07      | 1.38      | 24.7      | <10       | 220       | 0.86      | 0.24      | 0.06      | 0.19      | 34.4      | 19.0      | 18        | 3.03      |
| M895628            |         | 0.15      | NSS       |
| M895629            |         | 0.33      | 0.010     | 0.52      | 2.44      | 175.5     | <10       | 110       | 1.00      | 0.27      | 3.46      | 0.32      | 17.40     | 52.6      | 37        | 4.05      |



2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

#### To: HULSTEIN, ROGER 106 WILSON DR. WHITEHORSE YT Y1A 5R2

Page: 2 - B Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 29-AUG-2021 Account: HULROG

Project: Goldorak

| Sample Description | Method<br>Analyte<br>Units<br>LOD | AuME-TL44<br>Cu<br>ppm<br>0.2 | AuME-TL44<br>Fe<br>%<br>0.01 | AuME-TL44<br>Ga<br>ppm<br>0.05 | AuME-TL44<br>Ge<br>ppm<br>0.05 | AuME-TL44<br>Hf<br>ppm<br>0.02 | AuME-TL44<br>Hg<br>ppm<br>0.01 | AuME-TL44<br>In<br>ppm<br>0.005 | AuME-TL44<br>K<br>%<br>0.01 | AuME-TL44<br>La<br>ppm<br>0.2 | AuME-TL44<br>Li<br>ppm<br>0.1 | AuME-TL44<br>Mg<br>%<br>0.01 | AuME-TL44<br>Mn<br>ppm<br>5 | AuME-TL44<br>Mo<br>ppm<br>0.05 | AuME-TL44<br>Na<br>%<br>0.01 | AuME-TL44<br>Nb<br>ppm<br>0.05 |
|--------------------|-----------------------------------|-------------------------------|------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|---------------------------------|-----------------------------|-------------------------------|-------------------------------|------------------------------|-----------------------------|--------------------------------|------------------------------|--------------------------------|
| M896001            |                                   | 108.5                         | 33.0<br>40.4                 | 2.13                           | 0.18                           | 0.06                           | 0.08<br>0.02                   | 0.087                           | 0.07<br>0.02                | 1.2<br>1.4                    | 3.0                           | 0.07<br>0.05                 | 36                          | 2.83                           | 0.02<br><0.01                | 0.33                           |
| M896002            |                                   | 82.0<br>NSS                   | 40.4<br>NSS                  | 1.93<br>NSS                    | 0.24<br>NSS                    | 0.05<br>NSS                    | 0.02<br>NSS                    | 0.110<br>NSS                    | 0.02<br>NSS                 | 1.4<br>NSS                    | 2.1<br>NSS                    | 0.05<br>NSS                  | 18<br>NSS                   | 32.3<br>NSS                    | <0.01<br>NSS                 | 0.22<br>NSS                    |
| M896003            |                                   | NSS                           | NSS                          | NSS                            | NSS                            | NSS                            | NSS                            | NSS                             | NSS                         | NSS                           | NSS                           | NSS                          | NSS                         | NSS                            | NSS                          | NSS                            |
| M896004<br>M896005 |                                   | NSS                           | NSS                          | NSS                            | NSS                            | NSS                            | NSS                            | NSS                             | NSS                         | NSS                           | NSS                           | NSS                          | NSS                         | NSS                            | NSS                          | NSS                            |
| M896006            |                                   | 311                           | 4.37                         | 4.79                           | 0.10                           | 0.07                           | 0.08                           | 0.585                           | 0.06                        | 7.1                           | 18.6                          | 0.47                         | 670                         | 12.30                          | <0.01                        | 0.30                           |
| M896007            |                                   | 687                           | 4.61                         | 11.15                          | 0.15                           | 0.07                           | 0.02                           | 0.190                           | 0.21                        | 9.2                           | 100.5                         | 1.85                         | 414                         | 73.4                           | 0.03                         | 0.20                           |
| M896008            |                                   | NSS                           | NSS                          | NSS                            | NSS                            | NSS                            | NSS                            | NSS                             | NSS                         | NSS                           | NSS                           | NSS                          | NSS                         | NSS                            | NSS                          | NSS                            |
| M896009            |                                   | 190.5                         | 6.66                         | 2.86                           | 0.11                           | 0.06                           | 0.08                           | 0.246                           | 0.07                        | 4.1                           | 19.0                          | 0.26                         | 533                         | 19.60                          | 0.07                         | 0.21                           |
| M896010            |                                   | 401                           | 5.58                         | 3.52                           | 0.15                           | 0.05                           | 0.03                           | 0.563                           | 0.07                        | 10.3                          | 29.7                          | 0.42                         | 938                         | 22.0                           | <0.01                        | 0.21                           |
| M896011            |                                   | NSS                           | NSS                          | NSS                            | NSS                            | NSS                            | NSS                            | NSS                             | NSS                         | NSS                           | NSS                           | NSS                          | NSS                         | NSS                            | NSS                          | NSS                            |
| M896012            |                                   | 202                           | 5.38                         | 5.71                           | 0.09                           | 0.09                           | 0.07                           | 0.140                           | 0.05                        | 7.3                           | 20.9                          | 0.28                         | 751                         | 1.79                           | <0.01                        | 0.30                           |
| M896013            |                                   | 510                           | 7.53                         | 1.35                           | 0.21                           | 0.02                           | <0.01                          | 0.608                           | 0.05                        | 9.2                           | 3.1                           | 0.05                         | 219                         | 6.77                           | <0.01                        | 0.06                           |
| M896014            |                                   | 59.4                          | 2.97                         | 5.43                           | 0.05                           | <0.02                          | 0.08                           | 0.060                           | 0.05                        | 11.0                          | 14.8                          | 0.36                         | 447                         | 3.09                           | <0.01                        | 0.67                           |
| M896015            |                                   | 126.5                         | 2.20                         | 4.30                           | 0.06                           | 0.02                           | <0.01                          | 0.080                           | 0.05                        | 11.8                          | 20.1                          | 0.39                         | 1060                        | 9.99                           | 0.01                         | 0.32                           |
| M896016            |                                   | 135.0                         | 2.27                         | 4.16                           | 0.07                           | 0.02                           | <0.01                          | 0.075                           | 0.05                        | 11.6                          | 20.9                          | 0.36                         | 938                         | 9.69                           | 0.01                         | 0.28                           |
| M896017            |                                   | 105.5                         | 2.01                         | 3.49                           | 0.07                           | 0.03                           | 0.02                           | 0.055                           | 0.05                        | 11.4                          | 14.3                          | 0.34                         | 829                         | 3.54                           | 0.01                         | 0.32                           |
| M896018            |                                   | 62.6                          | 2.42                         | 3.46                           | 0.07                           | <0.02                          | 0.04                           | 0.047                           | 0.05                        | 12.8                          | 14.1                          | 0.33                         | 563                         | 3.38                           | <0.01                        | 0.27                           |
| M896019            |                                   | 55.5                          | 4.86                         | 4.03                           | 0.06                           | 0.02                           | 0.09                           | 0.044                           | 0.05                        | 8.1                           | 13.1                          | 0.34                         | 310                         | 4.03                           | 0.01                         | 0.50                           |
| M896020            |                                   | 39.6                          | 3.07                         | 11.10                          | 0.08                           | 0.14                           | 0.05                           | 0.037                           | 0.83                        | 9.9                           | 33.4                          | 1.70                         | 410                         | 2.34                           | 0.11                         | 0.45                           |
| M896021            |                                   | 61.6                          | 1.92                         | 5.27                           | <0.05                          | 0.03                           | 0.05                           | 0.067                           | 0.06                        | 6.9                           | 14.7                          | 0.39                         | 301                         | 4.87                           | 0.01                         | 0.58                           |
| M896022            |                                   | NSS                           | NSS                          | NSS                            | NSS                            | NSS                            | NSS                            | NSS                             | NSS                         | NSS                           | NSS                           | NSS                          | NSS                         | NSS                            | NSS                          | NSS                            |
| M896023            |                                   | 25.9                          | 2.78                         | 4.30                           | 0.06                           | 0.04                           | 0.04                           | 0.232                           | 0.05                        | 13.9                          | 10.2                          | 0.30                         | 362                         | 2.87                           | < 0.01                       | 0.51                           |
| M896024            |                                   | 28.7<br>37.6                  | 2.08                         | 2.14<br>3.58                   | 0.05                           | 0.05<br>0.07                   | 0.04<br>0.02                   | 0.033<br>0.070                  | 0.04<br>0.04                | 12.7<br>11.3                  | 10.8<br>24.5                  | 0.21<br>0.24                 | 482<br>250                  | 2.45                           | < 0.01                       | 0.29<br>0.34                   |
| M896025            |                                   |                               | 3.34                         |                                | 0.05                           |                                |                                |                                 |                             |                               |                               |                              |                             | 4.84                           | <0.01                        |                                |
| M896026            |                                   | 188.0                         | 18.80                        | 1.87                           | 0.17                           | 0.03                           | 0.12                           | 0.284                           | 0.03                        | 13.4                          | 7.9                           | 0.14                         | 853                         | 4.27                           | < 0.01                       | 0.38                           |
| M896027            |                                   | 35.6                          | 1.79                         | 1.56                           | 0.06                           | <0.02                          | 0.04                           | 0.025                           | 0.07                        | 16.2                          | 8.2                           | 0.14                         | 330                         | 4.21                           | < 0.01                       | 0.12                           |
| M896028            |                                   | 172.5                         | 10.55                        | 4.33                           | 0.31                           | 0.02<br>0.05                   | 0.01<br>0.09                   | 0.042                           | 0.16<br>0.07                | 105.5<br>21.4                 | 3.1<br>23.8                   | 0.07<br>0.70                 | 200<br>667                  | 5.42<br>2.39                   | <0.01<br><0.01               | 0.19                           |
| M896029<br>M896030 |                                   | 57.2<br>63.7                  | 3.38<br>6.76                 | 3.17<br>7.24                   | 0.08<br>0.08                   | 0.05                           | 0.09                           | 0.036<br>0.064                  | 0.07                        | 21.4<br>15.0                  | 23.8<br>30.2                  | 0.70                         | 506                         | 2.39                           | <0.01<br><0.01               | 0.08<br>0.57                   |
| M896031            |                                   | 39.6                          | 6.07                         | 3.37                           | 0.11                           | 0.12                           | 0.09                           | 0.070                           | 0.04                        | 26.6                          | 30.0                          | 0.51                         | 674                         | 7.11                           | <0.01                        | 0.60                           |
| M896032            |                                   | 7.2                           | 7.90                         | 9.65                           | 0.10                           | 0.10                           | 0.02                           | 0.102                           | 0.89                        | 14.3                          | 66.4                          | 0.64                         | 4490                        | 0.97                           | < 0.01                       | 1.19                           |
| M896033            |                                   | 56.0                          | 18.20                        | 12.05                          | 0.25                           | 0.11                           | 0.06                           | 0.702                           | 1.02                        | 13.2                          | 62.6                          | 0.68                         | 21400                       | 0.37                           | <0.01                        | 0.53                           |
| M896034            |                                   | 12.3                          | 2.41                         | 5.05                           | 0.05                           | 0.06                           | 0.01                           | 0.024                           | 0.03                        | 13.6                          | 30.6                          | 0.31                         | 148                         | 1.92                           | <0.01                        | 0.38                           |
| M896035            |                                   | 24.3                          | 3.17                         | 3.34                           | 0.07                           | 0.06                           | 0.05                           | 0.032                           | 0.03                        | 18.0                          | 15.0                          | 0.38                         | 340                         | 2.36                           | <0.01                        | 0.48                           |
| M896036            |                                   | 55.3                          | 17.30                        | 3.32                           | 0.33                           | 0.21                           | 0.15                           | 0.388                           | 0.03                        | 34.9                          | 9.3                           | 0.32                         | 10500                       | 1.05                           | <0.01                        | 0.24                           |
| M896037            |                                   | 21.5                          | 2.64                         | 3.88                           | 0.06                           | 0.04                           | 0.03                           | 0.025                           | 0.05                        | 18.3                          | 20.2                          | 0.63                         | 537                         | 1.11                           | <0.01                        | 0.43                           |
| M896038            |                                   | 54.0                          | 3.92                         | 3.30                           | 0.11                           | 0.06                           | 0.03                           | 0.033                           | 0.06                        | 16.1                          | 32.6                          | 0.47                         | 598                         | 2.98                           | 0.02                         | 0.24                           |
| M895628            |                                   | NSS                           | NSS                          | NSS                            | NSS                            | NSS                            | NSS                            | NSS                             | NSS                         | NSS                           | NSS                           | NSS                          | NSS                         | NSS                            | NSS                          | NSS                            |
| M895629            |                                   | 74.0                          | 3.10                         | 7.37                           | 0.11                           | 0.16                           | 0.05                           | 0.049                           | 0.23                        | 10.2                          | 36.6                          | 0.93                         | 734                         | 3.47                           | 0.10                         | 1.26                           |



ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

### To: HULSTEIN, ROGER 106 WILSON DR. WHITEHORSE YT Y1A 5R2

Page: 2 - C Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 29-AUG-2021 Account: HULROG

Project: Goldorak

| Sample Description | Method<br>Analyte<br>Units<br>LOD | AuME-TL44<br>Ni<br>ppm<br>0.2 | AuME-TL44<br>P<br>ppm<br>10 | AuME-TL44<br>Pb<br>ppm<br>0.2 | AuME-TL44<br>Rb<br>ppm<br>0.1 | AuME-TL44<br>Re<br>ppm<br>0.001 | AuME-TL44<br>S<br>%<br>0.01 | AuME-TL44<br>Sb<br>ppm<br>0.05 | AuME-TL44<br>Sc<br>ppm<br>0.1 | AuME-TL44<br>Se<br>ppm<br>0.2 | AuME-TL44<br>Sn<br>ppm<br>0.2 | AuME-TL44<br>Sr<br>ppm<br>0.2 | AuME-TL44<br>Ta<br>ppm<br>0.01 | AuME-TL44<br>Te<br>ppm<br>0.01 | AuME-TL44<br>Th<br>ppm<br>0.2 | AuME-TL44<br>Ti<br>%<br>0.005 |
|--------------------|-----------------------------------|-------------------------------|-----------------------------|-------------------------------|-------------------------------|---------------------------------|-----------------------------|--------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|--------------------------------|--------------------------------|-------------------------------|-------------------------------|
| M896001            |                                   | 7.8                           | 940                         | 18.9                          | 3.3                           | 0.008                           | 2.86                        | 5.65                           | 1.1                           | 6.2                           | 0.8                           | 6.7                           | <0.01                          | 0.20                           | 3.4                           | 0.012                         |
| M896002            |                                   | 5.2                           | 490                         | 2.9                           | 1.9                           | 0.002                           | 3.95                        | 10.25                          | 1.0                           | 5.0                           | 0.2                           | 4.2                           | <0.01                          | 0.05                           | 3.5                           | 0.006                         |
| M896003            |                                   | NSS                           | NSS                         | NSS                           | NSS                           | NSS                             | NSS                         | NSS                            | NSS                           | NSS                           | NSS                           | NSS                           | NSS                            | NSS                            | NSS                           | NSS                           |
| M896004            |                                   | NSS                           | NSS                         | NSS                           | NSS                           | NSS                             | NSS                         | NSS                            | NSS                           | NSS                           | NSS                           | NSS                           | NSS                            | NSS                            | NSS                           | NSS                           |
| M896005            |                                   | NSS                           | NSS                         | NSS                           | NSS                           | NSS                             | NSS                         | NSS                            | NSS                           | NSS                           | NSS                           | NSS                           | NSS                            | NSS                            | NSS                           | NSS                           |
| M896006            |                                   | 61.4                          | 1200                        | 97.7                          | 7.4                           | 0.004                           | 0.08                        | 21.4                           | 2.7                           | 12.1                          | 14.5                          | 100.0                         | <0.01                          | 0.48                           | 2.9                           | 0.011                         |
| M896007            |                                   | 227                           | 1160                        | 95.1                          | 18.8                          | 0.012                           | 0.07                        | 11.45                          | 3.4                           | 9.8                           | 40.1                          | 104.0                         | <0.01                          | 0.30                           | 4.7                           | 0.018                         |
| M896008            |                                   | NSS                           | NSS                         | NSS                           | NSS                           | NSS                             | NSS                         | NSS                            | NSS                           | NSS                           | NSS                           | NSS                           | NSS                            | NSS                            | NSS                           | NSS                           |
| M896009            |                                   | 35.3                          | 1330                        | 47.8                          | 9.1                           | 0.002                           | 0.26                        | 23.9                           | 1.8                           | 21.0                          | 1.9                           | 9.4                           | <0.01                          | 0.19                           | 1.3                           | 0.014                         |
| M896010            |                                   | 122.5                         | 1150                        | 59.2                          | 9.8                           | 0.006                           | 0.08                        | 38.1                           | 3.2                           | 11.2                          | 14.1                          | 47.8                          | <0.01                          | 0.34                           | 2.0                           | 0.014                         |
| M896011            |                                   | NSS                           | NSS                         | NSS                           | NSS                           | NSS                             | NSS                         | NSS                            | NSS                           | NSS                           | NSS                           | NSS                           | NSS                            | NSS                            | NSS                           | NSS                           |
| M896012            |                                   | 70.2                          | 940                         | 60.9                          | 5.0                           | <0.001                          | 0.11                        | 7.37                           | 2.7                           | 7.0                           | 7.5                           | 306                           | <0.01                          | 0.67                           | 5.3                           | 0.009                         |
| M896013            |                                   | 35.4                          | 860                         | 266                           | 5.4                           | 0.005                           | 0.15                        | 146.0                          | 2.2                           | 55.1                          | 91.5                          | 14.6                          | <0.01                          | 1.73                           | 3.1                           | <0.005                        |
| M896014            |                                   | 23.5                          | 740                         | 50.0                          | 9.9                           | <0.001                          | 0.04                        | 19.80                          | 2.1                           | 1.8                           | 1.5                           | 15.8                          | <0.01                          | 0.23                           | 0.8                           | 0.029                         |
| M896015            |                                   | 68.7                          | 990                         | 33.2                          | 8.4                           | 0.005                           | 0.02                        | 9.01                           | 3.1                           | 1.6                           | 1.9                           | 35.4                          | <0.01                          | 0.38                           | 2.4                           | 0.025                         |
| M896016            |                                   | 64.4                          | 1050                        | 33.0                          | 6.9                           | 0.006                           | 0.02                        | 8.21                           | 2.8                           | 1.8                           | 1.9                           | 31.8                          | <0.01                          | 0.54                           | 2.6                           | 0.021                         |
| M896017            |                                   | 51.4                          | 1080                        | 24.4                          | 6.5                           | 0.001                           | 0.01                        | 5.00                           | 3.0                           | 1.2                           | 1.3                           | 28.8                          | <0.01                          | 0.50                           | 3.0                           | 0.029                         |
| M896018            |                                   | 40.2                          | 1020                        | 14.3                          | 7.0                           | 0.001                           | 0.02                        | 5.77                           | 2.7                           | 1.5                           | 1.0                           | 22.1                          | <0.01                          | 0.11                           | 1.6                           | 0.027                         |
| M896019            |                                   | 22.6                          | 960                         | 20.7                          | 7.6                           | 0.001                           | 0.23                        | 9.74                           | 2.1                           | 1.8                           | 1.2                           | 20.0                          | <0.01                          | 0.16                           | 1.1                           | 0.027                         |
| M896020            |                                   | 37.4                          | 480                         | 25.8                          | 64.4                          | <0.001                          | 0.01                        | 6.94                           | 7.7                           | 0.4                           | 1.0                           | 475                           | <0.01                          | 0.03                           | 8.0                           | 0.107                         |
| M896021            |                                   | 46.1                          | 810                         | 19.0                          | 6.8                           | 0.002                           | 0.05                        | 2.55                           | 1.8                           | 2.4                           | 1.6                           | 53.7                          | <0.01                          | 0.13                           | 0.7                           | 0.017                         |
| M896022            |                                   | NSS                           | NSS                         | NSS                           | NSS                           | NSS                             | NSS                         | NSS                            | NSS                           | NSS                           | NSS                           | NSS                           | NSS                            | NSS                            | NSS                           | NSS                           |
| M896023            |                                   | 30.2                          | 630                         | 166.0                         | 7.9                           | 0.001                           | 0.03                        | 9.18                           | 3.0                           | 3.6                           | 2.2                           | 13.1                          | <0.01                          | 0.14                           | 6.1                           | 0.023                         |
| M896024            |                                   | 27.3                          | 650                         | 23.2                          | 5.7                           | 0.001                           | 0.02                        | 6.84                           | 2.0                           | 1.6                           | 0.3                           | 20.1                          | < 0.01                         | 0.06                           | 3.0                           | 0.011                         |
| M896025            |                                   | 22.4                          | 320                         | 21.7                          | 8.6                           | <0.001                          | 0.02                        | 5.52                           | 2.4                           | 1.7                           | 0.4                           | 14.9                          | <0.01                          | 0.10                           | 2.7                           | 0.005                         |
| M896026            |                                   | 33.6                          | 1150                        | 36.4                          | 5.5                           | <0.001                          | 0.06                        | 14.70                          | 5.3                           | 3.9                           | 0.8                           | 14.9                          | 0.01                           | 0.13                           | 3.0                           | 0.013                         |
| M896027            |                                   | 23.1                          | 500                         | 15.8                          | 6.0                           | 0.001                           | 0.06                        | 6.97                           | 1.7                           | 1.6                           | 0.2                           | 27.0                          | <0.01                          | 0.08                           | 2.7                           | 0.007                         |
| M896028            |                                   | 53.7                          | 2730                        | 22.5                          | 12.3                          | 0.001                           | 0.35                        | 6.75                           | 1.2                           | 21.1                          | 0.4                           | 140.5                         | < 0.01                         | 0.10                           | 1.3                           | 0.014                         |
| M896029            |                                   | 49.4                          | 890                         | 24.7                          | 8.3                           | 0.001                           | <0.01                       | 11.15                          | 4.8                           | 0.8                           | 0.2                           | 32.2                          | < 0.01                         | 0.06                           | 6.9                           | 0.013                         |
| M896030            |                                   | 16.8                          | 400                         | 19.5                          | 7.9                           | <0.001                          | 0.02                        | 21.3                           | 3.3                           | 1.1                           | 0.5                           | 12.7                          | <0.01                          | 0.08                           | 5.3                           | 0.007                         |
| M896031            |                                   | 55.9                          | 1220                        | 25.5                          | 8.8                           | < 0.001                         | 0.03                        | 20.6                           | 4.5                           | 1.2                           | 0.3                           | 61.6                          | < 0.01                         | 0.06                           | 3.4                           | 0.009                         |
| M896032            |                                   | 23.7                          | 360                         | 5.3                           | 95.2                          | < 0.001                         | < 0.01                      | 1.70                           | 6.8                           | 0.3                           | 1.6                           | 19.2                          | < 0.01                         | 0.02                           | 6.7                           | 0.136                         |
| M896033            |                                   | 26.8                          | 490                         | 8.0                           | 140.0                         | 0.001                           | 0.01                        | 1.91                           | 14.4                          | 0.4                           | 1.7                           | 74.9                          | 0.01                           | 0.01                           | 5.4                           | 0.126                         |
| M896034            |                                   | 14.3                          | 220                         | 10.0                          | 7.8                           | < 0.001                         | < 0.01                      | 2.51                           | 1.9                           | 0.3                           | 0.4                           | 6.1                           | < 0.01                         | 0.04                           | 3.1                           | < 0.005                       |
| M896035            |                                   | 35.1                          | 710                         | 14.1                          | 6.4                           | <0.001                          | 0.01                        | 3.15                           | 4.2                           | 0.5                           | 0.3                           | 16.3                          | <0.01                          | 0.04                           | 3.8                           | 0.014                         |
| M896036            |                                   | 32.6                          | 480                         | 12.4                          | 5.0                           | 0.001                           | 0.01                        | 1.97                           | 11.6                          | 1.2                           | 0.2                           | 21.9                          | 0.01                           | 0.04                           | 7.4                           | 0.010                         |
| M896037            |                                   | 27.9                          | 390                         | 11.8                          | 8.3                           | < 0.001                         | <0.01                       | 1.56                           | 3.3                           | 0.5                           | 0.3                           | 10.7                          | < 0.01                         | 0.03                           | 4.5                           | 0.025                         |
| M896038            |                                   | 46.5                          | 490                         | 18.8                          | 7.9                           | < 0.001                         | 0.04                        | 4.61                           | 2.7                           | 1.1                           | 0.2                           | 11.6                          | <0.01                          | 0.07                           | 5.6                           | 0.007                         |
| M895628            |                                   | NSS                           | NSS                         | NSS                           | NSS                           | NSS                             | NSS                         | NSS                            | NSS                           | NSS                           | NSS                           | NSS                           | NSS                            | NSS                            | NSS                           | NSS                           |
| M895629            |                                   | 39.7                          | 1150                        | 9.3                           | 33.1                          | <0.001                          | 0.11                        | 7.79                           | 1.9                           | 1.3                           | 0.4                           | 151.0                         | <0.01                          | 0.06                           | 1.2                           | 0.038                         |



2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

### To: HULSTEIN, ROGER 106 WILSON DR. WHITEHORSE YT Y1A 5R2

Page: 2 - D Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 29-AUG-2021 Account: HULROG

Project: Goldorak

|                    | Method<br>Analyte | AuME-TL44<br>Tl | AuME-TL44<br>U | AuME-TL44<br>V | AuME-TL44<br>W | AuME-TL44<br>Y | AuME–TL44<br>Zn | AuME-TL44<br>Zr |
|--------------------|-------------------|-----------------|----------------|----------------|----------------|----------------|-----------------|-----------------|
| Sample Description | Units             | ррт<br>0.02     | ррт<br>0.05    | ppm<br>1       | ррт<br>0.05    | ppm<br>0.05    | ppm<br>2        | ррт<br>0.5      |
| M896001            |                   | 0.11            | 0.74           | 28             | 2.98           | 0.84           | 57              | 2.2             |
| M896002            |                   | 0.03            | 1.22           | 17             | 0.58           | 1.16           | 36              | 2.8             |
| M896003            |                   | NSS             | NSS            | NSS            | NSS            | NSS            | NSS             | NSS             |
| M896004            |                   | NSS             | NSS            | NSS            | NSS            | NSS            | NSS             | NSS             |
| M896005            |                   | NSS             | NSS            | NSS            | NSS            | NSS            | NSS             | NSS             |
| M896006            |                   | 0.20            | 4.13           | 49             | 23.0           | 9.28           | 594             | 2.2             |
| M896007            |                   | 0.52            | 15.30          | 154            | 12.20          | 24.6           | 1820            | 2.2             |
| M896008            |                   | NSS             | NSS            | NSS            | NSS            | NSS            | NSS             | NSS             |
| M896009            |                   | 0.23            | 6.32           | 53             | 3.19           | 5.46           | 274             | 2.2             |
| M896010            |                   | 0.23            | 8.79           | 76             | 56.4           | 16.35          | 2060            | 1.6             |
| M896011            |                   | NSS             | NSS            | NSS            | NSS            | NSS            | NSS             | NSS             |
| M896012            |                   | 0.14            | 3.03           | 58             | 2.67           | 11.20          | 386             | 3.0             |
| M896013            |                   | 0.20            | 2.53           | 28             | 340            | 8.80           | 411             | 1.0             |
| M896014            |                   | 0.17            | 1.33           | 52             | 12.70          | 5.93           | 146             | <0.5            |
| M896015            |                   | 0.15            | 3.65           | 45             | 220            | 13.05          | 473             | 0.6             |
| M896016            |                   | 0.15            | 2.60           | 42             | 360            | 13.20          | 465             | 0.8             |
| M896017            |                   | 0.11            | 2.16           | 42             | 26.3           | 11.65          | 388             | 1.0             |
| M896018            |                   | 0.13            | 2.65           | 42             | 19.00          | 12.00          | 231             | <0.5            |
| M896019            |                   | 0.15            | 1.25           | 40             | 8.13           | 5.52           | 115             | 0.5             |
| M896020            |                   | 0.32            | 0.72           | 54             | 0.42           | 12.05          | 70              | 6.1             |
| M896021            |                   | 0.13            | 1.29           | 73             | 2.21           | 5.30           | 470             | 0.8             |
| M896022            |                   | NSS             | NSS            | NSS            | NSS            | NSS            | NSS             | NSS             |
| M896023            |                   | 0.13            | 1.00           | 38             | 0.45           | 4.93           | 113             | 1.4             |
| M896024            |                   | 0.18            | 0.87           | 27             | 0.34           | 5.29           | 114             | 1.7             |
| M896025            |                   | 0.29            | 0.66           | 45             | 0.33           | 3.22           | 229             | 2.9             |
| M896026            |                   | 0.22            | 1.33           | 45             | 0.93           | 16.20          | 164             | 1.0             |
| M896027            |                   | 0.20            | 0.90           | 20             | 0.17           | 7.13           | 109             | 0.6             |
| M896028            |                   | 0.62            | 1.57           | 37             | 0.75           | 20.1           | 285             | <0.5            |
| M896029            |                   | 0.24            | 0.86           | 23             | 0.17           | 15.80          | 110             | 2.5             |
| M896030            |                   | 0.25            | 0.65           | 41             | 0.29           | 8.16           | 58              | 3.7             |
| M896031            |                   | 0.19            | 1.09           | 41             | 0.29           | 20.6           | 95              | 3.8             |
| M896032            |                   | 0.76            | 0.50           | 40             | 0.22           | 9.34           | 55              | 4.3             |
| M896033            |                   | 1.36            | 0.56           | 33             | 0.27           | 41.7           | 88              | 3.5             |
| M896034            |                   | 0.10            | 0.33           | 33             | 0.18           | 2.40           | 48              | 2.1             |
| M896035            |                   | 0.09            | 0.76           | 29             | 0.23           | 14.95          | 71              | 1.9             |
| M896036            |                   | 0.17            | 1.84           | 19             | 0.27           | 66.2           | 41              | 5.7             |
| M896037            |                   | 0.12            | 0.63           | 27             | 0.23           | 6.17           | 58              | 1.3             |
| M896038            |                   | 0.14            | 0.92           | 25             | 0.11           | 5.58           | 82              | 2.5             |
| M895628            |                   | NSS             | NSS            | NSS            | NSS            | NSS            | NSS             | NSS             |
| M895629            |                   | 0.25            | 3.36           | 208            | 0.18           | 11.60          | 38              | 7.1             |
|                    |                   |                 |                |                |                |                |                 |                 |



ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

### To: HULSTEIN, ROGER 106 WILSON DR. WHITEHORSE YT Y1A 5R2

Page: 3 - A Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 29-AUG-2021 Account: HULROG

Project: Goldorak

| Sample Description | Method<br>Analyte<br>Units<br>LOD | WEI–21<br>Recvd Wt.<br>kg<br>0.02 | AuME-TL44<br>Au<br>ppm<br>0.001 | AuME-TL44<br>Ag<br>ppm<br>0.01 | AuME-TL44<br>Al<br>%<br>0.01 | AuME-TL44<br>As<br>ppm<br>0.1 | AuME-TL44<br>B<br>ppm<br>10 | AuME-TL44<br>Ba<br>ppm<br>10 | AuME-TL44<br>Be<br>ppm<br>0.05 | AuME-TL44<br>Bi<br>ppm<br>0.01 | AuME-TL44<br>Ca<br>%<br>0.01 | AuME-TL44<br>Cd<br>ppm<br>0.01 | AuME-TL44<br>Ce<br>ppm<br>0.02 | AuME-TL44<br>Co<br>ppm<br>0.1 | AuME-TL44<br>Cr<br>ppm<br>1 | AuME-TL44<br>Cs<br>ppm<br>0.05 |
|--------------------|-----------------------------------|-----------------------------------|---------------------------------|--------------------------------|------------------------------|-------------------------------|-----------------------------|------------------------------|--------------------------------|--------------------------------|------------------------------|--------------------------------|--------------------------------|-------------------------------|-----------------------------|--------------------------------|
| M895630            |                                   | 0.40                              | 0.080                           | 3.30                           | 3.81                         | 153.5                         | <10                         | 120                          | 2.22                           | 13.45                          | 0.41                         | 5.10                           | 31.4                           | 10.9                          | 21                          | 10.25                          |
| M895631            |                                   | 0.48                              | 0.002                           | 0.43                           | 2.17                         | 12.6                          | <10                         | 90                           | 0.82                           | 1.18                           | 0.12                         | 4.80                           | 10.60                          | 3.3                           | 50                          | 6.20                           |
| M895632            |                                   | 0.28                              | 0.001                           | 0.19                           | 0.80                         | 10.9                          | <10                         | 130                          | 0.24                           | 0.16                           | 0.09                         | 0.16                           | 14.60                          | 3.7                           | 15                          | 1.26                           |
| M895633            |                                   | 0.52                              | 0.001                           | 1.09                           | 1.06                         | 26.8                          | <10                         | 130                          | 0.71                           | 0.10                           | 1.59                         | 0.53                           | 25.9                           | 8.1                           | 32                          | 1.76                           |
| M895634            |                                   | 0.45                              | 0.003                           | 0.33                           | 1.43                         | 58.9                          | <10                         | 310                          | 0.65                           | 0.18                           | 0.09                         | 0.42                           | 25.8                           | 10.9                          | 26                          | 3.64                           |
| M895635            |                                   | 0.53                              | 0.007                           | 0.19                           | 0.97                         | 212                           | <10                         | 180                          | 0.53                           | 0.20                           | 0.06                         | 0.65                           | 23.4                           | 10.9                          | 14                          | 1.74                           |
| M895636            |                                   | 0.45                              | 0.004                           | 0.40                           | 1.04                         | 69.6                          | <10                         | 300                          | 0.59                           | 0.18                           | 0.13                         | 0.42                           | 36.5                           | 7.5                           | 18                          | 2.07                           |
| M895637            |                                   | 0.43                              | 0.006                           | 1.86                           | 0.96                         | 24.5                          | <10                         | 390                          | 0.49                           | 0.18                           | 0.32                         | 0.30                           | 39.5                           | 6.4                           | 18                          | 3.19                           |
| M895638            |                                   | 0.46                              | 0.006                           | 0.06                           | 1.33                         | 21.5                          | <10                         | 300                          | 0.64                           | 0.17                           | 0.03                         | 0.09                           | 35.5                           | 8.0                           | 21                          | 3.29                           |
| M895639            |                                   | 0.42                              | 0.001                           | 0.06                           | 2.69                         | 16.0                          | <10                         | 180                          | 1.16                           | 0.18                           | 0.51                         | 0.15                           | 48.7                           | 13.9                          | 24                          | 4.16                           |
| M895640            |                                   | 0.43                              | 0.004                           | 0.12                           | 0.98                         | 26.0                          | <10                         | 250                          | 0.61                           | 0.18                           | 0.07                         | 0.15                           | 40.1                           | 10.2                          | 17                          | 2.52                           |



2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

#### To: HULSTEIN, ROGER 106 WILSON DR. WHITEHORSE YT Y1A 5R2

Page: 3 - B Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 29-AUG-2021 Account: HULROG

Project: Goldorak

| Sample Description | Method<br>Analyte<br>Units<br>LOD | AuME-TL44<br>Cu<br>ppm<br>0.2 | AuME-TL44<br>Fe<br>%<br>0.01 | AuME-TL44<br>Ga<br>ppm<br>0.05 | AuME-TL44<br>Ge<br>ppm<br>0.05 | AuME-TL44<br>Hf<br>ppm<br>0.02 | AuME-TL44<br>Hg<br>ppm<br>0.01 | AuME-TL44<br>In<br>ppm<br>0.005 | AuME-TL44<br>K<br>%<br>0.01 | AuME-TL44<br>La<br>ppm<br>0.2 | AuME-TL44<br>Li<br>ppm<br>0.1 | AuME-TL44<br>Mg<br>%<br>0.01 | AuME-TL44<br>Mn<br>ppm<br>5 | AuME-TL44<br>Mo<br>ppm<br>0.05 | AuME-TL44<br>Na<br>%<br>0.01 | AuME-TL44<br>Nb<br>ppm<br>0.05 |
|--------------------|-----------------------------------|-------------------------------|------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|---------------------------------|-----------------------------|-------------------------------|-------------------------------|------------------------------|-----------------------------|--------------------------------|------------------------------|--------------------------------|
| M895630            |                                   | 355                           | 16.40                        | 11.45                          | 0.40                           | 0.12                           | 0.08                           | 2.23                            | 0.11                        | 13.0                          | 18.7                          | 0.17                         | 877                         | 1.20                           | 0.10                         | 0.62                           |
| M895631            |                                   | 235                           | 3.96                         | 6.67                           | 0.16                           | 0.06                           | 0.03                           | 0.080                           | 0.16                        | 6.4                           | 27.8                          | 0.55                         | 162                         | 21.1                           | 0.02                         | 0.31                           |
| M895632            |                                   | 11.4                          | 1.55                         | 3.68                           | 0.06                           | <0.02                          | 0.03                           | 0.013                           | 0.03                        | 7.6                           | 7.1                           | 0.17                         | 155                         | 1.03                           | 0.03                         | 0.37                           |
| M895633            |                                   | 37.2                          | 3.99                         | 2.43                           | 0.10                           | 0.04                           | 0.03                           | 0.029                           | 0.06                        | 16.9                          | 22.1                          | 0.30                         | 427                         | 2.73                           | 0.02                         | 0.33                           |
| M895634            |                                   | 67.8                          | 3.35                         | 3.69                           | 0.10                           | 0.04                           | 0.03                           | 0.043                           | 0.06                        | 13.2                          | 19.1                          | 0.33                         | 485                         | 2.82                           | 0.02                         | 0.35                           |
| M895635            |                                   | 39.5                          | 3.02                         | 2.33                           | 0.08                           | 0.04                           | 0.02                           | 0.066                           | 0.06                        | 11.4                          | 11.8                          | 0.20                         | 622                         | 3.30                           | 0.02                         | 0.23                           |
| M895636            |                                   | 30.0                          | 2.31                         | 2.55                           | 0.09                           | 0.04                           | 0.05                           | 0.042                           | 0.06                        | 18.3                          | 10.1                          | 0.26                         | 497                         | 1.76                           | 0.02                         | 0.28                           |
| M895637            |                                   | 35.3                          | 1.85                         | 3.34                           | 0.10                           | 0.03                           | 0.10                           | 0.028                           | 0.05                        | 23.2                          | 14.0                          | 0.20                         | 574                         | 1.80                           | 0.04                         | 0.30                           |
| M895638            |                                   | 42.0                          | 2.53                         | 3.18                           | 0.07                           | 0.03                           | 0.01                           | 0.029                           | 0.06                        | 17.6                          | 24.5                          | 0.33                         | 283                         | 2.40                           | 0.02                         | 0.16                           |
| M895639            |                                   | 19.1                          | 4.10                         | 6.35                           | 0.11                           | 0.06                           | 0.01                           | 0.036                           | 0.14                        | 21.3                          | 34.6                          | 1.80                         | 1350                        | 0.50                           | 0.02                         | 0.17                           |
| M895640            |                                   | 48.9                          | 2.57                         | 2.66                           | 0.09                           | 0.02                           | 0.03                           | 0.024                           | 0.07                        | 18.9                          | 21.9                          | 0.36                         | 470                         | 2.06                           | 0.02                         | 0.17                           |



ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

#### To: HULSTEIN, ROGER 106 WILSON DR. WHITEHORSE YT Y1A 5R2

Page: 3 - C Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 29-AUG-2021 Account: HULROG

Project: Goldorak

| Sample Description | Method<br>Analyte<br>Units<br>LOD | AuME-TL44<br>Ni<br>ppm<br>0.2 | AuME-TL44<br>P<br>ppm<br>10 | AuME-TL44<br>Pb<br>ppm<br>0.2 | AuME-TL44<br>Rb<br>ppm<br>0.1 | AuME-TL44<br>Re<br>ppm<br>0.001 | AuME-TL44<br>S<br>%<br>0.01 | AuME-TL44<br>Sb<br>ppm<br>0.05 | AuME-TL44<br>Sc<br>ppm<br>0.1 | AuME-TL44<br>Se<br>ppm<br>0.2 | AuME-TL44<br>Sn<br>ppm<br>0.2 | AuME-TL44<br>Sr<br>ppm<br>0.2 | AuME-TL44<br>Ta<br>ppm<br>0.01 | AuME-TL44<br>Te<br>ppm<br>0.01 | AuME-TL44<br>Th<br>ppm<br>0.2 | AuME-TL44<br>Ti<br>%<br>0.005 |
|--------------------|-----------------------------------|-------------------------------|-----------------------------|-------------------------------|-------------------------------|---------------------------------|-----------------------------|--------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|--------------------------------|--------------------------------|-------------------------------|-------------------------------|
| M895630            |                                   | 47.0                          | 2950                        | 8.3                           | 6.5                           | 0.001                           | 0.54                        | 16.20                          | 8.7                           | 42.4                          | 8.3                           | 268                           | <0.01                          | 0.45                           | 4.3                           | 0.087                         |
| M895631            |                                   | 59.7                          | 1280                        | 4.2                           | 18.6                          | 0.002                           | 0.05                        | 2.79                           | 11.0                          | 11.4                          | 5.4                           | 27.2                          | <0.01                          | 0.14                           | 3.9                           | 0.105                         |
| M895632            |                                   | 10.4                          | 430                         | 7.0                           | 7.4                           | <0.001                          | 0.04                        | 0.49                           | 0.6                           | 0.3                           | 0.4                           | 9.6                           | <0.01                          | 0.03                           | <0.2                          | 0.015                         |
| M895633            |                                   | 66.2                          | 3530                        | 18.7                          | 6.6                           | <0.001                          | 0.04                        | 3.52                           | 2.8                           | 1.3                           | 0.3                           | 40.4                          | <0.01                          | 0.06                           | 4.3                           | 0.013                         |
| M895634            |                                   | 33.3                          | 1050                        | 17.6                          | 10.0                          | <0.001                          | 0.07                        | 5.61                           | 1.7                           | 2.0                           | 0.4                           | 32.1                          | <0.01                          | 0.09                           | 1.0                           | 0.014                         |
| M895635            |                                   | 25.5                          | 690                         | 26.9                          | 7.7                           | 0.001                           | 0.04                        | 7.09                           | 1.9                           | 1.9                           | 0.3                           | 17.7                          | <0.01                          | 0.08                           | 2.9                           | 0.007                         |
| M895636            |                                   | 37.5                          | 610                         | 27.6                          | 7.0                           | <0.001                          | 0.04                        | 5.25                           | 2.5                           | 1.4                           | 0.3                           | 16.8                          | <0.01                          | 0.06                           | 3.0                           | 0.014                         |
| M895637            |                                   | 28.3                          | 770                         | 19.5                          | 9.7                           | 0.001                           | 0.05                        | 3.08                           | 1.7                           | 1.7                           | 0.4                           | 23.6                          | <0.01                          | 0.06                           | 0.6                           | 0.014                         |
| M895638            |                                   | 33.1                          | 250                         | 14.4                          | 10.9                          | <0.001                          | 0.03                        | 4.40                           | 2.2                           | 0.7                           | 0.3                           | 9.2                           | <0.01                          | 0.07                           | 3.4                           | 0.005                         |
| M895639            |                                   | 22.6                          | 950                         | 7.3                           | 12.3                          | <0.001                          | 0.02                        | 1.49                           | 5.1                           | 0.4                           | 0.3                           | 29.7                          | <0.01                          | 0.03                           | 7.8                           | 0.059                         |
| M895640            |                                   | 35.9                          | 450                         | 12.7                          | 9.1                           | <0.001                          | 0.04                        | 4.77                           | 3.0                           | 1.2                           | 0.2                           | 11.3                          | <0.01                          | 0.06                           | 4.0                           | 0.011                         |



2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

### To: HULSTEIN, ROGER 106 WILSON DR. WHITEHORSE YT Y1A 5R2

Page: 3 - D Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 29-AUG-2021 Account: HULROG

Project: Goldorak

|                    |         |           |           |           |           |           |           | -         |  |
|--------------------|---------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|
|                    | Method  | AuME-TL44 |  |
|                    | Analyte | TI        | U         | v         | W         | Y         | Zn        | Zr        |  |
| Comple Description | Units   | ppm       |  |
| Sample Description | LOD     | 0.02      | 0.05      | 1         | 0.05      | 0.05      | 2         | 0.5       |  |
| M895630            |         | 0.23      | 2.43      | 59        | 4.40      | 10.60     | 499       | 3.7       |  |
| M895631            |         | 0.61      | 10.95     | 497       | 1.08      | 8.47      | 790       | 5.8       |  |
| M895632            |         | 0.06      | 0.43      | 32        | 0.19      | 2.96      | 47        | <0.5      |  |
| M895633            |         | 0.14      | 1.81      | 30        | 0.13      | 26.2      | 211       | 2.5       |  |
| M895634            |         | 0.19      | 1.56      | 34        | 0.18      | 5.27      | 123       | 1.2       |  |
| M895635            |         | 0.20      | 0.80      | 30        | 0.12      | 4.17      | 203       | 1.7       |  |
| M895636            |         | 0.15      | 0.94      | 29        | 0.15      | 8.75      | 196       | 1.1       |  |
| M895637            |         | 0.17      | 1.49      | 36        | 0.16      | 17.25     | 86        | 0.6       |  |
| M895638            |         | 0.16      | 0.54      | 28        | 0.07      | 3.53      | 69        | 1.2       |  |
| M895639            |         | 0.12      | 0.42      | 18        | <0.05     | 10.05     | 56        | 2.7       |  |
| M895640            |         | 0.14      | 1.00      | 23        | 0.08      | 9.13      | 85        | 0.8       |  |
|                    |         |           |           |           |           |           |           |           |  |
|                    |         |           |           |           |           |           |           |           |  |
|                    |         |           |           |           |           |           |           |           |  |
|                    |         |           |           |           |           |           |           |           |  |
|                    |         |           |           |           |           |           |           |           |  |
|                    |         |           |           |           |           |           |           |           |  |
|                    |         |           |           |           |           |           |           |           |  |
|                    |         |           |           |           |           |           |           |           |  |
|                    |         |           |           |           |           |           |           |           |  |
|                    |         |           |           |           |           |           |           |           |  |
|                    |         |           |           |           |           |           |           |           |  |
|                    |         |           |           |           |           |           |           |           |  |
|                    |         |           |           |           |           |           |           |           |  |
|                    |         |           |           |           |           |           |           |           |  |
|                    |         |           |           |           |           |           |           |           |  |
|                    |         |           |           |           |           |           |           |           |  |
|                    |         |           |           |           |           |           |           |           |  |
|                    |         |           |           |           |           |           |           |           |  |
|                    |         |           |           |           |           |           |           |           |  |
|                    |         |           |           |           |           |           |           |           |  |
|                    |         |           |           |           |           |           |           |           |  |
|                    |         |           |           |           |           |           |           |           |  |
|                    |         |           |           |           |           |           |           |           |  |
|                    |         |           |           |           |           |           |           |           |  |
|                    |         |           |           |           |           |           |           |           |  |
|                    |         |           |           |           |           |           |           |           |  |



ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

### To: HULSTEIN, ROGER 106 WILSON DR. WHITEHORSE YT Y1A 5R2

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 29-AUG-2021 Account: HULROG

Project: Goldorak

|                    |                                                                                                     | CERTIFICATE COMMENTS                         | 5                 |  |  |  |  |  |  |
|--------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------|--|--|--|--|--|--|
|                    |                                                                                                     |                                              |                   |  |  |  |  |  |  |
| Applies to Method: | ANALYTICAL COMMENTS<br>NSS is non-sufficient sample.<br>ALL METHODS                                 |                                              |                   |  |  |  |  |  |  |
|                    |                                                                                                     | LABORATORY                                   | ADDRESSES         |  |  |  |  |  |  |
| Applies to Method: | Processed at ALS Whitehorse located a LOG-21                                                        | at 78 Mt. Sima Rd, Whitehorse, YT,<br>SCR-41 | Canada.<br>WEI-21 |  |  |  |  |  |  |
| Applies to Method: | Processed at ALS Vancouver located at 2103 Dollarton Hwy, North Vancouver, BC, Canada.<br>AuME-TL44 |                                              |                   |  |  |  |  |  |  |
|                    |                                                                                                     |                                              |                   |  |  |  |  |  |  |
|                    |                                                                                                     |                                              |                   |  |  |  |  |  |  |
|                    |                                                                                                     |                                              |                   |  |  |  |  |  |  |
|                    |                                                                                                     |                                              |                   |  |  |  |  |  |  |
|                    |                                                                                                     |                                              |                   |  |  |  |  |  |  |
|                    |                                                                                                     |                                              |                   |  |  |  |  |  |  |
|                    |                                                                                                     |                                              |                   |  |  |  |  |  |  |
|                    |                                                                                                     |                                              |                   |  |  |  |  |  |  |
|                    |                                                                                                     |                                              |                   |  |  |  |  |  |  |
|                    |                                                                                                     |                                              |                   |  |  |  |  |  |  |



#### To: HULSTEIN, ROGER 106 WILSON DR. WHITEHORSE YT Y1A 5R2

Page: 1 Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 13-OCT-2021 Account: HULROG

## CERTIFICATE WH21230997

Project: Goldorak

This report is for 7 samples of Soil submitted to our lab in Whitehorse, YT, Canada on 31-AUG-2021.

The following have access to data associated with this certificate:

JEROME DE PASQUALE

ROGER HULSTEIN

|          | SAMPLE PREPARATION            |            |
|----------|-------------------------------|------------|
| ALS CODE | DESCRIPTION                   |            |
| FND-02   | Find Sample for Addn Analysis |            |
|          | ANALYTICAL PROCEDURES         |            |
| ALS CODE | DESCRIPTION                   | INSTRUMENT |
| ALS CODE | DESCRIPTION                   | INSTROMENT |

This is the Final Report and supersedes any preliminary report with this certificate number.Results apply to samples as submitted.All pages of this report have been checked and approved for release. \*\*\*\*\* See Appendix Page for comments regarding this certificate \*\*\*\*\*

Saa Traxler, General Manager, North Vancouver

ALS

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

#### To: HULSTEIN, ROGER 106 WILSON DR. WHITEHORSE YT Y1A 5R2

Page: 2 - A Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 13-OCT-2021 Account: HULROG

Project: Goldorak

| Sample Description | Method  | AuME-TL43 |
|--------------------|---------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
|                    | Analyte | Au        | Ag        | Al        | As        | B         | Ba        | Be        | Bi        | Ca        | Cd        | Ce        | Co        | Cr        | Cs        | Cu        |
|                    | Units   | ppm       | ppm       | %         | ppm       | ppm       | ppm       | ppm       | ppm       | %         | ppm       | ppm       | ppm       | ppm       | ppm       | ppm       |
|                    | LOD     | 0.001     | 0.01      | 0.01      | 0.1       | 10        | 10        | 0.05      | 0.01      | 0.01      | 0.01      | 0.02      | 0.1       | 1         | 0.05      | 0.2       |
| M896003            |         | 0.001     | 1.68      | 1.12      | 191.0     | <10       | 360       | 0.62      | 1.64      | 0.73      | 6.92      | 10.75     | 6.7       | 22        | 3.61      | 54.9      |
| M896004            |         | 0.010     | 1.99      | 1.59      | 2530      | <10       | 180       | 1.11      | 1.99      | 0.43      | 29.8      | 16.70     | 29.5      | 23        | 3.57      | 383       |
| M896005            |         | 0.006     | 3.21      | 1.39      | 2180      | 10        | 120       | 1.07      | 7.70      | 0.85      | 35.5      | 14.40     | 26.4      | 26        | 4.48      | 337       |
| M896008            |         | 0.002     | 3.39      | 1.09      | 2630      | <10       | 140       | 0.86      | 4.22      | 0.66      | 42.8      | 23.1      | 25.7      | 23        | 4.28      | 288       |
| M896011            |         | 0.007     | 1.87      | 1.29      | 1575      | <10       | 180       | 0.97      | 9.30      | 0.88      | 23.4      | 15.90     | 17.8      | 18        | 5.57      | 228       |
| M896022            |         | 0.006     | 0.59      | 1.92      | 191.0     | <10       | 280       | 1.02      | 2.09      | 0.65      | 13.30     | 21.5      | 58.4      | 29        | 5.99      | 159.0     |
| M896028            |         | 0.002     | 1.36      | 0.76      | 32.2      | <10       | 510       | 0.97      | 0.45      | 0.05      | 0.33      | 165.5     | 7.1       | 19        | 2.40      | 183.5     |



#### To: HULSTEIN, ROGER 106 WILSON DR. WHITEHORSE YT Y1A 5R2

Page: 2 - B Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 13-OCT-2021 Account: HULROG

Project: Goldorak

|                    | Method  | AuME-TL43     | AuME-TL43    | AuME-TL43 | AuME-TL43 | AuME-TL43    | AuME-TL43 | AuME-TL43    | AuME-TL43     | AuME-TL43   | AuME-TL43 | AuME-TL43   | AuME-TL43     | AuME-TL43 | AuME-TL43    | AuME-TL43     |
|--------------------|---------|---------------|--------------|-----------|-----------|--------------|-----------|--------------|---------------|-------------|-----------|-------------|---------------|-----------|--------------|---------------|
|                    | Analyte | Fe            | Ga           | Ge        | Hf        | Hg           | In        | K            | La            | Li          | Mg        | Mn          | Mo            | Na        | Nb           | Ni            |
|                    | Units   | %             | ppm          | ppm       | ppm       | ppm          | ppm       | %            | ppm           | ppm         | %         | ppm         | ppm           | %         | ppm          | ppm           |
|                    | LOD     | 0.01          | 0.05         | 0.05      | 0.02      | 0.01         | 0.005     | 0.01         | 0.2           | 0.1         | 0.01      | 5           | 0.05          | 0.01      | 0.05         | 0.2           |
| M896003            |         | 2.08          | 3.96         | 0.05      | 0.10      | 0.05         | 0.041     | 0.18         | 5.0           | 23.8        | 0.35      | 357         | 11.25         | 0.04      | 0.26         | 43.8          |
| M896004            |         | 6.43          | 5.24         | 0.15      | 0.08      | 0.09         | 0.591     | 0.06         | 9.4           | 17.6        | 0.41      | 891         | 54.2          | 0.02      | 0.24         | 128.0         |
| M896005            |         | 4.47          | 4.11         | 0.11      | 0.05      | 0.08         | 0.405     | 0.07         | 7.3           | 23.2        | 0.49      | 915         | 19.30         | 0.02      | 0.22         | 149.5         |
| M896008            |         | 5.00          | 3.77         | 0.17      | 0.06      | 0.13         | 0.205     | 0.08         | 13.7          | 17.0        | 0.39      | 805         | 22.4          | 0.02      | 0.22         | 125.5         |
| M896011            |         | 4.30          | 3.81         | 0.14      | 0.05      | 0.06         | 0.495     | 0.08         | 8.0           | 29.1        | 0.71      | 1070        | 2.66          | 0.02      | 0.34         | 65.8          |
| M896022<br>M896028 |         | 2.91<br>11.25 | 4.22<br>4.13 | 0.07      | 0.07      | 0.10<br>0.02 | 0.057     | 0.12<br>0.17 | 10.5<br>106.0 | 23.1<br>2.9 | 0.42      | 1140<br>216 | 11.65<br>5.26 | 0.05      | 0.70<br>0.31 | 156.0<br>52.1 |



#### To: HULSTEIN, ROGER 106 WILSON DR. WHITEHORSE YT Y1A 5R2

Page: 2 - C Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 13-OCT-2021 Account: HULROG

Project: Goldorak

| Sample Description | Method  | AuME-TL43 | AuME–TL43 | AuME-TL43 |
|--------------------|---------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
|                    | Analyte | P         | Pb        | Rb        | Re        | S         | Sb        | Sc        | Se        | Sn        | Sr        | Ta        | Te        | Th        | Ti        | Tl        |
|                    | Units   | ppm       | ppm       | ppm       | ppm       | %         | ppm       | %         | ppm       |
|                    | LOD     | 10        | 0.2       | 0.1       | 0.001     | 0.01      | 0.05      | 0.1       | 0.2       | 0.2       | 0.2       | 0.01      | 0.01      | 0.2       | 0.005     | 0.02      |
| M896003            |         | 760       | 26.3      | 14.6      | 0.007     | 0.10      | 7.71      | 2.5       | 4.1       | 2.1       | 59.7      | <0.01     | 0.14      | 3.7       | 0.028     | 0.34      |
| M896004            |         | 1300      | 31.7      | 6.7       | 0.005     | 0.03      | 41.2      | 3.8       | 23.6      | 33.1      | 89.8      | <0.01     | 0.31      | 4.0       | 0.010     | 0.27      |
| M896005            |         | 1090      | 59.3      | 8.0       | 0.007     | 0.07      | 27.7      | 2.7       | 12.8      | 11.8      | 85.3      | <0.01     | 0.41      | 2.5       | 0.011     | 0.21      |
| M896008            |         | 2110      | 56.5      | 9.1       | 0.007     | 0.04      | 38.6      | 3.0       | 21.1      | 5.5       | 67.9      | <0.01     | 0.15      | 2.1       | 0.010     | 0.21      |
| M896011            |         | 950       | 27.4      | 9.8       | 0.003     | 0.03      | 24.7      | 3.2       | 5.9       | 15.5      | 77.1      | <0.01     | 0.28      | 2.6       | 0.021     | 0.34      |
| M896022            |         | 1220      | 22.5      | 13.6      | 0.002     | 0.07      | 4.20      | 3.4       | 6.7       | 1.0       | 61.0      | <0.01     | 0.16      | 2.7       | 0.035     | 0.35      |
| M896028            |         | 2910      | 21.1      | 11.7      | <0.001    | 0.33      | 7.04      | 1.3       | 27.4      | 0.4       | 147.0     | 0.01      | 0.15      | 1.5       | 0.017     | 0.65      |
|                    |         |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |
|                    |         |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |



ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

#### To: HULSTEIN, ROGER 106 WILSON DR. WHITEHORSE YT Y1A 5R2

Page: 2 - D Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 13-OCT-2021 Account: HULROG

Project: Goldorak

| Sample Description                                  | Method<br>Analyte<br>Units<br>LOD | AuME-TL43<br>U<br>ppm<br>0.05          | AuME-TL43<br>V<br>ppm<br>1 | AuME-TL43<br>W<br>ppm<br>0.05        | AuME-TL43<br>Y<br>ppm<br>0.05            | AuME-TL43<br>Zn<br>ppm<br>2         | AuME-TL43<br>Zr<br>ppm<br>0.5   |  |  |  |  |
|-----------------------------------------------------|-----------------------------------|----------------------------------------|----------------------------|--------------------------------------|------------------------------------------|-------------------------------------|---------------------------------|--|--|--|--|
| M896003<br>M896004<br>M896005<br>M896008<br>M896011 |                                   | 3.13<br>11.55<br>7.47<br>11.10<br>3.07 | 67<br>89<br>78<br>72<br>55 | 3.54<br>60.3<br>39.1<br>8.92<br>88.4 | 7.85<br>17.70<br>12.70<br>18.95<br>11.45 | 410<br>2010<br>2230<br>1940<br>1100 | 7.0<br>3.0<br>2.3<br>1.9<br>1.9 |  |  |  |  |
| M896022<br>M896028                                  |                                   | 3.65<br>1.60                           | 70<br>39                   | 37.8<br>0.41                         | 18.05<br>18.65                           | 1680<br>304                         | 1.9<br><0.5                     |  |  |  |  |
|                                                     |                                   |                                        |                            |                                      |                                          |                                     |                                 |  |  |  |  |
|                                                     |                                   |                                        |                            |                                      |                                          |                                     |                                 |  |  |  |  |
|                                                     |                                   |                                        |                            |                                      |                                          |                                     |                                 |  |  |  |  |
|                                                     |                                   |                                        |                            |                                      |                                          |                                     |                                 |  |  |  |  |
|                                                     |                                   |                                        |                            |                                      |                                          |                                     |                                 |  |  |  |  |
|                                                     |                                   |                                        |                            |                                      |                                          |                                     |                                 |  |  |  |  |
|                                                     |                                   |                                        |                            |                                      |                                          |                                     |                                 |  |  |  |  |



#### To: HULSTEIN, ROGER 106 WILSON DR. WHITEHORSE YT Y1A 5R2

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 13-OCT-2021 Account: HULROG

Project: Goldorak

| CERTIFICATE COMMENTS                                                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------|
| LABORATORY ADDRESSES<br>Processed at ALS Vancouver located at 2103 Dollarton Hwy, North Vancouver, BC, Canada.<br>AuME-TL43 FND-02 |
|                                                                                                                                    |
|                                                                                                                                    |
|                                                                                                                                    |
|                                                                                                                                    |
|                                                                                                                                    |
|                                                                                                                                    |



#### To: HULSTEIN, ROGER 106 WILSON DR. WHITEHORSE YT Y1A 5R2

## CERTIFICATE WH21268255

Project: Goldorak

This report is for 2 samples of Soil submitted to our lab in Whitehorse, YT, Canada on 5-OCT-2021.

The following have access to data associated with this certificate:

JEROME DE PASQUALE

ROGER HULSTEIN

|           | SAMPLE PREPARATION               |            |
|-----------|----------------------------------|------------|
| ALS CODE  | DESCRIPTION                      |            |
| FND-03    | Find Reject for Addn Analysis    |            |
| CRU-31    | Fine crushing – 70% <2mm         |            |
| PUL-32m   | Pulverize 500g – 85%<75um        |            |
|           | ANALYTICAL PROCEDURES            |            |
| ALS CODE  | DESCRIPTION                      | INSTRUMENT |
| AuME-TL43 | 25g Trace Au + Multi Element PKG |            |

This is the Final Report and supersedes any preliminary report with this certificate number.Results apply to samples as submitted.All pages of this report have been checked and approved for release. \*\*\*\*\* See Appendix Page for comments regarding this certificate \*\*\*\*\*

Saa Traxler, General Manager, North Vancouver



#### To: HULSTEIN, ROGER 106 WILSON DR. WHITEHORSE YT Y1A 5R2

Page: 2 - A Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 25-OCT-2021 Account: HULROG

Project: Goldorak

| Sample Description | Method<br>Analyte<br>Units<br>LOD | AuME-TL43<br>Au<br>ppm<br>0.001 | AuME-TL43<br>Ag<br>ppm<br>0.01 | AuME-TL43<br>Al<br>%<br>0.01 | AuME-TL43<br>As<br>ppm<br>0.1 | AuME-TL43<br>B<br>ppm<br>10 | AuME-TL43<br>Ba<br>ppm<br>10 | AuME-TL43<br>Be<br>ppm<br>0.05 | AuME-TL43<br>Bi<br>ppm<br>0.01 | AuME-TL43<br>Ca<br>%<br>0.01 | AuME-TL43<br>Cd<br>ppm<br>0.01 | AuME-TL43<br>Ce<br>ppm<br>0.02 | AuME-TL43<br>Co<br>ppm<br>0.1 | AuME-TL43<br>Cr<br>ppm<br>1 | AuME-TL43<br>Cs<br>ppm<br>0.05 | AuME-TL43<br>Cu<br>ppm<br>0.2 |
|--------------------|-----------------------------------|---------------------------------|--------------------------------|------------------------------|-------------------------------|-----------------------------|------------------------------|--------------------------------|--------------------------------|------------------------------|--------------------------------|--------------------------------|-------------------------------|-----------------------------|--------------------------------|-------------------------------|
| M896003<br>M895628 |                                   | 0.004                           | 5.80                           | 7.48                         | 1080                          | <10                         | 40                           | 7.39                           | 0.57                           | 0.50                         | 1.93                           | 74.9                           | 27.5                          | 19                          | 1.72                           | 269                           |
|                    |                                   |                                 |                                |                              |                               |                             |                              |                                |                                |                              |                                |                                |                               |                             |                                |                               |
|                    |                                   |                                 |                                |                              |                               |                             |                              |                                |                                |                              |                                |                                |                               |                             |                                |                               |
|                    |                                   |                                 |                                |                              |                               |                             |                              |                                |                                |                              |                                |                                |                               |                             |                                |                               |
|                    |                                   |                                 |                                |                              |                               |                             |                              |                                |                                |                              |                                |                                |                               |                             |                                |                               |
|                    |                                   |                                 |                                |                              |                               |                             |                              |                                |                                |                              |                                |                                |                               |                             |                                |                               |
|                    |                                   |                                 |                                |                              |                               |                             |                              |                                |                                |                              |                                |                                |                               |                             |                                |                               |
|                    |                                   |                                 |                                |                              |                               |                             |                              |                                |                                |                              |                                |                                |                               |                             |                                |                               |
|                    |                                   |                                 |                                |                              |                               |                             |                              |                                |                                |                              |                                |                                |                               |                             |                                |                               |
|                    |                                   |                                 |                                |                              |                               |                             |                              |                                |                                |                              |                                |                                |                               |                             |                                |                               |



#### To: HULSTEIN, ROGER 106 WILSON DR. WHITEHORSE YT Y1A 5R2

Page: 2 - B Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 25-OCT-2021 Account: HULROG

Project: Goldorak

| Sample Description | Method<br>Analyte<br>Units<br>LOD | AuME-TL43<br>Fe<br>%<br>0.01 | AuME-TL43<br>Ga<br>ppm<br>0.05 | AuME-TL43<br>Ge<br>ppm<br>0.05 | AuME-TL43<br>Hf<br>ppm<br>0.02 | AuME-TL43<br>Hg<br>ppm<br>0.01 | AuME-TL43<br>In<br>ppm<br>0.005 | AuME-TL43<br>K<br>%<br>0.01 | AuME-TL43<br>La<br>ppm<br>0.2 | AuME-TL43<br>Li<br>ppm<br>0.1 | AuME-TL43<br>Mg<br>%<br>0.01 | AuME-TL43<br>Mn<br>ppm<br>5 | AuME-TL43<br>Mo<br>ppm<br>0.05 | AuME-TL43<br>Na<br>%<br>0.01 | AuME-TL43<br>Nb<br>ppm<br>0.05 | AuME-TL43<br>Ni<br>ppm<br>0.2 |
|--------------------|-----------------------------------|------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|---------------------------------|-----------------------------|-------------------------------|-------------------------------|------------------------------|-----------------------------|--------------------------------|------------------------------|--------------------------------|-------------------------------|
| M896003<br>M895628 |                                   | 16.55                        | 4.46                           | 0.55                           | 0.23                           | 0.04                           | 0.598                           | 0.08                        | 25.7                          | 12.9                          | 0.17                         | 410                         | 112.5                          | 0.04                         | 0.60                           | 57.6                          |
|                    |                                   |                              |                                |                                |                                |                                |                                 |                             |                               |                               |                              |                             |                                |                              |                                |                               |
|                    |                                   |                              |                                |                                |                                |                                |                                 |                             |                               |                               |                              |                             |                                |                              |                                |                               |
|                    |                                   |                              |                                |                                |                                |                                |                                 |                             |                               |                               |                              |                             |                                |                              |                                |                               |
|                    |                                   |                              |                                |                                |                                |                                |                                 |                             |                               |                               |                              |                             |                                |                              |                                |                               |
|                    |                                   |                              |                                |                                |                                |                                |                                 |                             |                               |                               |                              |                             |                                |                              |                                |                               |
|                    |                                   |                              |                                |                                |                                |                                |                                 |                             |                               |                               |                              |                             |                                |                              |                                |                               |
|                    |                                   |                              |                                |                                |                                |                                |                                 |                             |                               |                               |                              |                             |                                |                              |                                |                               |
|                    |                                   |                              |                                |                                |                                |                                |                                 |                             |                               |                               |                              |                             |                                |                              |                                |                               |
|                    |                                   |                              |                                |                                |                                |                                |                                 |                             |                               |                               |                              |                             |                                |                              |                                |                               |
|                    |                                   |                              |                                |                                |                                |                                |                                 |                             |                               |                               |                              |                             |                                |                              |                                |                               |



#### To: HULSTEIN, ROGER 106 WILSON DR. WHITEHORSE YT Y1A 5R2

Page: 2 - C Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 25-OCT-2021 Account: HULROG

Project: Goldorak

| Sample Description | Method<br>Analyte<br>Units<br>LOD | AuME-TL43<br>P<br>ppm<br>10 | AuME-TL43<br>Pb<br>ppm<br>0.2 | AuME-TL43<br>Rb<br>ppm<br>0.1 | AuME-TL43<br>Re<br>ppm<br>0.001 | AuME-TL43<br>S<br>%<br>0.01 | AuME-TL43<br>Sb<br>ppm<br>0.05 | AuME-TL43<br>Sc<br>ppm<br>0.1 | AuME-TL43<br>Se<br>ppm<br>0.2 | AuME-TL43<br>Sn<br>ppm<br>0.2 | AuME-TL43<br>Sr<br>ppm<br>0.2 | AuME-TL43<br>Ta<br>ppm<br>0.01 | AuME-TL43<br>Te<br>ppm<br>0.01 | AuME-TL43<br>Th<br>ppm<br>0.2 | AuME-TL43<br>Ti<br>%<br>0.005 | AuME-TL43<br>Tl<br>ppm<br>0.02 |
|--------------------|-----------------------------------|-----------------------------|-------------------------------|-------------------------------|---------------------------------|-----------------------------|--------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|--------------------------------|--------------------------------|-------------------------------|-------------------------------|--------------------------------|
| M896003<br>M895628 |                                   | 340                         | 13.6                          | 8.2                           | 0.003                           | 1.45                        | 22.0                           | 12.9                          | 5.6                           | 0.5                           | 33.1                          | 0.02                           | 0.08                           | 16.7                          | 0.020                         | 0.09                           |
|                    |                                   |                             |                               |                               |                                 |                             |                                |                               |                               |                               |                               |                                |                                |                               |                               |                                |
|                    |                                   |                             |                               |                               |                                 |                             |                                |                               |                               |                               |                               |                                |                                |                               |                               |                                |
|                    |                                   |                             |                               |                               |                                 |                             |                                |                               |                               |                               |                               |                                |                                |                               |                               |                                |
|                    |                                   |                             |                               |                               |                                 |                             |                                |                               |                               |                               |                               |                                |                                |                               |                               |                                |
|                    |                                   |                             |                               |                               |                                 |                             |                                |                               |                               |                               |                               |                                |                                |                               |                               |                                |
|                    |                                   |                             |                               |                               |                                 |                             |                                |                               |                               |                               |                               |                                |                                |                               |                               |                                |
|                    |                                   |                             |                               |                               |                                 |                             |                                |                               |                               |                               |                               |                                |                                |                               |                               |                                |
|                    |                                   |                             |                               |                               |                                 |                             |                                |                               |                               |                               |                               |                                |                                |                               |                               |                                |
|                    |                                   |                             |                               |                               |                                 |                             |                                |                               |                               |                               |                               |                                |                                |                               |                               |                                |
|                    |                                   |                             |                               |                               |                                 |                             |                                |                               |                               |                               |                               |                                |                                |                               |                               |                                |



#### To: HULSTEIN, ROGER 106 WILSON DR. WHITEHORSE YT Y1A 5R2

Page: 2 - D Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 25-OCT-2021 Account: HULROG

Project: Goldorak

| Sample Description | Method<br>Analyte<br>Units<br>LOD | AuME-TL43<br>U<br>ppm<br>0.05 | AuME-TL43<br>V<br>ppm<br>1 | AuME-TL43<br>W<br>ppm<br>0.05 | AuME-TL43<br>Y<br>ppm<br>0.05 | AuME-TL43<br>Zn<br>ppm<br>2 | AuME-TL43<br>Zr<br>ppm<br>0.5 |  |
|--------------------|-----------------------------------|-------------------------------|----------------------------|-------------------------------|-------------------------------|-----------------------------|-------------------------------|--|
| M896003<br>M895628 |                                   | 51.8                          | 49                         | 0.77                          | 38.4                          | 223                         | 5.9                           |  |
|                    |                                   |                               |                            |                               |                               |                             |                               |  |
|                    |                                   |                               |                            |                               |                               |                             |                               |  |
|                    |                                   |                               |                            |                               |                               |                             |                               |  |
|                    |                                   |                               |                            |                               |                               |                             |                               |  |
|                    |                                   |                               |                            |                               |                               |                             |                               |  |
|                    |                                   |                               |                            |                               |                               |                             |                               |  |
|                    |                                   |                               |                            |                               |                               |                             |                               |  |
|                    |                                   |                               |                            |                               |                               |                             |                               |  |
|                    |                                   |                               |                            |                               |                               |                             |                               |  |
|                    |                                   |                               |                            |                               |                               |                             |                               |  |
|                    |                                   |                               |                            |                               |                               |                             |                               |  |
|                    |                                   |                               |                            |                               |                               |                             |                               |  |



ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 604 984 0221 Fax: +1 604 984 0218 www.alsglobal.com/geochemistry

#### To: HULSTEIN, ROGER 106 WILSON DR. WHITEHORSE YT Y1A 5R2

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 25-OCT-2021 Account: HULROG

Project: Goldorak

|                    |                                                   | CERTIFICATE COMMENTS                                                      |  |
|--------------------|---------------------------------------------------|---------------------------------------------------------------------------|--|
| Applies to Method: | Processed at ALS Whitehorse located a CRU-31      | <b>LABORATORY ADI</b><br>at 78 Mt. Sima Rd, Whitehorse, YT, Car<br>FND-03 |  |
| Applies to Method: | Processed at ALS Vancouver located a<br>AuME-TL43 |                                                                           |  |
|                    |                                                   |                                                                           |  |
|                    |                                                   |                                                                           |  |
|                    |                                                   |                                                                           |  |
|                    |                                                   |                                                                           |  |
|                    |                                                   |                                                                           |  |
|                    |                                                   |                                                                           |  |
|                    |                                                   |                                                                           |  |
|                    |                                                   |                                                                           |  |

|                    | Goldorak   | 2021 Stream  |         |                    |        |       |          |              |              |          |              | AuME-TL44        | AuME-TL44    |                                                                                                                                                                                                                                                                                                                      |       |      |
|--------------------|------------|--------------|---------|--------------------|--------|-------|----------|--------------|--------------|----------|--------------|------------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|
|                    | All Coordi | inates; Grid | :UTM, D | atum NAI           | D83 Zo | ne 8V |          |              |              |          |              |                  |              |                                                                                                                                                                                                                                                                                                                      | Au    | Ag   |
| Sample             | Date       | Time         | East    | North              | Elev   | m Sam | pler     | Туре         | Slope        | Drainage | Deptn-<br>cm | Color            | Quality      | Description                                                                                                                                                                                                                                                                                                          | ppm   | ppm  |
| M895628            | 7/2/2021   | 12:44:12     | 512929  | 6973393            | 1120   | m JI  | DP       | Silt         | west         | moderate |              | brown-<br>orange | medium       | South drainage of the main creek surrounded by snow patches. Rusty silt<br>muddy texture. Quality uncertain. Very gravelly sample, talus blocks<br>nearby). Rocks in the creek consist dominantly of calc-silicate. Close<br>outcrop on the south-west bank consists of argillite mineralized pyrite-<br>pyrrhotite. | 0.004 | 5.8  |
| M896001            | 2-Jul-21   | 11:31:19AM   | 512940  | 6973410            | 1163   | m F   | :H       | Silt         | west         | steep    |              | brown            | poor         | Main creek, abouve 'Y' jct with trib to south. Soft Fe powder - ferricrete,<br>sandy, silty, some orgs, very heavy FeOx stain and grains of FeOx. Float<br>of calc silicate and argillite. 50m downstream outcrop of shaley argillite<br>on S. bank.                                                                 | 0.005 | 2.76 |
|                    | 2 1.1 21   | 4 53 40004   | 540745  | 072520             | 4005   |       |          | c:11         |              |          |              | h                |              | Silt, FeOx stained creek, 'soft' ferricrete, sample has pebbles, sand, organics.                                                                                                                                                                                                                                     | 0.001 |      |
| M896002<br>M896003 |            |              |         | 6973529<br>6973540 |        |       | кн<br>кн | Silt<br>Silt | west<br>west | steep    | 15           | brown            | good<br>good | Small gully, dry, o.3m wide, pebbles, sandy-silt, float of argillite, qtz pebbles, siltst-chert.                                                                                                                                                                                                                     | 0.001 | 0.94 |
| M896005            | 2-Jul-21   | 4:45:44PM    | 513374  | 6973727            | 1365   | m F   | ιH       | Silt         | west         | steep    |              | brown            | good         | Boulder filled gully, dry hump of boulders, with silt, sand, pebbles. Float of argillite, rare marble, minor calc silicate (qtz-trem-actinolite).                                                                                                                                                                    | 0.006 | 3.21 |
| M896006            | 2-Jul-21   | 4:55:38PM    | 513381  | 6973713            | 1373   | m F   | н        | Silt         | west         | steep    |              | brown            | good         | S. Fork. Boulder filled gully, moss matt and boulder trap, similar float as at 005. Site within hornsfels zone - most rocks have trem-actinolite.                                                                                                                                                                    | 0.011 | 3.55 |
| M896010            | 3-Jul-21   | 4:21:02PM    | 513596  | 6973710            | 1518   | m F   | н        | Silt         | west         | steep    | 15           | brown            | good         | in gully, float as at 6009.                                                                                                                                                                                                                                                                                          | 0.011 | 2.97 |
| M896015            | 4-Jul-21   | 11:51:49AM   | 514707  | 6973064            | 1364   | m F   | кн       | Silt         | east         | moderate |              | brown            | good         | Silt sample plus 1 gold pan, fine scheelite noted. Float of hornfelsed siltst, quartzite, calc-silicate, exotic conglomerate. Rare granitoid boulders.                                                                                                                                                               | 0.026 | 0.93 |
| M896016            | 4-Jul-21   | 1:04:09PM    | 514573  | 6973208            | 1408   | m F   | ιH       | Silt         | east         | steep    |              | brown            | good         | silt sample plus 1 gold pan. Float of metased, qtzite. Boulder trap and overflow bar. Lots of scheelite, X2 of 6015 sample. Granite boulder 204 m upstream.                                                                                                                                                          | 0.01  | 0.66 |
| M896017            | 4-Jul-21   | 2:19:32PM    | 514288  | 6973340            | 1448   | m F   | кн       | Silt         | east         | steep    |              | brown            | moderate     | tough to get sample, small, <2mm screened sample, Float and scree of<br>Metased rocks cross cut by abundant white qtz veinlets.                                                                                                                                                                                      | 0.031 | 0.64 |
| M896018            |            | 3:04:30PM    |         | 6973405            |        | -     | кн.      | Silt         | east         | steep    |              | brown            |              | Small tight creek, ok screened sample. Float of usual metased rocks.                                                                                                                                                                                                                                                 | 0.005 | 0.48 |
| M896019            |            | 3:26:19PM    |         | 6973349            |        |       | кн       | Silt         | east         | steep    |              | brown            | good         | Small creek, no screened, FeOx moss crete and talus fines from side bar.<br>Metased rocks.                                                                                                                                                                                                                           | 0.007 | 0.86 |
| M896022            | 6-Jul-21   | 11:54:26AM   | 516082  | 6971951            | 1338   | m F   | н        | Silt         |              | steep    |              | brown            | good         | Dry creek, 0.75m in 5 m wide gully. Sample from overflow bar. Float of metased, hornfels, argillite +/- minor qtz veining with trace sulfides.                                                                                                                                                                       | 0.006 | 0.59 |

|         | AuME-TL44 |
|---------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
|         | Al        | As        | В         | Ва        | Ве        | Bi        | Ca        | Cd        | Ce        | Со        | Cr        | Cs        | Cu        | Fe        | Ga        | Ge        | Hf        |
| Sample  | %         | ppm       | ppm       | ppm       | ppm       | ppm       | %         | ppm       | ppm       | ppm       | ppm       | ppm       | ppm       | %         | ppm       | ppm       | ppm       |
|         |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |
| M895628 | 7.48      | 1080      | <10       | 40        | 7.39      | 0.57      | 0.5       | 1.93      | 74.9      | 27.5      | 19        | 1.72      | 269       | 16.55     | 4.46      | 0.55      | 0.23      |
|         |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |
| M896001 | 0.24      | 258       | <10       | 20        | 0.07      | 2.07      | 0.03      | 0.12      | 2.12      | 1         | 9         | 1.56      | 108.5     | 33        | 2.13      | 0.18      | 0.06      |
| M896002 | 0.2       | 303       | <10       | 20        | 0.1       | 0.34      | 0.04      | <0.01     | 3.86      | 0.9       | 8         | 0.56      | 82        | 40.4      | 1.93      | 0.24      | 0.05      |
| M896003 | 1.12      | 191       | <10       | 360       | 0.62      | 1.64      | 0.73      | 6.92      | 10.75     | 6.7       | 22        | 3.61      | 54.9      | 2.08      | 3.96      | 0.05      | 0.1       |
| M896005 | 1.39      | 2180      | 10        | 120       | 1.07      | 7.7       | 0.85      | 35.5      | 14.4      | 26.4      | 26        | 4.48      | 337       | 4.47      | 4.11      | 0.11      | 0.05      |
| M896006 | 1.6       | 1770      | <10       | 160       | 0.98      | 9.42      | 0.58      | 12.1      | 14.55     | 19.4      | 20        | 4.8       | 311       | 4.37      | 4.79      | 0.1       | 0.07      |
| M896010 | 1.08      | 3060      | 10        | 130       | 0.99      | 10.05     | 0.68      | 50.7      | 19.65     | 26        | 28        | 5.56      | 401       | 5.58      | 3.52      | 0.15      | 0.05      |
| M896015 | 1.4       | 313       | <10       | 200       | 1.17      | 10.1      | 0.46      | 9.17      | 25.1      | 15.9      | 22        | 3.22      | 126.5     | 2.2       | 4.3       | 0.06      | 0.02      |
| M896016 | 1.45      | 269       | <10       | 180       | 1.08      | 12.9      | 0.46      | 6.17      | 24.8      | 14.3      | 22        | 2.5       | 135       | 2.27      | 4.16      | 0.07      | 0.02      |
| M896017 | 1.07      | 158       | <10       | 190       | 0.84      | 12.35     | 0.42      | 6.37      | 23.5      | 13.8      | 20        | 2.15      | 105.5     | 2.01      | 3.49      | 0.07      | 0.03      |
| M896018 | 1.08      | 239       | <10       | 190       | 0.68      | 2.05      | 0.3       | 4.37      | 26.2      | 9.8       | 23        | 3.38      | 62.6      | 2.42      | 3.46      | 0.07      | <0.02     |
| M896019 | 1.18      | 220       | <10       | 150       | 0.41      | 3.48      | 0.17      | 0.77      | 16.7      | 6.6       | 21        | 2.53      | 55.5      | 4.86      | 4.03      | 0.06      | 0.02      |
| M896022 | 1.92      | 191       | <10       | 280       | 1.02      | 2.09      | 0.65      | 13.3      | 21.5      | 58.4      | 29        | 5.99      | 159       | 2.91      | 4.22      | 0.07      | 0.07      |

|         | AuME-TL44 |
|---------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
|         | Hg        | In        | К         | La        | Li        | Mg        | Mn        | Mo        | Na        | Nb        | Ni        | Р         | Pb        | Rb        | Re        | S         | Sb        |
| Sample  | ppm       | ppm       | %         | ppm       | ppm       | %         | ppm       | ppm       | %         | ppm       | ppm       | ppm       | ppm       | ppm       | ppm       | %         | ppm       |
|         |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |
| M895628 | 0.04      | 0.598     | 0.08      | 25.7      | 12.9      | 0.17      | 410       | 112.5     | 0.04      | 0.6       | 57.6      | 340       | 13.6      | 8.2       | 0.003     | 1.45      | 22        |
| M896001 | 0.08      | 0.087     | 0.07      | 1.2       | 3         | 0.07      | 36        | 2.83      | 0.02      | 0.33      | 7.8       | 940       | 18.9      | 3.3       | 0.008     | 2.86      | 5.65      |
| M896002 | 0.02      | 0.11      | 0.02      | 1.4       | 2.1       | 0.05      | 18        | 32.3      | <0.01     | 0.22      | 5.2       | 490       | 2.9       | 1.9       | 0.002     | 3.95      |           |
|         |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |
| M896003 | 0.05      | 0.041     | 0.18      | 5         | 23.8      | 0.35      | 357       | 11.25     | 0.04      | 0.26      | 43.8      | 760       | 26.3      | 14.6      | 0.007     | 0.1       | 7.71      |
| M896005 | 0.08      | 0.405     | 0.07      | 7.3       | 23.2      | 0.49      | 915       | 19.3      | 0.02      | 0.22      | 149.5     | 1090      | 59.3      | 8         | 0.007     | 0.07      | 27.7      |
| M896006 | 0.08      | 0.585     | 0.06      | 7.1       | 18.6      | 0.47      | 670       | 12.3      | <0.01     | 0.3       | 61.4      | 1200      | 97.7      | 7.4       | 0.004     | 0.08      | 21.4      |
| M896010 | 0.03      | 0.563     | 0.07      | 10.3      | 29.7      | 0.42      | 938       | 22        | <0.01     | 0.21      | 122.5     | 1150      | 59.2      | 9.8       | 0.006     | 0.08      | 38.1      |
| M896015 | <0.01     | 0.08      | 0.05      | 11.8      | 20.1      | 0.39      | 1060      | 9.99      | 0.01      | 0.32      | 68.7      | 990       | 33.2      | 8.4       | 0.005     | 0.02      | 9.01      |
| M896016 | <0.01     | 0.075     | 0.05      | 11.6      | 20.9      | 0.36      | 938       | 9.69      | 0.01      | 0.28      | 64.4      | 1050      | 33        | 6.9       | 0.006     | 0.02      | 8.21      |
| M896017 | 0.02      | 0.055     | 0.05      | 11.4      | 14.3      | 0.34      | 829       | 3.54      | 0.01      | 0.32      | 51.4      | 1080      | 24.4      | 6.5       | 0.001     | 0.01      | 5         |
| M896018 | 0.04      | 0.047     | 0.05      | 12.8      | 14.1      | 0.33      | 563       | 3.38      | <0.01     | 0.27      | 40.2      | 1020      | 14.3      | 7         | 0.001     | 0.02      | 5.77      |
| M896019 | 0.09      | 0.044     | 0.05      | 8.1       | 13.1      | 0.34      | 310       | 4.03      | 0.01      | 0.5       | 22.6      | 960       | 20.7      | 7.6       | 0.001     | 0.23      | 9.74      |
| M896022 | 0.1       | 0.057     | 0.12      | 10.5      | 23.1      | 0.42      | 1140      | 11.65     | 0.05      | 0.7       | 156       | 1220      | 22.5      | 13.6      | 0.002     | 0.07      | 4.2       |

|         | AuME-TL44 |             |
|---------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-------------|
|         | Sc        | Se        | Sn        | Sr        | Та        | Те        | Th        | Ti        | TI        | U         | v         | W         | Y         | Zn        | Zr        |             |
| Sample  | ppm       | %         | ppm       | Certificate |
|         |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |             |
| M895628 | 12.9      | 5.6       | 0.5       | 33.1      | 0.02      | 0.08      | 16.7      | 0.02      | 0.09      | 51.8      | 49        | 0.77      | 38.4      | 223       | 5.9       | WH21268255  |
| M896001 | 1.1       | 6.2       | 0.8       | 6.7       | <0.01     | 0.2       | 3.4       | 0.012     | 0.11      | 0.74      | 28        | 2.98      | 0.84      | 57        | 2.2       | WH21182905  |
| M896002 | 1         | 5         | 0.2       | 4.2       | <0.01     | 0.05      | 3.5       | 0.006     | 0.03      | 1.22      | 17        | 0.58      | 1.16      | 36        | 2.8       | WH21182905  |
| M896003 | 2.5       | 4.1       | 2.1       | 59.7      | <0.01     | 0.14      | 3.7       | 0.028     | 0.34      | 3.13      | 67        | 3.54      | 7.85      | 410       | 7         | WH21230997  |
| M896005 | 2.7       | 12.8      | 11.8      | 85.3      | <0.01     | 0.41      | 2.5       | 0.011     | 0.21      | 7.47      | 78        | 39.1      | 12.7      | 2230      | 2.3       | WH21230997  |
| M896006 | 2.7       | 12.1      | 14.5      | 100       | <0.01     | 0.48      | 2.9       | 0.011     | 0.2       | 4.13      | 49        | 23        | 9.28      | 594       | 2.2       | WH21182905  |
| M896010 | 3.2       | 11.2      | 14.1      | 47.8      | <0.01     | 0.34      | 2         | 0.014     | 0.23      | 8.79      | 76        | 56.4      | 16.35     | 2060      | 1.6       | WH21182905  |
| M896015 | 3.1       | 1.6       | 1.9       | 35.4      | <0.01     | 0.38      | 2.4       | 0.025     | 0.15      | 3.65      | 45        | 220       | 13.05     | 473       | 0.6       | WH21182905  |
| M896016 | 2.8       | 1.8       | 1.9       | 31.8      | <0.01     | 0.54      | 2.6       | 0.021     | 0.15      | 2.6       | 42        | 360       | 13.2      | 465       | 0.8       | WH21182905  |
| M896017 | 3         | 1.2       | 1.3       | 28.8      | <0.01     | 0.5       | 3         | 0.029     | 0.11      | 2.16      | 42        | 26.3      | 11.65     | 388       | 1         | WH21182905  |
| M896018 | 2.7       | 1.5       | 1         | 22.1      | <0.01     | 0.11      | 1.6       | 0.027     | 0.13      | 2.65      | 42        | 19        | 12        | 231       | <0.5      | WH21182905  |
| M896019 | 2.1       | 1.8       | 1.2       | 20        | <0.01     | 0.16      | 1.1       | 0.027     | 0.15      | 1.25      | 40        | 8.13      | 5.52      | 115       | 0.5       | WH21182905  |
| M896022 | 3.4       | 6.7       | 1         | 61        | <0.01     | 0.16      | 2.7       | 0.035     | 0.35      | 3.65      | 70        | 37.8      | 18.05     | 1680      | 1.9       | WH21230997  |

## APPENDIX B

**Rock Sample Descriptions &** 

**Analytical Results** 

2021 Goldorak Report

|          | Goldorak 2021 R  | ock Sample | 25         |          |         |      |   |         |      |       |                |            |                             |       |         |      |        |
|----------|------------------|------------|------------|----------|---------|------|---|---------|------|-------|----------------|------------|-----------------------------|-------|---------|------|--------|
|          | All Coordinates; | Grid :UTM, | Datum NAD8 | 3 Zone 8 | 3V      |      |   |         |      |       |                |            |                             |       |         |      |        |
| Station  | Sulfide content  | Date       | Time       | East     | North   | Elev | m | Sampler | Туре | Type2 | Structure_Type | Strike-Dip | Lithology                   | Min1  | Min1Per | Min2 | Min2Pe |
|          |                  |            |            |          |         |      |   |         |      |       |                |            |                             |       |         |      |        |
| W425851  | Low              | 1-Jul-21   | 7:31:45PM  | 513773   | 6973580 | 1682 | m | RH      | Rock | Grab  | Otz vein       | 022/68F    | hornfels<br>siltstone - qtz | FeOx  | <1      |      |        |
| 11425051 | LOW              | 1 301 21   | 7.51.451 1 | 515775   | 0373300 | 1002 |   |         | Nock | Glub  | QLE Vein       | 0227002    |                             | TCOX  | .1      |      |        |
| W425852  | Low              | 2-Jul-21   | 10:49:05AM | 513176   | 6973393 | 1298 | m | RH      | Rock | Grab  | banding        | 098/60S    | Quartzite                   | ру    | 2.5     | ро   | 2.5    |
| W425853  | Low              | 2-Jul-21   | 1:37:53PM  | 512752   | 6973525 | 1115 | m | RH      | Rock | Grab  | foliation      | 255/60     | argillite                   | ру    | 2       | Aspy | tr     |
| W425854  | Medium           | 2-Jul-21   | 2:53:47PM  | 512899   | 6973680 | 1183 | m | RH      | Rock | Grab  | bedding        | 095/70S    | marble                      | sph   | 5       | ?    | 3-Jan  |
| W425855  | Low              | 2-Jul-21   | 6:07:10PM  | 513390   | 6973557 | 1478 | m | RH      | Rock | Grab  |                |            | qtz                         |       |         |      |        |
| W425856  | Low              | 3-Jul-21   | 10:25:32AM | 513770   | 6973836 | 1677 | m | RH      | Rock | Grab  | joint          | 217/80     | hornfels                    | ро    | 2       | сру  | 0.5    |
| W425857  | Low              | 3-Jul-21   | 1:10:21PM  | 513539   | 6973983 | 1584 | m | RH      | Rock | Grab  | shear          | 120/90     | metased                     | ру-ро | <5      | сру  | tr     |
|          |                  |            |            |          |         |      |   |         |      |       |                |            |                             |       |         |      |        |
| W425858  | Low              | 3-Jul-21   | 2:21:06PM  | 513472   | 6973979 | 1549 | m | RH      | Rock | Float |                |            | marble                      | ро    | <2      |      |        |
| W425859  | Low              | 4-Jul-21   | 12:46:43PM | 514665   | 6973105 | 1390 | m | RH      | Rock | Float |                |            | granite                     | ру    | tr      |      |        |
| W425860  | High             | 4-Jul-21   | 5:42:05PM  | 513433   | 6973207 | 1514 | m | RH      | Rock | grab  | contact        | 120/425    | sulfide                     | ро-ру | 35      | sph  | tr     |
|          |                  |            |            |          |         |      |   |         |      |       |                |            |                             |       |         |      |        |
| W425861  | High             | 4-Jul-21   | 7:08:51PM  | 513690   | 6973333 | 1634 | m | RH      | Rock | Grab  | bedding        | 100/555    | sulfide band                | ру    | 20      | ро   | 5      |
| W425862  | Low              | 5-Jul-21   | 9:26:25AM  | 513836   | 6972565 | 1748 | m | RH      | Rock | Float |                |            | hornfels                    | sph   | 3       | ро   | 3      |
|          |                  |            |            |          |         |      |   |         |      |       |                |            |                             |       |         |      |        |
| W425863  | Medium           | 5-Jul-21   | 11:38:08AM | 512741   | 6972857 | 1462 | m | RH      | Rock | Grab  | bedding        | 098/54S    | skarn                       | sph   | 10      | ру   | 20     |

|          |                                                                                                                                                      | Au-AA24 | ME-ICP61 |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|          |                                                                                                                                                      | Au      | Ag       | Al       | As       | Ва       | Be       | Bi       | Ca       | Cd       | Со       | Cr       | Cu       | Fe       | Ga       | К        |
| Station  | Description                                                                                                                                          | ppm     | ppm      | %        | ppm      | ppm      | ppm      | ppm      | %        | ppm      | ppm      | ppm      | ppm      | %        | ppm      | %        |
|          | Qtz veining exposed in Outcrop of qtz veining cutting rusty weathering                                                                               |         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
|          | hornfelsed siltstone with biotitie-amphibole-actinolite. Qtz vein zone up to                                                                         |         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
|          | 1m wide of coarse white to grey coarse qtz, cm scale and finer crystals.                                                                             |         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
|          | Vuggy with FeOx/limonite filling and coating voids and vugs. No vis sulfides.                                                                        |         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
| W425851  | vein zone traced 75 m to the west.                                                                                                                   | 0.006   | 0.5      | 1.78     | 284      | 290      | 1        | . 7      | 0.04     | 0.5      | 1        | . 30     | 86       | 1.2      | 10       | 0.79     |
|          |                                                                                                                                                      |         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
|          | Bleached sulphidic quartzite, appears to be a 25cm wide band in otherwise                                                                            |         |          |          |          |          |          |          |          |          |          |          | = -      |          |          |          |
|          | boring rusty weathering dark grey py-po argillite. JdP discovery.                                                                                    | 0.008   | 1.3      | 1.99     | 8        | 70       | 0.8      | 2        | 20.6     | 20.2     | 3        | 52       | 59       | 2.55     | 10       | 0.03     |
|          | Weakly sheared grey argillite with blebs of very light colored pyrite; pyrite                                                                        |         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
|          | stringers and diss. Possible diss aspy? Py blebs, 1-2mm, mostly along                                                                                |         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
| W425853  |                                                                                                                                                      | 0.025   | 1.9      | 6.55     | 77       | 530      | 2.4      | 2        | 2.64     | 0.5      | 3        | 86       | 23       | 3.18     | 20       | 0.93     |
|          | Grey limestone-marble with diss med-crse grained crystalline sph and                                                                                 | 0.51    | 2490     | 1.96     | 9900     | 50       | 0.6      | 4460     | 2.96     | 580      | 37       | 78       | 342      | 8.78     | 10       | 1.02     |
| vv425854 | mystrey grey sulfide (poss aspy?).                                                                                                                   | 0.51    | 2490     | 1.90     | 9900     | 50       | 0.0      | 4400     | 2.90     | 580      | 57       | /8       | 542      | 0.70     | 10       | 1.02     |
|          | 40 cm band bright orange weathering decomposed - oxidized crystalline<br>qtz veining, minor vuggy - coxcomb qtz veinlets cutting grey argillite. JdP |         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
| W425855  |                                                                                                                                                      | 0.008   | 6.9      | 0.63     | 24       | 30       | 0.5      | 7        | 0.04     | 1.4      | 1        | . 12     | 107      | 8.69     | 10       | 0.1      |
|          | Outcrop of rusty weathering pod of hornfels with blebs and diss of 1-2% po                                                                           | 0.008   | 0.9      | 0.03     | 24       |          | 0.5      | /        | 0.04     | 1.4      | 1        | . 12     | 107      | 8.03     | 10       | 0.1      |
|          | and tr - 0.5% cpy. 2m from sample W641886.                                                                                                           | 0.005   | 11.6     | 4.03     | 58       | 1340     | 1.2      | 17       | 8.03     | 1.9      | 6        | 113      | 554      | 4.74     | 10       | 1.37     |
|          |                                                                                                                                                      | 0.005   | 1110     |          | 50       | 1010     |          |          | 0.00     | 1.5      |          |          | 551      |          |          | 2.07     |
|          | sheared metased, minor calcite, tremolite, bleached, argillic alteration.                                                                            |         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
|          | Cross cut by mm gtz veinlets +/- sulfides (py, po, cpy), <5% overall.                                                                                | 0.005   | 1.7      | 4.39     | 297      | 950      | 1.3      | 2        | 7.23     | 0.5      | 8        | 119      | 288      | 2.72     | 10       | 1.66     |
|          |                                                                                                                                                      | 0.005   |          |          | 207      | 550      | 1.0      | _        | /120     | 0.5      |          |          | 200      | 2.7.2    |          | 2.00     |
|          | Scree of white weathering white-light grey crystalline marble, minor                                                                                 |         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
|          | tremolite, crosscut by occasional 2-4mm coarse grained coxcomb qtz                                                                                   |         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
|          | veinlets with 1-2% diss pyrrohotite. Dark grey siliceous selvege with 2% po.                                                                         | 0.009   | 1.1      | 3.4      | 434      | 1320     | 1.1      | 2        | 11.6     | 1.6      | 4        | 43       | 77       | 1.93     | 10       | 1.92     |
|          | in creek, 25x30x20cm boulder x/c by 3mm coarse grained coxcomb qtz vein                                                                              |         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
|          | with 15% cream colored coarse calcite crystals. Vugs lined with smokey qtz.                                                                          |         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
|          | Tr py. Wallrock is sericite altered bleached and finer grained granite. Less                                                                         |         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
| W425859  | qtz phenos on 5cm vein margin.                                                                                                                       | 0.005   | 2        | 4.81     | 91       | 760      | 3.7      | 4        | 0.49     | 2.5      | 1        | . 16     | 10       | 0.82     | 10       | 2.43     |
|          | Grab from outcrop of sulfide pod. 30cm thick x 1m long. Composed of grey                                                                             |         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
|          | qtz-chl with 30% fine dis py+po and <3-5% fine gr diss py. Dark crystals of                                                                          |         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
| W425860  | sphalerite? No vis galena.                                                                                                                           | 0.314   | 6.2      | 1.65     | 228      | 50       | 1.2      | 55       | 7.35     | 2.4      | 20       | 17       | 3940     | 22.9     | 10       | 0.02     |
|          |                                                                                                                                                      |         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
|          | Semi massive and massive weathered sulfide subcrop in poorly exposed                                                                                 |         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
|          | grassy mossy scree. Sulfide band <25cm thick bed in bedded argillite. Likely                                                                         |         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
| W425861  | 1-3% fine cpy, likely 10%? Black sph and possibly aspy present.                                                                                      | 3.31    | 7.1      | 1.44     | 46       | 30       | 1.7      | 674      | 4.17     | 2.7      | 38       | 35       | 2130     | 32.3     | 10       | 0.01     |
|          | Float - subcrop of rusty weathering purple hornfels siltstone cross cut by                                                                           |         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
|          | thin <1cm white - grey qv with blebs po, blebs - segregations of sph and tr                                                                          |         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
|          | cpy. Overall 3% sph and 3% po in sample.                                                                                                             | 0.02    | 1.8      | 4.76     | 609      | 150      | 0.5      | 3        | 2.08     | 0.5      | 11       | . 37     | 132      | 14.9     | 10       | 0.84     |
|          | GC showing; 30 cm thick subcrop of semimassive sulfide skarn type                                                                                    |         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
|          | mineralization of qtz, actinolite, chlorite, sph, py, py, tr cpy. Interbedded                                                                        |         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
|          | with shale and limestone-marble. Isoclinal minor folds axial plane 090/62.                                                                           |         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
|          | Sulfide - skarn band 10m to N is approx 1 m thick, trends 056/42S, goes                                                                              |         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
| W425863  | through saddle in ridge?                                                                                                                             | 0.177   | 0.7      | 0.43     | 863      | 20       | 0.5      | 2        | 1.71     | 95.3     | 6        | 5 5      | 212      | 32.6     | 10       | 0.07     |

|         | ME-ICP61 |             |
|---------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-------------|
|         | La       | Mg       | Mn       | Mo       | Na       | Ni       | Р        | Pb       | S        | Sb       | Sc       | Sr       | Th       | Ti       | TI       | U        | V        | W        | Zn       |             |
| Station | ppm      | %        | ppm      | ppm      | %        | ppm      | ppm      | ppm      | %        | ppm      | ppm      | ppm      | ppm      | %        | ppm      | ppm      | ppm      | ppm      | ppm      | Certificate |
|         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |             |
| W425851 | 10       | 0.11     | 91       | 4        | 0.02     | 35       | 330      | 6        | 0.01     | 20       | 3        | 6        | 20       | 0.08     | 10       | 10       | 110      | 10       | 134      | WH21182911  |
| W425852 | 10       | 0.34     | 1300     | 2        | 0.05     | 27       | 990      | 14       | 1.43     | 5        | 13       | 272      | 20       | 0.11     | 10       | 10       | 42       | 20       | 3110     | WH21182911  |
| W425853 | 20       | 1.85     | 898      | 24       | 1.51     | 18       | 440      | 14       | 2.43     | 84       | 15       | 402      | 20       | 0.31     | 10       | 10       | 391      | 10       | 51       | WH21182911  |
| W425854 | 20       | 2.02     | 2310     | 33       | 0.09     | 83       | 590      | 59200    | 7.94     | 1035     | 6        | 79       | 20       | 0.16     | 10       | 10       | 233      | 10       | 47100    | WH21182911  |
| W425855 | 10       | 0.04     | 109      | 1        | 0.01     | 6        | 660      | 69       | 0.06     | 5        | 2        | 4        | 20       | 0.03     | 10       | 10       | 86       | 10       | 480      | WH21182911  |
| W425856 | 40       | 3.34     | 818      | 4        | 0.47     | 17       | 1970     | 224      | 1.11     | 7        | 10       | 267      | 20       | 0.31     | 10       | 10       | 102      | 10       | 218      | WH21182911  |
| W425857 | 50       | 2.48     | 487      | 11       | 0.33     | 80       | 3730     | 18       | 0.95     | 5        | 13       | 230      | 20       | 0.3      | 10       | 10       | 140      | 10       | 55       | WH21182911  |
| W425858 | 20       | 3.24     | 745      | 1        | 0.24     | 19       | 570      | 18       | 0.41     | 7        | 5        | 227      | 20       | 0.26     | 10       | 10       | 47       | 10       | 133      | WH21182911  |
|         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |             |
| W425859 | 10       | 0.19     | 351      | 1        | 0.04     | 7        | 150      | 60       | 0.03     | 20       | 3        | 14       | 20       | 0.04     | 10       | 10       | 6        | 10       | 33       | WH21182911  |
| W425860 | 10       | 0.85     | 7670     | 1        | 0.02     | 34       | 470      | 6        | 10       | 5        | 6        | 59       | 20       | 0.08     | 10       | 10       | 134      | 200      | 395      | WH21182911  |
|         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |             |
| W425861 | 10       | 0.54     | 1620     | 3        | 0.01     | 54       | 740      | 4        | 10       | 5        | 4        | 98       | 20       | 0.1      | 10       | 10       | 67       | 690      | 260      | WH21182911  |
| W425862 | 20       | 1.28     | 220      | 1        | 0.31     | 30       | 350      | 5        | 8.04     | 5        | 5        | 93       | 20       | 0.17     | 10       | 10       | 37       | 10       | 24       | WH21182911  |
|         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |             |
| W425863 | 10       | 1.32     | 16850    | 1        | 0.03     | 13       | 70       | 60       | 5.12     | 77       | 2        | 11       | 20       | 0.01     | 10       | 10       | 5        | 10       | 43200    | WH21182911  |

|                    | Goldorak 2021 R  | ock Sample | S                        |        |         |      |   |         |              |              |                |            |           |               |         |      |        |
|--------------------|------------------|------------|--------------------------|--------|---------|------|---|---------|--------------|--------------|----------------|------------|-----------|---------------|---------|------|--------|
|                    | All Coordinates; |            |                          | _      |         |      |   |         |              |              |                |            |           |               |         |      | -      |
| Station            | Sulfide content  | Date       | Time                     | East   | North   | Elev | m | Sampler | Туре         | Type2        | Structure_Type | Strike-Dip | Lithology | Min1          | Min1Per | Min2 | Min2Pe |
| W425864            | Medium           | 5-Jul-21   | 1:50:08PM                | 512359 | 6973048 | 1319 | m | RH      | Rock         | Grab         | bedding        | 110/825    | hornfels  | ру-ро         | <5      | sph  | <2     |
| W425865            | Low              | 5-Jul-21   | 2:34:01PM                | 512661 | 6972828 | 1460 | m | RH      | Rock         | Grab         |                |            |           |               |         |      |        |
| W425866            | Low              | 6-Jul-21   | 3:00:24PM                | 516244 | 6971906 | 1408 | m | RH      | Rock         | Grab         |                |            | argillite | сру           | tr      | ро   | 0.5    |
| W425867            | Low              | 7-Jul-21   | 9:51:51AM                |        |         |      |   | RH      | Rock         | Grab         | bedding        | 308/80N    | siltstone |               |         |      |        |
| W425868<br>W425869 | Low              |            | 11:03:24AM<br>11:31:28AM |        |         |      |   | RH      | Rock<br>Rock | grab<br>grab | joints         | 160/85W    | siltstone | po+py<br>FeOx | 5<br><2 | сру  | tr     |
| W425870            | Low              | 7-Jul-21   | 3:05:50PM                | 516805 | 6974546 | 1557 | m | RH      | Rock         | grab         | bedding        | 130/425    | argillite | FeOx          |         |      |        |
| W425871            | Low              | 8-Jul-21   | 4:32:05PM                | 520510 | 6970845 | 1266 | m | RH      | Rock         | grab         | foliation      | 328/80N    | siltstone | ру            | tr      |      |        |
| W425872            | Low              | 9-Jul-21   | 9:12:01AM                | 520702 | 6969908 | 1187 | m | RH      | Rock         | grab         | foliation      | 100/485    | siltstone | ру            | tr      |      |        |
| W425873            | Low              | 9-Jul-21   | 11:14:53AM               | 521173 | 6969841 | 1213 | m | RH      | Rock         | grab         |                |            | siltstone | ру            | tr      |      |        |
|                    |                  |            |                          |        |         |      |   |         |              |              |                |            |           |               |         |      |        |
| W425874            | Low              | 9-Jul-21   | 1:26:28PM                | 521192 | 6969852 | 1218 | m | RH      | Rock         | chip         | foliation      | 135/60S    | siltstone | aspy          | 0.5     | сру  | tr     |

|           |                                                                                                                                                        | Au-AA24 | ME-ICP61 |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|           |                                                                                                                                                        | Au      | Ag       | Al       | As       | Ва       | Ве       | Bi       | Ca       | Cd       | Со       | Cr       | Cu       | Fe       | Ga       | К        |
| Station   | Description                                                                                                                                            | ppm     | ppm      | %        | ppm      | ppm      | ppm      | ppm      | %        | ppm      | ppm      | ppm      | ppm      | %        | ppm      | %        |
|           | approx 8 m grab above sample W641898 (grab of massive Sx). Sample trends 030 on outcrop face adjacent to recessive gully. Sample of well               |         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
|           | foliated shale-argillite-siltstone-hornfels. No limy bands - replaced by                                                                               |         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
|           | sulfides? Or leached? Minor <10cm bands and blebs of po-sph, minor                                                                                     |         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
|           | actinolite along So. All rock types X/c by <1-2cm white qtz veinlets with                                                                              |         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
|           | vuggy open spaces (leached sulfides?). Minor cross cutting calcite veinlets                                                                            |         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
|           | and along So. Outcrop above PC occ (in photo) is nodular limestone -                                                                                   |         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
| W425864   | Kechika Gp?                                                                                                                                            | 0.024   | 9.2      | 3.39     | 105      | 350      | 0.8      | 2        | 1.01     | 33.7     | 4        | 35       | 172      | 19.5     | 20       | 1.5      |
|           | Outcrop of grey weathering, grey argillite -siltstone with minor FeOx                                                                                  |         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
|           | crosscut by occasional 1-4mm white qv with blebs and diss of po-py, tr cpy                                                                             |         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
| W425865   | in veining, on contacts and as disseminations. Minor calcite.                                                                                          | 0.005   | 1.5      | 7.38     | 6        | 10000    | 2.1      | 2        | 3.18     | 3.2      | 12       | 70       | 72       | 3.42     | 20       | 2.94     |
|           | Grab from 0.5x1.0m outcrop, next to cut line, of rusty weathering argillite                                                                            |         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
|           | crosscut by FeOx - former sx, qtz filled fault structure. Tr cpy, FeOx -                                                                               |         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
| 11/125055 | boxwork texture with vuggy qtz brx. Tr py, tr malachite and azurite, <0.5%                                                                             | 0.250   | 20       | 2.24     | 50       | 100      | 0.5      | 2        | 1.05     | 0.0      | 1        | 37       | 4070     | 12.25    | 10       | 0.75     |
| W425866   | fine gr diss po in fresh grey argillite.                                                                                                               | 0.356   | 28       | 2.21     | 58       | 190      | 0.5      | Z        | 1.95     | 0.6      | 1        | 37       | 4070     | 13.35    | 10       | 0.75     |
|           | Grab of subcrop. Top of ridge, patch about 10m long of limonite stained<br>bleached (white) siltstone - argillite crosscut by mm grey qtz veinlets and |         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
|           | FeOx fractures. No vis Sx. Qtz veinlets have sucrosic qtz and fine white mica                                                                          |         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
|           | on margins. Possible beige feldspar in vein selvege? Back to tightly folded                                                                            |         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
| W425867   | grey FeOx agrillile 20m to E.                                                                                                                          | 0.005   | 1.4      | 6.49     | 12       | 6340     | 1.4      | 2        | 0.66     | 0.5      | 1        | 36       | 46       | 2.28     | 20       | 2.62     |
| 11425007  | In FW of W641900. grab of rusty weathering dark grey siltstone with <5%                                                                                | 0.005   | 1.4      | 0.45     | 16       | 0340     | 1.7      | -        | 0.00     | 0.5      |          | 50       |          | 2.20     | 20       | 2.02     |
| W425868   | diss py, po and tr cpy. Rock is very dense and siliceous.                                                                                              | 0.009   | 2        | 8.22     | 30       | 2110     | 1.7      | 2        | 0.73     | 0.5      | 19       | 56       | 126      | 3.63     | 20       | 3.07     |
|           | Grab of float - scree from top of ridge, rusty weathering grey cherty                                                                                  |         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
|           | argillite-siltstone, fractured, minor 1-3mm qtz-FeOx (weathered sx)                                                                                    |         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
| W425869   | veinlets. FeOx on Fractures and bleached along fractures.                                                                                              | 0.005   | 3.8      | 7.16     | 8        | 1820     | 1.6      | 2        | 2.36     | 3.2      | 2        | 54       | 140      | 3.35     | 20       | 1.34     |
|           | Grab from outcrop above Inform 30+ Au ppb soil sample. Very dark grey                                                                                  |         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
| W425870   | argillite, fractured, minor qtz veinlets and FeOx coatings.                                                                                            | 0.011   | 1.7      | 2.45     | 32       | 2280     | 0.6      | 2        | 0.19     | 0.5      | 1        | 93       | 34       | 2.02     | 10       | 0.78     |
|           | Outcrop over 5 m along bluff trending about 124 deg. Sheared brecciated                                                                                |         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
|           | siltstone with white qtz vein flooding over approx 10cm. Minor mm open                                                                                 |         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
| W425871   | spaces with fine 1-2 mm coxcomb qtz. Tr fine gr py.                                                                                                    | 0.006   | 0.5      | 2.62     | 6        | 460      | 0.8      | 2        | 2.15     | 0.5      | 4        | 43       | 6        | 1.48     | 10       | 1.14     |
|           | Grey weathering white - grey calcie veined and brecciated grey siltstone.                                                                              |         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
|           | Phaccoidal texture. Tr Diss py. Coarse crystalline calcite 2-5mm veinlets.                                                                             |         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
| 14/425072 | About 25m of discontinuous outcrop of cal veined phyllite - siltstone. Local                                                                           | 0.006   | 0.5      | 1.57     | 5        | 180      | 0.5      | -        | 24.7     | 0.5      | 3        | 9        | 3        | 1 22     | 10       | 0.6      |
| VV425872  | massive pink and grey coarse gr calcite.<br>Grab outcrop, face approx 20x30cm of qtz veined, FeOx weathered grey                                       | 0.006   | 0.5      | 1.57     |          | 180      | 0.5      | 2        | 24.7     | 0.5      | 3        | 9        | 3        | 1.22     | 10       | 0.6      |
|           | siltstone crosscut by anastomosing gtz veinlets 1-3mm wide. Tr dis py in                                                                               |         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
| W425873   | weak chl altered vein selvege.                                                                                                                         | 0.151   | 0.5      | 3.52     | 1115     | 420      | 0.5      | 2        | 0.09     | 0.5      | 8        | 29       | 115      | 8.19     | 10       | 0.57     |
|           |                                                                                                                                                        | 0.131   | 0.5      | 5.52     |          | 720      | 0.5      | ۲        | 0.05     | 0.5      | 0        | 23       | 115      | 5.19     | 10       | 0.57     |
|           | 1m chip from small 1.5x0.5m outcrop (after veg removal) of sheared                                                                                     |         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
|           | phyllite-siltstone, rusty - MnOx weathering, x/c by irregular discontinuous                                                                            |         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
|           | qtz veinlets with minor vugs, 1 brx 6cm qtz vein with tr cpy, 0.5% aspy.                                                                               |         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
|           | Local sulfide bands (aspy, py) <1cm thick, <5% FeOx as oxidized veinlets.                                                                              |         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
|           | Sample across face, oblique to S1. Good chlorite on E margin. Wallrock on                                                                              |         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
| W425874   | E side is limy phyllite siltstone with FeOx - cal veinlets.                                                                                            | 0.017   | 0.5      | 4.1      | 16       | 130      | 0.5      | 2        | 0.14     | 0.5      | 7        | 37       | 91       | 25       | 10       | 0.36     |

|          | ME-ICP61 |             |
|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-------------|
|          | La       | Mg       | Mn       | Mo       | Na       | Ni       | Р        | Pb       | S        | Sb       | Sc       | Sr       | Th       | Ti       | TI       | U        | V        | W        | Zn       |             |
| Station  | ppm      | %        | ppm      | ppm      | %        | ppm      | ppm      | ppm      | %        | ppm      | ppm      | ppm      | ppm      | %        | ppm      | ppm      | ppm      | ppm      | ppm      | Certificate |
|          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |             |
| W425864  | 30       | 0.77     | 13050    | 1        | 0.07     | 20       | 300      | 1520     | 0.78     | 37       | 5        | 22       | 20       | 0.17     | 10       | 10       | 33       | 10       | 11350    | WH21182911  |
| W425865  | 40       | 2.24     | 330      | 8        | 0.52     | 38       | 1000     | 53       | 0.17     | 20       | 11       | 411      | 20       | 0.36     | 10       | 10       | 219      | 10       | 272      | WH21182911  |
| VV423803 | 40       | 2.24     | 550      | 8        | 0.52     | 30       | 1000     |          | 0.17     | 20       |          | 411      | 20       | 0.30     | 10       | 10       | 215      | 10       |          | WH21102911  |
| W425866  | 20       | 0.7      | 1370     | 1        | 0.07     | 3        | 170      | 9        | 1.13     | 5        | 5        | 47       | 20       | 0.17     | 10       | 10       | 30       | 10       | 69       | WH21182911  |
| W425867  | 20       | 0.9      | 812      | 1        | 0.96     | 3        | 670      | 10       | 0.17     | 5        | 14       | 235      | 20       | 0.25     | 10       | 10       | 103      | 10       | 38       | WH21182911  |
| W425868  | 20       | 1.36     | 2780     | 2        | 1.78     | 43       | 410      | 38       | 1.48     | 7        | 15       | 251      | 20       | 0.29     | 10       | 10       | 166      | 10       | 49       | WH21182911  |
| W425869  | 10       | 1.6      | 1350     | 3        | 1.84     | 8        | 550      | 16       | 0.35     | 5        | 14       | 449      | 20       | 0.24     | 10       | 10       | 143      | 10       | 60       | WH21182911  |
| W425870  | 10       | 0.74     | 210      | 10       | 0.42     | 10       | 340      | 10       | 0.36     | 11       | 11       | 150      | 20       | 0.13     | 10       | 10       | 272      | 10       | 36       | WH21182911  |
| W425871  | 10       | 0.15     | 214      | 1        | 0.02     | 23       | 300      | 12       | 0.02     | 6        | 2        | 127      | 20       | 0.12     | 10       | 10       | 107      | 10       | 112      | WH21182911  |
| W425872  | 10       | 0.57     | 890      | 1        | 0.03     | 4        | 730      | 4        | 0.02     | 5        | 2        | 722      | 20       | 0.06     | 10       | 10       | 7        | 10       | 12       | WH21182911  |
| W425873  | 30       | 0.8      | 139      | 1        | 0.03     | 4        | 390      | 6        | 0.11     | 7        | 4        | 12       | 20       | 0.12     | 10       | 10       | 24       | 10       | 59       | WH21182911  |
| W425874  | 20       | 0.63     | 8300     | 1        | 0.01     | 19       | 190      | 5        | 0.43     | 5        | 8        | 9        | 20       | 0.16     | 10       | 10       | 32       | 10       | 96       | WH21182911  |

|         | Goldorak 2021 R  | ock Sample | 25         |        |         |      |   |         |      |                |                |            |                          |      |         |      |        |
|---------|------------------|------------|------------|--------|---------|------|---|---------|------|----------------|----------------|------------|--------------------------|------|---------|------|--------|
|         | All Coordinates; | Grid :UTM, | Datum NAD8 | 3 Zone | BV      |      |   |         |      |                |                |            |                          |      |         |      |        |
| Station | Sulfide content  | Date       | Time       | East   | North   | Elev | m | Sampler | Туре | Type2          | Structure_Type | Strike-Dip | Lithology                | Min1 | Min1Per | Min2 | Min2Pe |
| W425875 | Medium           | 9-Jul-21   | 4:22:08PM  | 521116 | 6969858 | 1214 | m | RH      | Rock | chip           | foliation      | 090/80E    | siltstone                | FeOx | 10      | ру   | <10    |
| W425876 | Low              | 10-Jul-21  | 11:07:22AM | 521029 | 6969658 | 1245 | m | RH      | Rock | grab           |                |            | limestone                | ру   | tr      | ро   | tr     |
| W425877 | Low              | 10-Jul-21  | 5:16:20PM  | 520941 | 6969690 | 1252 | m | RH      | Rock | grab           | shear          | 024/90     | metased                  | ру   | tr      |      |        |
| W425878 | Low              | 11-Jul-21  |            | 521170 | 6969745 |      |   | RH      | Rock | grab           | foliation      | 142/625    | schist                   |      |         |      |        |
| W425901 | Low              | 7/8/2021   | 3:38:03    | 520566 | 6970834 | 1267 | m | JDP     | Rock | Grab<br>select | Bedding        | 000/70     | siltstone                | ру   | 0.5     |      |        |
| W425902 | Low              | 7/9/2021   | 10:25:21   | 521142 | 6969853 | 1205 | m | JDP     | Rock | Grab           |                |            | shale                    |      |         |      |        |
| W425903 | Low              | 7/9/2021   | 11:17:33   | 521173 | 6969837 | 1207 | m | JDP     | Rock | Grab           | Bedding        | 115/64     | shale                    |      |         |      |        |
| W425904 | Medium           | 7/9/2021   | 11:37:32   | 521172 | 6969837 | 1217 | m | JDP     | Rock | Grab           |                |            | shale                    | aspy | 10      | сру  | 0.1    |
| W425905 | High             | 7/9/2021   | 12:40:48   | 521175 | 6969836 | 1220 | m | JDP     | Rock | Grab           |                |            | semi-massive<br>sulphide | aspy | 15      | sco  | 2      |
|         |                  |            |            |        |         |      |   |         |      |                |                |            |                          |      |         |      |        |
| W425906 | Low              | 7/9/2021   | 13:44:04   | 521173 | 6969836 | 1217 | m | JDP     | Rock | Grab           | bedding        | 130/75     | phyllite                 | aspy | 2       | ру   | 1      |
| W425907 | Low              | 7/9/2021   | 2:09:06    | 521174 | 6969866 | 1217 | m | JDP     | Rock | Grab           |                |            | shale                    | aspy | 1       | ру   | 1      |

|         |                                                                                | Au-AA24 | ME-ICP61 | /IE-ICP61 | ME-ICP61 |
|---------|--------------------------------------------------------------------------------|---------|----------|-----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|         |                                                                                | Au      | Ag       | Al        | As       | Ва       | Be       | Bi       | Ca       | Cd       | Со       | Cr       | Cu       | Fe       | Ga       | К        |
| Station | Description                                                                    | ppm     | ppm      | %         | ppm      | ppm      | ppm      | ppm      | %        | ppm      | ppm      | ppm      | ppm      | %        | ppm      | %        |
|         | Chip sample at site of 2019 W641857 sample. Roough chip over 1 m going         |         |          |           |          |          |          |          |          |          |          |          |          |          |          |          |
|         | N-S, not true width. Dark rusty -MnOx weathering grey siltstone-phyllite       |         |          |           |          |          |          |          |          |          |          |          |          |          |          |          |
|         | with 30cm semi massive oxidized - weathered out sulfide band with              |         |          |           |          |          |          |          |          |          |          |          |          |          |          |          |
|         | remnant py, cpy (<10% total). 70 cm chl altered phyllite - siltstone x/c by    |         |          |           |          |          |          |          |          |          |          |          |          |          |          |          |
|         | occasional lim vuggy qtz veinlets. Tr dis py & cpy in chl alteration. Rock     |         |          |           |          |          |          |          |          |          |          |          |          |          |          |          |
|         | outcrop approx 8m west and going +20m of grey phyllite x/c by mm qtz           |         |          |           |          |          |          |          |          |          |          |          |          |          |          |          |
| W425875 | veinlets with tr dis py cubes.                                                 | 0.033   | 0.5      | 2.4       | 5        | 80       | 0.5      | 2        | 0.11     | 0.5      | 17       | 20       | 240      | 33.4     | 10       | 0.02     |
|         | 2x0.5m outcrop of grey limestone x/c by <1cm calcite veinlets and rare qtz     |         |          |           |          |          |          |          |          |          |          |          |          |          |          |          |
|         | veinlets. Net textured veining, limestone has a green tinge. Tr py in veining  |         |          |           |          |          |          |          |          |          |          |          |          |          |          |          |
|         | and tr po in limestone.                                                        | 0.085   | 1.1      | 3.7       | 9        | 890      | 1        | 2        | 9.08     | 0.5      | 7        | 34       | 344      | 2.57     | 10       | 0.71     |
|         | Grab over 40 cm of fractured - sheared with 2cm white coarse calcite,          |         |          |           |          |          |          |          |          |          |          |          |          |          |          |          |
|         | fractured grey limy cherty metasediments. Tr fine gr acicular grey sulfide, tr |         |          |           |          |          |          |          |          |          |          |          |          |          |          |          |
| W425877 | weathered and fresh py.                                                        | 0.015   | 0.5      | 5.45      | 5        | 5120     | 1.1      | 2        | 7.47     | 0.5      | 9        | 53       | 71       | 3.36     | 10       | 0.7      |
|         |                                                                                |         |          |           |          |          |          |          |          |          |          |          |          |          |          |          |
|         | Grab outcrop from small 30x30x1.25m trench across chl schist (W425915) -       |         |          |           |          |          |          |          |          |          |          |          |          |          |          |          |
| W425878 | grey phyllite. Small fault approx 25cm wide that seems parallel to foliation.  | 0.085   | 0.6      | 4.73      | 169      | 170      | 0.6      | 2        | 0.21     | 0.5      | 15       | 61       | 98       | 25.2     | 20       | 1.01     |
|         | 6x3m wide outcrop. Dark grey, fine grained, sheared-quartz flooded             |         |          |           |          |          |          |          |          |          |          |          |          |          |          |          |
|         | siltstone. Trace fresh pyrite and abundant quartz veinlets locally rusty-      |         |          |           |          |          |          |          |          |          |          |          |          |          |          |          |
|         | vuggy. Sample taken within a 10-15cm wide sheared-quartz veinlets zone.        |         |          |           |          |          |          |          |          |          |          |          |          |          |          |          |
| W425901 | Presence of limestone float to the east of the outcrop.                        | 0.005   | 0.5      | 2.26      | 8        | 390      | 0.6      | 2        | 5.75     | 0.5      | 1        | 32       | 4        | 1.11     | . 10     | 1.05     |
|         | Nagai Showing. Oxidized, rusty weathering surface. Chloritic (altered?)        |         |          |           |          |          |          |          |          |          |          |          |          |          |          |          |
|         | shale/argillite showing beds up to 20-30cm wide and common disrupted-          |         |          |           |          |          |          |          |          |          |          |          |          |          |          |          |
|         | broken quartz veinlets weakly vuggy. No fresh sulphide observed, limonite-     |         |          |           |          |          |          |          |          |          |          |          |          |          |          |          |
| W425902 | goethite.                                                                      | 0.854   | 0.7      | 1.02      | 471      | 20       | 0.5      | 2        | 0.02     | 0.5      | 1        | 21       | 96       | 24.5     | 10       | 0.03     |
|         | Adjacent to sample W641858. 1x0.5m outcrop. Dark grey weakly chloritic         |         |          |           |          |          |          |          |          |          |          |          |          |          |          |          |
|         | shale crosscut by guartz and guartz-calcite veinlets (10-20% calcite overall). |         |          |           |          |          |          |          |          |          |          |          |          |          |          |          |
|         | Weakly sheared (rusty limonite structure at 295/66). No fresh sulphide         |         |          |           |          |          |          |          |          |          |          |          |          |          |          |          |
|         | observed. Abundant iron oxides.                                                | 0.016   | 0.5      | 3.06      | 7        | 230      | 0.5      | 2        | 3.8      | 0.5      | 9        | 33       | 46       | 5.56     | 10       | 0.46     |
|         |                                                                                |         |          |           |          |          |          |          |          |          |          |          |          |          |          |          |
|         | 2x0.8m outcrop. Dark grey-green, chloritic shale (altered?-pervasive), rusty   |         |          |           |          |          |          |          |          |          |          |          |          |          |          |          |
|         | weathering, common quartz fragments and quartz-calcite veinlets.               |         |          |           |          |          |          |          |          |          |          |          |          |          |          |          |
| W425904 | Mineralized arsenopyrite (>5%)-pyrite (?%) and trace chalcopyrite.             | 7.19    | 0.5      | 4         | 10000    | 310      | 0.5      | 17       | 0.04     | 0.5      | 562      | 37       | 73       | 13.6     | 10       | 0.61     |
|         | Dark grey-green, fine grained, chloritic (altered?-pervasive) shale hosted     |         |          |           |          |          |          |          |          |          |          |          |          |          |          |          |
|         | with abundant quartz fragments (brecciated veinlets). Arsenopyrite             |         |          |           |          |          |          |          |          |          |          |          |          |          |          |          |
|         | dominant (>10%) and scorodite staining. Strong association quartz-             |         |          |           |          |          |          |          |          |          |          |          |          |          |          |          |
|         | arsenopyrite observed.                                                         | 7.36    | 0.5      | 2.79      | 10000    | 250      | 0.5      | 19       | 0.08     | 0.5      | 939      | 28       | 45       | 12.35    | 10       | 0.37     |
|         |                                                                                |         |          |           |          |          |          |          |          |          |          |          |          |          |          |          |
|         | 20cm wide phyllite bed weakly chloritic, very irregular break and rusty        |         |          |           |          |          |          |          |          |          |          |          |          |          |          |          |
|         | bands marked by orange-red colour. Abundant brecciated-disrupted quartz        |         |          |           |          |          |          |          |          |          |          |          |          |          |          |          |
|         | veinlets. Sampled in the footwall of the semi-massive sulphide (see            |         |          |           |          |          |          |          |          |          |          |          |          |          |          |          |
|         | W425905). Mineralization stops in carbonate altered phyllite. One              |         |          |           |          |          |          |          |          |          |          |          |          |          |          |          |
|         | structure observed oriented 100/80. One metre long trench.                     | 2.75    | 0.5      | 5.39      | 10000    | 490      | 0.9      | 8        | 1.09     | 0.5      | 368      | 58       | 9        | 9.81     | 10       | 0.95     |
|         | 1x3m outcrop. Rusty weathering, weakly deformed, fractured, more               |         |          |           |          |          |          |          |          |          |          |          |          |          |          |          |
|         | massive than nearby outcrops. Dominant orientation at 060/78 (bedding?).       |         |          |           |          |          |          |          |          |          |          |          |          |          |          |          |
|         | Panel sample of strongly oxidized, moderately to strongly altered siltstone    |         |          |           |          |          |          |          |          |          |          |          |          |          |          |          |
|         | showing common quartz breccia fragments. Mineralized arsenopyrite and          |         |          |           |          |          |          |          |          |          |          |          |          |          |          |          |
|         | probably quartz. Presence of manganese oxides. Brecciated, rusty quartz        |         |          |           |          |          |          |          |          |          |          |          |          |          |          |          |
|         | veinlets up to 3cm wide.                                                       | 0.014   | 0.5      | 4.9       | 133      | 180      | 0.5      | 2        | 0.54     | 0.5      | 6        | 48       | 54       | 17.9     | 10       | 0.29     |
| v42390/ | vennets up to selli wide.                                                      | 0.014   | 0.5      | 4.9       | 155      | 190      | 0.5      | 2        | 0.54     | 0.5      | 6        | 48       | 54       | 17.9     | 10       | 0.29     |

|         | ME-ICP61 |             |
|---------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-------------|
|         | La       | Mg       | Mn       | Mo       | Na       | Ni       | Р        | Pb       | S        | Sb       | Sc       | Sr       | Th       | Ti       | TI       | U        | V        | W        | Zn       |             |
| Station | ppm      | %        | ppm      | ppm      | %        | ppm      | ppm      | ppm      | %        | ppm      | ppm      | ppm      | ppm      | %        | ppm      | ppm      | ppm      | ppm      | ppm      | Certificate |
|         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |             |
| W425875 | 10       | 0.42     | 14550    | 1        | 0.01     | 28       | 150      | 7        | 2.43     | 5        | 6        | 8        | 20       | 0.09     | 10       | 10       | 25       | 10       | 76       | WH21182911  |
| W425876 | 20       | 1.72     | 520      | 1        | 0.67     | 17       | 360      | 12       | 0.05     | 5        | 5        | 190      | 20       | 0.15     | 10       | 10       | 81       | 10       | 110      | WH21182911  |
|         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |             |
| W425877 | 30       | 2.24     | 533      | 2        | 2.23     | 36       | 2560     | 5        | 0.07     | 5        | 8        | 354      | 20       | 0.25     | 10       | 10       | 218      | 10       | 123      | WH21182911  |
| W425878 | 20       | 0.96     | 3260     | 1        | 0.02     | 25       | 480      | 7        | 0.09     | 5        | 8        | 33       | 20       | 0.34     | 10       | 10       | 49       | 10       | 97       | WH21182911  |
|         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          | -        |          |             |
| W425901 | 10       | 0.17     | 249      | 1        | 0.02     | 10       | 190      | 6        | 0.05     | 5        | 2        | 256      | 20       | 0.1      | 10       | 10       | 95       | 10       | 74       | WH21182911  |
|         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |             |
| W425902 | 10       | 0.1      | 1170     | 1        | 0.01     | 1        | 240      | 9        | 0.39     | 5        | 3        | 1        | 20       | 0.11     | 10       | 10       | 27       | 10       | 32       | WH21182911  |
|         |          |          |          |          |          |          |          |          |          | -        |          |          |          |          |          |          |          |          |          |             |
| W425903 | 20       | 1.12     | 584      | 1        | 0.09     | 17       | 270      | 4        | 0.02     | 5        | 4        | 93       | 20       | 0.12     | 10       | 10       | 22       | 10       | 55       | WH21182911  |
| W425904 | 30       | 0.8      | 173      | 1        | 0.15     | 14       | 250      | 10       | 2.89     | 103      | 4        | 23       | 20       | 0.15     | 10       | 10       | 37       | 10       | 59       | WH21182911  |
|         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |             |
| W425905 | 20       | 0.7      | 168      | 1        | 0.15     | 21       | 130      | 14       | 4.38     | 98       | 3        | 27       | 20       | 0.09     | 10       | 10       | 23       | 10       | 45       | WH21182911  |
|         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |             |
| W425906 | 30       | 1.44     | 423      | 1        | 0.31     | 27       | 370      | 7        | 1.76     | 46       | 7        | 68       | 20       | 0.2      | 10       | 10       | 44       | 10       | 78       | WH21182911  |
|         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |             |
| W425907 | 30       | 0.68     | 2790     | 1        | 0.01     | 18       | 360      | 3        | 0.6      | 5        | 7        | 17       | 20       | 0.21     | 10       | 10       | 48       | 10       | 118      | WH21182911  |

|         | Goldorak 2021 R  | ock Sample | S         |           |         |      |   |         |      |                |                |            |                          |      |         |      |        |
|---------|------------------|------------|-----------|-----------|---------|------|---|---------|------|----------------|----------------|------------|--------------------------|------|---------|------|--------|
|         | All Coordinates; | Grid :UTM, | Datum NAD | 83 Zone 8 | BV      |      |   |         |      |                |                |            |                          |      |         |      |        |
| Station | Sulfide content  | Date       | Time      | East      | North   | Elev | m | Sampler | Туре | Type2          | Structure_Type | Strike-Dip | Lithology                | Min1 | Min1Per | Min2 | Min2Pe |
| W425908 | High             | 7/9/2021   | 2:56:14   | 521174    | 6969862 | 1217 | m | JDP     | Rock | Chip           |                |            | semi-massive<br>sulphide | aspy | 15      | ру   | 2      |
| W425909 | Low              | 7/9/2021   | 3:08:39   | 521175    | 6969863 | 1212 | m | JDP     | Rock | Chip           |                |            | siltstone-<br>shale      | ру   | 0.1     | сру  | 0.1    |
| W425910 | High             | 7/9/2021   | 4:22:46   | 521119    | 6969856 | 1209 | m | JDP     | Rock | Chip           |                |            | siltstone-<br>shale      | aspy | 2       | сру  | 0.5    |
| W425911 | Low              | 7/10/2021  | 11:28:36  | 520958    | 6969671 | 1265 | m | JDP     | Rock | Chip           |                |            | felsic<br>intrusion      | ро   | 0.1     | ру   | 0.1    |
| W425912 | Low              | 7/10/2021  | 12:01:34  | 520947    | 6969662 | 1265 | m | JDP     | Rock | Chip           |                |            | felsic<br>intrusion      | ру   | 5       | ро   | 0.1    |
| W425913 |                  | 7/10/2021  | 4:09:43   |           | 6969658 |      |   | JDP     | Rock | Grab<br>select | shear          | 158/76     | calc-silicate            | ру   | 0.5     | сру  | 0.1    |
|         |                  |            |           |           |         |      |   |         |      |                |                |            |                          |      |         |      |        |
| W425914 | Low              | 7/11/2021  | 9:37:13   | 520815    | 6969670 | 1223 | m | JDP     | Rock | Grab           | Bedding        | 108/58     | siltstone-<br>phyllite   | ро   | 0.1     |      |        |
| W425915 | Low              | 7/11/2021  | 11:26:22  | 521174    | 6969747 | 1229 | m | JDP     | Rock | Grab           | Bedding        | 142/62     | siltstone                | сру  | 0.5     |      |        |
| W641880 | Low              | 7/1/2021   | 6:54:11   | 514043    | 6973814 | 1702 | m | JDP     | Rock | Grab           | Vein           | 316/15     | quartz vein              | ру   | 0.5     | ml   | 0.1    |

|         |                                                                                                                                               |       |     |      |     | ME-ICP61 |     |     |       |      |     |      |      |       |     | ME-ICP61 |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|------|-----|----------|-----|-----|-------|------|-----|------|------|-------|-----|----------|
|         | Description                                                                                                                                   | Au    | Ag  | Al   | As  | Ва       | Be  | Bi  | Ca    | Cd   | Со  | Cr   | Cu   | Fe    | Ga  | K        |
| Station | Description                                                                                                                                   | ppm   | ppm | %    | ppm | ppm      | ppm | ppm | %     | ppm  | ppm | ppm  | ppm  | %     | ppm | %        |
|         | Outcrop. Continuous representative chip sample over 50cm. Semi-massive                                                                        |       |     |      |     |          |     |     |       |      |     |      |      |       |     |          |
|         | arsenopyrite-pyrite with common brecciated quartz veinlets-disrupted,                                                                         |       |     |      |     |          |     |     |       |      |     |      |      |       |     |          |
|         | moderately chloritic shale hosted. Weakly oxidized. Some crosscutting                                                                         | 0.000 | 0.5 | 1.02 |     | 120      | 0.5 |     | 0.40  |      |     |      |      | 22.4  | 10  | 0.00     |
| W425908 | quartz veinlets.                                                                                                                              | 0.023 | 0.5 | 1.03 | 66  | 130      | 0.5 | 3   | 0.42  | 0.6  | 8   | 3 7  | 71   | 32.1  | 10  | 0.03     |
|         | Continuous representative chip sample over 75cm. Dark green, strongly                                                                         |       |     |      |     |          |     |     |       |      |     |      |      |       |     |          |
|         | chloritic, sheared, moderately oxidized siltstone/shale with common                                                                           |       |     |      |     |          |     |     |       |      |     |      |      |       |     |          |
|         | brecciated quartz veinlets. Trace pyrite and chalcopyrite. Sample in the                                                                      |       |     |      |     |          |     |     |       |      |     |      |      |       |     |          |
|         | footwall of the semi-massive arsenopyrite bed (see W425908).                                                                                  | 0.106 | 0.5 | 4.43 | 465 | 170      | 0.5 | 2   | 0.04  | 0.5  | 7   | 43   | 73   | 18.45 | 10  | 0.46     |
|         | 1x0.6m outcrop, wall style. Chip/panel sample over 60cm across. Massive                                                                       |       |     |      |     |          |     |     |       |      |     |      |      |       |     |          |
|         | bed up to 40cm wide, fractured/faulted, chloritic siltstone with common                                                                       |       |     |      |     |          |     |     |       |      |     |      |      |       |     |          |
|         | quartz fragments though as broken veinlets. Locally strongly oxidized-                                                                        |       |     |      |     |          |     |     |       |      |     |      |      |       |     |          |
|         | limonite (massive sulphide replacement). Mineralized blebby arsenopyrite-                                                                     |       |     |      |     |          |     |     |       |      |     |      |      |       |     |          |
|         | chalcopyrite (veinlet and blebs) and probably pyrite (?%). Black-dark blue                                                                    |       |     |      |     |          |     |     |       |      |     |      |      |       |     |          |
|         | beds suggesting presence of abundant manganese oxides. Fresh pyrite                                                                           |       |     |      |     |          |     |     |       |      |     |      |      |       |     |          |
| W425910 | observed in quartz.                                                                                                                           | 0.016 | 0.5 | 1.85 | 5   | 30       | 0.5 | 3   | 0.3   | 0.5  | 3   | 3 15 | 57   | 37.9  | 10  | 0.03     |
|         | 1x1m outcrop Ksf Showing. Same outcrop than W641863 (2019). Rounded-                                                                          |       |     |      |     |          |     |     |       |      |     |      |      |       |     |          |
|         | beige weathered surface, granular texture, abundant quartz veining. Silica                                                                    |       |     |      |     |          |     |     |       |      |     |      |      |       |     |          |
|         | flooded, massive. Primary texture obscured by alteration. Crystal ghosts                                                                      |       |     |      |     |          |     |     |       |      |     |      |      |       |     |          |
|         | suggesting intrusive intermediate to felsic (diorite/quartz diorite). Minor                                                                   |       |     |      |     |          |     |     |       |      |     |      |      |       |     |          |
| W425911 | pyrrhotite-pyrite.                                                                                                                            | 0.064 | 0.5 | 7.36 | 7   | 2240     | 0.7 | 2   | 1.55  | 0.5  | 11  | L 15 | 186  | 3.75  | 20  | 1.83     |
|         |                                                                                                                                               |       |     |      |     |          |     |     |       |      |     |      |      |       |     |          |
|         | 1.5x0.6m outcrop. Chip sample over 60cm. Massive, blocky, grey to beige                                                                       |       |     |      |     |          |     |     |       |      |     |      |      |       |     |          |
|         | weathered surface. Grey, granular texture, homogeneous fresh surface.                                                                         |       |     |      |     |          |     |     |       |      |     |      |      |       |     |          |
|         | Weak to moderate calcite alteration associated with sulphides replacing                                                                       |       |     |      |     |          |     |     |       |      |     |      |      |       |     |          |
|         | mafics. Rae quartz veins up to 3cm wide, poorly defined with trace grey                                                                       |       |     |      | -   |          |     |     |       |      |     |      |      |       |     |          |
|         | sulphides (?)-fine grained pyrite and small vugs.                                                                                             | 0.025 | 0.5 | 8.08 | 5   | 2090     | 0.8 | 2   | 4.19  | 0.5  | 14  | 17   | 81   | 4.22  | 20  | 1.17     |
|         | Bottom of the cliff. Strongly jointed calc-silicate (limy metasediment)                                                                       |       |     |      |     |          |     |     |       |      |     |      |      |       |     |          |
|         | crosscut by calcite dominant-quartz shear fault weakly brecciated                                                                             |       |     |      |     |          |     |     |       |      |     |      |      |       |     |          |
|         | (sampled). Mineralized pyrite-aggregated chalcopyrite. Presence of grey<br>weakly mineralized quartz veinlets.                                | 0.122 | 0.7 | 4.05 | 11  | 1860     | 1.1 | 2   | 14.85 | 0.5  | 7   | 42   | 287  | 2.08  | 10  | 0.83     |
|         |                                                                                                                                               | 0.122 | 0.7 | 4.05 | 11  | 1800     | 1.1 | 2   | 14.05 | 0.5  | ,   | 42   | 207  | 2.08  | 10  | 0.83     |
|         | 2x0.5m outcrop (subcrop?) bellow Ksf zone cliff. Sampled to test the<br>extend of the mineralization toward the south. Block to way weathered |       |     |      |     |          |     |     |       |      |     |      |      |       |     |          |
|         | surface, weakly oxidized. Grey-light grey, fine grained, irregular break,                                                                     |       |     |      |     |          |     |     |       |      |     |      |      |       |     |          |
|         | weakly to moderately limy (calcite altered?) siltstone-phyllite. Trace blebby                                                                 |       |     |      |     |          |     |     |       |      |     |      |      |       |     |          |
|         | pyrrhotite. Some calcite-minor quartz veinlets. Overall the rock does not                                                                     |       |     |      |     |          |     |     |       |      |     |      |      |       |     |          |
|         | seems very altered (possibly weak chlorite and moderate calcite-limy black                                                                    |       |     |      |     |          |     |     |       |      |     |      |      |       |     |          |
|         | beds), not hornfeld. Proto-phaccoidal texture suggesting proximity of                                                                         |       |     |      |     |          |     |     |       |      |     |      |      |       |     |          |
| W425914 | major structure.                                                                                                                              | 0.005 | 0.5 | 6.56 | 14  | 3050     | 1.7 | 2   | 7.5   | 0.6  | 13  | 46   | 47   | 3.32  | 20  | 2.43     |
|         | Flaggy weathering chloritic siltstone, very irregular break crosscut by                                                                       |       |     |      |     |          |     |     |       |      |     |      |      |       |     |          |
|         | numerous calcite-minor quartz disrupted veinlets weakly limonitic up to                                                                       |       |     |      |     |          |     |     |       |      |     |      |      |       |     |          |
|         | 1cm wide. Possibly very fine grained "pollen-like" disseminated                                                                               |       |     |      |     |          |     |     |       |      |     |      |      |       |     |          |
|         | chalcopyrite. Ten metres east of the outcrop, the area shows phyllitic rock                                                                   |       |     |      |     |          |     |     |       |      |     |      |      |       |     |          |
|         | (strongly schistose-slaty) with calcite veins up to 10cm wide. This unit                                                                      |       |     |      |     |          |     |     |       |      |     |      |      |       |     |          |
| W425915 | seems to be a poor mineralization host.                                                                                                       | 0.019 | 0.5 | 3.65 | 5   | 190      | 0.5 | 2   | 13.3  | 0.6  | 3   | 3 26 | 11   | 12.1  | 10  | 1.15     |
|         | 3cm wide coarse crystal, white quartz vein. Crystals up to 0.5-1cm large.                                                                     |       |     |      |     |          |     |     |       |      |     |      |      |       |     |          |
|         | Weakly brecciated. Flat line vein metasediment/quartzite hosted-fine                                                                          |       |     |      |     |          |     |     |       |      |     |      |      |       |     |          |
|         | grained, strongly silicified. vein weakly mineralized pyrite, trace malachite                                                                 |       |     |      |     |          |     |     |       |      |     |      |      |       |     |          |
|         | and black-grey mineral possibly tetrahedrite. Sample to test anomalous Au                                                                     |       |     |      |     |          |     |     |       |      |     |      |      |       |     |          |
| W641880 | soil in the area.                                                                                                                             | 0.038 | 213 | 1.3  | 98  | 280      | 0.5 | 59  | 4.59  | 43.1 | 1   | L 25 | 2020 | 1.17  | 10  | 0.35     |

|         |           |         |           |           |         |           |          |           |        |           |           |           |           |         | ME-ICP61  |          |          |          |           |             |
|---------|-----------|---------|-----------|-----------|---------|-----------|----------|-----------|--------|-----------|-----------|-----------|-----------|---------|-----------|----------|----------|----------|-----------|-------------|
| Station | La<br>ppm | Mg<br>% | Mn<br>ppm | Mo<br>ppm | Na<br>% | Ni<br>ppm | P<br>ppm | Pb<br>ppm | S<br>% | Sb<br>ppm | Sc<br>ppm | Sr<br>ppm | Th<br>ppm | Ti<br>% | TI<br>ppm | U<br>ppm | V<br>ppm | W<br>ppm | Zn<br>ppm | Certificate |
| Station | ppin      | 70      | ppm       | ppin      | 70      | ppin      | ppm      | ppiii     | 70     | ppin      | μμιι      | ppin      | ppin      | 70      | ppiii     | ppin     | ppm      | ppin     | ppin      | Certificate |
| W425908 | 10        | 0.73    | 37300     | 1         | 0.01    | 27        | 80       | 11        | 2.72   | 5         | 5         | 6         | 20        | 0.04    | 10        | 10       | 10       | 10       | 56        | WH21182911  |
|         |           |         |           |           |         |           |          |           |        |           |           |           |           |         |           |          |          |          |           |             |
| W425909 | 20        | 0.52    | 3040      | 1         | 0.01    | 16        | 260      | 3         | 1.44   | 5         | 7         | 5         | 20        | 0.2     | 10        | 10       | 43       | 10       | 91        | WH21182911  |
|         |           |         |           |           |         |           |          |           |        |           |           |           |           |         |           |          |          |          |           |             |
| W425910 | 10        | 0.53    | 18800     | 1         | 0.01    | 14        | 80       | 5         | 1.38   | 5         | 6         | 5         | 20        | 0.07    | 10        | 10       | 19       | 10       | 53        | WH21182911  |
|         |           |         |           |           |         |           |          |           |        |           |           |           |           |         |           |          |          |          |           |             |
| W425911 | 10        | 1.61    | 666       | 1         | 1.58    | 8         | 230      | 8         | 0.52   | 5         | 19        | 162       | 20        | 0.2     | 10        | 10       | 141      | 10       | 72        | WH21182911  |
|         |           |         |           |           |         |           |          |           |        |           |           |           |           |         |           |          |          |          |           |             |
| W425912 | 10        | 1.68    | 786       | 1         | 1.57    | 10        | 250      | 20        | 0.45   | 5         | 21        | 180       | 20        | 0.24    | 10        | 10       | 155      | 10       | 80        | WH21182911  |
| W425913 | 30        | 1.09    | 342       | 2         | 1.69    | 20        | 390      | 9         | 0.08   | 5         | 7         | 311       | 20        | 0.18    | 10        | 10       | 82       | 10       | 125       | WH21182911  |
|         |           |         |           |           |         |           |          |           |        |           |           |           |           |         |           |          |          |          |           |             |
| W425914 | 30        | 2.77    | 806       | 1         | 0.05    | 25        | 530      | 7         | 0.12   | 6         | 9         | 188       | 20        | 0.28    | 10        | 10       | 75       | 10       | 113       | WH21182911  |
|         |           |         |           |           |         |           |          |           |        |           |           |           |           |         |           |          |          |          |           |             |
| W425915 | 20        | 0.73    | 11850     | 1         | 0.01    | 12        | 260      | 6         | 0.02   | 5         | 7         | 243       | 20        | 0.17    | 10        | 10       | 29       | 10       | 84        | WH21182911  |
|         |           |         |           |           |         |           |          |           |        |           |           |           |           |         |           |          |          |          |           |             |
| W641880 | 10        | 0.8     | 762       | 2         | 0.03    | 9         | 880      | 5580      | 0.01   | 382       | 2         | 38        | 20        | 0.04    | 10        | 10       | 61       | 10       | 1670      | WH21182911  |

|         | Goldorak 2021 R  |          |          |        |         |      |   |         |      |       |                |            |                            |      |         |      |        |
|---------|------------------|----------|----------|--------|---------|------|---|---------|------|-------|----------------|------------|----------------------------|------|---------|------|--------|
|         | All Coordinates; |          |          |        |         |      |   |         |      |       |                |            |                            |      |         |      |        |
| Station | Sulfide content  | Date     | Time     | East   | North   | Elev | m | Sampler | Туре | Type2 | Structure_Type | Strike-Dip | Lithology                  | Min1 | Min1Per | Min2 | Min2Pe |
| W641881 | Low              | 7/2/2021 | 9:55:24  | 513342 | 6973410 | 1392 | m | JDP     | Rock | Grab  | Bedding        | 188/35     | hornfeld-<br>argillite     | ру   | 2       | ро   | 1      |
| W641882 | Low              | 7/2/2021 | 12:44:22 | 512748 | 6973510 | 1127 | m | JDP     | Rock | Grab  |                |            | metasedimen<br>t           | ру   | 2       | aspy | 0.5    |
| W641883 | Low              | 7/2/2021 | 1:06:09  | 512753 | 6973508 | 1113 | m | JDP     | Rock | Grab  |                |            | metasedimen<br>t-argillite | lim  | 20      |      |        |
| W641884 | Low              | 7/2/2021 | 2:22:30  | 512814 | 6973612 | 1132 | m | JDP     | Rock | Grab  |                |            | argillite-shale            | ру   | 3       | сру  | 0.1    |
| W641885 | Low              | 7/2/2021 | 5:08:30  | 513383 | 6973723 | 1365 | m | JDP     | Rock | Float |                |            | hornfeld<br>quartz-        | ру   | 2       | ро   | 2      |
| W641886 | Low              | 7/3/2021 | 10:29:31 | 513778 | 6973837 | 1671 | m | JDP     | Rock | Grab  | Vein           | 340/50     | carbonate<br>vein          | ру   | 0.1     |      |        |
| W641887 | Low              | 7/3/2021 | 12:31:04 | 513571 | 6973972 | 1592 | m | JDP     | Rock | Grab  |                |            | hornfeld                   | ру   | 5       | sph  | 1      |
| W641888 | Medium           | 7/3/2021 | 3:41:25  | 513614 | 6973763 | 1543 | m | JDP     | Rock | Grab  |                |            | hornfeld                   | ро   | 20      | ру   | 0.5    |
| W641889 | Low              | 7/3/2021 | 4:40:04  | 513586 | 6973688 | 1511 | m | JDP     | Rock | Grab  |                |            | hornfeld-<br>quartzite     | ру   | 2       | aspy | 0.5    |
| W641890 | High             | 7/3/2021 | 6:04:07  | 513622 | 6973536 | 1594 | m | JDP     | Rock | Float |                |            | massive<br>sulphide        | ру   | 10      | aspy | 3      |
| W641891 | Low              | 7/4/2021 | 2:44:43  | 514130 | 6973403 | 1512 | m | JDP     | Rock | Float |                |            | quartz vein                | lim  | 20      |      |        |

|         |                                                                                                                                                     | Au-AA24 | ME-ICP61 |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|         |                                                                                                                                                     | Au      | Ag       | Al       | As       | Ва       | Be       | Bi       | Ca       | Cd       | Со       | Cr       | Cu       | Fe       | Ga       | К        |
| Station | Description                                                                                                                                         | ppm     | ppm      | %        | ppm      | ppm      | ppm      | ppm      | %        | ppm      | ppm      | ppm      | ppm      | %        | ppm      | %        |
|         | Outcrop in gully. Silicified argillite (hornfeld). Bedding at shallow angle and                                                                     |         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
| W641881 | shaly horizon. Mineralized pyrite (euhedral and anhedral) and pyrrhotite.                                                                           | 0.005   | 2.2      | 2.16     | 25       | 230      | 0.6      | 2        | 0.28     | 0.5      | 4        | 58       | 72       | 3.52     | 10       | 0.27     |
|         |                                                                                                                                                     |         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
|         | In creek bed. Sheared, weakly brecciated, silicified argillite-quartzite                                                                            |         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
|         | containing disseminated pyrite and blebby arsenopyrite and pyrrhotite. The                                                                          |         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
| W641882 | host rock shows rusty staining and veining. Overall, crystalline looking rock.                                                                      | 0.007   | 7.4      | 4.16     | 1440     | 1190     | 1.3      | 2        | 6.22     | 2.6      | 9        | 92       | 83       | 2.42     | 10       | 1.41     |
|         | Outcrop. Silicified argillite. Rusty-brecciated, irregular break. No fresh                                                                          |         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
|         | sulphide observed. 20-30% limonite-goethite and bladed texture (after                                                                               |         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
|         | calcite?) quartz veins. Sample at the junction between two mineralized                                                                              |         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
|         | shearing. The mineralization is similar to the sample taken in 2019 on the                                                                          |         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
| W641883 | east side of the Nagai zone-sample W641852/0.310g/t Au.                                                                                             | 0.005   | 2.6      | 5.21     | 109      | 2290     | 2.4      | 2        | 5.42     | 5.2      | 16       | 89       | 143      | 4.91     | 10       | 1.25     |
|         |                                                                                                                                                     |         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
|         | 4X3m outcrop , cliffy-water fall. Argillite, possibly graphitic showing rusty                                                                       |         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
|         | fracture and very irregular break. Mineralized 1-2% blebby pyrite, 1% fine                                                                          |         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
|         | grained pyrite stringers, possibly chalcopyrite and possibly arsenopyrite.                                                                          |         |          |          | 247      | 200      |          | _        | 0.74     | 0.5      | 40       |          | 60       | 4.05     | 20       |          |
| W641884 | Taken at gestation RH21108 (outcrop description).                                                                                                   | 0.04    | 1.7      | 5.44     | 247      | 380      | 1.2      | 2        | 2.71     | 0.5      | 12       | 72       | 69       | 4.05     | 20       | 0.64     |
|         | 40x20x20 float. Rusty-limonite staining, irregular break, crystalline to                                                                            |         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
|         | sucrosic texture. Mineralized pyrite-pyrrhotite dominant and trace<br>chalcopyrite. Presence of a dark grey mineral, possibly sphalerite. Quartz    |         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
| W641885 | veinlets weakly mineralized.                                                                                                                        | 0.015   | 5.7      | 1.38     | 84       | 110      | 1        | 2        | 12.5     | 6.4      | 8        | 15       | 1680     | 7.13     | 10       | 0.09     |
|         |                                                                                                                                                     | 0.015   | 5.7      | 1.50     |          | 110      | -        | -        | 12.5     | 0.4      |          | 10       | 1000     | 7.15     | 10       | 0.03     |
|         | 4cm quartz-carbonate (10%) vein hornfeld/quartzite hosted. Weakly                                                                                   |         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
| W641886 | mineralized pyrite and limonite staining of fracture. Straight-line vein.                                                                           | 0.161   | 43.1     | 0.21     | 92       | 20       | 0.5      | 713      | 2.54     | 5.2      | 1        | 25       | 31       | 0.86     | 10       | 0.05     |
|         | outcrop. Blocky, jointed. Grey-light grey, crystalline to sucrosic texture,                                                                         |         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
|         | quartz dominant, 5% calcite, tremolite on fracture surface. %% sulphide                                                                             |         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
|         | (probably pyrite) and a dark sulphide (possibly sphalerite), trace                                                                                  |         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
|         | chalcopyrite. Common quartz segregation associated with sulphides and                                                                               |         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
| W641887 | medium grained quartz veinlets.                                                                                                                     | 0.005   | 0.9      | 3.74     | 145      | 1660     | 1.1      | 2        | 7.17     | 0.7      | 4        | 74       | 90       | 1.83     | 10       | 2.58     |
|         | Large outcrop (30x10m) forming spur. Grey to purplish coloured, 20-30%                                                                              |         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
|         | disseminated and stringers style pyrrhotite 9along bedding and                                                                                      |         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
|         | crosscutting bedding), trace to 0.5% pyrite. Local quartz segregation and                                                                           |         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
| N641888 | quartz micro-veinlets.                                                                                                                              | 0.005   | 1.3      | 7.65     | 12       | 780      | 2        | 3        | 1.01     | 0.5      | 20       | 54       | 134      | 4.01     | 20       | 4.02     |
|         |                                                                                                                                                     |         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
|         | 10x3m wide outcrop showing quartz vein up to 3-4cm wide, flat-line.                                                                                 |         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
| W6/1990 | Hornfeld-quartzite mineralized pyrite-arsenopyrite and chalcopyrite<br>associated with pyrrhotite (0.55). Some crystalline texture quartz veinlets. | 0.005   | 1.5      | 4.63     | 2890     | 40       | 3.7      | з        | 9.23     | 7.7      | 7        | 61       | 289      | 2.66     | 20       | 0.05     |
| W041885 |                                                                                                                                                     | 0.005   | 1.5      | 4.05     | 2890     | 40       | 5.7      | J        | 9.23     | 7.7      | ,        | 01       | 205      | 2.00     | 20       | 0.03     |
|         | 40x30x20cm float on top of spur. Dark green groundmass, rusty-oxidized<br>on surface and fracture. Crystalline texture. Colour and texture suggest  |         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
|         | chlorite-actinolite. Mineralized pyrite (percentage difficult to estimate)-                                                                         |         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
|         | pyrrhotite (5%)-arsenopyrite (3%)-chalcopyrite (3%)-sphalerite (1%?). The                                                                           |         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
|         | rock sits top of a rusty patch (possibly non-recessive rock, massive                                                                                |         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
|         | sulphide?). No other float of the same nature found nearby suggesting                                                                               |         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
| W641890 | pod/lens structure hosted.                                                                                                                          | 0.041   | 23.9     | 4.28     | 10000    | 180      | 7.6      | 47       | 9.25     | 392      | 3        | 15       | 5370     | 11.2     | 20       | 0.07     |
|         | 50x40x7cm tabular quartz vein float. Rusty-vuggy, 20% limonite infill,                                                                              |         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
|         | coarse grained quartz. Sample to test sheeted vein zone around the                                                                                  |         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
| W641891 | granodiorite intrusion.                                                                                                                             | 0.005   | 0.5      | 0.45     | 383      | 70       | 0.5      | 2        | 0.03     | 2        | 3        | 33       | 66       | 2.14     | 10       | 0.18     |

|         | ME-ICP61 |             |
|---------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-------------|
|         | La       | Mg       | Mn       | Мо       | Na       | Ni       | Р        | Pb       | S        | Sb       | Sc       | Sr       | Th       | Ti       | TI       | U        | V        | W        | Zn       |             |
| Station | ppm      | %        | ppm      | ppm      | %        | ppm      | ppm      | ppm      | %        | ppm      | ppm      | ppm      | ppm      | %        | ppm      | ppm      | ppm      | ppm      | ppm      | Certificate |
| W641881 | 10       | 1.08     | 232      | 1        | 0.12     | 21       | 770      | 15       | 1.1      | 5        | 6        | 48       | 20       | 0.07     | 10       | 10       | 62       | 10       | 111      | WH21182911  |
| W641882 | 20       | 2.97     | 1290     | 19       | 0.2      | 61       | 1310     | 297      | 0.75     | 89       | 11       | 236      | 20       | 0.27     | 10       | 10       | 227      | 10       | 204      | WH21182911  |
|         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |             |
| W641883 | 20       | 2.11     | 1255     | 11       | 0.07     | 138      | 1930     | 92       | 0.13     | 35       | 10       | 227      | 20       | 0.25     | 10       | 10       | 169      | 10       | 1005     | WH21182911  |
|         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |             |
| W641884 | 20       | 1.54     | 568      | 1        | 0.56     | 40       | 400      | 11       | 2.7      | 19       | 14       | 233      | 20       | 0.21     | 10       | 10       | 187      | 10       | 50       | WH21182911  |
| W641885 | 30       | 8.23     | 953      | 2        | 0.03     | 24       | 500      | 21       | 2.37     | 5        | 2        | 44       | 20       | 0.09     | 10       | 10       | 21       | 10       | 324      | WH21182911  |
| W641886 |          | 0.08     |          | 24       | 0.01     | 3        | 60       | 120      |          |          | 1        | 13       |          |          | 10       | 10       | 6        | 10       |          | WH21182911  |
|         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |             |
| W641887 | 40       | 2.87     | 617      | 5        | 0.25     | 47       | 1810     | 15       | 0.35     | 5        | 10       | 215      | 20       | 0.27     | 10       | 10       | 105      | 10       | 78       | WH21182911  |
| W641888 | 20       | 1.26     | 697      | 1        | 1.73     | 53       | 500      | 18       | 1.45     | 5        | 16       | 240      | 20       | 0.29     | 10       | 10       | 123      | 10       | 41       | WH21182911  |
| W641889 | 20       | 2.58     | 2540     | 1        | 0.19     | 29       | 690      | 10       | 0.3      | 26       | 8        | 403      | 20       | 0.37     | 10       | 10       | 108      | 10       | 369      | WH21182911  |
|         |          |          |          |          |          |          |          |          |          |          |          |          |          | 0.07     |          |          |          |          |          |             |
| W641890 | 20       | 0.7      | 8800     | 1        | 0.03     | 21       | 1230     | 9        | 5.54     | 13       | 12       | 82       | 20       | 0.27     | 10       | 10       | 201      | 430      | 9900     | WH21182911  |
| W641891 | 10       | 0.05     | 204      | 4        | 0.01     | 15       | 40       | 4        | 0.03     | 11       | 1        | 3        | 20       | 0.01     | 10       | 10       | 12       | 10       | 284      | WH21182911  |

|         | Goldorak 2021 R  | ock Sample | S        |           |         |      |   |         |      |       |                |            |                                    |      |         |      |         |
|---------|------------------|------------|----------|-----------|---------|------|---|---------|------|-------|----------------|------------|------------------------------------|------|---------|------|---------|
|         | All Coordinates; |            |          | 83 Zone 8 |         |      |   |         |      |       |                |            |                                    |      |         |      |         |
| Station | Sulfide content  | Date       | Time     | East      | North   | Elev | m | Sampler | Туре | Type2 | Structure_Type | Strike-Dip | Lithology                          | Min1 | Min1Per | Min2 | Min2Per |
| W641892 | High             | 7/4/2021   | 4:51:44  | 513465    | 6973207 | 1539 | m | JDP     | Rock | Chip  | Bedding        | 084/45     | hornfeld                           | ру   | 5       | сру  | 2       |
| W641893 | High             | 7/4/2021   | 5:19:45  | 513436    | 6973211 | 1512 | m | JDP     | Rock | Grab  | fault zone     | 105/70     | massive<br>sulphide                | ру   | 20      | сру  | 2       |
| W641894 | Medium           | 7/4/2021   | 6:51:49  | 513608    | 6973301 | 1567 | m | JDP     | Rock | Grab  | Bedding        | 125/40     | semi-massive<br>sulphide/skar<br>n | ру   | 10      | aspy | 3       |
| W641895 | High             | 7/5/2021   | 7:51:49  | 513581    | 6973305 | 1538 | m | JDP     | Rock | Float |                |            | massive<br>sulphide                | ро   | 50      | aspy | 2       |
| W641896 | Low              | 7/5/2021   | 11:51:53 | 512753    | 6972866 | 1458 | m | JDP     | Rock | Chip  |                |            | banded shale-<br>limestone         | ру   | 2       |      |         |
| W641897 | Medium           | 7/5/2021   | 11:54:27 | 512756    | 6972868 | 1460 | m | JDP     | Rock | Grab  |                |            | semi-massive<br>sulphide ?         | ру   | 20      | aspy | 2       |
| W641898 | High             | 7/5/2021   | 1:24:13  | 512367    | 6973053 | 1322 | m | JDP     | Rock | Grab  | Bedding        | 110/82     | massive<br>sulphide                | ро   | 20      | sph  | 5       |
| W641899 | Low              | 7/6/2021   | 12:44:30 | 516189    | 6971866 | 1392 | m | JDP     | Rock | Grab  | Bedding        | 065/60     | argillite                          | ру   | 2       | ро   | 2       |
| W641900 | High             | 7/7/2021   | 10:48:25 | 515765    | 6974056 | 1679 | m | JDP     | Rock | Grab  | Bedding        | 250/52     | semi-massive                       | ро   | 30      | ру   | 5       |

|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Au-AA24 | ME-ICP61         | AE-ICP61 | ME-ICP61 | ME-ICP61 | ME-ICP61 | ME-ICP61 | ME-ICP61          | ME-ICP61 | ME-ICP61 | ME-ICP61 | ME-ICP61 | ME-ICP61 | ME-ICP61 | ME-ICP61 |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------|----------|----------|----------|----------|----------|-------------------|----------|----------|----------|----------|----------|----------|----------|
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Au      | Ag               | Al       | As       | Ва       | Ве       | Bi       | Ca                | Cd       | Со       | Cr       | Cu       | Fe       | Ga       | К        |
| Station | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ppm     | ppm              | %        | ppm      | ppm      | ppm      | ppm      | %                 | ppm      | ppm      | ppm      | ppm      | %        | ppm      | %        |
|         | Follow up of sample W641866-2020. Chip representative. Rusty-pyritic hornfeld, bleached, chaotic, fractured outcrop. 50% crystalline-sucrosic quartz, pyrite (percentage difficult to estimated)-chalcopyrite and dark mineral thought as sphalerite. No pyrrhotite observed. Rough structural measurement. Presence of massive sulphide pod sample separately. The outcrop line-up with the Main showing along a structure bearing 070 representing the contact zone between the hornfeld-argillite (?) and the parts and the sphere super subscription. | 0.004   |                  | 4.53     | 2100     | 10       | 12       | 245      | 2.25              | 1        | 12       | 20       | 4570     | 11.05    | 10       | 0.15     |
| W641892 | calc-silicate above.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.964   | 4.4              | 1.52     | 3180     | 40       | 1.2      | 215      | 2.35              | 1        | 12       | 29       | 1570     | 11.05    | 10       | 0.15     |
|         | 40x30x10 (?) cm massive sulphide pod meta-argillite hosted. Rusty surface<br>staining. Fine grained, dark green coloured groundmass (chlorite-actinolite<br>supposed). Pyrite dominant (percentage difficult to estimated)-<br>chalcopyrite-possibly sphalerite-pyrrhotite (1-2%). The pod is weakly offset<br>over 2cm by a late minor fault. Structural measurement represents the<br>main orientation of the mineralization (probably fault contact between<br>spille act and spin attents).                                                           | 0.020   | 1.0              | 2.52     | 14       | 50       | 4.5      | 10       |                   | 25       | 7        | 27       | 1470     | 12.45    | 10       | 0.02     |
| W641893 | argillite and calc-silicate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.039   | 1.8              | 2.53     | 14       | 50       | 1.5      | 16       | <mark>5.52</mark> | 2.5      | /        | 37       | 1170     | 13.15    | 10       | 0.02     |
|         | Large outcrop in scree slope. Metasediment (argillite) pervasively<br>mineralized. Semi-massive sulphide lens/vein along bedding, mineralized<br>pyrite dominant-arsenopyrite. No pyrrhotite observed. The outcrop is<br>described in GeoStation RH21122.                                                                                                                                                                                                                                                                                                 | 0.005   | 20.7             | 5.21     | 7050     | 1190     | 1.4      | 49       | 0.45              | 22.3     | 18       | 39       | 629      | 13.35    | 30       | 4.53     |
| W641895 | 30x20x5cm float in scree slope bellow sample W641867-best rock sample<br>gold number in 2020. Grey-dark grey, fine grained, equi-granular.<br>Pyrrhotite dominant-pyrite (?)-arsenopyrite-chalcopyrite (1%). Sample<br>marked by a finer texture than usually observed and the absence of strong<br>chlorite-actinolite groundmass.                                                                                                                                                                                                                       | 0.005   | 47.8             | 3.85     | 10000    | 520      | 2.1      | 51       | 4.36              | 33.5     | 8        | 33       | 4570     | 8.46     | 20       | 3.41     |
|         | GC Showing. 2m representative chip sample of the hanging-wall of the massive sulphide lens. Skarny aspect marked by green-purplish bands. Calcite lens, fine grained disseminated pyrite and weakly rusty quartz veinlets. Sample to test the host rock.                                                                                                                                                                                                                                                                                                  | 0.005   | 0.5              | 8.3      | 45       | 1570     | 2.5      | 2        |                   | 1.4      | 11       | 75       |          | 4.89     | 20       | 3.82     |
| W641896 | veiniets. Sample to test the nost rock.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.005   | 0.5              | 8.3      | 45       | 1570     | 2.5      | 2        | 7.49              | 1.4      | 11       | /5       | 23       | 4.89     | 20       | 3.82     |
|         | Fine grained, dark grey-black, equi-granular. The rock may consist of very<br>fine grained pyrite (?) with blebby arsenopyrite and local weakly rusty<br>quartz veinlets. Red-burgundy translucent crystals aggregated, realgar-like.                                                                                                                                                                                                                                                                                                                     | 0.082   | 0.5              | 2.14     | 4300     | 130      | 0.5      | 2        | 1.31              | 1        | 29       | 18       | 6        | 32.3     | 10       | 1.06     |
|         | PC Showing. 15x6m wide outcrop. Chaotic aspect, limy argillite-siltstone.<br>40-60cm large semi massive to massive bed mineralized pyrrhotite<br>dominant-pyrite (?)-sphalerite within dark green, fine grained actinolite-<br>chlorite groundmass. No chalcopyrite observed. Some vuggy quartz<br>veinlets, weakly rusty. Mineralization structurally controlled. Rough                                                                                                                                                                                  | 0.015   |                  |          |          |          |          |          |                   |          |          |          |          | 20.1     |          |          |
| W641898 | orientation of the structure observed in the adjacent gully: 270/80.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.019   | 6.1              | 2.56     | 43       | 200      | 0.6      | 2        | 1.23              | 232      | 3        | 28       | 155      | 20.1     | 30       | 0.92     |
| W641899 | 1x1mwide outcrop. Rusty-decomposed argillite-shale with quartz veinlets<br>up to 1cm wide and 40cm of brecciated quartz-argillite. Mineralized pyrite<br>(?%)-pyrrhotite-blebby arsenopyrite (0.5%).                                                                                                                                                                                                                                                                                                                                                      | 0.224   | 1.4              | 4.39     | 10000    | 460      | 0.8      | 2        | 3.61              | 0.6      | 42       | 44       | 53       | 8.14     | 10       | 2.06     |
|         | Inform Silver Showing. 3x4m outcrop. 30x10x10 (?0cm massive sulphide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |                  |          |          |          |          |          |                   |          |          |          |          |          |          |          |
| W641900 | pod/lens hosted by shale-argillite.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.186   | <mark>646</mark> | 3.76     | 35       | 120      | 0.6      | 229      | 1.97              | 173.5    | 46       | 27       | 334      | 9.84     | 20       | 0.91     |

|         | ME-ICP61 |             |
|---------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-------------|
|         | La       | Mg       | Mn       | Mo       | Na       | Ni       | Р        | Pb       | S        | Sb       | Sc       | Sr       | Th       | Ti       | TI       | U        | V        | W        | Zn       |             |
| Station | ppm      | %        | ppm      | ppm      | %        | ppm      | ppm      | ppm      | %        | ppm      | ppm      | ppm      | ppm      | %        | ppm      | ppm      | ppm      | ppm      | ppm      | Certificate |
|         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |             |
| W641892 | 10       | 0.34     | 1380     | 4        | 0.05     | 21       | 450      | 6        | 5.02     | 5        | 3        | 53       | 20       | 0.1      | 10       | 10       | 130      | 1760     | 116      | WH21182911  |
|         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |             |
| W641893 | 10       | 0.38     | 4640     | 2        | 0.01     | 19       | 330      | 3        | 5.54     | 6        | 4        | 97       | 20       | 0.12     | 10       | 10       | 154      | 500      | 333      | WH21182911  |
| W641894 | 10       | 5.74     | 1510     | 40       | 0.03     | 64       | 370      | 594      | 1.82     | 404      | 7        | 24       | 20       | 0.23     | 10       | 10       | 151      | 220      | 1140     | WH21182911  |
|         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |             |
| W641895 | 20       | 6.91     | 2710     | 16       | 0.03     | 41       | 630      | 301      | 2.51     | 14       | 6        | 27       | 20       | 0.23     | 10       | 10       | 124      | 360      | 1210     | WH21182911  |
| W641896 | 50       | 1.76     | 1500     | 1        | 0.28     | 34       | 1010     | 27       | 0.15     | 16       | 12       | 236      | 20       | 0.39     | 10       | 10       | 85       | 10       | 557      | WH21182911  |
| W641897 | 10       | 1.23     | 22800    | 1        | 0.05     | 22       | 410      | 11       | 0.28     | 67       | 4        | 4        | 20       | 0.09     | 10       | 10       | 16       | 10       | 267      | W/J21102011 |
| 1041037 | 10       | 1.23     | 22000    | 1        | 0.05     | 22       | 410      | 11       | 0.28     | 0/       | 4        | 4        | 20       | 0.09     | 10       | 10       | 10       | 10       | 307      | WH21182911  |
| W641898 | 20       | 0.73     | 11600    | 1        | 0.07     | 21       | 150      | 562      | 5.1      | 28       | 4        | 17       | 20       | 0.12     | 10       | 10       | 40       | 10       | 91700    | WH21182911  |
| W641899 | 30       | 1.68     | 950      | 1        | 0.12     | 19       | 220      | 8        | 2.05     | 45       | 8        | 187      | 20       | 0.19     | 10       | 10       | 33       | 10       | 199      | WH21182911  |
|         |          |          |          |          |          |          |          |          |          |          |          | -        |          |          |          |          |          |          |          |             |
| W641900 | 20       | 2        | 15100    | 6        | 0.28     | 97       | 5750     | 38100    | 6.37     | 558      | 9        | 118      | 20       | 0.16     | 10       | 10       | 106      | 10       | 26660    | WH21182911  |

## APPENDIX C

# Soil and Stream Sediment Sample Descriptions

&

**Analytical Results** 

2021 Goldorak Report

|         | Goldorak 2  | 021 Soil | Samples         |       |      |                       |      |       |          |           |          |               |         |                                                                                                                                                                                                                                                                                            | AuME-TL44 | AuME-TL44 |
|---------|-------------|----------|-----------------|-------|------|-----------------------|------|-------|----------|-----------|----------|---------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|
|         | All Coordin | ates; Gr | id :UTM,        | Datum | n NA | D83 Zone 8            | v    |       |          |           |          |               |         |                                                                                                                                                                                                                                                                                            | Au        | Ag        |
| Sample  | Date        | East     | North           | Elev  | m    | Sampler               | Туре | Slope | Drainage | Horizon   | Depth-cm | Color         | Quality | Description                                                                                                                                                                                                                                                                                | ppm       | ppm       |
| M895629 | 7/5/2021    | 512852   | 6972817         | 1499  | m    | Jerome de<br>Pasquale | Soil | west  | steep    | С         | 30       | dark grey     | good    | Steep slop above the saddle of the GC Showing. Dark grey sandy-<br>silt. 20% fragment. Rock around consists of limestone and limy-<br>shale sowing abundant quartz veinlets.                                                                                                               | 0.01      | 0.52      |
| M895630 | 7/7/2021    | 515723   | 6974026         | 1689  | m    | Jerome de<br>Pasquale | Soil | north | steep    | с         | 25       | brown-orange  | good    | On the north facing slope of the northern Dromedary ridge, one<br>metre down the ridge. Oxidized sandy-silt/talus fine with 20%<br>rock fragments. Outcrop nearby consists of bleached siltstone<br>with abundant crosscutting fine grey quartz veinlets.                                  | 0.08      | 3.3       |
| M895631 | 7/7/2021    | 516416   | 6973498         | 1697  | m    | Jerome de<br>Pasquale | Soil | east  | steep    | С         | 25       | yellow-orange | good    | Rusty patch along the ridge-possibly structure. Clay rich, 10-20% angular rock fragments and pebble. Argillite float around.                                                                                                                                                               | 0.002     | 0.43      |
| M895632 | 7/8/2021    | 520559   | 6970302         | 1213  | m    | Jerome de<br>Pasquale | Soil | east  | moderate | С         | 30       | brown         | good    | Mix C and B horizon. Brown-minor grey sandy silt. Silestone and<br>quartz comb texture fragments-rusty staining and crosscutting<br>veinlets as part of the rock dug out from the hole. Area covered<br>by vegetation.                                                                     | 0.001     | 0.19      |
| M895633 | 7/8/2021    | 520559   | 6970410         | 1236  | m    | Jerome de<br>Pasquale | Soil | east  | moderate | с         | 25       | brown-orange  | good    | Brown-orange, coarse grained, sandy sample (rock pebble).<br>Rocks in the hole consist of grey-fine grained limestone with<br>black crystalline calcite bands (veinlets style). The siltstone<br>fragments show rusty quartz veinlets and glassy quartz veinlets<br>with manganese oxides. | 0.001     | 1.09      |
| M895634 | 7/8/2021    | 520555   | 6970618         | 1248  | m    | Jerome de<br>Pasquale | Soil | east  | moderate | С         | 50       | brown         | good    | Brown sandy-silt, abundant angular rock fragments occasionally<br>limonitic. Area covered by vegetation. 20m from the station,<br>float of fractured-rusty siltstone (goethite fracture infill).                                                                                           | 0.003     | 0.33      |
| M895635 | 7/8/2021    | 520694   | 6970814         | 1245  | m    | Jerome de<br>Pasquale | Soil | east  | flat     | В         | 40       | brown         | medium  | Brown, sandy with subrounded pebbles. Area covered by moss<br>and pine. Sample taken on the top of the hump bounded by<br>possible structure to the south.                                                                                                                                 | 0.007     | 0.19      |
| M895636 | 7/8/2021    | 520737   | 6970531         | 1224  | m    | Jerome de<br>Pasquale | Soil | east  | moderate | C/till    | 60       | brown         | medium  | Brown, sandy silt and 10% rounded pebbles-sample mixed with glacial till. Rare oxidized rock fragments.                                                                                                                                                                                    | 0.004     | 0.4       |
| M895637 | 7/8/2021    | 520739   | 6970322         | 1195  | m    | Jerome de<br>Pasquale | Soil | east  | moderate | colluvium | 30       | brown-grey    | low     | Brown-grey, sandy(coarse grained) silt with angular and sub-<br>angular rock fragments consisting of slate-argillite.                                                                                                                                                                      | 0.006     | 1.86      |
| M895638 | 7/11/2021   | 521056   | 6969896         | 1206  | m    | Jerome de<br>Pasquale | Soil | south | flat     | С         | 35       | brown         | medium  | Brown, sand-minor silt with angular (phyllite) and subrounded rock fragments. Sampled on top the "phyllitic hump".                                                                                                                                                                         | 0.006     | 0.06      |
| M895639 | 7/11/2021   | 521095   | 6969744         | 1227  | m    | Jerome de<br>Pasquale | Soil | south | flat     | С         | 60       | brown-grey    | good    | Brown-grey, sandy with abundant friable phyllite chips, calcite<br>veinlets fragments up to 1cm wide and strongly oxidized layers.<br>Sample weakly upgraded with rusty material found at the<br>deepest level (oxidized bedrock).                                                         | 0.001     | 0.06      |
| M895640 | 7/11/2021   | 520924   | 6969909         | 1187  | m    | Jerome de<br>Pasquale | Soil | south | flat     | till      | 50       | brown         | low     | Brown, sandy- clay, minor rock fragments, mostly glacial till on<br>top of hard grey-green bedrock. The sample consists of till taken<br>3-4cm above the bedrock at the lowest level.                                                                                                      | 0.004     | 0.12      |
| M896004 | 2-Jul-21    | 513353   | 6973762         | 1369  | m    | RH                    | Soil | west  | steep    |           | 15       | brown         | good    | Rusty weathering argillite (<1% diss py) scree slope, outcrop of same.                                                                                                                                                                                                                     | 0.01      | 1.99      |
| M896007 | 3-Jul-21    | 513553   | <u>697</u> 3884 | 1550  | m    | RH                    | Soil | west  | steep    |           | 15       | brown         | good    | sandy - silt, pebbles - float of argillite-metades rocks, minor limy<br>float (W425858), minor skarny trem-limy float with <1-2% py+po.                                                                                                                                                    | 0.006     | 6.32      |

|         | AuME-TL44 |
|---------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
|         | AI        | As        | В         | Ва        | Ве        | Bi        | Ca        | Cd        | Ce        | Со        | Cr        | Cs        | Cu        | Fe        | Ga        | Ge        | Hf        | Hg        |
| Sample  | %         | ppm       | ppm       | ppm       | ppm       | ppm       | %         | ppm       | ppm       | ppm       | ppm       | ppm       | ppm       | %         | ppm       | ppm       | ppm       | ppm       |
| M895629 | 2.44      | 175.5     | <10       | 110       | 1         | 0.27      | 3.46      | 0.32      | 17.4      | 52.6      | 37        | 4.05      | 74        | 3.1       | 7.37      | 0.11      | 0.16      | 0.05      |
| M895630 |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |
|         | 3.81      | 153.5     | <10       | 120       | 2.22      | 13.45     | 0.41      | 5.1       | 31.4      | 10.9      | 21        | 10.25     | 355       | 16.4      | 11.45     | 0.4       | 0.12      | 0.08      |
| M895631 | 2.17      | 12.6      | <10       | 90        | 0.82      | 1.18      | 0.12      | 4.8       | 10.6      | 3.3       | 50        | 6.2       | 235       | 3.96      | 6.67      | 0.16      | 0.06      | 0.03      |
| M895632 |           | 10.0      | .10       | 120       | 0.24      | 0.45      | 0.00      | 0.15      | 44.5      | 2.7       | 15        | 1.25      |           | 4.55      | 2.60      | 0.00      | -0.02     | 0.02      |
|         | 0.8       | 10.9      | <10       | 130       | 0.24      | 0.16      | 0.09      | 0.16      | 14.6      | 3.7       | 15        | 1.26      | 11.4      | 1.55      | 3.68      | 0.06      | < 0.02    | 0.03      |
| M895633 | 1.06      | 26.8      | <10       | 130       | 0.71      | 0.1       | 1.59      | 0.53      | 25.9      | 8.1       | 32        | 1.76      | 37.2      | 3.99      | 2.43      | 0.1       | 0.04      | 0.03      |
| M895634 | 1.43      | 58.9      | <10       | 310       | 0.65      | 0.18      | 0.09      | 0.42      | 25.8      | 10.9      | 26        | 3.64      | 67.8      | 3.35      | 3.69      | 0.1       | 0.04      | 0.03      |
| M895635 | 0.97      | 212       | <10       | 180       | 0.53      | 0.2       | 0.06      | 0.65      | 23.4      | 10.9      | 14        | 1.74      | 39.5      | 3.02      | 2.33      | 0.08      | 0.04      | 0.02      |
| M895636 | 1.04      | 69.6      | <10       | 300       | 0.59      | 0.18      | 0.13      | 0.42      | 36.5      | 7.5       | 18        | 2.07      | 30        | 2.31      | 2.55      | 0.09      | 0.04      | 0.05      |
| M895637 | 0.96      | 24.5      | <10       | 390       | 0.39      | 0.18      | 0.13      |           | 39.5      |           |           |           | 35.3      | 1.85      |           | 0.05      |           | 0.05      |
| M895638 | 1.33      | 21.5      | <10       | 300       | 0.64      | 0.17      | 0.03      | 0.09      | 35.5      | 8         | 21        | 3.29      | 42        | 2.53      | 3.18      | 0.07      | 0.03      | 0.01      |
| M895639 | 2.69      | 16        | <10       | 180       | 1.16      | 0.18      | 0.51      | 0.15      | 48.7      | 13.9      | 24        | 4.16      | 19.1      | 4.1       | 6.35      | 0.11      | 0.06      | 0.01      |
| M895640 | 0.98      | 26        | <10       | 250       | 0.61      | 0.18      |           | 0.15      | 40.1      | 10.2      |           |           | 48.9      | 2.57      |           | 0.09      |           | 0.01      |
| M896004 |           | 2530      | <10       | 180       | 1.11      | 1.99      |           |           | 16.7      |           |           |           | 383       | 6.43      |           | 0.15      |           | 0.09      |
| M896007 | 2.5       | 1390      | <10       | 80        | 1.16      | 6.77      | 0.88      | 53.5      | 14.7      | 20.1      | 28        | 6.73      | 687       | 4.61      | 11.15     | 0.15      | 0.07      | 0.02      |

|         | AuME-TL44 |
|---------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
|         | In        | к         | La        | Li        | Mg        | Mn        | Мо        | Na        | Nb        | Ni        | Р         | Pb        | Rb        | Re        | S         | Sb        | Sc        | Se        |
| Sample  | ppm       | %         | ppm       | ppm       | %         | ppm       | ppm       | %         | ppm       | ppm       | ppm       | ppm       | ppm       | ppm       | %         | ppm       | ppm       | ppm       |
| M895629 | 0.049     | 0.23      | 10.2      | 36.6      | 0.93      | 734       | 3.47      | 0.1       | 1.26      | 39.7      | 1150      | 9.3       | 33.1      | <0.001    | 0.11      | 7.79      | 1.9       | 1.3       |
| M895630 |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |
|         | 2.23      | 0.11      | 13        | 18.7      | 0.17      | 877       | 1.2       | 0.1       | 0.62      | 47        | 2950      | 8.3       | 6.5       | 0.001     | 0.54      | 16.2      | 8.7       | 42.4      |
| M895631 | 0.08      | 0.16      | 6.4       | 27.8      | 0.55      | 162       | 21.1      | 0.02      | 0.31      | 59.7      | 1280      | 4.2       | 18.6      | 0.002     | 0.05      | 2.79      | 11        | 11.4      |
| M895632 |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |
|         | 0.013     | 0.03      | 7.6       | 7.1       | 0.17      | 155       | 1.03      | 0.03      | 0.37      | 10.4      | 430       | 7         | 7.4       | <0.001    | 0.04      | 0.49      | 0.6       | 0.3       |
| M895633 | 0.029     | 0.06      | 16.9      | 22.1      | 0.3       | 427       | 2.73      | 0.02      | 0.33      | 66.2      | 3530      | 18.7      | 6.6       | <0.001    | 0.04      | 3.52      | 2.8       | 1.3       |
| M895634 | 0.043     | 0.06      | 13.2      | 19.1      | 0.33      | 485       | 2.82      | 0.02      | 0.35      | 33.3      | 1050      | 17.6      | 10        | <0.001    | 0.07      | 5.61      | 1.7       | 2         |
| M895635 | 0.066     | 0.06      | 11.4      | 11.8      | 0.2       | 622       | 3.3       | 0.02      | 0.23      | 25.5      | 690       | 26.9      | 7.7       | 0.001     | 0.04      | 7.09      | 1.9       | 1.9       |
| M895636 | 0.042     | 0.06      | 18.3      | 10.1      | 0.26      | 497       | 1.76      | 0.02      | 0.28      | 37.5      | 610       | 27.6      | 7         | <0.001    | 0.04      | 5.25      | 2.5       | 1.4       |
| M895637 | 0.042     | 0.05      | 23.2      | 14        | 0.20      |           | 1.70      |           | 0.20      |           | 770       |           | 9.7       | 0.001     | 0.04      | 3.08      | 1.7       | 1.4       |
| M895638 | 0.029     | 0.06      | 17.6      | 24.5      | 0.33      | 283       | 2.4       | 0.02      | 0.16      | 33.1      | 250       | 14.4      | 10.9      | <0.001    | 0.03      | 4.4       | 2.2       | 0.7       |
| M895639 | 0.036     | 0.14      | 21.3      | 34.6      | 1.8       | 1350      | 0.5       | 0.02      | 0.17      | 22.6      | 950       | 7.3       | 12.3      | <0.001    | 0.02      | 1.49      | 5.1       | 0.4       |
| M895640 | 0.030     | 0.14      | 18.9      | 21.9      | 0.36      | 470       |           |           | 0.17      | 35.9      | 450       |           | 9.1       | <0.001    | 0.02      | 4.77      | 3.1       | 1.2       |
| M896004 | 0.591     | 0.06      | 9.4       | 17.6      | 0.30      | 891       |           |           |           |           | 1300      |           | 6.7       | 0.005     | 0.04      | 41.2      | 3.8       | 23.6      |
| M896007 | 0.19      | 0.21      | 9.2       | 100.5     | 1.85      | 414       | 73.4      | 0.03      | 0.2       | 227       | 1160      | 95.1      | 18.8      | 0.012     | 0.07      | 11.45     | 3.4       | 9.8       |

| 1       | AuME-TL44 |             |
|---------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-------------|
|         | Sn        | Sr        | Та        | Те        | Th        | Ti        | Tİ        | U         | v         | w         | Y         | Zn        | Zr        |             |
| Sample  | ppm       | ppm       | ppm       | ppm       | ppm       | %         | ppm       | Certificate |
| M895629 |           | 454       | 0.01      | 0.05      | 1.2       | 0.000     | 0.05      | 2.25      | 200       | 0.40      |           | 20        |           |             |
|         | 0.4       | 151       | <0.01     | 0.06      | 1.2       | 0.038     | 0.25      | 3.36      | 208       | 0.18      | 11.6      | 38        | 7.1       | WH21182905  |
| M895630 |           |           |           |           |           |           |           |           |           |           |           |           |           |             |
|         | 8.3       | 268       | <0.01     | 0.45      | 4.3       | 0.087     | 0.23      | 2.43      | 59        | 4.4       | 10.6      | 499       | 3.7       | WH21182905  |
| M895631 | 5.4       | 27.2      | <0.01     | 0.14      | 3.9       | 0.105     | 0.61      | 10.95     | 497       | 1.08      | 8.47      | 790       | 5.8       | WH21182905  |
| M895632 |           |           |           |           |           |           |           |           |           |           |           |           |           |             |
|         | 0.4       | 9.6       | <0.01     | 0.03      | <0.2      | 0.015     | 0.06      | 0.43      | 32        | 0.19      | 2.96      | 47        | <0.5      | WH21182905  |
| M895633 |           |           |           | 0.05      |           | 0.040     |           |           |           | 0.12      |           | 244       |           |             |
|         | 0.3       | 40.4      | <0.01     | 0.06      | 4.3       | 0.013     | 0.14      | 1.81      | 30        | 0.13      | 26.2      | 211       | 2.5       | WH21182905  |
| M895634 | 0.4       | 32.1      | <0.01     | 0.09      | 1         | 0.014     | 0.19      | 1.56      | 34        | 0.18      | 5.27      | 123       | 1.2       | WH21182905  |
| M895635 | 0.3       | 17.7      | <0.01     | 0.08      | 2.9       | 0.007     | 0.2       | 0.8       | 30        | 0.12      | 4.17      | 203       | 1.7       | WH21182905  |
| M895636 | 0.3       | 16.8      | <0.01     | 0.06      | 3         | 0.014     | 0.15      | 0.94      | 29        | 0.15      | 8.75      | 196       | 1 1       | WH21182905  |
| M895637 |           |           |           |           |           |           |           |           |           |           |           |           |           |             |
|         | 0.4       | 23.6      | <0.01     | 0.06      | 0.6       | 0.014     | 0.17      | 1.49      | 36        | 0.16      | 17.25     | 86        | 0.6       | WH21182905  |
| M895638 | 0.3       | 9.2       | <0.01     | 0.07      | 3.4       | 0.005     | 0.16      | 0.54      | 28        | 0.07      | 3.53      | 69        | 1.2       | WH21182905  |
| M895639 | 0.2       | 20.7      | -0.01     | 0.02      | 7.0       | 0.050     | 0.13      | 0.43      | 10        | -0.05     | 10.05     |           | 2.7       | NU121182005 |
|         | 0.3       | 29.7      | <0.01     | 0.03      | 7.8       | 0.059     | 0.12      | 0.42      | 18        | <0.05     | 10.05     | 56        | 2.7       | WH21182905  |
| M895640 | 0.2       | 11.3      | <0.01     | 0.06      | 4         | 0.011     | 0.14      | 1         | 23        | 0.08      | 9.13      | 85        | 0.8       | WH21182905  |
| M896004 | 33.1      | 89.8      | <0.01     | 0.31      | 4         | 0.01      | 0.27      | 11.55     | 89        | 60.3      | 17.7      | 2010      | 3         | WH21230997  |
| M896007 | 40.1      | 104       | <0.01     | 0.3       | 4.7       | 0.018     | 0.52      | 15.3      | 154       | 12.2      | 24.6      | 1820      | 2.2       | WH21182905  |

|         | Goldorak 2  | 2021 Soil | Samples  |       |    |             |      |       |          |         |          |           |          |                                                                                                                                                                                                                                                                                                           | AuME-TL44 | AuME-TL44 |
|---------|-------------|-----------|----------|-------|----|-------------|------|-------|----------|---------|----------|-----------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|
|         | All Coordir | nates; Gr | id :UTM, | Datum | NA | AD83 Zone 8 | 3V   |       |          |         |          |           |          |                                                                                                                                                                                                                                                                                                           | Au        | Ag        |
| Sample  | Date        | East      | North    | Elev  | m  | Sampler     | Туре | Slope | Drainage | Horizon | Depth-cm | Color     | Quality  | Description                                                                                                                                                                                                                                                                                               | ppm       | ppm       |
| M896008 | 3-Jul-21    | 513605    | 6973798  | 1555  | m  | RH          | Soil | west  | steep    |         | 15       | brown     | good     | as 6009, less limy trem skarny rocks.                                                                                                                                                                                                                                                                     | 0.002     | 3.39      |
|         |             |           |          |       |    |             |      |       |          |         |          |           |          | silty - sand, very rusty weathering, hornfelsed argillite - metsed                                                                                                                                                                                                                                        |           |           |
| M896009 | 3-Jul-21    | 513602    | 6973743  | 1539  | m  | RH          | Soil | west  | steep    |         | 15       | brown     | good     | rocks with 2% diss po-py.                                                                                                                                                                                                                                                                                 | 0.003     | 1.71      |
|         |             |           |          |       |    |             |      |       |          |         |          |           |          | side of gully, float of metased rocks - quartzite, rusty pyrrhotite                                                                                                                                                                                                                                       |           |           |
| M896011 | 3-Jul-21    | 513567    | 6973627  | 1505  | m  | RH          | Soil | west  | steep    |         | 15       | brown     | good     | argillite.                                                                                                                                                                                                                                                                                                | 0.007     | 1.87      |
|         |             |           |          |       |    |             |      |       |          |         |          |           |          | Almost a ridge spur sample, Below rusty argillite outcrop with                                                                                                                                                                                                                                            |           |           |
| M896012 | 3-Jul-21    | 513503    | 6973550  | 1513  | m  | RH          | Soil | west  | steep    |         | 15       | brown     | good     | pyrrhotite.                                                                                                                                                                                                                                                                                               | 0.009     | 2.71      |
| M896013 | 3-Jul-21    | 513620    | 6973533  | 1593  | m  | RH          | Soil | west  | steep    |         | 15       | brown     | good     | Below massive sulfide boulder, sample W641890, recessive zone<br>in ridge spur, limonite colored soil, and usual rusty weathered<br>argillite plus vuggy qtz veins. Massive sulphide zone might be<br>very recessive and not exposed.                                                                     | 0.021     | 29.6      |
| M896014 | 4-Jul-21    | 514406    | 6972904  | 1522  | m  | RH          | Soil | east  | moderate |         | 15       | brown     | moderate | Loess, pebbles of qtzite, spotted argillite. Minor calc silicate.                                                                                                                                                                                                                                         | 0.012     | 0.93      |
| M896020 | 5-Jul-21    | 512705    | 6972804  | 1461  | m  | RH          | Soil |       |          |         | 15       | tan-grey  | good     | Soil in gully, Float of grey limestone, very minor FeOx.                                                                                                                                                                                                                                                  | 0.002     | 0.2       |
| M896021 | 6-Jul-21    | 515961    | 6972732  | 1681  | m  | RH          | Soil | east  | steep    |         | 15       | tan       | moderate | Loess-ash dilution, float of light grey tan hornfelsed metased -<br>quartzite-siltstone. Probably was limy as tremolite note. Minor<br>qtz veinlets tr diss cpy, <0.5% diss po and py and in hairline qtz<br>veinlets and on fractures.                                                                   | 0.005     | 1.18      |
|         |             |           |          |       |    |             |      |       |          |         |          |           |          | Pebbley soil, float of siltstone and small piece (1x2x2cm) piece of                                                                                                                                                                                                                                       |           |           |
| M896023 | 8-Jul-21    | 520561    | 6970517  | 1248  | m  | RH          | Soil |       |          |         | 0.4      | brown     | V. good  | lim rusty qtzvein.                                                                                                                                                                                                                                                                                        | 0.025     | 1.5       |
| M896024 | 8-Jul-21    | 520567    | 6970700  | 1258  | m  | RH          | Soil |       |          |         | 0.6      | brown     | good     | Pebbley soil - outwash?, sandy silt. float of siltstone pebbles.                                                                                                                                                                                                                                          | 0.004     | 0.29      |
| M896025 | 8-Jul-21    | 520579    | 6970809  | 1264  | m  | RH          | Soil |       |          |         | 0.25     | org-brn   | good     | Sandy -silty soil, below 10cm ash layer, Sample upslope of<br>siltstone ourcrop with minor FeOx fractures. JDP station 21031.<br>C horizon, FeOx stained and oxidized, FeOx pebbles. Below grey                                                                                                           | 0.003     | 0.25      |
| M896026 | 8-Jul-21    | 520738    | 6970634  | 1230  | m  | RH          | Soil |       |          | с       | 0.4      | red-brown | good     | horizon with rounded pebbles.                                                                                                                                                                                                                                                                             | 0.006     | 1.3       |
| M896027 | 8-Jul-21    |           |          |       |    | RH          | Soil |       |          | C       | 0.3      | grey-brn  | good     | Angular grey - brown shale pieces                                                                                                                                                                                                                                                                         | 0.006     | 0.56      |
|         |             |           |          |       |    |             |      |       |          | с       |          | • ·       | -        |                                                                                                                                                                                                                                                                                                           |           |           |
| M896028 | 8-Jul-21    | 520738    | 6970223  | 1180  | m  | RH          | Soil |       |          | L       | 0.25     | org-brn   | good     | C horizon, grey siltstone bedrock and pieces.<br>Nagai Zone, about 8m from 0.5 gpt Au rock sample. Sandy, silt                                                                                                                                                                                            | 0.002     | 1.42      |
| M896029 | 9-Jul-21    | 521139    | 6969847  | 1214  | m  | RH          | Soil |       |          |         | 0.75     | brown     | moderate | with shaley pebbles, some rounded siltst pebbles, minor FeOx                                                                                                                                                                                                                                              | 0.007     | 0.44      |
| M896030 | 9-Jul-21    | 521177    | 6969842  | 1219  | m  | RH          | Soil |       |          | С       |          | brown     | good     | Soil 1 m from rock sample W425873 and outcrop. C horizon.                                                                                                                                                                                                                                                 | 0.089     | 0.39      |
| M896031 | 9-Jul-21    | 521190    | 6969849  | 1222  | m  | RH          | Soil |       |          | с       | 0.35     | org-brn   | good     | C horizon of very rusty silty soil. Float of tan phyllite and brecciated - ankerite flooded, veined grey siltstone, approx 20% ankerite.                                                                                                                                                                  | 0.003     | 1.17      |
|         | 11-Jul-21   |           |          |       |    | RH          | Soil |       |          | С       | 0.35     | brown     |          | 20cm below ash and loess, dupicate of W1641978 (collected with<br>auger). Bedrock of grey phyllite with mm to = 0.5cm bands -<br lenses of limy siltst and foliaform qtz veinlets with weathered out<br>black sulfides. Weathered out sulfides also on bands and lenses<br>of chlorite schist. Tr pyrite. |           |           |
| M896033 | 11-Jul-21   | 521173    | 6969742  | 1224  | m  | RH          | Soil |       |          | С       | 0.3      | brown     | good     | Bedrock of chlorite schist, limy phyllite, X/C by calcite veinlets.<br>Foliaform qtz veinlets. Tr dis py but most sx weathered out -<br>FeOx.                                                                                                                                                             | 0.138     | 0.43      |
| M896034 | 11-Jul-21   | 521153    | 6969895  | 1215  | m  | RH          | Soil |       |          | с       | 0.25     | brown     | moderate | On outcrop hump. Difficult soil. Bedrock and float of grey limy phyllite with tr diss py.                                                                                                                                                                                                                 | 0.001     | 0.03      |

|         | AuME-TL44    | AuME-TL44 | AuME-TL44 | AuME-TL44 | AuME-TL44 | AuME-TL44 | AuME-TL44 | AuME-TL44 | AuME-TL44 | AuME-TL44 |
|---------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
|         | AI        | As        | В         | Ва        | Ве        | Bi        | Са        | Cd        | Ce           | Со        | Cr        | Cs        | Cu        | Fe        | Ga        | Ge        | Hf        | Hg        |
| Sample  | %         | ppm       | ppm       | ppm       | ppm       | ppm       | %         | ppm       | ppm          | ppm       | ppm       | ppm       | ppm       | %         | ppm       | ppm       | ppm       | ppm       |
| M896008 | 1.09      | 2630      | <10       | 140       | 0.86      | 4.22      | 0.66      | 42.8      | 23.1         | 25.7      | 23        | 4.28      | 288       | 5         | 3.77      | 0.17      | 0.06      | 0.13      |
| M896009 | 0.95      | 2420      | <10       | 60        | 0.26      | 0.97      | 0.05      | 2.11      | 8.74         | 11.3      | 19        | 5.16      | 190.5     | 6.66      | 2.86      | 0.11      | 0.06      | 0.08      |
| M896011 | 1.29      | 1575      | <10       | 180       | 0.97      | 9.3       | 0.88      | 23.4      | 15.9         | 17.8      | 18        | 5.57      | 228       | 4.3       | 3.81      | 0.14      | 0.05      | 0.06      |
| 1030011 | 1.29      | 13/3      | <10       | 180       | 0.97      | 5.5       | 0.88      | 23.4      | 15.9         | 17.0      | 10        | 5.57      | 220       | 4.3       | 5.61      | 0.14      | 0.03      | 0.00      |
| M896012 | 2.43      | 7460      | <10       | 170       | 1.72      | 7.83      | 0.7       | 8.22      | 15.4         | 18.3      | 17        | 5.95      | 202       | 5.38      | 5.71      | 0.09      | 0.09      | 0.07      |
| M896013 | 0.31      | >10000    | <10       | 50        | 0.85      | 75.3      | 0.07      | 21.4      | 17.1         | 4.1       | 8         | 3.11      | 510       | 7.53      | 1.35      | 0.21      | 0.02      | <0.01     |
| M896014 | 1.54      | 312       | <10       | 170       | 0.59      | 6.19      | 0.16      | 1.23      | 23.5         | 8.4       | 26        | 2.13      | 59.4      | 2.97      | 5.43      | 0.05      | <0.02     | 0.08      |
| M896020 | 3.46      | 19.5      | <10       | 400       | 1.36      | 0.25      | 4.38      | 0.37      | 19.7         | 15.8      | 44        | 24.6      | 39.6      | 3.07      | 11.1      | 0.08      | 0.14      | 0.05      |
| M896021 | 1.48      | 101       | <10       | 200       | 0.68      | 3.29      | 0.35      | 3.57      | 14.35        | 7.7       | 24        | 3.8       | 61.6      | 1.92      | 5.27      | <0.05     | 0.03      | 0.05      |
| M896023 | 1.12      | 45.3      | <10       | 100       | 0.57      | 0.46      | 0.08      | 0.22      | 27.4         | 10.8      | 29        | 1.81      | 25.9      | 2.78      | 4.3       | 0.06      | 0.04      | 0.04      |
| M896024 | 0.91      | 54.1      | <10       | 150       | 0.48      | 0.16      | 0.09      | 0.3       | 26.3         | 8.9       | 15        | 1.45      | 28.7      | 2.08      | 2.14      | 0.05      | 0.05      | 0.04      |
| M896025 | 1.4       | 151.5     | <10       | 220       | 0.46      | 0.26      | 0.02      | 0.43      | 22.3         | 5.3       | 19        | 2.52      | 37.6      | 3.34      | 3.58      | 0.05      | 0.07      | 0.02      |
| M896026 | 0.66      | 758       | <10       | 200       | 0.43      | 12.35     | 0.3       | 0.66      | 24.1         | 4.9       | 18        | 1.54      | 188       | 18.8      | 1.87      | 0.17      | 0.03      | 0.12      |
| M896027 | 0.51      | 49.1      | <10       | 640       | 0.35      | 0.18      | 0.06      | 0.24      | 31.8         | 6.3       | 11        | 1.97      | 35.6      | 1.79      | 1.56      | 0.06      | <0.02     | 0.04      |
| M896028 | 0.74      | 30.5      | <10       | 470       | 0.84      | 0.27      | 0.05      | 0.2       | 165.5        | 7.6       | 19        | 2.34      | 172.5     | 10.55     | 4.33      | 0.31      | 0.02      | 0.01      |
| M896029 | 1.07      | 67.1      | <10       | 330       | 0.68      | 0.19      | 0.5       | 0.59      | 41.3         | 17.4      | 20        | 3.32      | 57.2      | 3.38      | 3.17      | 0.08      | 0.05      | 0.09      |
| M896030 | 2.52      | 1435      | <10       | 120       | 0.66      | 1.52      | 0.19      | 0.42      | 31.9         | 19.3      | 22        | 3.5       | 63.7      | 6.76      | 7.24      | 0.08      | 0.1       | 0.05      |
|         | 2.00      | 22.7      | -10       | 250       | 1.05      | 0.00      | 0.00      | 0.45      | <b>C</b> 2 F | 20.5      | 20        | 0.00      | 20.0      | c 07      | 2.27      | 0.14      | 0.42      | 0.00      |
| M896031 | 2.98      | 23.7      | <10       | 350       | 1.95      | 0.33      | 0.88      | 0.46      | 62.5         | 20.6      | 26        | 9.32      | 39.6      | 6.07      | 3.37      | 0.11      | 0.12      | 0.09      |
| M896032 | 3.51      | 16.9      | <10       | 380       | 1.07      | 0.08      | 0.14      | 0.14      | 33.9         | 14.2      | 40        | 20.3      | 7.2       | 7.9       | 9.65      | 0.1       | 0.1       | 0.02      |
| M896033 | 3.69      | 13.2      | <10       | 370       | 0.6       | 0.13      | 0.68      | 0.23      | 31.1         | 16        | 34        | 35.5      | 56        | 18.2      | 12.05     | 0.25      | 0.11      | 0.06      |
| M896034 | 1.51      | 10        | <10       | 120       | 0.39      | 0.16      | 0.05      | 0.09      | 27.6         | 4.9       | 17        | 2.4       | 12.3      | 2.41      | 5.05      | 0.05      | 0.06      | 0.01      |

|         | AuME-TL44 |
|---------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
|         | In        | к         | La        | Li        | Mg        | Mn        | Мо        | Na        | Nb        | Ni        | Р         | Pb        | Rb        | Re        | S         | Sb        | Sc        | Se        |
| Sample  | ppm       | %         | ppm       | ppm       | %         | ppm       | ppm       | %         | ppm       | ppm       | ppm       | ppm       | ppm       | ppm       | %         | ppm       | ppm       | ppm       |
| M896008 | 0.205     | 0.08      | 13.7      | 17        | 0.39      | 805       | 22.4      | 0.02      | 0.22      | 125.5     | 2110      | 56.5      | 9.1       | 0.007     | 0.04      | 38.6      | 3         | 21.1      |
| M896009 | 0.246     | 0.07      | 4.1       | 19        | 0.26      | 533       | 19.6      | 0.07      | 0.21      | 35.3      | 1330      | 47.8      | 9.1       | 0.002     | 0.26      | 23.9      | 1.8       | 21        |
| M896011 | 0.495     | 0.08      | 8         | 29.1      | 0.71      | 1070      | 2.66      | 0.02      | 0.34      | 65.8      | 950       | 27.4      | 9.8       | 0.003     | 0.03      | 24.7      | 3.2       | 5.9       |
|         |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |
| M896012 | 0.14      | 0.05      | 7.3       | 20.9      | 0.28      | 751       | 1.79      | <0.01     | 0.3       | 70.2      | 940       | 60.9      | 5         | <0.001    | 0.11      | 7.37      | 2.7       | 7         |
| M896013 | 0.608     | 0.05      | 9.2       | 3.1       | 0.05      | 219       | 6.77      | <0.01     | 0.06      | 35.4      | 860       | 266       | 5.4       | 0.005     | 0.15      | 146       | 2.2       | 55.1      |
| M896014 | 0.06      | 0.05      | 11        | 14.8      | 0.36      | 447       | 3.09      | <0.01     | 0.67      | 23.5      | 740       | 50        | 9.9       | <0.001    | 0.04      | 19.8      | 2.1       | 1.8       |
| M896020 | 0.037     | 0.83      | 9.9       | 33.4      | 1.7       | 410       | 2.34      | 0.11      | 0.45      | 37.4      | 480       | 25.8      | 64.4      | <0.001    | 0.01      | 6.94      | . 7.7     | 0.4       |
| M896021 | 0.067     | 0.06      | 6.9       | 14.7      | 0.39      | 301       | 4.87      | 0.01      | 0.58      | 46.1      | 810       | 19        | 6.8       | 0.002     | 0.05      | 2.55      | 1.8       | 2.4       |
| M896023 | 0.232     | 0.05      | 13.9      | 10.2      | 0.3       | 362       | 2.87      | <0.01     | 0.51      | 30.2      | 630       | 166       | 7.9       | 0.001     | 0.03      | 9.18      | 3         | 3.6       |
| M896024 | 0.033     | 0.04      | 12.7      | 10.8      | 0.21      | 482       | 2.45      | <0.01     | 0.29      | 27.3      | 650       | 23.2      | 5.7       | 0.001     | 0.02      | 6.84      | . 2       | 1.6       |
| M896025 | 0.07      | 0.04      | 11.3      | 24.5      | 0.24      | 250       | 4.84      | <0.01     | 0.34      | 22.4      | 320       | 21.7      | 8.6       | <0.001    | 0.02      | 5.52      | 2.4       | 1.7       |
| M896026 | 0.284     | 0.03      | 13.4      | 7.9       | 0.14      | 853       | 4.27      | <0.01     | 0.38      | 33.6      | 1150      | 36.4      | 5.5       | <0.001    | 0.06      | 14.7      | 5.3       | 3.9       |
| M896027 | 0.025     | 0.07      | 16.2      | 8.2       | 0.14      | 330       | 4.21      | <0.01     | 0.12      | 23.1      | 500       | 15.8      | 6         | 0.001     | 0.06      | 6.97      | 1.7       | 1.6       |
| M896028 | 0.042     | 0.16      | 105.5     | 3.1       | 0.07      | 200       | 5.42      | <0.01     | 0.19      | 53.7      | 2730      | 22.5      | 12.3      | 0.001     | 0.35      | 6.75      | 1.2       | 21.1      |
| M896029 | 0.036     | 0.07      | 21.4      | 23.8      | 0.7       | 667       | 2.39      | <0.01     | 0.08      | 49.4      | 890       | 24.7      | 8.3       | 0.001     | <0.01     | 11.15     | 4.8       | 0.8       |
| M896030 | 0.064     | 0.03      | 15        | 30.2      | 0.46      | 506       | 1.97      |           | 0.57      | 16.8      | 400       |           | 7.9       |           | 0.02      | 21.3      |           | 1.1       |
|         | 0.004     | 0.00      | 15        | 50.2      | 0.40      | 500       | 1.57      |           | 0.57      | 10.0      | -100      | 10.0      | 7.5       | 10.001    | 0.02      |           | 5.5       |           |
| M896031 | 0.07      | 0.04      | 26.6      | 30        | 0.51      | 674       | 7.11      | <0.01     | 0.6       | 55.9      | 1220      | 25.5      | 8.8       | <0.001    | 0.03      | 20.6      | 4.5       | 1.2       |
| M896032 | 0.102     | 0.89      | 14.3      | 66.4      | 0.64      | 4490      | 0.97      | <0.01     | 1.19      | 23.7      | 360       | 5.3       | 95.2      | <0.001    | <0.01     | 1.7       | 6.8       | 0.3       |
|         | 0.102     | 0.05      | 14.5      | 00.4      | 0.04      |           | 0.57      | .0.01     | 1.15      | 25.7      | 500       | 5.5       | 55.2      | -0.001    |           | 1.7       | 5.0       |           |
| M896033 | 0.702     | 1.02      | 13.2      | 62.6      | 0.68      | 21400     | 0.37      | <0.01     | 0.53      | 26.8      | 490       | 8         | 140       | 0.001     | 0.01      | 1.91      | . 14.4    | 0.4       |
| M896034 | 0.024     | 0.03      | 13.6      | 30.6      | 0.31      | 148       | 1.92      | <0.01     | 0.38      | 14.3      | 220       | 10        | 7.8       | <0.001    | <0.01     | 2.51      | 1.9       | 0.3       |

| 1       | AuME-TL44 |             |
|---------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-------------|
|         | Sn        | Sr        | Та        | Те        | Th        | Ti        | ті        | U         | v         | w         | Y         | Zn        | Zr        |             |
| Sample  | ppm       | ppm       | ppm       | ppm       | ppm       | %         | ppm       | Certificate |
| M896008 | 5.5       | 67.9      | <0.01     | 0.15      | 2.1       | 0.01      | 0.21      | 11.1      | 72        | 8.92      | 18.95     | 1940      | 1.9       | WH21230997  |
| M896009 | 1.9       | 9.4       | <0.01     | 0.19      | 1.3       | 0.014     | 0.23      | 6.32      | 53        | 3.19      | 5.46      | 274       | 2.2       | WH21182905  |
| M896011 | 15.5      | 77.1      | <0.01     | 0.28      | 2.6       | 0.021     | 0.34      | 3.07      | 55        | 88.4      | 11.45     | 1100      | 1.9       | WH21230997  |
| M896012 | 7.5       | 306       | <0.01     | 0.67      | 5.3       | 0.009     | 0.14      | 3.03      | 58        | 2.67      | 11.2      | 386       | 3         | WH21182905  |
| M896013 | 91.5      | 14.6      | <0.01     | 1.73      | 3.1       | <0.005    | 0.2       | 2.53      | 28        | 340       | 8.8       | 411       | 1         | WH21182905  |
| M896014 | 1.5       | 15.8      | <0.01     | 0.23      | 0.8       | 0.029     | 0.17      | 1.33      | 52        | 12.7      | 5.93      | 146       | <0.5      | WH21182905  |
| M896020 | 1         | 475       | <0.01     | 0.03      | 8         | 0.107     | 0.32      | 0.72      | 54        | 0.42      | 12.05     | 70        | 6.1       | WH21182905  |
| M896021 | 1.6       | 53.7      | <0.01     | 0.13      | 0.7       | 0.017     | 0.13      | 1.29      | 73        | 2.21      | 5.3       | 470       | 0.8       | WH21182905  |
| M896023 | 2.2       | 13.1      | <0.01     | 0.14      | 6.1       | 0.023     | 0.13      | 1         | 38        | 0.45      | 4.93      | 113       | 1.4       | WH21182905  |
| M896024 | 0.3       | 20.1      | <0.01     | 0.06      | 3         | 0.011     | 0.18      | 0.87      | 27        | 0.34      | 5.29      | 114       | 1.7       | WH21182905  |
| M896025 | 0.4       | 14.9      | <0.01     | 0.1       | 2.7       | 0.005     | 0.29      | 0.66      | 45        | 0.33      | 3.22      | 229       | 2.9       | WH21182905  |
| M896026 | 0.8       | 14.9      | 0.01      | 0.13      | 3         | 0.013     | 0.22      | 1.33      | 45        | 0.93      | 16.2      | 164       | 1         | WH21182905  |
| M896027 | 0.2       | 27        | <0.01     | 0.08      | 2.7       | 0.007     | 0.2       | 0.9       | 20        | 0.17      | 7.13      | 109       | 0.6       | WH21182905  |
| M896028 | 0.4       | 140.5     | <0.01     | 0.1       | 1.3       | 0.014     | 0.62      | 1.57      | 37        | 0.75      | 20.1      | 285       | <0.5      | WH21182905  |
| M896029 | 0.2       | 32.2      | <0.01     | 0.06      | 6.9       | 0.013     | 0.24      | 0.86      | 23        | 0.17      | 15.8      | 110       | 2.5       | WH21182905  |
| M896030 | 0.5       | 12.7      | <0.01     | 0.08      | 5.3       | 0.007     | 0.25      | 0.65      | 41        | 0.29      | 8.16      | 58        | 3.7       | WH21182905  |
| M896031 | 0.3       | 61.6      | <0.01     | 0.06      | 3.4       | 0.009     | 0.19      | 1.09      | 41        | 0.29      | 20.6      | 95        | 3.8       | WH21182905  |
|         |           |           |           |           |           |           |           |           |           |           |           |           |           |             |
| M896032 | 1.6       | 19.2      | <0.01     | 0.02      | 6.7       | 0.136     | 0.76      | 0.5       | 40        | 0.22      | 9.34      | 55        | 4.3       | WH21182905  |
| M896033 | 1.7       | 74.9      | 0.01      | 0.01      | 5.4       | 0.126     | 1.36      | 0.56      | 33        | 0.27      | 41.7      | 88        | 3.5       | WH21182905  |
| M896034 | 0.4       | 6.1       | <0.01     | 0.04      | 3.1       | <0.005    | 0.1       | 0.33      |           | 0.18      |           | 48        |           | WH21182905  |

|         | Goldorak 2  | 021 Soil | Samples    |      |    |            |      |                |         |          |       |          |                                                                                                                                                         | AuME-TL44 | AuME-TL44 |
|---------|-------------|----------|------------|------|----|------------|------|----------------|---------|----------|-------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|
|         | All Coordin | ates; Gr | id :UTM, [ | atum | NA | D83 Zone 8 | 3V   |                |         |          |       |          |                                                                                                                                                         | Au        | Ag        |
| Sample  | Date        | East     | North      | Elev | m  | Sampler    | Туре | Slope Drainage | Horizon | Depth-cm | Color | Quality  | Description                                                                                                                                             | ppm       | ppm       |
| M896035 | 11-Jul-21   | 521082   | 6969831    | 1215 | m  | RH         | Soil |                | С       | 0.3      | brown | moderate | Grey phyllite outcrop. Ash- loess dilution likely.                                                                                                      | 0.001     | 0.3       |
| M896036 | 11-Jul-21   | 521104   | 6969792    | 1226 | m  | RH         | Soil |                | С       | 0.65     | brown | good     | Brown soil with patches of rusty weathering phyllite-siltst. Tan-<br>brn phyllite bedrock.                                                              | 0.004     | 0.13      |
| M896037 | 11-Jul-21   | 521145   | 6969796    | 1227 | m  | RH         | Soil |                | В       | 0.4      | brown | good     | Very minor red-limonite specks. Bedrock of tan -brown phyllite locally X-cut by 0.5cm red rusty vuggy qtz veinlets.                                     | 0.002     | 0.02      |
| M896038 | 11-Jul-21   | 520967   | 6969891    | 1196 | m  | RH         | Soil |                | C       | 0.4      | brown | good     | Top of first hump north of KSF. Grey phyllite outcrop. Brown soil<br>minor lim-rusty specks. Minor FeOx blebs in grey qtz veinlets<br>cutting phyllites | , 0.003   | 0.07      |

|         | AuME-TL44 |
|---------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
|         | Al        | As        | В         | Ва        | Ве        | Bi        | Ca        | Cd        | Ce        | Со        | Cr        | Cs        | Cu        | Fe        | Ga        | Ge        | Hf        | Hg        |
| Sample  | %         | ppm       | ppm       | ppm       | ppm       | ppm       | %         | ppm       | ppm       | ppm       | ppm       | ppm       | ppm       | %         | ppm       | ppm       | ppm       | ppm       |
| M896035 | 1.4       | 11.5      | <10       | 140       | 0.79      | 0.18      | 0.21      | 0.85      | 37.7      | 10.4      | 20        | 3.43      | 24.3      | 3.17      | 3.34      | 0.07      | 0.06      | 0.05      |
| M896036 | 1.57      | 12.6      | <10       | 630       | 1.34      | 0.13      | 0.16      | 1.27      | 88.9      | 15.2      | 25        | 2.29      | 55.3      | 17.3      | 3.32      | 0.33      | 0.21      | 0.15      |
| M896037 | 1.47      | 11.8      | <10       | 150       | 0.64      | 0.18      | 0.1       | 0.18      | 37.5      | 13.3      | 22        | 3.76      | 21.5      | 2.64      | 3.88      | 0.06      | 0.04      | 0.03      |
|         |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |
| M896038 | 1.38      | 24.7      | <10       | 220       | 0.86      | 0.24      | 0.06      | 0.19      | 34.4      | 19        | 18        | 3.03      | 54        | 3.92      | 3.3       | 0.11      | 0.06      | 0.03      |

| In<br>opm | K<br>% | La<br>ppm  | Li<br>ppm                          | Mg                                                                                                 | Mn                                                                                                                           | Мо                                                                                                                                                     | Na                                                                                                                                                                               | Nb                                                                                                                                                                                                           |                                                                                     | -                                                                                   |                                                                                     |                                                                                     |                                                                                     |                                                                                     |                                                                                     |                                                                                     |                                                                                     |
|-----------|--------|------------|------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
|           | %      | ppm        | nnm                                |                                                                                                    |                                                                                                                              |                                                                                                                                                        |                                                                                                                                                                                  | GIVI                                                                                                                                                                                                         | Ni                                                                                  | P                                                                                   | Pb                                                                                  | Rb                                                                                  | Re                                                                                  | S                                                                                   | Sb                                                                                  | Sc                                                                                  | Se                                                                                  |
|           |        |            | Phili                              | %                                                                                                  | ppm                                                                                                                          | ppm                                                                                                                                                    | %                                                                                                                                                                                | ppm                                                                                                                                                                                                          | ppm                                                                                 | ppm                                                                                 | ppm                                                                                 | ppm                                                                                 | ppm                                                                                 | %                                                                                   | ppm                                                                                 | ppm                                                                                 | ppm                                                                                 |
| 0.032     | 0.03   | 18         | 15                                 | 0.38                                                                                               | 340                                                                                                                          | 2.36                                                                                                                                                   | <0.01                                                                                                                                                                            | 0.48                                                                                                                                                                                                         | 35.1                                                                                | 710                                                                                 | 14.1                                                                                | 6.4                                                                                 | <0.001                                                                              | 0.01                                                                                | 3.15                                                                                | 4.2                                                                                 | 0.5                                                                                 |
| 0.388     | 0.03   | 34.9       | 9.3                                | 0.32                                                                                               | 10500                                                                                                                        | 1.05                                                                                                                                                   | <0.01                                                                                                                                                                            | 0.24                                                                                                                                                                                                         | 32.6                                                                                | 480                                                                                 | 12.4                                                                                | 5                                                                                   | 0.001                                                                               | 0.01                                                                                | 1.97                                                                                | 11.6                                                                                | 1.2                                                                                 |
| 0.025     | 0.05   | 18.3       | 20.2                               | 0.63                                                                                               | 537                                                                                                                          | 1.11                                                                                                                                                   | <0.01                                                                                                                                                                            | 0.43                                                                                                                                                                                                         | 27.9                                                                                | 390                                                                                 | 11.8                                                                                | 8.3                                                                                 | <0.001                                                                              | <0.01                                                                               | 1.56                                                                                | 3.3                                                                                 | 0.5                                                                                 |
| 0.022     | 0.00   | 16.1       | 22.6                               | 0.47                                                                                               | 500                                                                                                                          | 2.00                                                                                                                                                   | 0.03                                                                                                                                                                             | 0.24                                                                                                                                                                                                         | 46 5                                                                                | 400                                                                                 | 10.0                                                                                | 7.0                                                                                 | -0.001                                                                              | 0.04                                                                                | 4.61                                                                                | 2.7                                                                                 | 1.1                                                                                 |
| C         | 0.388  | 0.388 0.03 | 0.388 0.03 34.9<br>0.025 0.05 18.3 | 0.388         0.03         34.9         9.3           0.025         0.05         18.3         20.2 | 0.388         0.03         34.9         9.3         0.32           0.025         0.05         18.3         20.2         0.63 | 0.388         0.03         34.9         9.3         0.32         10500           0.025         0.05         18.3         20.2         0.63         537 | 0.388         0.03         34.9         9.3         0.32         10500         1.05           0.025         0.05         18.3         20.2         0.63         537         1.11 | 0.388         0.03         34.9         9.3         0.32         10500         1.05         <0.01           0.025         0.05         18.3         20.2         0.63         537         1.11         <0.01 | 0.388       0.03       34.9       9.3       0.32       10500       1.05       <0.01 | 0.388       0.03       34.9       9.3       0.32       10500       1.05       <0.01 | 0.388       0.03       34.9       9.3       0.32       10500       1.05       <0.01 | 0.388       0.03       34.9       9.3       0.32       10500       1.05       <0.01 | 0.388       0.03       34.9       9.3       0.32       10500       1.05       <0.01 | 0.388       0.03       34.9       9.3       0.32       10500       1.05       <0.01 | 0.388       0.03       34.9       9.3       0.32       10500       1.05       <0.01 | 0.388       0.03       34.9       9.3       0.32       10500       1.05       <0.01 | 0.388       0.03       34.9       9.3       0.32       10500       1.05       <0.01 |

|         | AuME-TL44 |             |
|---------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-------------|
|         | Sn        | Sr        | Та        | Те        | Th        | Ti        | Tİ        | U         | v         | w         | Y         | Zn        | Zr        |             |
| Sample  | ppm       | ppm       | ppm       | ppm       | ppm       | %         | ppm       | Certificate |
| M896035 | 0.3       | 16.3      | <0.01     | 0.04      | 3.8       | 0.014     | 0.09      | 0.76      | 29        | 0.23      | 14.95     | 71        | 1.9       | WH21182905  |
| M896036 | 0.2       | 21.9      | 0.01      | 0.04      | 7.4       | 0.01      | 0.17      | 1.84      | 19        | 0.27      | 66.2      | 41        | 5.7       | WH21182905  |
| M896037 | 0.3       | 10.7      | <0.01     | 0.03      | 4.5       | 0.025     | 0.12      | 0.63      | 27        | 0.23      | 6.17      | 58        | 1.3       | WH21182905  |
|         |           |           |           |           |           |           |           |           |           |           |           |           |           |             |
| M896038 | 0.2       | 11.6      | <0.01     | 0.07      | 5.6       | 0.007     | 0.14      | 0.92      | 25        | 0.11      | 5.58      | 82        | 2.5       | WH21182905  |

## APPENDIX D

**Field Station Data** 

|               |            | 2021 Geolo   |           |            |       |                       |      |         |      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------|------------|--------------|-----------|------------|-------|-----------------------|------|---------|------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               | All Coordi | inates; Grid | :UTM, Dat | um NAD83 Z |       |                       |      |         |      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Field Station | Geologist  | Date         | UTM_E     | UTM_N      | Elev. | Lithology             | Min1 | Min1Per | Min2 | Min2Per | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| DDH 81-7      | RH         | 6-Jul-21     | 516052    | 6971974    | 1336  |                       |      |         |      |         | Photos, HQ pipe making a little water, Az 000, dip -48. Colla<br>on cut line.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| RH21100       | RH         | 1-Jul-21     | 514238    | 6973835    | 1743  | hornfels metased rock | ру   | 0.25    |      |         | On high point of ridge between 2 high soil samples. Outcrop<br>of grey weathering grey hornfelsed metased, cherty to fine<br>gr qtzite. X/cut by white and clear qtz veinlets <1mm -<br>0.8cm, local blebs of FeOx, vuggy, rare py. Nearby JdP grab<br>W641880, a near horiz 3cm white - grey coxcomb qtz vein,<br>poss tr mal - tetrahedrite? Flat lying veins are difficult to<br>explore - ie Pogo! Vein 316/15N, bedding 114/36S                                                                                                                          |
| RH21101       | RH         | 1-Jul-21     | 513909    | 6973799    | 1711  | calc-silicate         | ру   | 0.5     | ро   | 0.5     | Light greenish grey calc-silicate almost skarn rock. Minor fine gr tremolite, silicic. Almost all rocks are hornfelsed.                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| RH21102       | RH         | 1-Jul-21     | 513838    | 6973707    | 1704  | hornfels metased rock | Ру   | tr      |      |         | Rusty weathering grey hornfels with biot-amphibole-<br>actinolite, Crosscut by white 0.3-0.5m thick bifurcating qtz<br>vein, zone up to 1m wide. Coarse qtz, no vis sulfides, traced<br>75m to west, striking 230/32S. Photo JdP on hillside, looking<br>SW.                                                                                                                                                                                                                                                                                                  |
| RH21103       | RH         | 2-Jul-21     | 513641    | 6973344    | 1599  | calc-silicate         |      |         |      |         | 5x10m outcrop of grey weakly rusty weathering bedded call<br>silicate. S0 is 085/23S and is consistent approx 50+m to<br>south.                                                                                                                                                                                                                                                                                                                                                                                                                               |
| RH21104       | RH         | 2-Jul-21     | 513581    | 6973355    | 1568  | hornfels argillite    | ру   | 1       |      |         | Rusty weathering dark grey hornfelsed argillite, 1% diss py,<br>S0 200/52W. 20m downslope white weathering float of<br>bleached calc-silicate crosscut by 1-2mm vuggy qtz -py<br>veinlets.                                                                                                                                                                                                                                                                                                                                                                    |
| RH21105       | RH         | 2-Jul-21     | 513400    | 6973371    | 1438  | Argillite             |      |         |      |         | Rusty weathering very dark grey argillite, locally bleached along fractures.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| RH21106       | RH         | 2-Jul-21     | 513054    | 6973410    | 1222  | Argillite             |      |         |      |         | Minor fold in grey argillite. Axial plane is fracture at 024/90,<br>crosscut by fractures at 155/90 +/- disscontinuous qtz<br>veinlets. Minor fold hingeline 204/14S plunging.                                                                                                                                                                                                                                                                                                                                                                                |
| RH21107       | RH         | 2-Jul-21     | 512756    | 6973510    | 1115  | Argillite             |      |         |      |         | In main creek at bend and canyon, outcrop of locally<br>deformed argillite crosscut by local narrow shears +/- FeOx-<br>Qtz veinlets with bladed textures and open spaces. Narrow<br>(?) 10cm band of silicified weakly brecciated crystalline qtz<br>with diss aspy, py and po, each <1%. Most of outcrop has 1-<br>2% diss py-po. Vis aspy more restricted. See notes for sketch<br>and JdP for photos. Shearing at 255/60N on S side on NW<br>side of shear band. S side of outcrop, possible S0 and As, Py<br>band at 225/20NW. 10cm shear band 240/85NW. |

| Field Station | Geologist | Date     | UTM_E  | UTM_N   | Elev. | Lithology                           | Min1 | Min1Per | Min2 Min2Per | Description                                                                                                                                                                                                                                                                      |
|---------------|-----------|----------|--------|---------|-------|-------------------------------------|------|---------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RH21108       | RH        | 2-Jul-21 | 512813 | 6973601 | 1128  | Argillite                           |      |         |              | In small creek above 6003 (silt), cliff outcrop of argillite,<br>local mm blebs of py and 1-2mm stringers of py. See<br>W641884.                                                                                                                                                 |
| RH21109       | RH        | 3-Jul-21 | 513854 | 6973779 | 1728  | Quartzite                           |      |         |              | Top of ridge, triple junction, outctop of bleached qtzite,<br>oxidized, well jointed, minor qtz veinlets- evidence of fluids<br>and big qtz veins about 25m to W. 40m downslope; strongly<br>hornfelsed metased, 1-4% pyrrhotite blebs, very siliceous<br>and hard, tr diss cpy. |
| RH21110       | RH        | 3-Jul-21 | 513830 | 6973725 | 1699  | quartzite-metased                   |      |         |              | Quartzite and metased rocks crosscut by 'Sheep qtz veins'.<br>Series of stacked QV approz 5-10m apart on steep hillside -<br>cliffs. 0.02-0.5m thick and 100m on strike over 40 m vert.<br>QV 348/38E.                                                                           |
| RH21112       | RH        | 3-Jul-21 | 513662 | 6973895 | 1612  | Qtzite-siltst-argillite-<br>metased | ро   | 2       |              | At break in slope on ridge going west. To east is hornfels<br>metased -qtzite-siltst-argillite. At stn rusty weathering<br>argillite, approx 2% diss po and minor py. East of stn ridge<br>outcrop is more recessive and grass covered. Bedding<br>260/85N, tr diss sph, cpy     |
| RH21113       | RH        | 3-Jul-21 | 513571 |         |       | Hornfels siltstn-qtzite             |      |         |              | On ridge, outcrop of light grey weathering, minor FeOx<br>hornfels siltst-qtzite, recrystallized, strong <1mm-2mm qtz<br>veinlets. Local 5% carb, minor argillite laminations. Cooked<br>up rocks!                                                                               |
| RH21114       | RH        | 3-Jul-21 | 513494 | 6973994 | 1566  | Qtzite                              |      |         |              | At base of massive outcrop of white weathering weak FeOx light grey qtzite. Qtzite to east to rock sample 5857.                                                                                                                                                                  |
| RH21115       | RH        | 4-Jul-21 | 514182 | 6972767 | 1618  | Quartzite                           |      |         |              | Possible drill pad, looks like it was dug out, no garbage.                                                                                                                                                                                                                       |
| RH21116       | RH        | 4-Jul-21 | 514171 | 6972735 | 1609  | Quartzite                           |      |         |              | Drill pad DDH81-4. Casing pipe sticking out of ground.<br>Ourcrop and float in front of drill pad is metased rock and<br>quartzite. Pipe azimuth 052, -50deg                                                                                                                     |
| RH21117       | RH        | 4-Jul-21 | 514286 | 6972869 | 1575  | Quartzite                           |      |         |              | Drill pad DDH81-3. Casing pipe sticking out of ground.<br>Ourcrop and float in front of drill pad is metased rock and<br>quartzite, qtzite contains fine gr py. Pipe azimuth 020, -<br>60deg                                                                                     |
| RH21118       | RH        | 4-Jul-21 | 514307 | 6972910 | 1568  | Quartzite                           |      |         |              | Silver Creek gully, presumed drill target for DDH81-3. Gully<br>marks more mass blocky qtzite to south and more varied<br>argillite, siltst and qtzite to north.                                                                                                                 |
| RH21119       | RH        | 4-Jul-21 | 514340 | 6972927 | 1550  | sltst                               |      |         |              | Patch of talus, fine gr siltst-mudst, locally spotted, poss.<br>Silliminite X-tals (or andalusite?), sltst-qtzite, minor vugs,<br>rare qtz veinlets, qtz flooding.                                                                                                               |
| RH21120       | RH        | 4-Jul-21 | 514051 | 6973324 | 1550  | Ferricrete                          |      |         |              | Top of moss ferricrete in creek gully going upstream. No sulfide boulders noted in creek.                                                                                                                                                                                        |

| Field Station | Geologist | Date     | UTM_E  | UTM_N   | Elev. | Lithology Min1        | I Min1Per | Min2 | 2 Min2Per Description                                                                                                                                                                                                                                                        |
|---------------|-----------|----------|--------|---------|-------|-----------------------|-----------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RH21121       | RH        | 4-Jul-21 | 513461 | 6973202 | 1533  | Hfd Siltst            |           |      | Very rusty weathering grey hornfelsed siltst, calcareous<br>siliciclastic. On contact between rusty weathering rocks and<br>grey blocky calc silicate to SE. On 'purple line' between SI<br>Y64755 & stn. Contact red rusty rocks and grey silicate<br>approz 070/45S        |
| RH21122       | RH        | 4-Jul-21 | 513607 | 6973300 | 1568  | Hfd Siltst            |           |      | Small cliff of hornfelsed siltst. Float of semi-massive sulfide<br>with lots of aspy at base of O/C . Actinolite float in scree.<br>=25cm actinolite - semi massive six band (py, aspy)<br sample W641894. S) 120/42S, crosscutting white QV<br>340/22E.                     |
| RH21123       | RH        | 5-Jul-21 | 513181 | 6972809 | 1636  | calc-silicate         |           |      | Top of cliff of grey calc-silicate, banded to friable. Sheep below on scree slope; 3 adults, 2 lambs. S0 135/65S                                                                                                                                                             |
| RH21124       | RH        | 5-Jul-21 | 512856 | 6972827 | 1512  | calc-silicate & shale |           |      | On contact between light grey calc-silicate to E and dark<br>grey shale - argillite with lst interbeds to west along ridge.<br>Foliation = S0? 114/72S. 30m to SW shale has foliation<br>parallel 1-3 cm calcite veinlets +/-blebs po and x-cutting cal<br>veinlets.         |
| RH21124A      | RH        | 5-Jul-21 |        |         |       | Skarn                 |           |      | GC Showing. Bedding 098/54S. Massive - semimassive<br>sulfide skarn bands; qtz-actinolite-sulfides-chlorite up to<br>30cm thick. Sulfide - skarn band 10m north of station is 1m<br>wide at 056/4S, trends towards saddle in ridge.                                          |
| RH21125       | RH        | 5-Jul-21 | 512343 | 6973058 | 1343  | Limestone-shale-skarn |           |      | PC Showing. Moderately rusty weathering outcrop of light<br>grey weathering lst and interbedded grey shale. SO 010/90,<br>on fold limb. S1 100/90. Ouctcrop crosscut by rusty<br>weathering vuggy qtz veinlets. Photos of station outcrop +<br>PC outcrop, looking NE and E. |
| RH21126       | RH        | 6-Jul-21 | 516197 | 6971886 | 1389  | Chert                 |           |      | Laiminated? Light -medium grey chert. Banded diss sulfides<br>and qtz segregations, greenish color (aspy?), hornfelsed,<br>almost like calc-silicate, Overall <1% diss py, aspy. SO<br>085/42S.                                                                              |
| RH21127       | RH        | 6-Jul-21 | 516345 | 6971980 | 1416  | Argillite             |           |      | sub outcrop of rusty weathering dark grey argillite, <1-2% diss py, po. Float of chert-calc-silicate as at stn 126 but less diss py-aspy.                                                                                                                                    |
| RH21128       | RH        | 6-Jul-21 | 516371 |         |       |                       |           |      | 0.5x0.5m outcrop of rusty weathering fractured grey<br>argillite with 1-2% diss sulfides (py-aspy?). Very weak<br>bleaching associated with very weak qtz veinlets and<br>fractures.                                                                                         |
| RH21129       | RH        | 6-Jul-21 | 516221 |         |       |                       |           |      | Angular boulder of grey argillite x/c b fractures with bleaching and calc-silicate. Tr py. Rounded 20cm boulder of sericite altered med gr qtz-feld porphyry.                                                                                                                |

| Field Station | Geologist | Date      | UTM_E  | UTM_N   | Elev. | Lithology                        | Min1 | Min1Per | Min2 Min2Per | Description                                                                                                                                                                                                                                                                                                          |
|---------------|-----------|-----------|--------|---------|-------|----------------------------------|------|---------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RH21130       | RH        | 6-Jul-21  | 516203 | 6971776 | 1396  | Argillite                        |      |         |              | <1m high 2x2m boulder sucbrop of grey argillite, fractured<br>with weak bleaching and local zones of strong calc-silicate<br>alteration, tremolite. Tr diss py. Stn on cut line at 020 deg.                                                                                                                          |
| RH21131       | RH        | 6-Jul-21  | 516132 | 6971804 | 1391  | calc-silicate & argillite        |      |         |              | Grey argillite, bleached calc-silicate along fractures and very discontinuous <2mm wide qtz veinlets. Both parallel and crosscutting S0. <1% diss and blebs py. S0 070/65S.                                                                                                                                          |
| RH21132       | RH        | 7-Jul-21  | 516647 | 6973922 | 1756  | Siltstone-argillite              |      |         |              | Dark grey weathering grey interbedded units of siltst-<br>argillite. S0 340/35E.                                                                                                                                                                                                                                     |
| RH21133       | RH        | 7-Jul-21  | 516887 |         |       | Felsic Intrusive                 |      |         |              | Stn at south of felsic intrusive contact. Light brown<br>weathering tan fine - med grained felsic intrusive. Unit<br>approx 15m wide, approx N-S. Unit has a weak fabric - part<br>of strat package? Felsic ash originally? No carb but rock<br>contains tremolite.                                                  |
| RH21134       | RH        | 7-Jul-21  | 516865 | 6974102 | 1706  | quartzite                        |      |         |              | Brown weathering light grey quartzite, Hangiing wall about<br>2m NW is 'felsic igneous rock as at stn 1133. tr diss cpy,<br><0.5% dis py-po. S0 125/40S.                                                                                                                                                             |
| RH21135       | RH        | 7-Jul-21  | 516810 | 6974414 | 1593  | Argillite                        |      |         |              | Grey argillite - metased rock, minor bleaching along S0<br>104/90 with weak calc-silicate alteration.                                                                                                                                                                                                                |
| RH21136       | RH        | 10-Jul-21 | 521169 |         |       | Phyllite-siltstone               |      |         |              | Followup on soil W641978, located on glacial scoured<br>outcrop 'hump'. Outcrop <8m from soil sample of phyllite<br>chl altered siltst (pervasive chlorite), tr py, possible aspy,<br>cpy. Minor qtz veining , bleaching with FeOx. Foliation<br>166/72S, hump long access at 110.                                   |
| RH21137       | RH        | 10-Jul-21 | 521093 | 6969697 | 1231  | Limy Phyllite                    |      |         |              | Angular moss covered 'scree' of grey fine grained phyllite (approx 10% calcite). Boring.                                                                                                                                                                                                                             |
| RH21138       | RH        | 10-Jul-21 | 520938 | 6969649 | 1271  | Calc-silicate - hfd<br>siltstone |      |         |              | Calc-silicate- hornfelsed limy grey siltst, calcite veinlets. Fine<br>gr tr sulfide (py) in cherty fractured bands. Dykelets of felsic<br>intrusive in contact with hornfels - calc-silicate.                                                                                                                        |
| RH21139       | RH        | 10-Jul-21 | 520911 | 6969636 | 1271  | Calc-silicate - hfd<br>siltstone |      |         |              | 2x6m outcrop face of grey calc-silicate, limy siltst, minor<br>chert, tr dis py. Very thin glassy grey qtz veinlets, calcite in<br>fractures. Similar to W425876 but less limestone - calcite<br>veining. S0 130/75S.                                                                                                |
| RH21140       | RH        | 10-Jul-21 | 520851 | 6969594 | 1263  | granitoid                        |      |         |              | Intrusive as per nearby JdP sample and stn's. Grey<br>homogeneous, med gr, original textures obscured, weak<br>calcite altereation and calcite on fractures. Rare x/c =<br 1mm clear qtz veining. <0.5% py-po diss and replacing<br>biotite. Sulfides replacement less intense than JdP samples<br>(on top of hill). |

| Field Station | n Geologist Date UTM_E |           | UTM_E  | UTM_N   | Elev. | Lithology                    | Min1 | Min1Per | Min2 | Min2Per | Description                                                                                                                                                                                                                                                                                                |
|---------------|------------------------|-----------|--------|---------|-------|------------------------------|------|---------|------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RH21141       | RH                     | 10-Jul-21 | 520810 | 6969633 | 1243  | granitoid                    |      |         |      |         | Tan - grey weathering grey biot-hbl granitoid. Weak chl alt<br>of mafics. Equigranular or close to it. Tr Sulfides, no<br>replacement of mafics by sulfides. Calcite fractures.20m<br>north, start of cliff outcrop of intrusive.                                                                          |
| RH21142       | RH                     | 10-Jul-21 | 520888 | 6969667 | 1236  | Cherty metased-calc silicate |      |         |      |         | Going NE, start of cliff of grey cherty metased and green bleached silicate. Boring. S0 135/55S.                                                                                                                                                                                                           |
| D81-03        | JDP                    | 7/4/2021  | 514287 | 6972870 | 1572  |                              |      |         |      |         | Relocated D81-03, Azimuth 020, dip -60 (-58 measure on casing). Water level estimated at 20 metres downhole.                                                                                                                                                                                               |
| D81-04        | JDP                    | 7/4/2021  | 514170 | 6972734 | 1602  |                              |      |         |      |         | Relocated D81-04. 40cm pipe sticking up. Azimuth/dip: see RH GeoStation.                                                                                                                                                                                                                                   |
| D81-07        | JDP                    | 7/6/2021  | 516051 | 6971972 | 1334  |                              |      |         |      |         | Relocated D81-07. 30cm pipe. Hole makes water (thread of water, one litre per 2 minutes estimated). Azimuth 000, dip - 48 (possibly -50) The drill site is located along a cutline.                                                                                                                        |
| JDP21001      | JDP                    | 7/2/2021  | 513306 | 6973393 | 1372  | argillite                    | ру   | 0.5     |      |         | Outcrop/subcrop. Bleached along fracture. Rock around show quartz-chlorite veinlets. Weakly mineralized pyrite. Bedding at 180/85.                                                                                                                                                                         |
| JDP21002      | JDP                    | 7/3/2021  | 513814 | 6973814 | 1705  | quartzite                    |      |         |      |         | White-beige, bleached, non-crystalline, non-mineralized<br>hornfeld (metasediment). Bedding unclear-rough<br>measurement at 148/65                                                                                                                                                                         |
| JDP21002      | JDP                    | 7/3/2021  | 513714 |         |       | hornfeld-skarn               | ру   | 0.5     | sph  | 0.1     | Irregular quartz-carbonate veinlets, bladed texture skarny<br>hornfeld hosted. Mineralized pyrite and possibly<br>sphalerite/galena.                                                                                                                                                                       |
| JDP21004      | JDP                    | 7/3/2021  | 513663 | 6973893 | 1607  | cherty metasediment          | ро   | 5       | ру   | 0.5     | Pale grey, cherty aspect, metasediments mineralized pyrrhotite dominant (veinlets) and euhedral pyrite.                                                                                                                                                                                                    |
| JDP21005      | JDP                    | 7/3/2021  | 513413 | 6973933 | 1603  | quartzite-metasediment       |      |         |      |         | Hornfeld, siliceous. Bedding at 115/60.                                                                                                                                                                                                                                                                    |
| JDP21006      | JDP                    | 7/3/2021  | 513473 | 6973992 | 1556  |                              |      |         |      |         | Picture station looking south from copper anomaly target.                                                                                                                                                                                                                                                  |
| JDP21007      | JDP                    | 7/3/2021  | 513548 | 6073927 | 1553  | argillite                    | ро   | 5       | ру   | 0.1     | Chaotic outcrop, 50x10m. Rusty argillite mineralized disseminated pyrrhotite dominant and disseminated pyrite. Bedding unclear.                                                                                                                                                                            |
|               |                        |           |        |         |       |                              | pe   |         | P 7  | 0.1     | Float 10x10x5cm. Quartzite-hornfeld showing tight quartz veinlets-crystalline texture. Mineralized pyrrhotite dominant, trace chalcopyrite and possibly stibnite (dark grey                                                                                                                                |
| JDP21008      | JDP                    | 7/3/2021  | 513633 | 6973711 | 1523  | quartzite                    | ро   | 10      | сру  | 0.1     | needle, acicular mineral)                                                                                                                                                                                                                                                                                  |
|               |                        |           |        |         |       | porphyroblastic              |      |         |      |         | Float field on talus float average 20x10x10cm wide) showing<br>two rock types. 1-Dark grey metasiltstone-metamudstone,<br>strongly deformed, spotted texture due to porphyroblasts<br>though as andalusite (contact metamorphism). 2-bleached<br>deformed quartzite containing comb texture quartz -pyrite |
| JDP21009      | JDP                    | 7/4/2021  | 514385 | 6972904 | 1529  | siltstone-quartzite          |      |         |      |         | veinlets weakly oxidized.                                                                                                                                                                                                                                                                                  |

| Field Station | Geologist | Date     | UTM_E  | UTM_N   | Elev. | Lithology        | Min1 | Min1Per | Min2 | Min2Per | Description                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------------|-----------|----------|--------|---------|-------|------------------|------|---------|------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| JDP21010      | JDP       | 7/4/2021 | 514444 | 6972814 | 1517  | calc-silica      |      |         |      |         | Float 20x20x10. Brown patina (sideritic?), massive. Grey<br>fresh surface, quartz dominant. No mineralization observed<br>but metasiltstone nearby weakly mineralized pyrite.                                                                                                                                                                                                                               |
| JDP21011      | JDP       | 7/4/2021 | 514390 | 6972967 | 1442  | granodiorite     |      |         |      |         | Float field, 60x50x30cm average. Scree slope boulders<br>consisting of quartz (0.5cm, 10-20%)-feldspar (0.5%, 10%)<br>porphyry. No fresh biotite at this location. The intrusion is<br>weakly altered and show 5% limonite replacing mafics<br>(orange staining). Abundant quartz in groundmass (30%)                                                                                                       |
| JDP21012      | JDP       | 7/4/2021 | 514390 | 6973301 | 1398  | granodiorite     |      |         |      |         | 50x50x20cm boulder in creek bed. Only one boulder found.<br>Abundant quartz porphyry (30%- averaging 0.5cm crystals)<br>and feldspar (20%-0.5cm). Quartz-feldspar in groundmass,<br>10% weakly chlorite altered biotite. The boulder maybe be<br>glacial transported.                                                                                                                                       |
| JDP21013      | JDP       | 7/4/2021 | 513452 | 6973214 | 1528  | argillite        |      |         |      |         | Picture station showing sample W641892 at the back and podiform massive sulphide lens at the front. Looking south-<br>east.                                                                                                                                                                                                                                                                                 |
| JDP21014      | JDP       | 7/4/2021 | 513581 | 6973305 | 1538  | massive sulphide | ро   | 50      | aspy | 2       | Float in scree, 30X20X5cm. Dark grey, fine to medium grained, equigranular, fresh sulphides. Pyrrhotite dominant, arsenopyrite, pyrite, chalcopyrite (1%) and trace malachite. Found 15m bellow sample W641867 (2020 best Au rock sample). The rock have been sampled and described at camp (sample W641895).                                                                                               |
| JDP21015      | JDP       | 7/5/2021 | 512834 | 6972812 | 1489  | limestone        |      |         |      |         | Picture GeoStation. Limestone boudinaged lens in shale.<br>Abundant coarse grained quartz veinlets. Bedding at<br>140/50.                                                                                                                                                                                                                                                                                   |
| JDP21016      | JDP       | 7/6/2021 | 516010 | 6972944 | 1705  | quartzite        | ру   | 0.5     | ро   | 0.1     | 10 metres from 2020 camp site. Boulder field of grey<br>weathering quartzite. Fresh surface is grey, homogeneous.<br>Minor fine grained disseminated pyrite, trace pyrrhotite.<br>The area extents all along the plateau/ridge. Blocky,<br>boulders average 20x2010cm. Weak oxidation.                                                                                                                      |
| JDP21017      | JDP       | 7/6/2021 | 515955 | 6972751 | 1686  | quartzite        | ру   | 0.5     | ро   | 0.5     | Outcrop. Quartzite with commonly abundant acicular<br>mineral though as tremolite (limy). Disseminated pyrite-<br>pyrrhotite up to 1%. Rare quartz veinlets. The rocks are<br>interpreted as cooked calcareous metasediment (contact<br>aureole of the Cretaceous intrusion). Soil sample M896021<br>taken nearby shows limy quartzite, minor quartz calcite<br>veinlets fragments with trace chalcopyrite. |

| Field Station | Geologist | Date     | UTM_E  | UTM_N   | Elev. | Lithology                        | Min1 | Min1Per | Min2 | Min2Per | Description                                                                                                                                                                                                                                                                                                                                           |
|---------------|-----------|----------|--------|---------|-------|----------------------------------|------|---------|------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| JDP21018      | JDP       | 7/6/2021 | 515946 | 6972517 | 1599  | hornfeld-<br>argillite/siltstone | ру   | 0.5     | ро   | 0.5     | 3x10m outcrop. Strongly jointed (30-50cm spacing). Rough<br>bedding at 300/75. Dominant joint set at 126/70. Dominant<br>folding direction at 120 degrees. The outcrop sits along a<br>well marked break in the landscape (gully) trending at 150<br>degrees.                                                                                         |
| JDP21019      | JDP       | 7/6/2021 | 516037 | 6972110 | 1410  | metasediment-siltstone           |      |         |      |         | 30x15x10cm float. Grey, blocky, crystalline texture-sucrosic<br>quartz, 3% calcite fracture infill dominant. Presence of<br>actinolite-tremolite interpreted as limy lamination within<br>meta-siltstone. No mineralization observed.                                                                                                                 |
| JDP21020      | JDP       | 7/6/2021 | 516063 | 6972083 | 1389  | argillite                        | ру   | 0.5     |      |         | 2x1m outcrop. Black argillite, weakly fractured, minor quartz fracture infill. Minor disseminated pyrite. Dominant joint set (possible bedding) at 090/58.                                                                                                                                                                                            |
| JDP21021      | JDP       | 7/6/2021 | 516142 | 6971900 | 1347  | cherty argillite                 | ру   | 1       | ро   | 1       | 1x1m outcrop. Cherty-like banded argillite. Airline fracture<br>along bedding and crosscutting quartz veinlets weakly<br>mineralized pyrite-pyrrhotite. 1-2% very fine grained<br>disseminated pyrite-pyrrhotite in matrix. Some rusty bands<br>(ex-pyrite bands?) up to 0.5cm wide.                                                                  |
| JDP21022      | JDP       | 7/6/2021 | 516333 | 6971999 | 1410  | cherty argillite                 | ру   | 1       |      |         | 1x1m outcrop. Grey, cherty-like argillite showing fine grey<br>quartz veinlets weakly pyrite mineralized. Very irregular<br>break.                                                                                                                                                                                                                    |
| JDP21023      | JDP       | 7/6/2021 | 516244 | 6971908 | 1405  | argillite                        | ру   | 2       | az   | 0.1     | Possible LM showing. 1x1m outcrop. Rusty weathered<br>surface. Dark grey, irregular break, friable. Some sericite-<br>limonite-quartz altered beds. Quartz veinlets. Presence of<br>actinolite (carbonate replacement style). Mineralization<br>consists of pyrite-trace azurite-trace malachite,<br>disseminated pyrrhotite in matrix (see W425866). |
| JDP21024      | JDP       | 7/6/2021 | 516408 | 6972184 | 1412  | granodiorite                     | mg   | 2       |      |         | 30x?x?cm wide float. Dark grey-black, quartz porphyry<br>(10%), biotite (20%), weakly magnetic (probably presence of<br>magnetite) intrusive rock. Granodioritic composition but<br>dark colour. The intrusive boulders encountered along the<br>ridge could glacial transported.                                                                     |
| JDP21025      | JDP       | 7/6/2021 | 516438 | 6972295 | 1459  | calcareous argillite             | ро   | 10      |      |         | Outcrop. Rusty argillite showing locally 20% disseminated pyrrhotite. Strongly sheared/fractured. Some limy-hard calc-silicate beds (20% calcite estimated).                                                                                                                                                                                          |
| JDP21026      | JDP       | 7/6/2021 | 516440 | 6973011 | 1642  |                                  |      |         |      |         | Location of a small flight camp (la Ligua-2012?). Old fire pit<br>and junk remaining including blue tarp, empty gas cans,<br>aluminium foil                                                                                                                                                                                                           |

| Field Station | Geologist | Date      | UTM_E  | UTM_N   | Elev. | Lithology                          | Min1 | Min1Per | Min2 | Min2Per | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------------|-----------|-----------|--------|---------|-------|------------------------------------|------|---------|------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| JDP21027      | JDP       | 7/7/2021  | 516727 | 6973985 | 1721  | argillite-siltstone<br>interbedded | ро   | 0.5     |      |         | Outcrop along ridge. Well bedded grey-dark grey argillite<br>and siltstone interbedded. Beds average 1-2cm thick. Rare<br>quartz-limonite veinlets/fracture infill and crosscutting<br>bedding. Rare pyrrhotite in veinlets. Overall the rocks are<br>poorly mineralized. Bedding at 130/62.                                                                                                                                                                                                                                                                                                                        |
| JDP21028      | JDP       | 7/7/2021  | 516828 | 6973993 | 1719  | felsic intrusive-aplite?           | ро   | 2       |      |         | 2m wide subcrop/outcrop. Bleached, yellow orange,<br>medium grained possibly intrusive rock showing locally<br>acicular crystals (tremolite). The unit seems to crosscut the<br>nearby quartz-argillite (contact seen on the east side of the<br>"intrusion" at 105/55. Shale on the northern part, 2%<br>disseminated pyrrhotite in quartzite). The intrusive origin of<br>the rock is uncertain since a fabric (bedding?) is observed.<br>The rock is overall equigranular and may site on a structure<br>crosscutting the ridge and the lithology at 90 degrees. Hand<br>sample taken for possible thin section. |
| JDP21029      | JDP       | 7/7/2021  | 516924 | 6974005 | 1706  |                                    |      |         |      |         | Waypoint marking the location of the last "aplitic" float<br>encountered on the slope. Fabric/lamination is questioning.<br>The rock may be sedimentary but the way that it crosscuts<br>the other lithology suggests intrusive origin.                                                                                                                                                                                                                                                                                                                                                                             |
| JDP21030      | JDP       | 7/7/2021  | 516871 | 6974143 | 1679  | felsic intrusive-aplite?           |      |         |      |         | Similar to JDP21028 with abundant tremolite along fracture.<br>The rock contains 5% calcite and the fabric is still marked.<br>Carbonate altered felsic intrusive?.                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| JDP21031      | JDP       | 7/8/2021  | 520580 | 6970802 | 1259  | siltstone                          |      |         |      |         | 5x3m outcrop. Wavy, weakly deformed, dark grey, fine<br>grained siltstone. Commonly fractured-limonite infill.<br>Bedding at 020/22 (rough measurement).                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| JDP21032      | JDP       | 7/8/2021  | 520736 | 6970123 | 1170  |                                    |      |         |      |         | Waypoint marking the location of an uncompleted soil sample. Hole dug at 30cm encountered organic material and permafrost. No sample taken.                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|               |           | _ /_ /    |        |         |       |                                    |      |         |      |         | Picture GeoStation. Phaccoidal texture on outcrop and 3-<br>5cm thick crosscutting calcite veins suggesting major<br>structure developed in the vicinity. 4x1m outcrop, yellow-<br>beige weathering. Dark grey siltstone calcite flooded                                                                                                                                                                                                                                                                                                                                                                            |
| JDP21033      | JDP       | 7/9/2021  | 520707 | 6969904 | 1183  | calcareous siltstone               | ру   | 0.1     |      |         | showing very irregular break. Trace pyrite.<br>0.5x0.7m outcrop. Grey, fine grained, schistose siltstone.<br>Weakly deformed and jointed. 20% calcite in matrix and                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| JDP21034      | JDP       | 7/9/2021  | 521133 | 6969856 | 1205  | calcareous siltstone               |      |         |      |         | fracture infill. Bedding at 125/65<br>GeoStation JDP13 (2019). Grey, strongly laminated, folded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| JDP21035      | JDP       | 7/10/2021 | 521075 | 6969735 | 1218  | limy shale                         |      |         |      |         | shale. Carbonate veins up to 5cm thick. Bedding at 080/26<br>(rough measurement away from the 10-20cm wide folds).<br>Fold axis at 150/30.                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| Field Station | Geologist | t Date    | UTM_E  | UTM_N   | Elev. | Lithology                            | Min1 | Min1Per | Min2 | Min2Per | Description                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------|-----------|-----------|--------|---------|-------|--------------------------------------|------|---------|------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| JDP21036      | JDP       | 7/10/2021 | 521103 | 6969757 | 1221  | limy phyllite                        |      |         |      |         | GeoStation JDP12 (2019). Mix of phyllite and limy phyllite,<br>banded. Calcite veinlets dominant with possible<br>ankerite/siderite coating. Bedding at 089/90. Quartz veinlets<br><0.5cm at 126/70. Striation (glacial lineament) at 076.<br>1x0.3m outcrop. Beige-light grey, granular, felsic intrusive                                                                                       |
| JDP21037      | JDP       | 7/10/2021 | 520892 | 6969588 | 1263  | felsic intrusive                     | ру   | 1       | ро   | 0.1     | pyrite-calcite altered (replacing mafics). Some feldspar<br>preserved (weakly altered). Low quartz content suggesting<br>dioritic composition.                                                                                                                                                                                                                                                   |
| JDP21038      | JDP       | 7/10/2021 | 520873 | 6969598 | 1256  | felsic intrusive                     | ру   | 0.1     | ро   | 0.1     | 2x0.6m outcrop. Calcite-possibly weakly chlorite altered<br>felsic intrusive. Irregular break, calcite veinlets. Texture<br>obscured by alteration but overall granular and<br>homogeneous. The rock seem smore altered than seen on<br>the top of the "bump". No sample taken due to low sulphide<br>content.                                                                                   |
| JDP21039      | JDP       | 7/10/2021 | 520817 | 6969647 | 1242  | calc-silicate                        |      |         |      |         | Waypoint marking the contact between the intrusion and<br>the metasediment going north. Contact at 170/90. Intrusive<br>is fine grained, siliceous. Metasediment consists of limy calc-<br>silicate (cherty-like), pale green-pinkish coloured, bedding at<br>132/68.                                                                                                                            |
| JDP21040      | JDP       | 7/10/2021 | 520840 | 6969654 | 1237  | felsic intrusive                     | ро   | 0.1     | ро   | 0.1     | Waypoint marking the contact between metasediment and<br>felsic intrusive going north. Metasediment consists of calc-<br>silicate with common quartz veinlets and calcite fracture<br>infill. Intrusive rock consists of calcite altered diorite(?) with<br>moderate sulphide-calcite replacing the mafic minerals.<br>Texture obscured by alteration. No quartz crystals clearly<br>identified. |
| JDP21041      | JDP       | 7/10/2021 | 520846 | 6969654 | 1238  | metasediment                         |      |         |      |         | Waypoint marking the contact between felsic intrusive and metasediment going north. Unmineralized calcite-quartz structure trending 030/? (subvertical).                                                                                                                                                                                                                                         |
| 10021042      | 100       | 7/10/2024 | 520040 | 000007  | 1244  | folcio intrucivo                     |      | 2       |      | 0.1     | Waypoint marking the contact between metasediment and felsic intrusive going north. The contact is sharp.<br>Metasediment consists of limy calc-silicate. Intrusion calcite altered (10% calcite), 1-2% pyrrhotite-pyrite partially                                                                                                                                                              |
| JDP21042      | JDP       | 7/10/2021 | 520948 |         |       | felsic intrusive                     | ро   | 2       | ру   | 0.1     | replacing mafic mineral (dominantly biotite).                                                                                                                                                                                                                                                                                                                                                    |
| JDP21043      | JDP       | 7/11/2021 | 520818 |         |       | felsic intrusive<br>felsic intrusive |      |         |      |         | Hand sample for YGS (dating?).<br>Hand sample for YGS (dating?).                                                                                                                                                                                                                                                                                                                                 |
| JDP21044      | JDP       | 7/11/2021 | 520892 | 285690  | 1202  |                                      |      |         |      |         | 2x1m outcrop. Grey-green (chlorite-sericite altered?), platy,                                                                                                                                                                                                                                                                                                                                    |
| JDP21045      | JDP       | 7/11/2021 | 521093 | 6969898 | 1199  | shale                                |      |         |      |         | fissile/friable shale.                                                                                                                                                                                                                                                                                                                                                                           |

| Field Station | Geologist | Date      | UTM_E  | UTM_N   | Elev. | Lithology           | Min1 | Min1Per | Min2 | Min2Per | Description                                                                                                                                                                                                                                                    |
|---------------|-----------|-----------|--------|---------|-------|---------------------|------|---------|------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| JDP21046      | JDP       | 7/11/2021 | 521152 | 6969880 | 1192  | limy shale          | ру   | 0.5     | сру  | 0.1     | Outcrop. Grey-grey blue, platy, fissile slate/shale. Beds<br>average 1-5mm thick (slabs) with occasional limy beds<br>containing pyrite-possibly chalcopyrite in fracture and<br>disseminated. Poorly marked secondary fabric/foliation.<br>Bedding at 115/80. |
| JDP21047      | JDP       | 7/11/2021 | 521055 | 6969847 | 1206  | calcareous phyllite |      |         |      |         | 1x0.5m outcrop. Unit marked by dark grey-black colour.<br>Way, very irregular break, oxidation in fracture, moderately<br>fissile limy phyllite. No mineralization observed.                                                                                   |

# APPENDIX E

## 2021 Thin Section

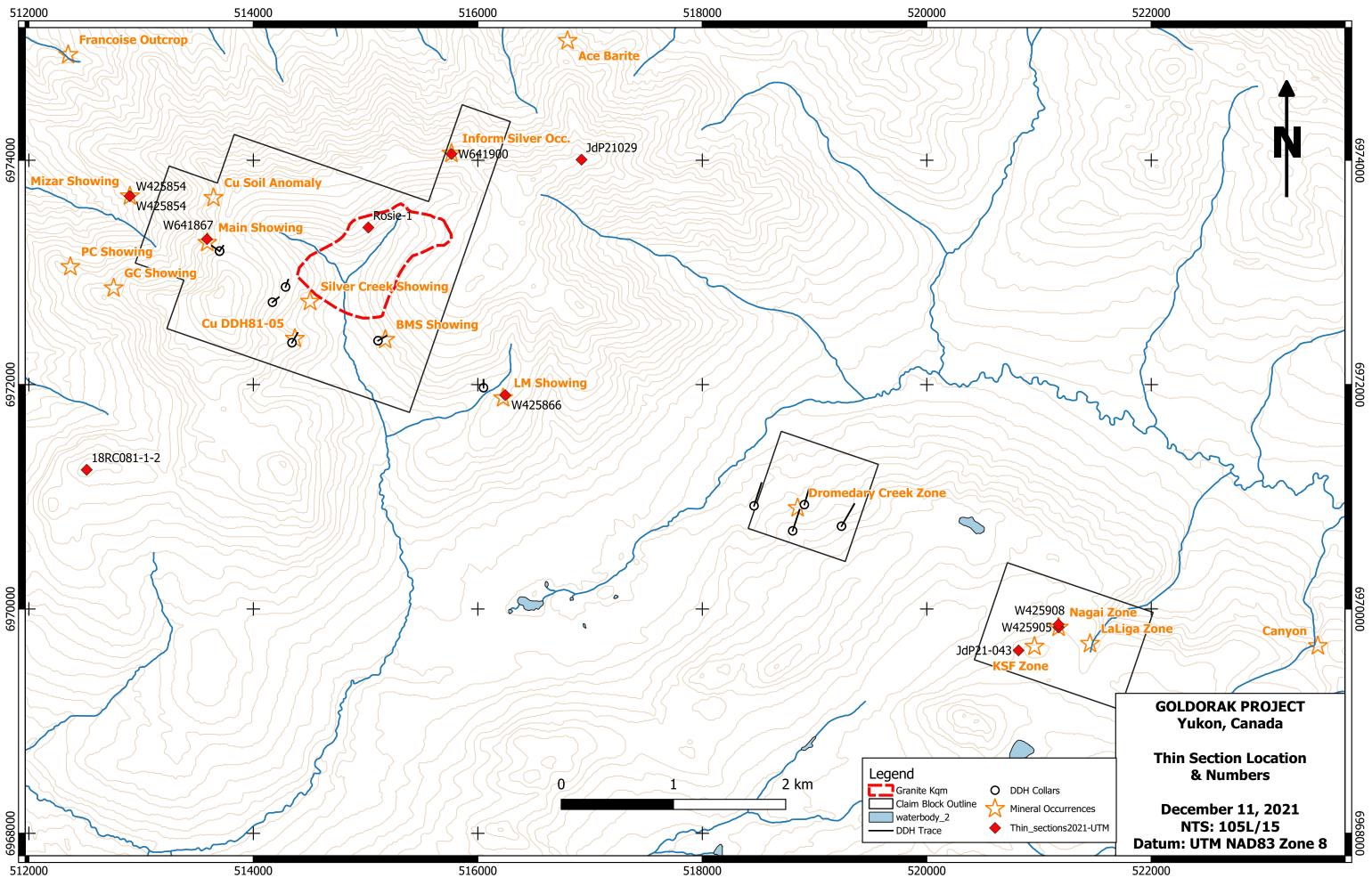
Descriptions

2021 Goldorak Report

### **2021 PETROGRAPHY REPORT – GOLDORAK PROJECT**

A total of 10 samples were selected from the Goldorak Project area for thin and polished section examination. Rock slabs were sent to Vancouver Petrographics for preparation. The thin and polished sections were then sent to Dr. Tim Liverton for petrographic examination and photomicrography.

Five thin sections borrowed from Ms. Rosie Cobbett at the Yukon Geological Survey were included with the shipment for comparative purposes; to compare known age dated intrusive samples to the intrusive samples collected by the authors.

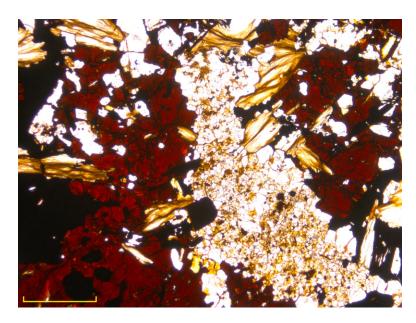

A description of the samples follow and the locations are presented on a map below.

#### 2021 Goldorak Thin and Polished Thin Sections

|             |           |      |                       |               | -         |               |           |          |          |          | 1                                                                                                                                                                                                                                                                                                                                                                  |
|-------------|-----------|------|-----------------------|---------------|-----------|---------------|-----------|----------|----------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | Van Petro |      | Short                 | Date          |           |               | Easting   | Northing | Easting  | Northing |                                                                                                                                                                                                                                                                                                                                                                    |
| Number      | Number    | Type | Description           | Collected     | Geologist | Location      | UTM NAD83 |          |          | LAT      | Description                                                                                                                                                                                                                                                                                                                                                        |
| 16RC001-2   |           | TS   |                       |               | Rosie C.  |               | 537277    | 6957623  |          |          | Age: 96.03 +/-0.04 Ma                                                                                                                                                                                                                                                                                                                                              |
| 18RC182-1-1 |           | TS   |                       |               | Rosie C.  |               | 484568    | 6980878  | 62.95739 |          | Age: 95.05 +/-0.01 Ma                                                                                                                                                                                                                                                                                                                                              |
| 16RC061-1-3 |           | TS   |                       |               | Rosie C.  |               | 523277    | 6967511  | 62.837   |          | Age: 364.44 +/-0.11 Ma                                                                                                                                                                                                                                                                                                                                             |
| 16RC110-1-2 |           | TS   |                       |               | Rosie C.  |               | 550767    | 6958795  | 62.756   |          | Age: 362.0 +/-12 Ma (might be 1.2 Ma-mistyping?)                                                                                                                                                                                                                                                                                                                   |
| 18RC081-1-2 |           | TS   |                       | ¢             | Rosie C.  |               | 512515    | 6971240  | 62.871   | -134.754 | Age: 364.53 +/-0.13 Ma                                                                                                                                                                                                                                                                                                                                             |
| Rosie-1     |           | TS   | Qtz-monzonite         | 3-Jul-20      | JdP       | QM outcrop    | 515025    | 6973400  |          |          | Quartz-monzonite: equigranular, 40% feldspar-30% quartz porphyry<br>(glassy, fractured, subrounded, 0.5 to 1 cm)-5 to 10% biotite. Absence of<br>magnetite, tourmaline trace. MagSus returns 0.00 to 0.7 S.I. Sampled for<br>YGS, zircon dating (no follow-up by YGS). Delivered to Maurice Colpron of<br>July 7th 2020                                            |
| JdP21-043   |           | тs   | felsic intrusive      | 11-Jul-21     | JdP       | KFS           | 520818    | 6969630  |          |          | Felsic intrusive. Observations from Rosie Cobbett correlates Devonian age<br>intrusion. The rock is locally carbonate altered with pyrrhotite replacing<br>mafic. Locally 1-3% pyrite-pyrrhotite combined.                                                                                                                                                         |
| JdP21029    | AR-3      | TS   | felsic intrusive      | 7-Jul-21      | JdP       | North Ridge   | 516924    | 6974005  |          |          | Waypoint marking the location of the last "aplitic" float encountered on<br>the slope. The area is 5-10 m wide and the unit seems to crosscut the<br>adjacent argillite-siltstone. Fabric/lamination is questioning. The rock may<br>be sedimentary but the way that it crosscuts the other lithology suggests<br>intrusive origin. Waiting for assay results.     |
| W425854     | AR-1A     | тs   | sulphides             | 2-Jul-21      | RH        | Mizar         | 512899    | 6973680  |          |          | Grey limestone-marble with diss med-crse grained crystalline sph and mystery grey sulfide (poss aspy?).                                                                                                                                                                                                                                                            |
| W425854     | AR-1B     | PTS  | sulphides             | 2-Jul-21      | RH        | Mizar         | 512899    | 6973680  |          |          | Grey limestone-marble with diss med-crse grained crystalline sph and mystery grey sulfide (poss aspy?).                                                                                                                                                                                                                                                            |
| W425866     | AR-6      | тs   | metased rock          | 6-Jul-21      | RH        | LM            | 516244    | 6971906  |          |          | Grab from 0.5x1.0m outcrop, next to cut line, of rusty weathering argillite<br>crosscut by FeOx - former sx, qtz filled fault structure. Tr cpy, FeOx -<br>boxwork texture with vuggy qtz brx. Tr py, tr malachite and azurite, <0.5%<br>fine gr diss po in fresh grey argillite.                                                                                  |
| W425905     | AR-2A     | TS   | sulphides             | 9-Jul-21      | JdP       | Nagai         | 521175    | 6969836  |          |          | Dark grey-green, fine grained, chloritic (altered?-pervasive) shale hosted<br>with abundant quartz fragments (brecciated veinlets). Arsenopyrite<br>dominant (>10%) and scorodite staining. Strong association quartz-<br>arsenopyrite observed.                                                                                                                   |
| W425905     | AR-2B     | PTS  | sulphides             | 9-Jul-21      | JdP       | Nagai         | 521175    | 6969836  |          |          | Dark grey-green, fine grained, chloritic (altered?-pervasive) shale hosted<br>with abundant quartz fragments (brecciated veinlets). Arsenopyrite<br>dominant (>10%) and scorodite staining. Strong association quartz-<br>arsenopyrite observed.                                                                                                                   |
| W425908     | AR-4      | PTS  | sulphides             | 9-Jul-21      | JdP       | Nagai         | 521174    | 6969862  |          |          | Outcrop. Continuous representative chip sample over 50cm. Semi-<br>massive arsenopyrite-pyrite with common brecciated quartz veinlets-<br>disrupted, moderately chloritic shale hosted. Weakly oxidized. Some<br>crosscutting quartz veinlets.                                                                                                                     |
| W641900     | AR-7      | PTS  | sulphides             | 7-Jul-21      | JdP       | Inform Silver | 515765    | 6974056  |          |          | Inform Silver Showing. 3x4m outcrop. 30x10x10 (?0cm massive sulphide pod/lens hosted by shale-argillite.                                                                                                                                                                                                                                                           |
| W641867     | AR-5      | TS   | semi-massive sulphide | July 1st 2020 | JDP       | Main Zone     | 513587    | 6973297  |          |          | Subrounded 60*60*50 cm float of semi-massive sulphide. Yellow-rusty<br>weathering. py/po/cpy (5%)/possibly honey sphalerite, chlorite,<br>tremolite. Several float of the same nature in the area. Outcrop located<br>above is not mineralized. Main showing is located 20 metres south east o<br>the sample. The protolith may be intrusive (have to be checked). |

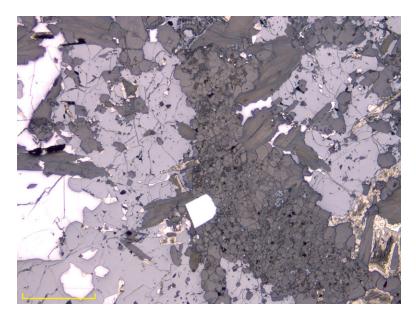
|             | Au-AA24 | ME-ICP61 | ME-ICP61 | ME-ICP61 | ME-ICP61 | ME-ICP61 | ME-ICP61 | ME-ICP61 | ME-ICP61 | ME-ICP61 | ME-ICP61 | ME-ICP61 | ME-ICP61 | ME-ICP61 | ME-ICP61 | ME-ICP61 | ME-ICP61 | ME-ICP61 | ME-ICP61 |
|-------------|---------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|             | Au      | Ag       | AI       | As       | Ва       | Be       | Bi       | Ca       | Cd       | Со       | Cr       | Cu       | Fe       | Ga       | к        | La       | Mg       | Mn       | Мо       |
| Number      | ppm     | ppm      | %        | ppm      | ppm      | ppm      | ppm      | %        | ppm      | ppm      | ppm      | ppm      | %        | ppm      | %        | ppm      | %        | ppm      | ppm      |
| 16RC001-2   |         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
| 18RC182-1-1 | Å       |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
| 16RC061-1-3 | ÷       |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
| 16RC110-1-2 | ۵       |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
| 18RC081-1-2 |         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
| Rosie-1     |         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
| JdP21-043   |         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
| JdP21029    |         |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
| W425854     | 0.51    | 2490     | 1.96     | 9900     | 50       | 0.6      | 4460     | 2.96     | 580      | 37       | 78       | 342      | 8.78     | 10       | 1.02     | 20       | 2.02     | 2310     | 33       |
| W425854     | 0.51    | 2490     | 1.96     | 9900     | 50       | 0.6      | 4460     | 2.96     | 580      | 37       | 78       | 342      | 8.78     | 10       | 1.02     | 20       | 2.02     | 2310     | 33       |
| W425866     | 0.356   | 28       | 2.21     | 58       | 190      | 0.5      | 2        | 1.95     | 0.6      | 1        | 37       | 4070     | 13.35    | 10       | 0.75     | 20       | 0.7      | 1370     | 1        |
| W425905     | 7.36    | 0.5      | 2.79     | 10000    | 250      | 0.5      | 19       | 0.08     | 0.5      | 939      | 28       | 45       | 12.35    | 10       | 0.37     | 20       | 0.7      | 168      | 1        |
| W425905     | 7.36    | 0.5      | 2.79     | 10000    | 250      | 0.5      | 19       | 0.08     | 0.5      | 939      | 28       | 45       | 12.35    | 10       | 0.37     | 20       | 0.7      | 168      | 1        |
| W425908     | 0.023   | 0.5      | 1.03     | 66       | 130      | 0.5      | 3        | 0.42     | 0.6      | 8        | 7        | 71       | 32.1     | 10       | 0.03     | 10       | 0.73     | 37300    | 1        |
| W641900     | 0.186   | 646      | 3.76     | 35       | 120      | 0.6      | 229      | 1.97     | 173.5    | 46       | 27       | 334      | 9.84     | 20       | 0.91     | 20       | 2        | 15100    | 6        |
| W641867     | 0.147   | 12.5     | 1.46     | 99       | 30       | 5.1      | 233      | 2.13     | 8.6      | 4        | 29       | 6100     | 22       | 10       | 0.01     | 10       | 0.58     | 936      | 1        |

| Number      | ME-ICP61 | ME-ICP61<br>Ni<br><b>ppm</b> | ME-ICP61<br>P<br>ppm | ME-ICP61<br>Pb<br><b>ppm</b> | ME-ICP61<br>S<br>% | ME-ICP61 | ME-ICP61<br>Sc<br><b>ppm</b> | ME-ICP61<br>Sr<br><b>ppm</b> | ME-ICP61<br>Th<br><b>ppm</b> | ME-ICP61<br>Ti<br>% | ME-ICP61<br>TI<br><b>ppm</b> | ME-ICP61<br>U<br>ppm | ME-ICP61<br>V<br>ppm | ME-ICP61<br>W<br>ppm | . ME-ICP61<br>Zn<br><b>ppm</b> | Certificate |
|-------------|----------|------------------------------|----------------------|------------------------------|--------------------|----------|------------------------------|------------------------------|------------------------------|---------------------|------------------------------|----------------------|----------------------|----------------------|--------------------------------|-------------|
|             | Na<br>%  |                              |                      |                              |                    | Sb       |                              |                              |                              |                     |                              |                      |                      |                      |                                |             |
|             |          |                              |                      |                              |                    | ppm      |                              |                              |                              |                     |                              |                      |                      |                      |                                |             |
| 16RC001-2   |          |                              |                      |                              |                    |          |                              |                              |                              |                     |                              |                      |                      |                      |                                |             |
| 18RC182-1-1 |          |                              |                      |                              |                    |          |                              |                              |                              |                     |                              |                      |                      |                      |                                |             |
| 16RC061-1-3 | ļ        |                              |                      |                              |                    |          |                              |                              |                              |                     |                              | ļ                    |                      |                      | Į                              | ļ           |
| 16RC110-1-2 | o        |                              |                      |                              |                    |          |                              |                              |                              |                     |                              |                      |                      |                      | ļ                              |             |
| 18RC081-1-2 |          |                              |                      |                              |                    |          |                              |                              |                              |                     |                              |                      |                      |                      |                                |             |
| Rosie-1     |          |                              |                      |                              |                    |          |                              |                              |                              |                     |                              |                      |                      |                      |                                |             |
| JdP21-043   |          |                              |                      |                              |                    |          |                              |                              |                              |                     |                              |                      |                      |                      |                                |             |
| JdP21029    |          |                              |                      |                              |                    |          |                              |                              |                              |                     |                              |                      |                      |                      |                                |             |
| W425854     | 0.09     | 83                           | 590                  | 59200                        | 7.94               | 1035     | 6                            | 79                           | 20                           | 0.16                | 10                           | 10                   | 233                  | 10                   | 47100                          | WH21182911  |
| W425854     | 0.09     | 83                           | 590                  | 59200                        | 7.94               | 1035     | 6                            | 79                           | 20                           | 0.16                | 10                           | 10                   | 233                  | 10                   | 47100                          | WH21182911  |
| W425866     | 0.07     | 3                            | 170                  | 9                            | 1.13               | 5        | 5                            | 47                           | 20                           | 0.17                | 10                           | 10                   | 30                   | 10                   | 69                             | WH21182911  |
| W425905     | 0.15     | 21                           | 130                  | 14                           | 4.38               | 98       | 3                            | 27                           | 20                           | 0.09                | 10                           | 10                   | 23                   | 10                   | 45                             | WH21182911  |
| W425905     | 0.15     | 21                           | 130                  | 14                           | 4.38               | 98       | 3                            | 27                           | 20                           | 0.09                | 10                           | 10                   | 23                   | 10                   | 45                             | WH21182911  |
| W425908     | 0.01     | 27                           | 80                   | 11                           | 2.72               | 5        | 5                            | 6                            | 20                           | 0.04                | 10                           | 10                   | 10                   | 10                   | 56                             | WH21182911  |
| W641900     | 0.28     | 97                           | 5750                 | 38100                        | 6.37               | 558      | 9                            | 118                          | 20                           | 0.16                | 10                           | 10                   | 106                  | 10                   | 26660                          | WH21182911  |
| W641867     | 0.03     | 44                           | 700                  | 12                           | 10                 | 5        | 19                           | 32                           | 20                           | 0.07                | 10                           | 10                   | 134                  | 1980                 | 225                            | WH20151530  |

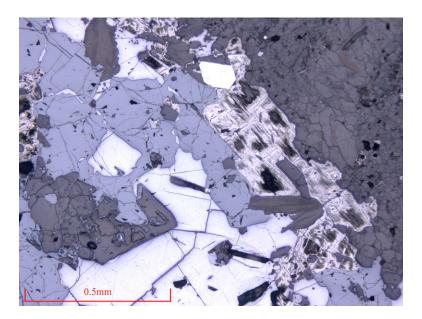



### W425854 TS

Consists of anhedral and rarely euhedral quartz, some plagioclase of 0.04-0.1mm grainsize. 'Ragged' grains of muscovite are up to 1mm. These are partially replaced by sphalerite, which forms 2mm irregular masses. Some euhedral sulphide crystals are noticeable.

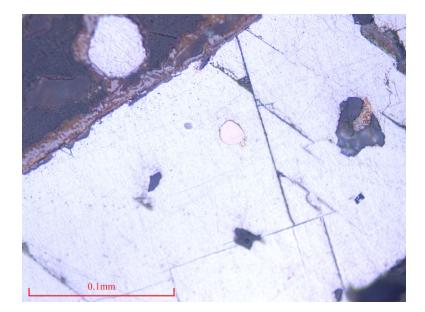

#### W425854 PTS

Heavily sphalerite-mineralized. The euhedral sulphide is arsenopyrite. Galena forms masses to to 2mm across and is also included in sphalerite. A few 0.04mm 'blebs' of chalcopyrite are included in the sphalerite and also galena. Some pyrite, partially altered to oxides is present as anhedral forms to 2mm (perhaps 5% of the volume).




W425854 2,5pp

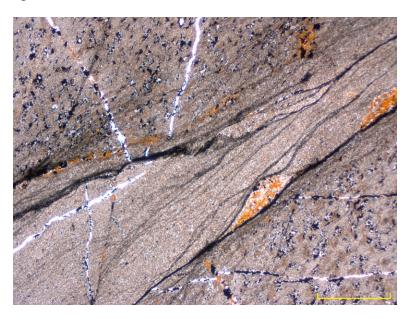
Sphalerite. Plane polarized light.



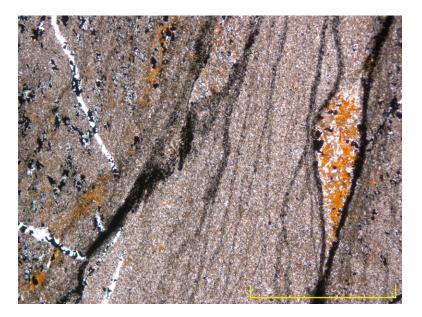

W425854 2,5ppin Same field, PP incident light.



W425854 5,0ppin


Detail of above, slightly rotated. Galena, sphalerite, altered pyrite.

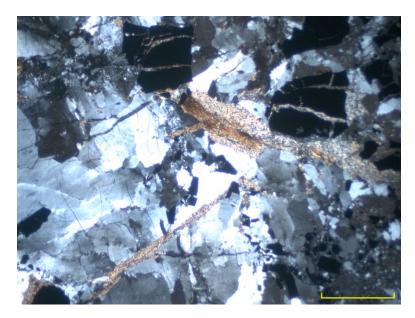



W425854 50ppin One 'bleb' of chalcopyrite.

#### <u>W425866 TS</u>

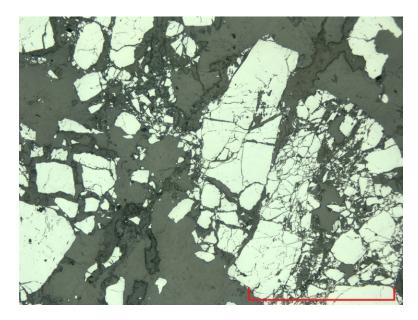
This is a fine-grained siliclastic metasediment with about 50% disseminated pyrite as 0.1mm, mostly anhedral grains. The rock has a metamorphic fabric of anastomosing surfaces over a zone of  $\approx$  5mm width. This structure (a micro-shear) truncates tiny ( $\leq$  0.02mm thick) quartz veins from 45-90° to the shear. Other, more irregular quartz veins up to 0.6mm thick cut the other structures. Some possible biotite is present as selvedges to the thick quartz veins and also the shear structure. One 6mm thick quartz vein cuts all other structures. It is of polygonized quartz of  $\leq$  0.2 mm grainsize.




W425866 2,5pp Fabric.

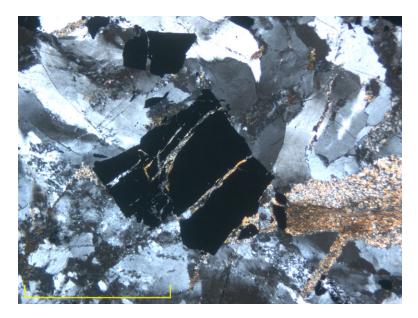


W425866 Detail.


#### W425905 PTS (AR2A & B)

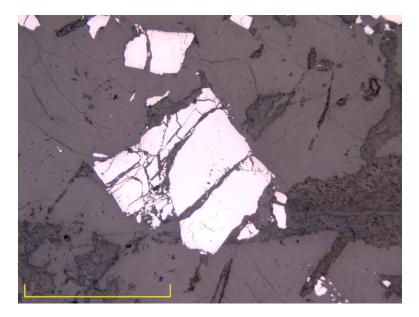
The rock is brecciated quartz and arsenopyrite. Strained quartz grains are up to 2mm grainsize, clasts of arsenopyrite 2mm. Some amorphous interstitial material, amounting to 10% volume, may be highly clay-altered feldspar. Some sericite is also obvious. There is little difference between the two sections: just the amount of sulphide in the quartz.




W425905 2,5xp

Strained quartz.




W425905 5,0ppin

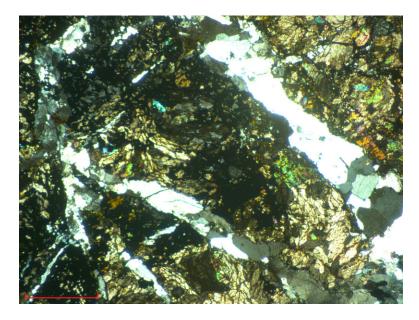
Brecciated arsenopyrite.



W425905 5xp

Fractured arsenopyrite.

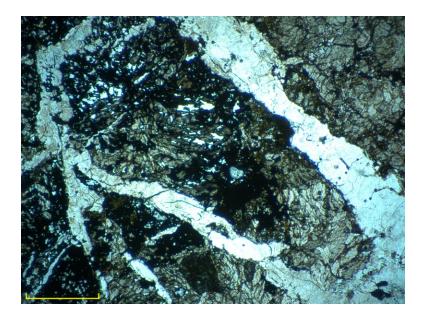



W425905 5,0ppin

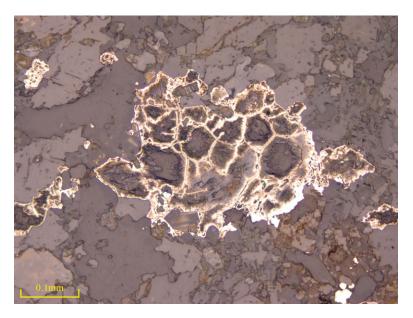
Field above, incident light.

### PETROGRAPHY

#### W425908

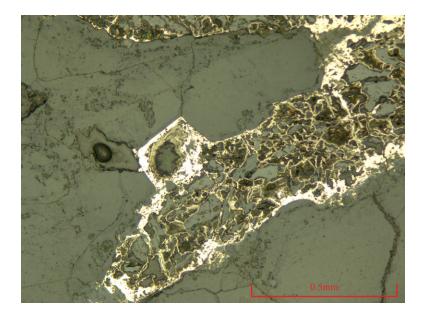

The rock is a coarse, recrystallized carbonate. Grains are typically 1.5mm long. The carbonate is slightly brown in thin section. In hand specimen it looks like a marble. Quartz veins to 5mm wide cut the rock without any calc-silicate selvedge. A network of pyrite is included in the largest vein, together with Fe (hydr)oxides: possibly lepidocrocite. Irregular masses of pyrite / oxide are found throughout the 'marble'. No other sulphides or calc-silicates were noted.




### W425908 2,5xp

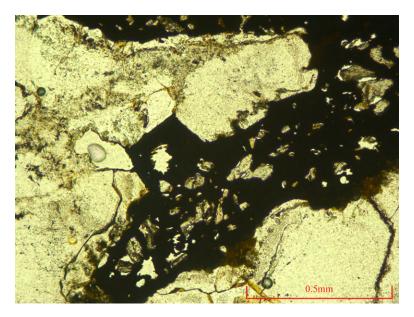
Quartz veins. Crossed polarizers.

The following photo shows the same field in plane polarized light.




W425908 2,5pp



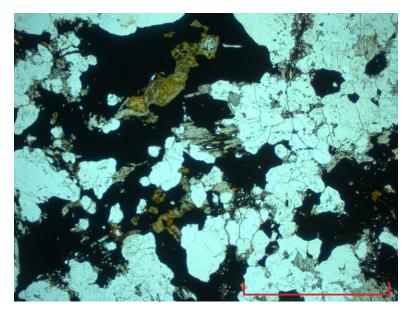

W425908 20ppin

Pyrite and oxides. Plane polarized incident (reflected) light.



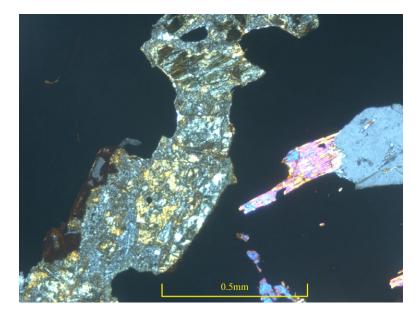
# W425908 10ppin

Remnant pyrite in quartz vein.



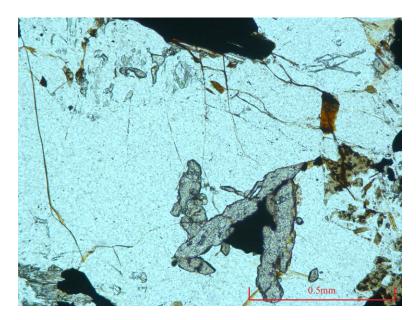

W425908 10pp

Same field, plane polarized light.


#### W641867 PTS

The rock is composed of anhedral grains of quartz and feldspar (no twinning noted, so likely mostly K-feldspar). Some feldspars are to 2mm long and quartz grains are mostly < 1mm. Muscovite is in remnant grains of  $\approx$  1mm size and amounts to about 5%. Pyrite and some Feoxides occupy 30% of the rock. In some fields quartz occupies 50%. No igneous texture is evident, so this might be a granitic rock with much added quartz and sulphide.

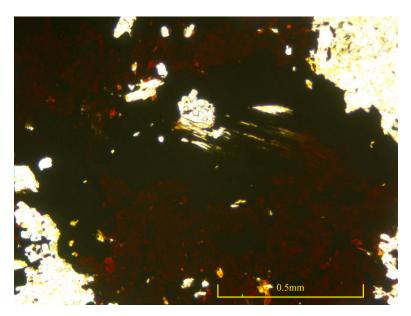



W641867 5,0pp

# Texture of the rock. Plane polarized light.

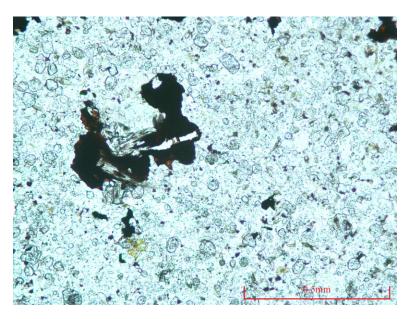


# W641867 10xp


Mica and (?) clay altered feldspar in sulphide. Crossed polarizers.

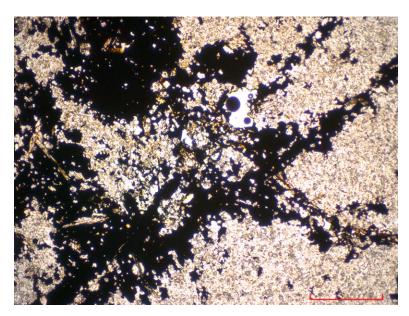


W641867 10pp Sphene in quartz. Plane polarized light.


#### W641900 PTS

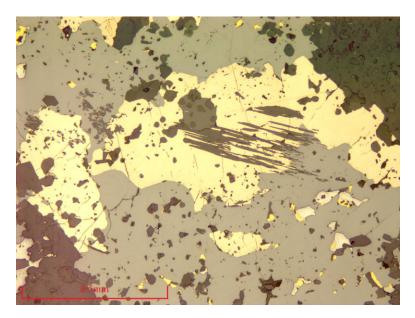
This rock is a fine-grained aggregate of quartz, feldpar and epidote of 0.02-0.4mm grainsize. Epidote amounts to  $\approx 25\%$  of the volume. The protolith might have been a fine-grained volcanic, but no original texture is preserved. Veins of pyrrhotite-sphalerite, 0.8mm thick are spaced from 2-4mm apart, with smaller cross-cutting veins at 80° or so. Chlorite masses, 0.3-0.5mm across are included in the veins.




W641900 10pp2

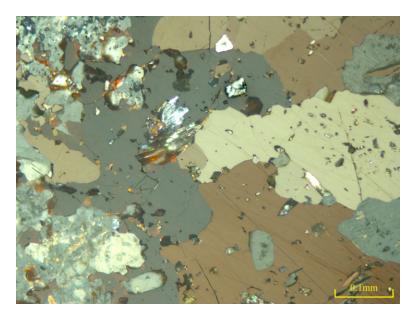
Sphalerite showing deep red colour. Plane polarized light.




W641900 10pp

Altered mica and sulphide. Plane polarized light.



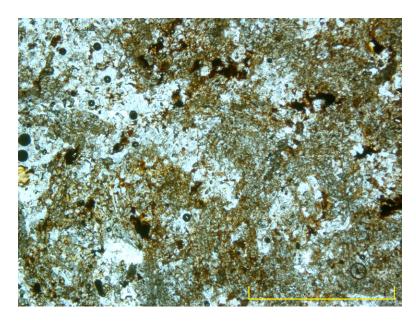

W641900 2,5pp

Sulphide veins. Plane polarized light.

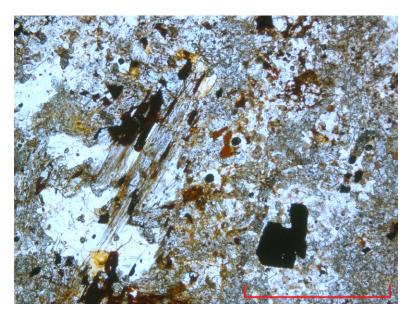


W641900 10ppin

Pyrrhotite, sphalerite, trace of chalcopyrite. Plane polarized incident light.

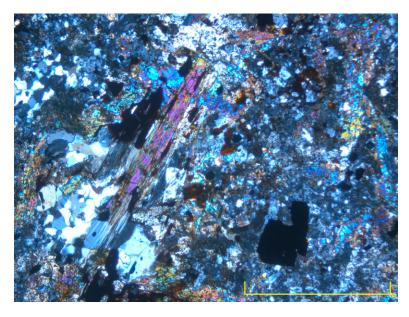



W641900 20xpin

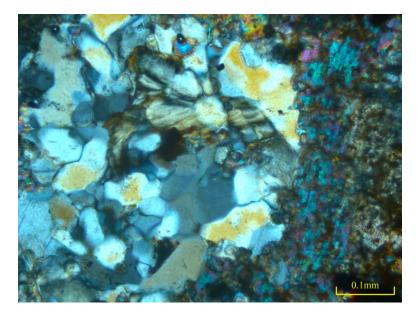

Anisotropy in sulphides. Incident light, crossed polarizers.

### JDP21029

A heavily epidote altered intermediate to acid sub-volcanic intrusive. Anhedral epidote is up to 1mm long and forms  $\geq$  75% of the rock. Quartz is mostly < 0.25mm, but forms occasional 'vughs' that also contain chlorite. The possible outlines of former feldspars may occasionally be seen. Red oxides are common ( $\approx$  10%). A few tiny crystals of apatite and sphene were noted.




JDP21029 5,0pp

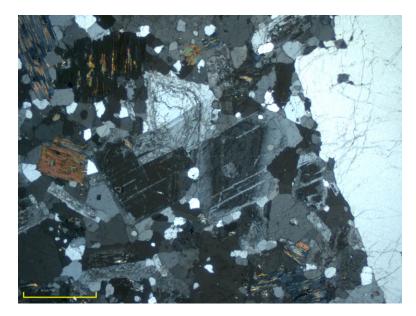



JDP21029 5,0pp2

Pyrite. Transmitted PP light.



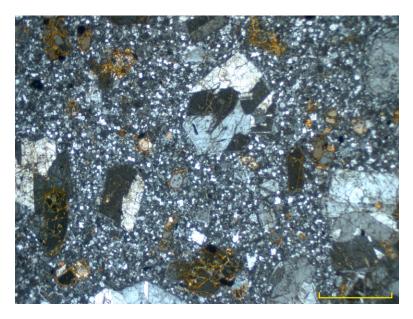
JDP21029-5,0xp




JDP21029-20xp

Chlorite in quartz mass, epidote surrounding.

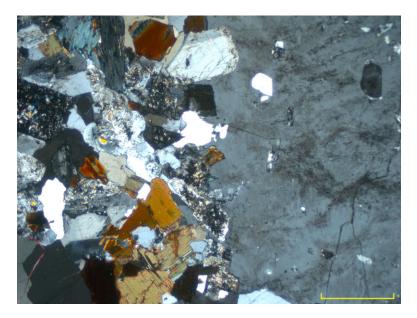
## ROSIE'S ROCKS 16RC001-2


Biotite monzogranite, 5mm grainsize. Has chlorite alteration of mica.

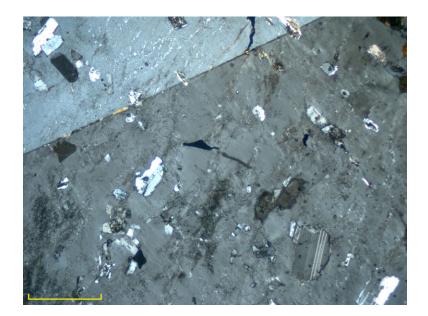


16RC001-2 2,5xp

## <u>16RC110-1-2</u>

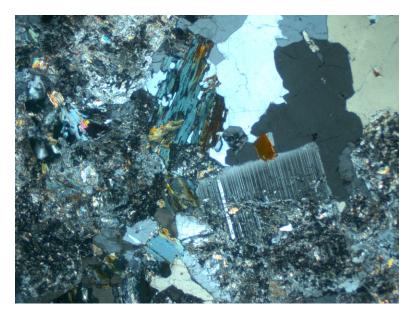

A porphyritic nepheline syenite (sub-volcanic intrusion). Phenocrysts are cracked with ? clay alteration and Fe oxides. Has some v. pale amphibole, possibly tremolite-actinolite. One quartz phenocrst noted.




16RC110-1-2 2,5xp

# 18RC182-1-1

A biotite-only syenogranite. Has common chlorite alteration of the mica.

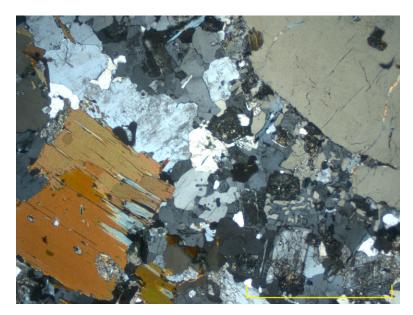



18RC182-1-1 2,5xp



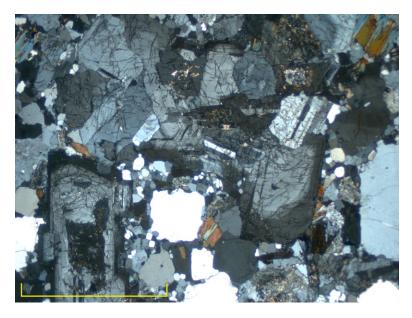
18RC182-1-1 2,5xp2

Plagioclase inclusions in orthoclase.




182-1-1 2,5xp2

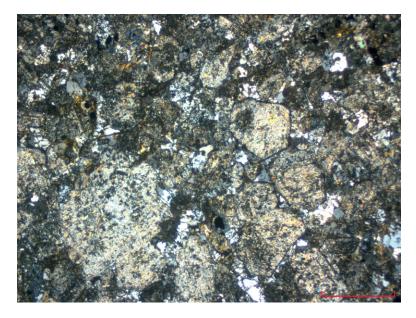
Plagioclase, biotite with chlorite alteration.


# ROSIE 1

A biotite-only monzogranite. Has only slight chlorite alteration of the mica. A little granophyre developed.



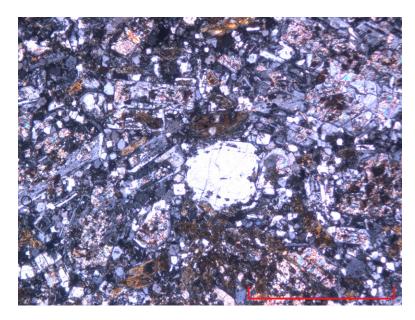
# ROSIE 1-5,0xp2


Unaltered biotite, coarse quartz phenocryst, incipient granophyre.



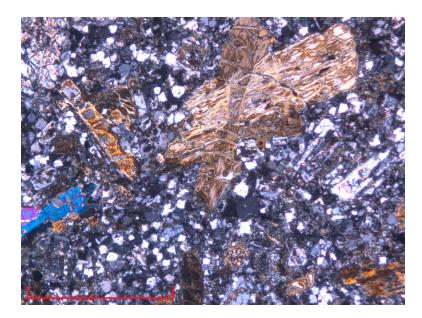
ROSIE 1-5,0xp

## JDP21-043


A fine-grained intrusive. Heavily clay altered with some chlorite. Contains a fair amount of quartz, but feldspar proprtions are difficult to assess. Probably of syenogranite composition.

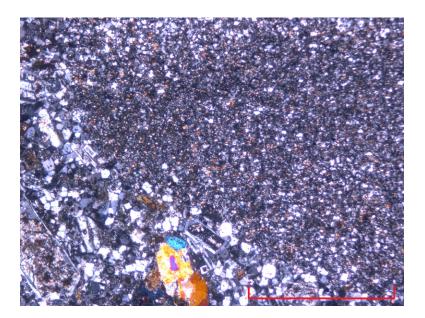


JDP21-043 2,5xp


## <u>16RC061-1-3</u>

A fine-grained intrusive that contains only occasional quartz phenocrysts. Plagioclase is up to 1.5mm grainsize, but mostly < 0.5mm. K-feldspar is subordinate. Sericite alters feldspar and only very little remnat ampibole is seen. The remainder of the ferromagnesians are heavily chlorite altered with a texture reminiscent of serpentine. Probably monzonite to monzodiorite. Contains one siliciclastic xenolith.



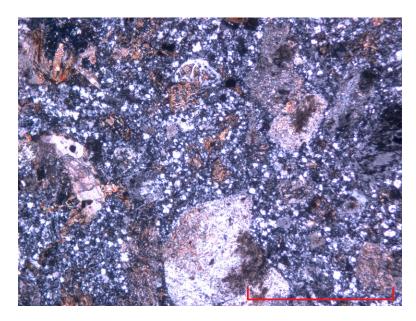

16RC061-1-3 5,0xp

Quartz phenocryst.



16RC061-1-3 5,0xp2

Alteration of ferromagnesians.




16RC061-1-3 5,0xp3

Metasediment xenolith.

## 18RC081-1-2

A fine-grained intrusive with occasional 2mm orthoclase phenocrysts. Plagioclase phenocrysts are < 0.8mm long and the groundmass is commonly 0.04mm. Biotite is the ferromagnesian present, but is heavily chlorite altered. Sericite and carbonate are also common. Probably of monzonite composition, although unequivocal classification is impossible since groundmass feldspars are indeterminate.



18RC081-1-2 5,0xp

# **PHOTO FOLDER**

2021 Photographs

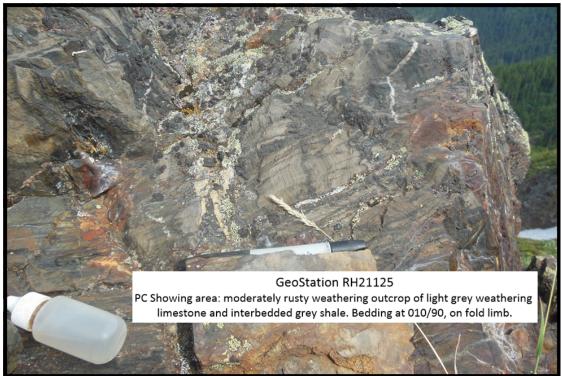



Photo 1: GeoStation RH21125 adjacent to the PC showing.




Photo 2: GeoStation RH21126 adjacent to the LM showing.



Photo 3: Late Cretaceous quartz-monzonite showing coarse-grained 2-3 cm quartz veins. A traverse on the east slope of Dromedary Mountain confirmed the extent of the quartz-monzonite mapped by Anaconda (Carlson, 1981). The occurrence consists of a boulder. The intrusion is weakly altered with light brown weathering. No mineralization was observed in quartz veins.



Photo 4: Rock sample W425861, Main showing: subcrop, 20-25 cm wide semi-massive bed (100/55), argillite hosted. Mineralization consists of pyrite dominant (32% Fe)-chalcopyrite (1-3%) associated with bismuth and tungsten. The assay returns 3.31g/t Au, confirming that the west slope of Dromedary remains prospective for gold mineralization.

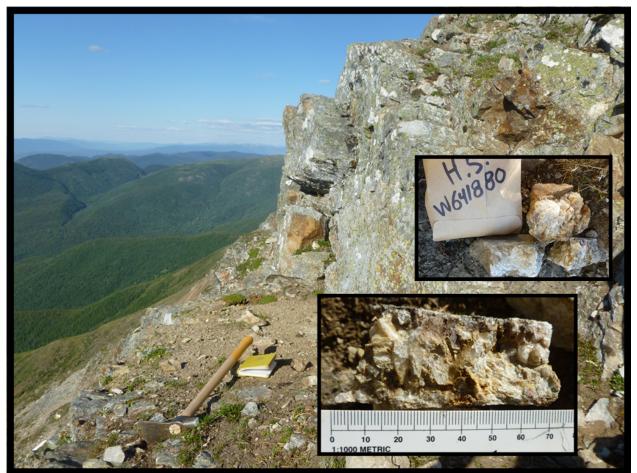



Photo 5: Rock Sample W641880 and sample area: the 2-3 cm wide-coarse crystalline quartz vein is continuous, and it sits on the sub-horizontal surface (316/15) underlying the field book. The vein is weakly mineralized with pyrite-unknown tarnished grey sulphide-limonite in fractures, with trace malachite. The host consists of metasediment (quartzite). Sample returned 0.038 g/t Au, 213 g/t Ag, 2020 ppm Cu, 5580 ppm Pb, 1670 ppm Zn, 59 ppm Bi, and 382 ppm Sb.



Photo 6: Rusty-stained creek on the west side of Dromedary Mountain. The creek runs east to west. Along the stream, outcrops commonly show oxidation and locally veinlets with bleached envelopes up to 3cm wide.



Photo 7: DDH81-03, HQ pipe oriented 020/-60 - UTM 514287E/6972870N.



Photo 8: DDH81-07, HQ pipe oriented 000/-48 – UTM 516052E/6971974N. The hole is making water (<0.5L/min)



Photo 9: Soil sample M896036 consisting of a mixture of C horizon and glacial till, west of the Nagai Zone. The sample is marked by a dark red staining and abundant rusty fragments. In the soil pit, the rocks show moderate to strong oxidation. Assay returned 196 ppm Zn and anomalous Cu, Pb, and As.



Photo 10: Soil sample M896026, west of the Nagai Zone. C horizon showing iron oxide staining and rusty pebbles. The upper part of the profile contains rounded pebble characteristic of glacial deposit. Assays returned 758 ppm As, 18.8% Fe, 188 ppm Cu, 36.39 ppm Pb, 164 ppm Zn, 12.35 ppm Bi, and 14.69 ppm Sb.



Photo 11: Looking south: view of Dromedary Mountain and showing locations

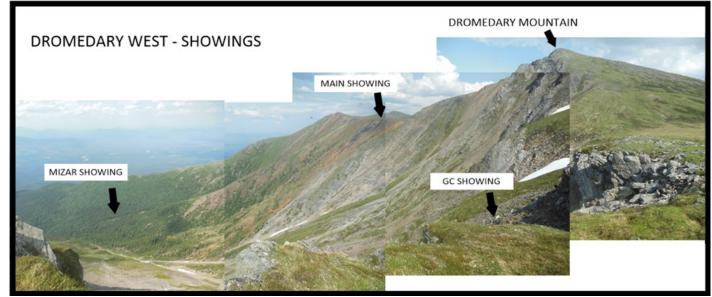



Photo 12: Looking north from the GC showing, Dromedary Mountain and showing locations

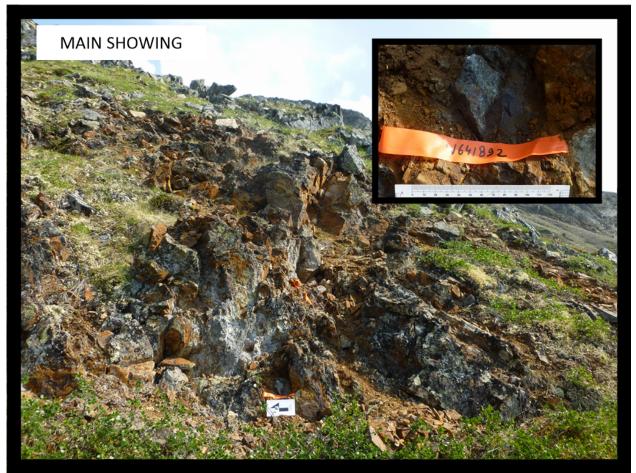



Photo 13: Rock sample W641892 outcrop, downslope and lining up with the Main showing. Multiple samples were taken in the area following up the 2019 soil sample Y647755 (0.529 g/t Au, 1641 ppm As, 183.5ppm Bi, 364 ppm Cu, 260 ppm W, anomalous Cu and Zn). Four rock samples (W641866-2020, W641892, W641893, W425860) returned assays values up to 0.964 g/t Au, >10,000 As, 3940 ppm Cu, 1760 ppm Zn, 140 ppm Pb, 215 ppm Bi, 41 ppm Sb. Semi-massive to massive sulphide lenses, argillite hosted, sit parallel to structure along bedding.

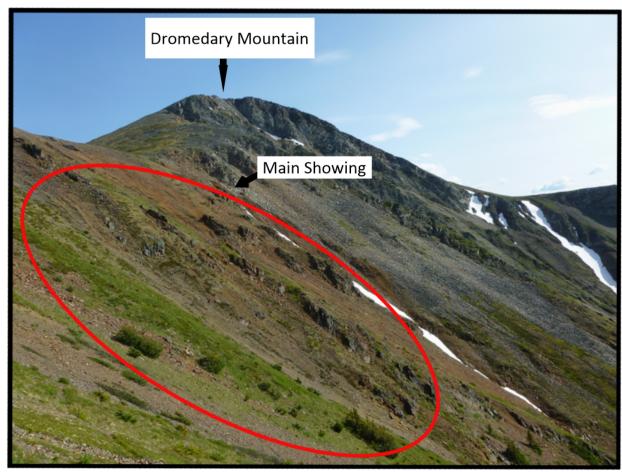



Photo 14: Copper Soil Anomaly-looking south: red ellipse represents the anomaly area, measuring 500 x 250 m. Zone is north of the Main/Discovery showing on the western slope of the Goldorak Project



Photo 15: Mizar showing, semi-massive to massive sulphide (095/70) consisting of medium- to coarse-grained sphalerite and tarnished grey minerals thought to be sulfosalt minerals. The showing occurs in the slope of a narrow canyon.



Photo 16: Rock sample W425854 at the Mizar showing, 1 x 0.5 x 0.5m. Host rock consists of dirty limestone/marble and limy siltstone. Bedrock is exposed in the canyon and mineralization may be structurally controlled. W425854 returned 0.51 g/t Au, 2490 g/t Ag, 9900 ppm As, 4.71% Zn, 5.92% Pb, 343 ppm Cu, 4460 ppm Bi and 1035 ppm Sb.



Photo 17: GC showing, semi-massive to massive sulphide, skarn bands; quartz-actinolite-sulphides-chlorite up to 30 cm thick. Four samples were taken from the showing and the area (W641896, W641897, W425863, W425865). Assays returned up to 0.177 g/t Au, 4300 ppm As, 32.6% Fe, 4.3% Zn, 212 ppm Cu, minor Pb and Sb.

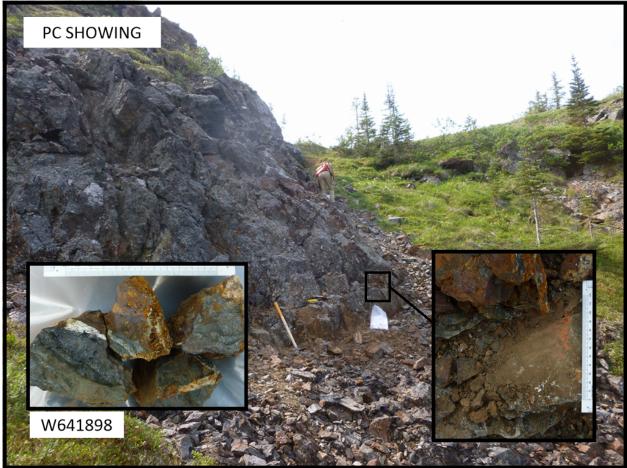



Photo 18: PC showing, 15 x 10 x 10m outcrop of weakly limy argillitic siltstone. Mineralization consists of 40 to 50 cm thick pyrrhotite-dominant band with semi-massive pyrite-sphalerite in a dark green (chlorite-actinolite-diopside?) groundmass. The inset box represents the outline of the close-up of the mineralized bed. Note the presence of orange-red spray paint mark, from exploration during the 1980s. Sample W641898 returned 0.019 g/t Au, 9.17% Zn, and minor Cu and Pb.



Photo 19: LM showing. The showing consists or a rock exposure of 1 x 1 m in an area covered by moss and spruce, with < 5% outcrop. The rock consists of banded, weakly sheared rusty weathering calc-silicates. Sample W425866 returned 0.356 g/t Au, 28 g/t Ag, 4070 ppm Cu and negligible Pb and Zn. Pyrite-pyrrhotite (1-3%) and copper carbonates (malachite-azurite) are present. Sample W641899 returned 0.224 g/t Au, >10,000 ppm As, minor Zn and negligible Cu and Zn. Mineralization consists of 1-3% combined pyrite-pyrrhotite and minor chalcopyrite. Note: although mineralization was found in the area, the LM showing has not been relocated with certainty.



Photo 20: Inform Silver showing, argillite-hosted silver bearing veins and podiform pyrrhotite-dominant massive sulphide. Sample W641900 returned 0.186 g/t Au, 646 g/t Ag, 334 ppm Cu, 3.8% Pb, 2.66% Zn, 229 ppm Bi, 558 ppm Sb.



Photo 21: Nagai Zone and best Au rock samples, the Nagai was visited in 2019. The 2020 work program consisted in following up Au values up to up 0.572 g/t on outcrop. To date, the Nagai Zone constitutes a 150 x 60m strong arsenic and iron anomaly and moderate chlorite alteration. The zone is bounded on the southwest side by a Devonian diorite with a restricted contact aureole, a swampy area on the west side, and remains open to the north, the east and the southeast. The La Ligua showing (sample A00044574, 0.99g/t Au) is located 300m east-southeast of the Nagai showing. Bedrock is poorly exposed (covered by moss and spruce, less than 2% outcrop overall).



Photo 22: 80 x 40cm hand trench at the Nagai showing. Host rock consists of moderately sheared, chlorite-altered argillite and slaty fine-grained siltstone in the footwall. Abundant disrupted quartz veinlets are associated with pyrite-arsenopyrite-minor pyrrhotite. The outcrop was sampled in 2019. Sample W641858 returned 0.206 g/t Au, 4100 ppm As, trace to negligible base metal content.



Photo 23: KSF showing, quartz veined calcite altered diorite. The rock has been recognized as characteristic of the Late Devonian intrusion (Cobbett, pers. comm.). Mafic minerals (mainly pyroxene) are partially replaced by pyrrhotite. Pyrite is disseminated (1-2%) and grey-glassy quartz veinlets are abundant on the edge of the intrusion. Sample W425911 returned 0.064 g/t Au and minor base metals. Sample W641863 taken in 2019 from the same outcrop returned 0.165 g/t Au.

MAP

# POCKET

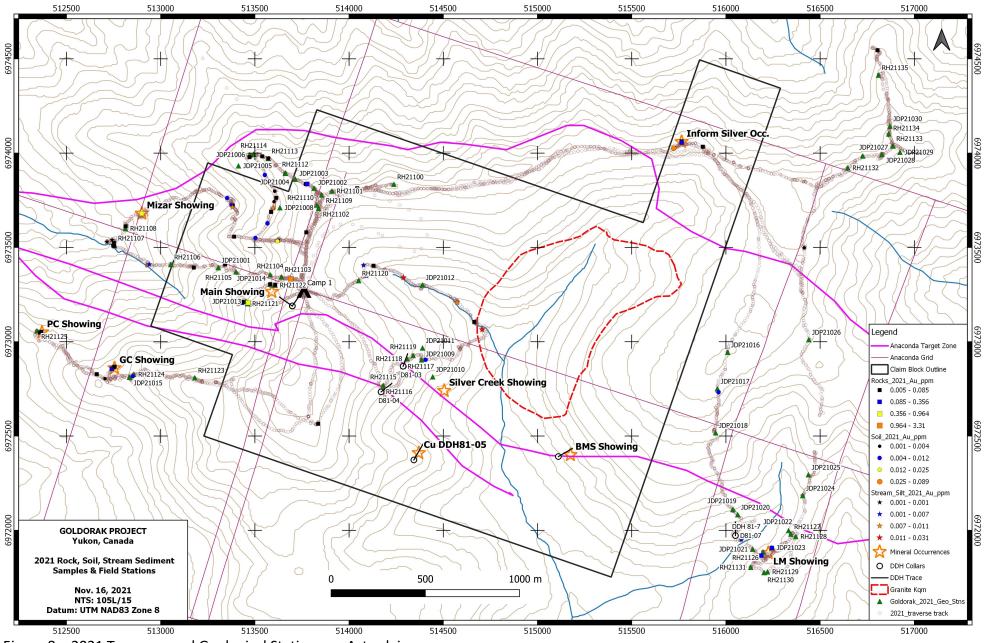



Figure 8a. 2021 Traverses and Geological Stations on Acta claims

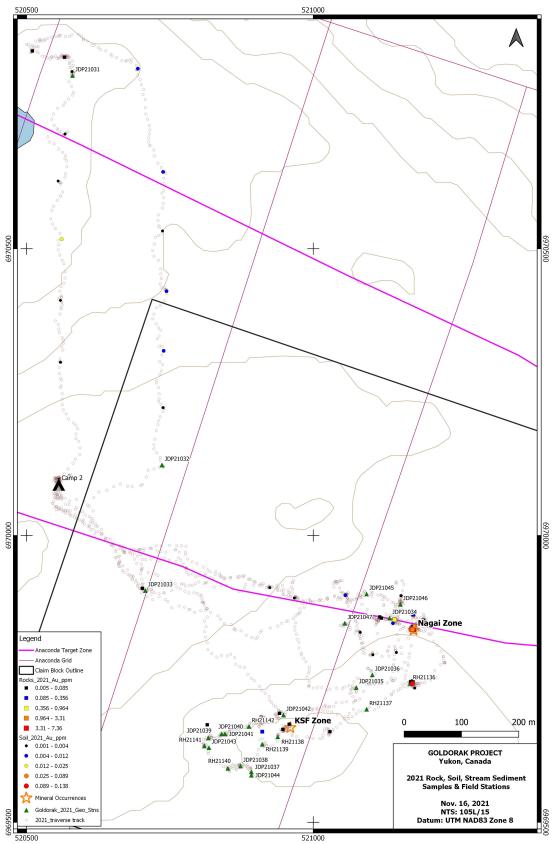



Figure 8b. Nagai Zone with traverse map and geological stations.

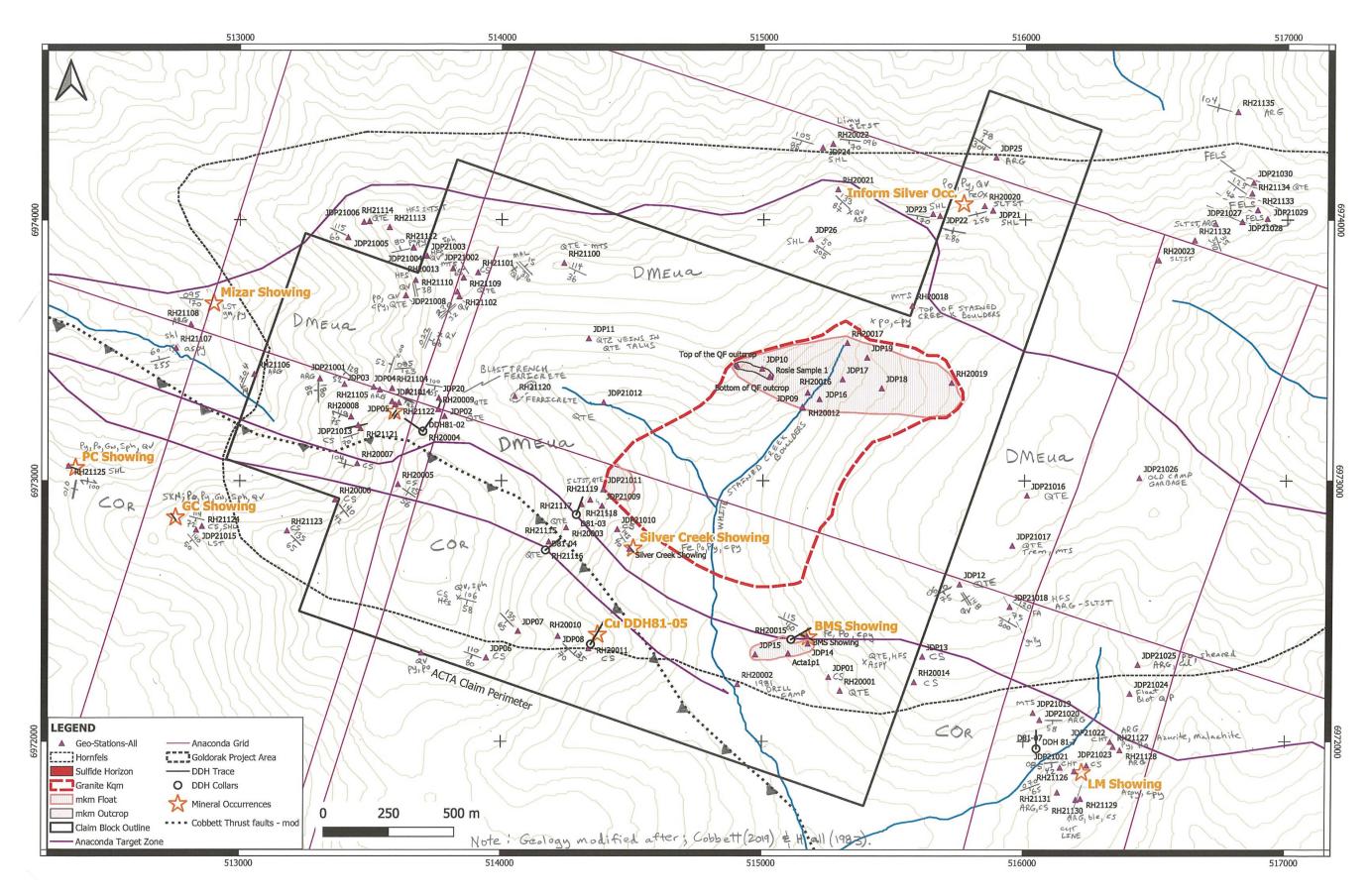



Figure 9a. Acta claim block and geology map.

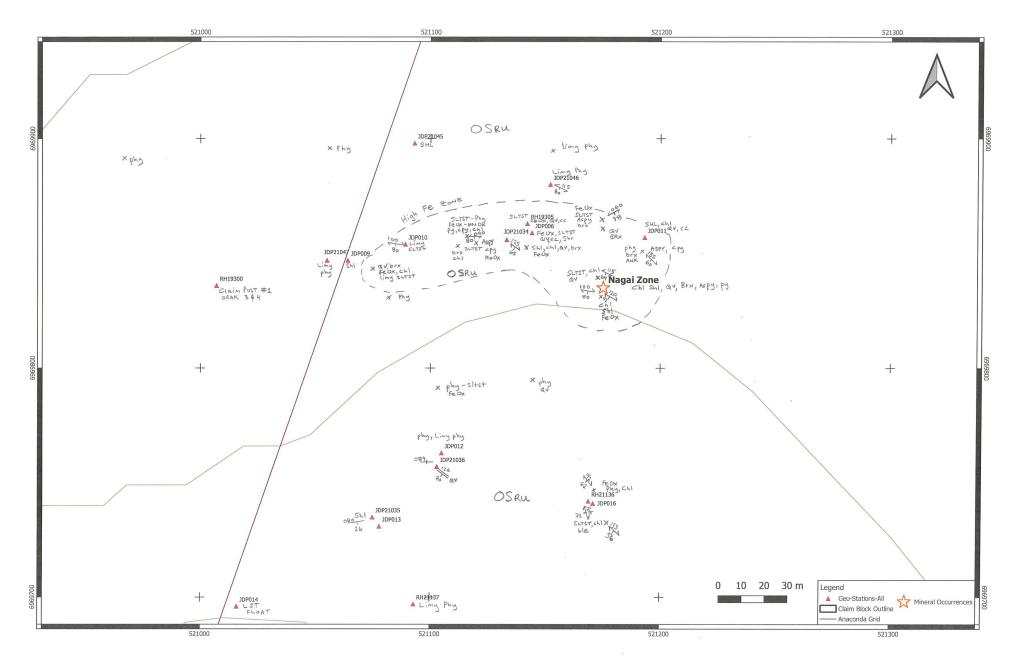



Figure 9b. Nagai Zone geology map.

| ※<br>1 1 %<br>※ | Symbols<br>Bedding, inclined<br>Bedding, vertical<br>Foliation, inclined<br>Vein, inclined |      |                  |
|-----------------|--------------------------------------------------------------------------------------------|------|------------------|
| QV              | Quartz Vein                                                                                | Gn   | Galena           |
| СС              | Calcite                                                                                    | Сру  | Chalcopyrite     |
| CS              | Calc-Silicate                                                                              | Aspy | Arsenopyrite     |
| PHY             | Phyllite                                                                                   | Sph  | Sphalerite       |
| QTE             | Quartzite                                                                                  | Hfs  | Hornfels         |
| SLTST           | Siltstone                                                                                  | Trem | Tremolite        |
| SHL             | Shale                                                                                      | Skn  | Skarn            |
| ARG             | Argillite                                                                                  | FeOx | Iron oxides      |
| MTS             | Metasedimentary Rock                                                                       | MnOx | Manganese oxides |
| FELS            | Felsic Igneous Rock                                                                        | Chl  | Chlorite         |
| Ру              | Pyrite                                                                                     | Brx  | Breccia          |
| Ро              | Pyrrhotite                                                                                 |      |                  |

Figure 10. Geological symbols and abbreviations.

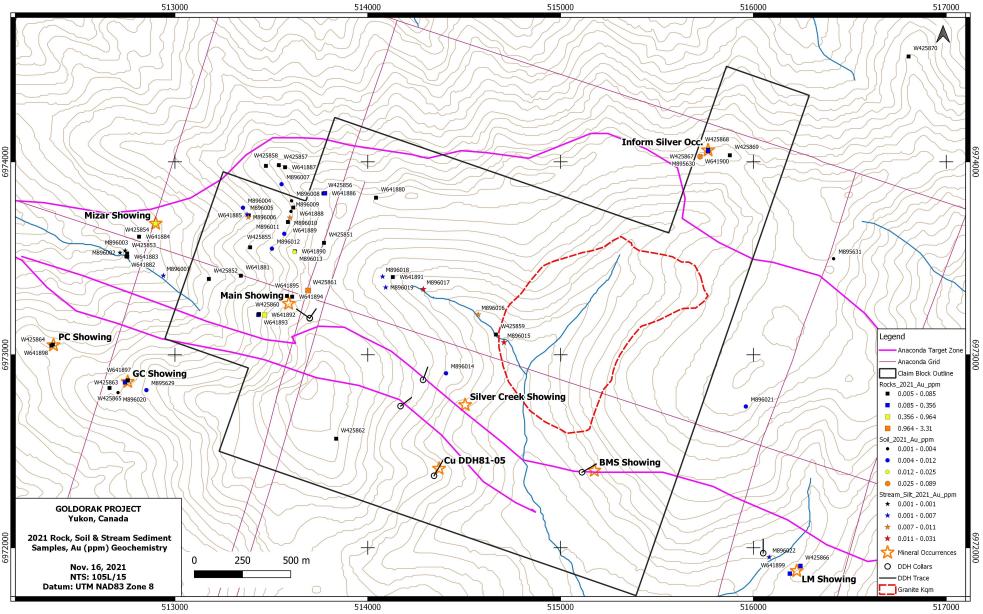



Figure 11. Acta claim block – 2021 sample location and gold geochemistry.

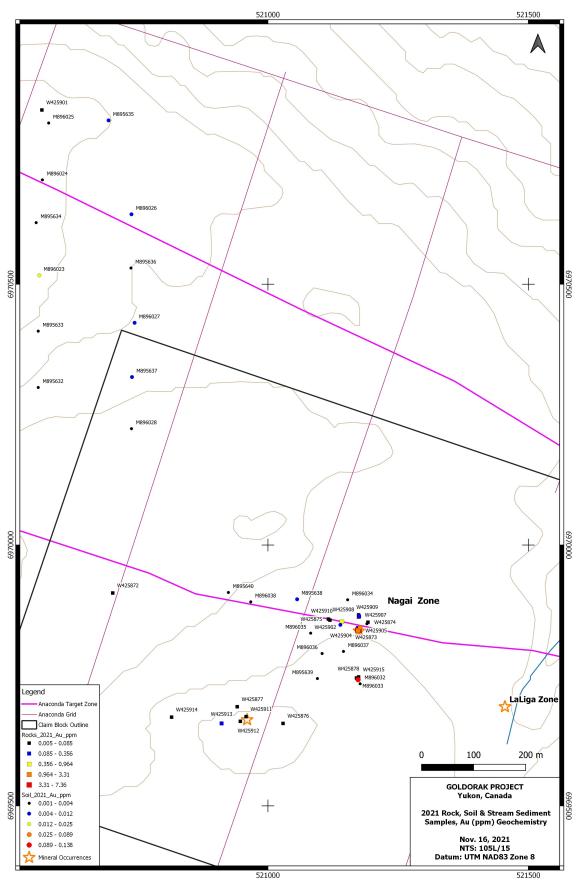



Figure 12. Nagai Zone – 2021 sample location and gold geochemistry.

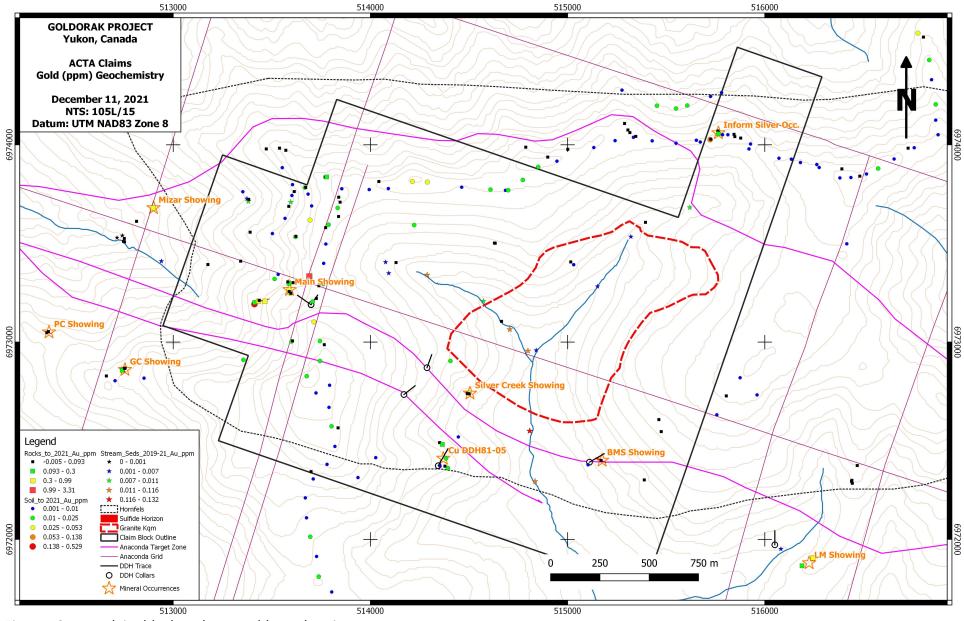
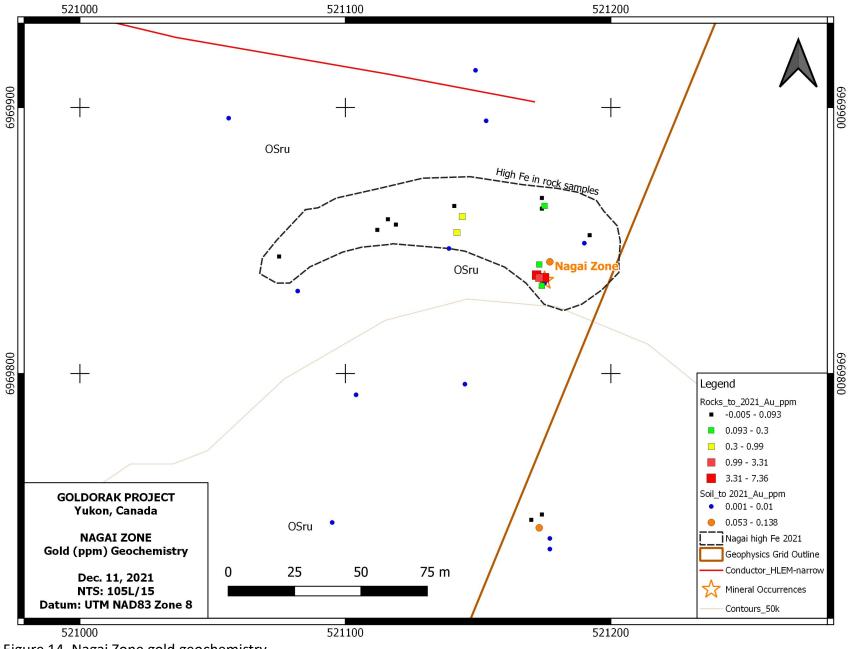




Figure 13. Acta claim block and area gold geochemistry.



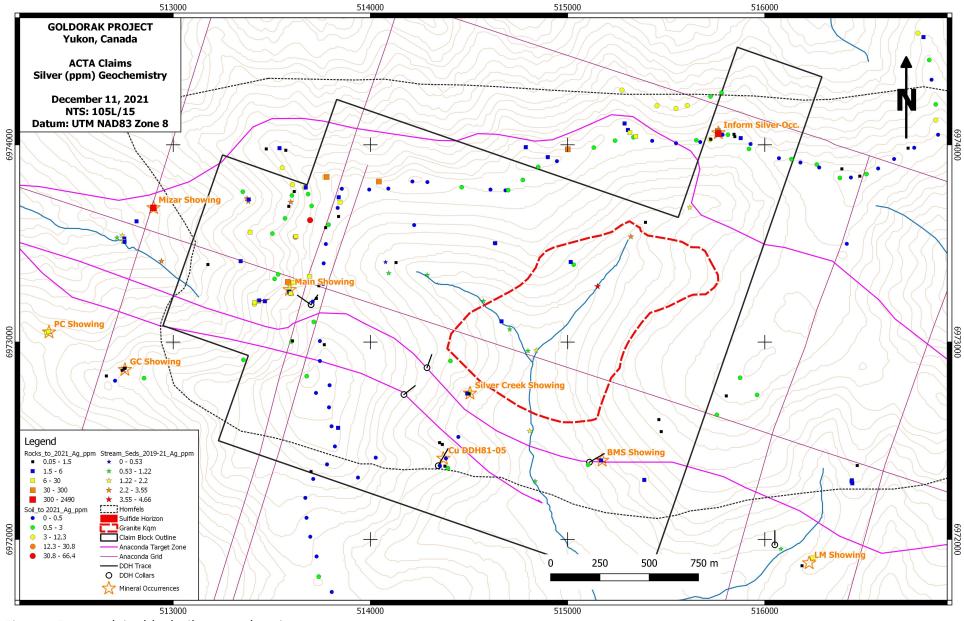



Figure 15. Acta claim block silver geochemistry.

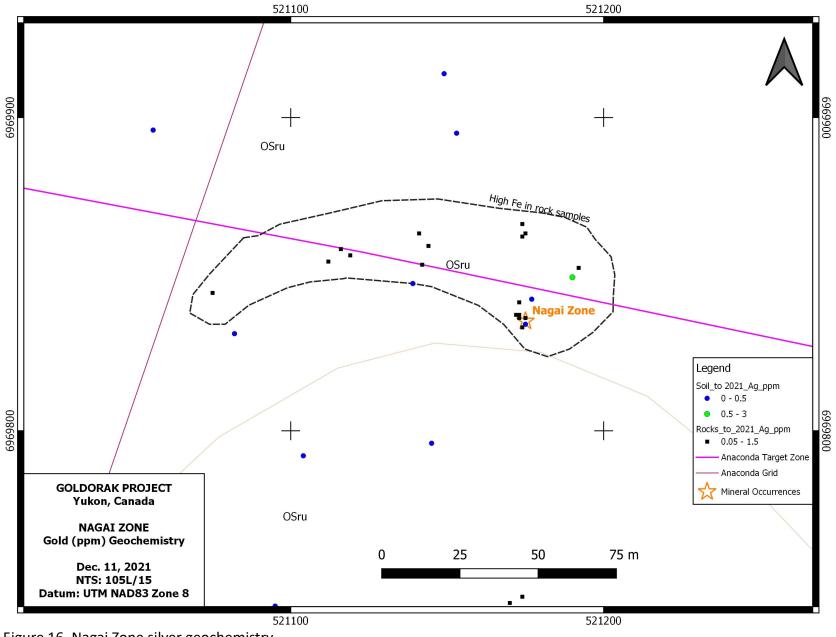



Figure 16. Nagai Zone silver geochemistry.

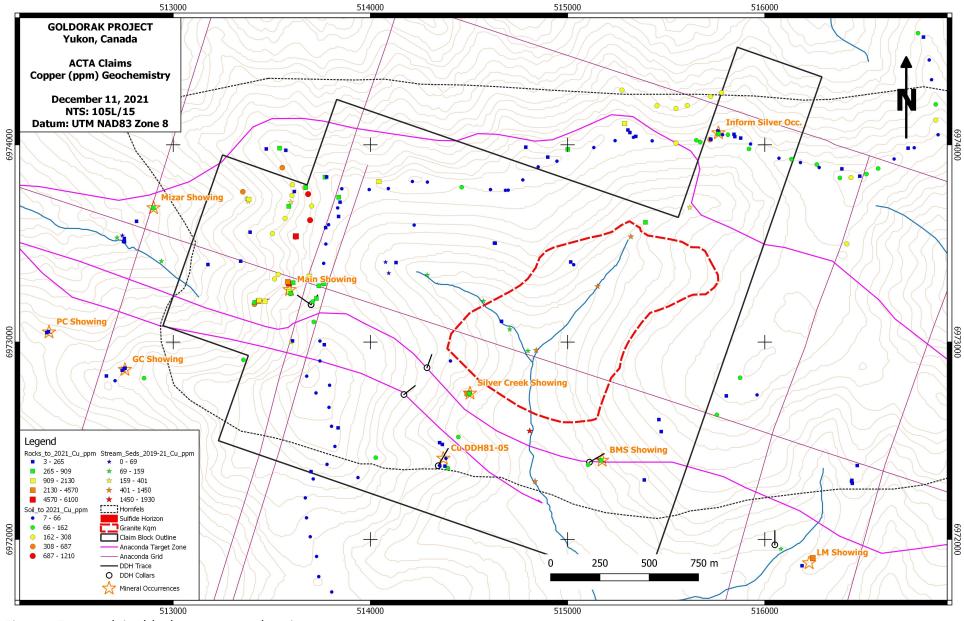



Figure 17. Acta claim block copper geochemistry.

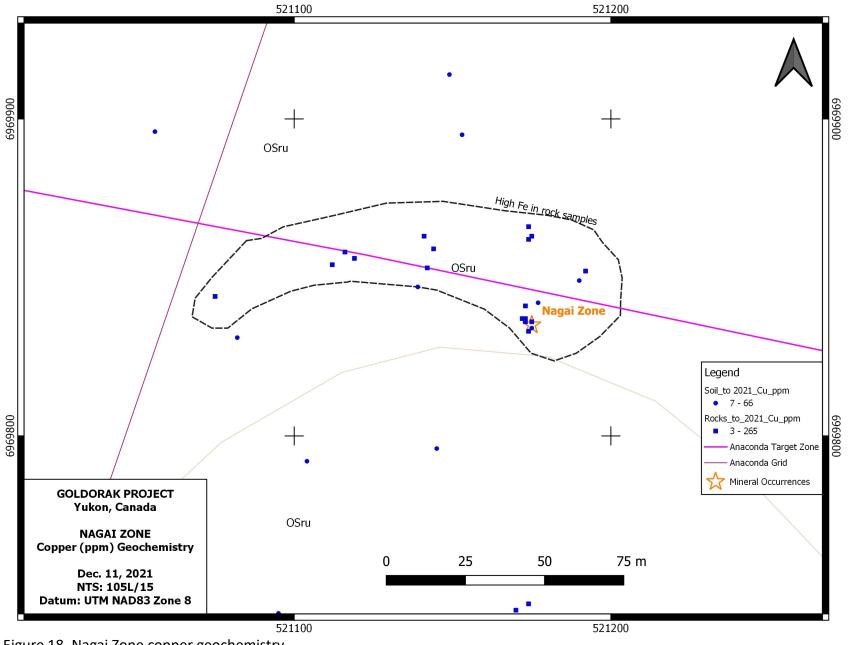



Figure 18. Nagai Zone copper geochemistry.

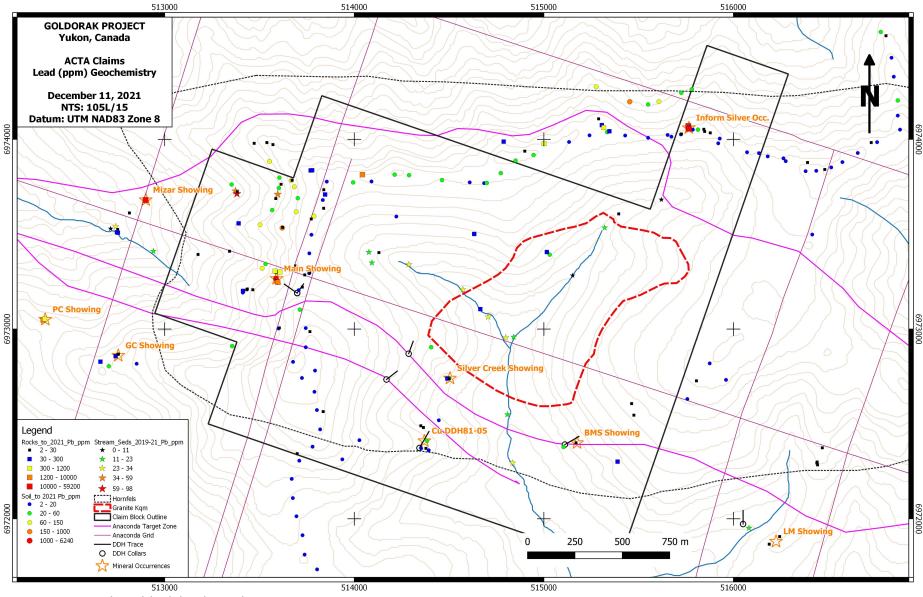



Figure 19. Acta claim block lead geochemistry.

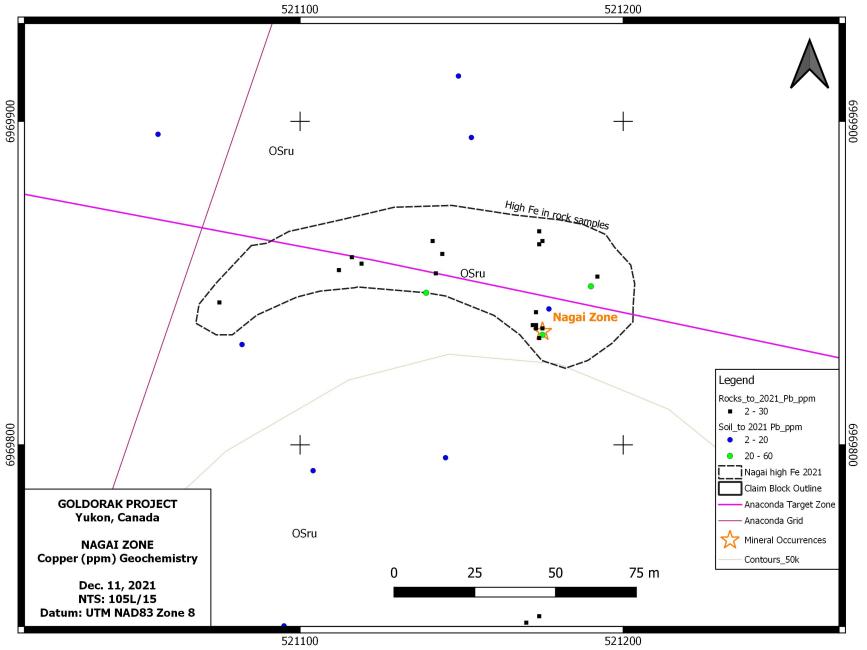



Figure 20. Nagai Zone lead geochemistry.

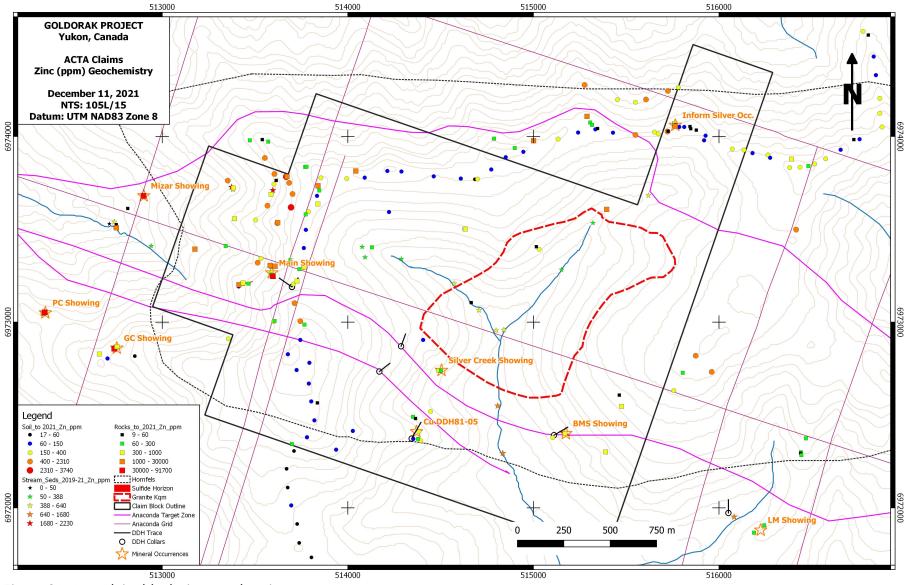



Figure 21. Acta claim block zinc geochemistry.

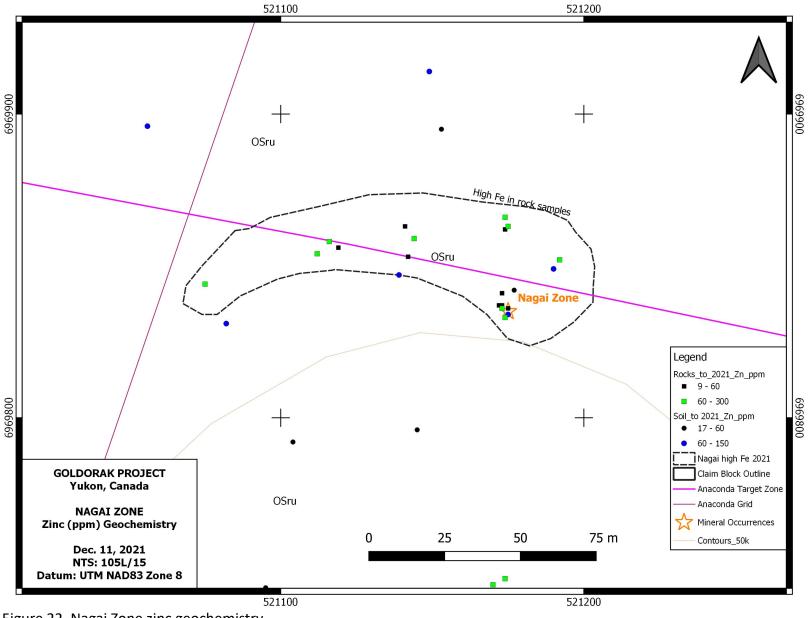



Figure 22. Nagai Zone zinc geochemistry.

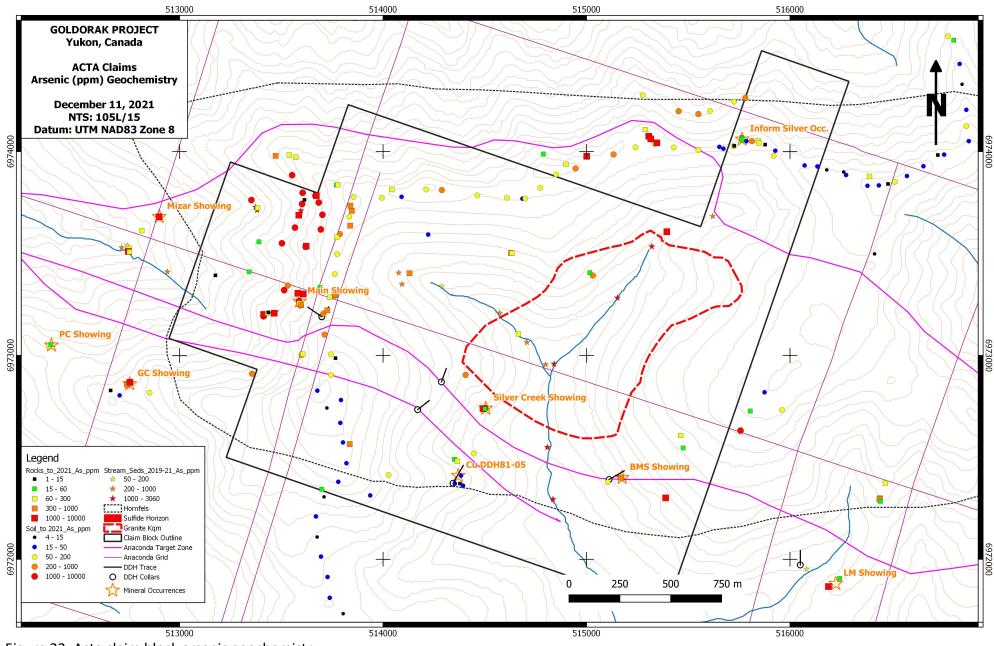



Figure 23. Acta claim block arsenic geochemistry.

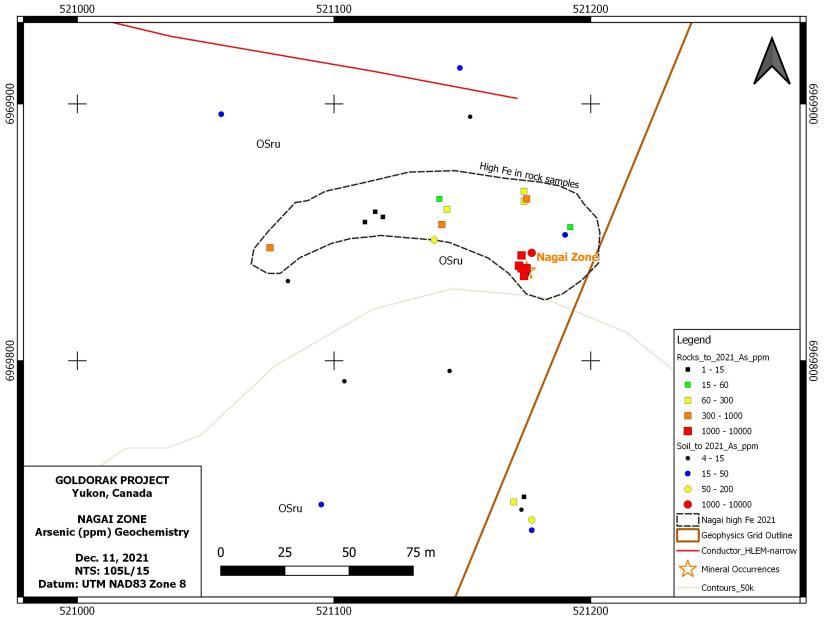



Figure 24. Nagai Zone arsenic geochemistry.

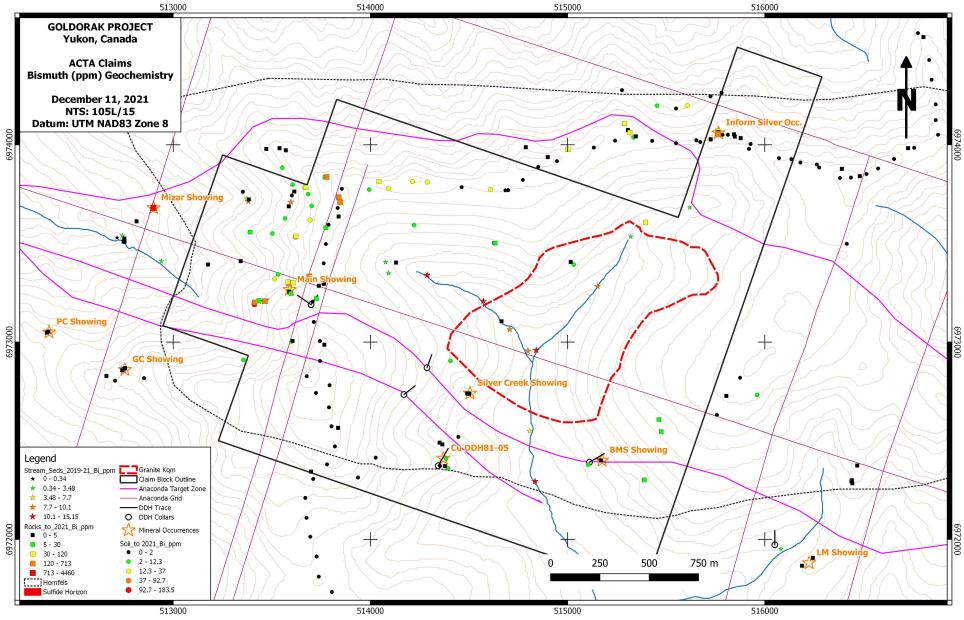



Figure 25. Acta claim block bismuth geochemistry.

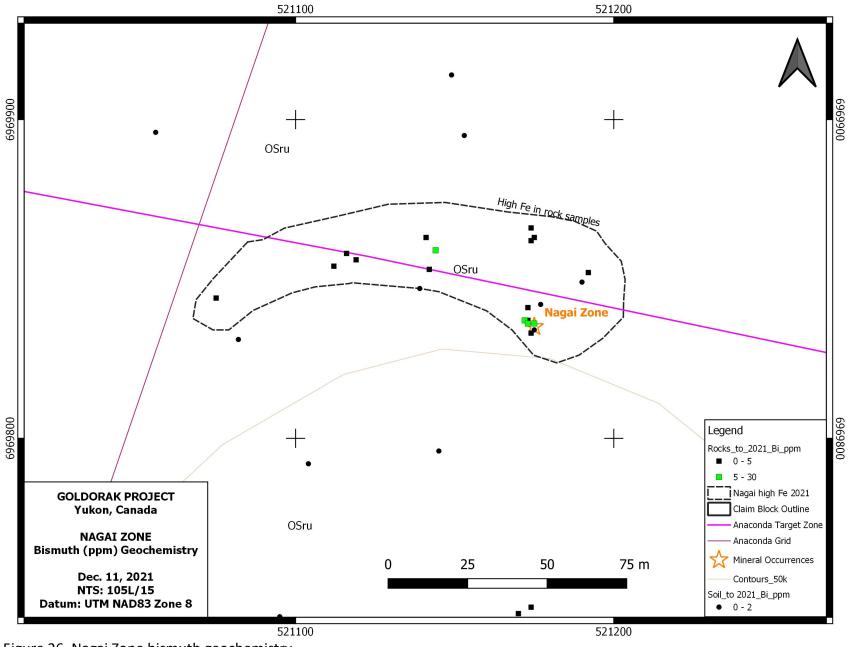



Figure 26. Nagai Zone bismuth geochemistry.

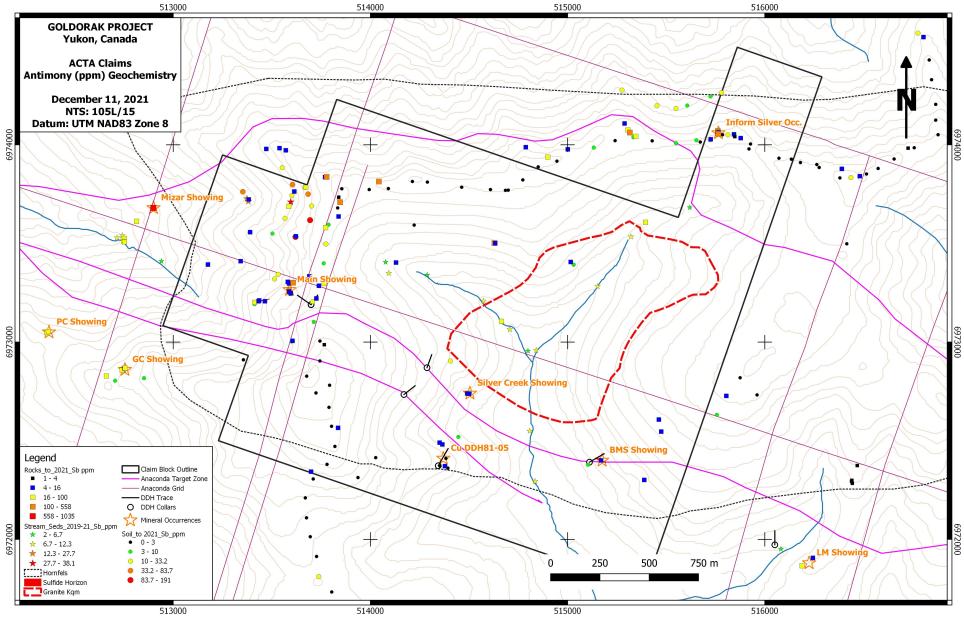



Figure 27. Acta claim block antimony geochemistry.

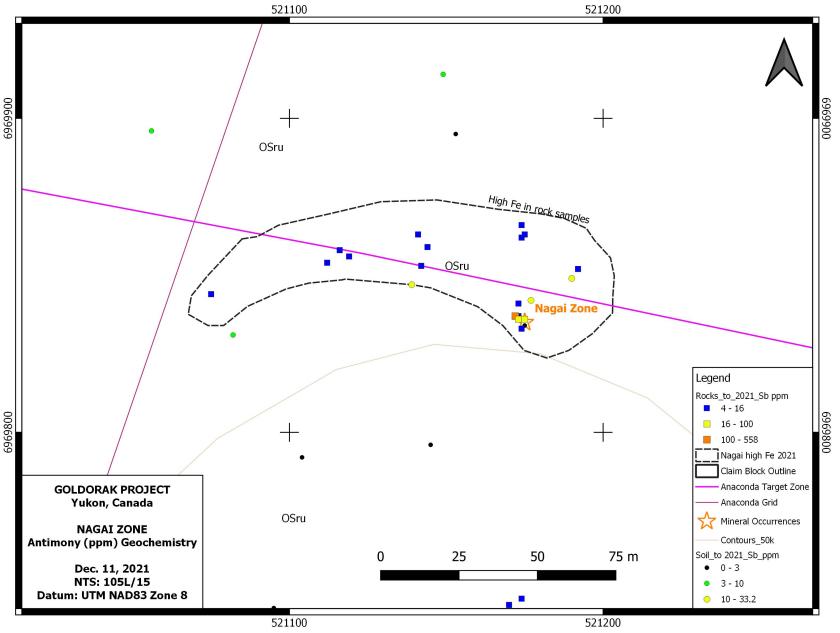



Figure 28. Nagai Zone antimony geochemistry.

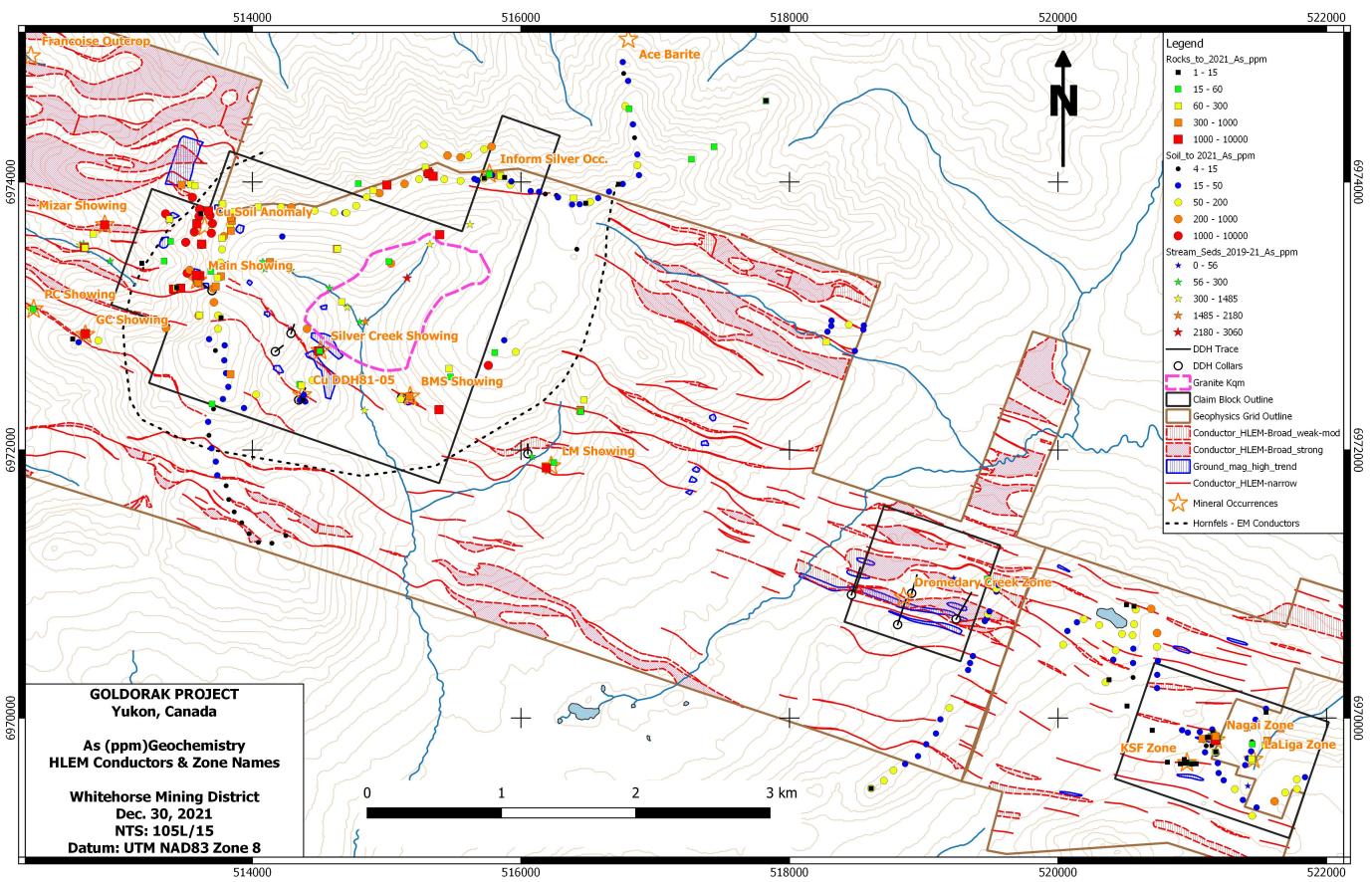



Figure 29. Anaconda Grid: HLEM conductors, magnetic highs and arsenic geochemistry.