FINAL TECHNICAL REPORT FOR YUKON MINERAL EXPLORATION PROGRAM (YMEP) (21-066)

REPORT ON 2021 GEOLOGICAL and GEOCHEMICAL EXPLORATION, McCLEERY PROJECT N.T.S. 105C05, 105B08

MM 1-42 (YD81304 - YD81345)

MM 43-92 (YD81351 - YD81400)

MM 93-146 (YD81451 - YD81502)

MM 147-184 (YD81258 - YD81296)

Mm 185-244 (YD21019 - YD21078)

Property Centre:

60° 18′ 49.1″ N, 132° 0′ 48.5″

(UTM coordinates: 664970, 6690075, Zone 8)

Watson Lake Mining District

WORK PERFORMED:

August 10 – August 14, 2021 September 16 – September 22, 2021

prepared for:

Yukon Mineral Exploration Program PO Box 2703 (K-102) Whitehorse, Yukon. Y1A 2C6

report prepared by:

Aurora Geosciences Ltd.

FINAL YMEP TECHNICAL REPORT

REPORT ON 2021 GEOLOGICAL and GEOCHEMICAL EXPLORATION McCLEERY PROJECT

TESLIN area, South-central YUKON TERRITORY, CANADA

MM 1-42 (YD81304 – YD81345)

MM 43-92 (YD81351 - YD81400)

MM 93-146 (YD81451 – YD81502)

MM 147-184 (YD81258 - YD81296)

Mm 185-244 (YD21019 - YD21078)

60° 18′ 49.1″ N, 132° 0′ 48.5″

(UTM NAD 83): 664970 E, 6690075 N, Zone 8)

Watson Lake Mining District

Overland Resources (BC) Ltd Level 11, 216 St. Georges Terrace Perth, Western Australia, 6000

> Aurora Geosciences Ltd. 3506 McDonald Drive Yellowknife, NT X1A 2H1

VIA ZIII

Tel: 867.920.2729 Fax: 867.920.2739

www. aurorageosciences.com

Effective date: Jan 21, 2022

Author

Carl Schulze

TABLE OF CONTENTS

1 5	SUMMARY	
2 I	INTRODUCTION	3
2.1		
	PROPERTY DESCRIPTION AND LOCATION	
4 E	EXPLORATION HISTORY	8
5 F	REGIONAL GEOLOGY	10
6 F	PROPERTY GEOLOGY AND MINERALIZATION	13
6.1	1 Property Geology	13
ϵ	6.1.1 Lithological Units	18
6.2	2 MINERALIZATION	18
7 [DEPOSIT SETTING	21
8 E	EXPLORATION	22
8.1	1 Overview	22
8.2		
8.3	3 Phase 2 Results	23
9 9	SAMPLE PREPARATION, ANALYSIS AND SECURITY	34
9.1	1 PHASE 1 ROCK SAMPLING	34
9.2	PHASE 1 SOIL SAMPLING	34
9.3		
9.4		
9.5		
	9.5.1 Phase 1 Quality Control (QC)	
	9.5.2 Phase 2 Quality Control	
10 I	INTERPRETATION AND CONCLUSIONS	37
10.		
10.	0.2 CONCLUSIONS	38
11 F	RECOMMENDATIONS	39
11.	1 Recommendations	39
11.	2 RECOMMENDED BUDGET	40
12 F	REFERENCES	41
LIST	COF FIGURES	
	E 1: LOCATION MAP	
	EE 2: CLAIM MAP. MIM 1-244 CLAIMS, MICCLEERY PROPERTY	
	E 3: REGIONAL GEOLOGY, IVIT: MICCLEERY AREA	
I IGUKE	L 4. LEGEND, INCOIDINAL GEOLOGI, IVII. IVICCEENT AREA	12

FIGURE 5: BOUDINED CLASTIC SEDIMENTARY BEDS IN KLINKIT ASSEMBLAGE LIMESTONE	15
FIGURE 6: INTERBEDDED UNIT OF RESISTANT BEIGE LIMESTONE IN GREY KLINKIT ASSEMBLAGE LIMESTONE	15
FIGURE 7: CRINOID-BEARING KLINKIT ASSEMBLAGE LIMESTONE	
FIGURE 8: SKETCH OF LOCAL GEOLOGICAL SETTING, MT McCLEERY PROPERTY AREA	17
FIGURE 9: STRATIFORM COPPER SKARN AND VEIN SHOWING IN SILICEOUS CALCAREOUS SEDIMENTS	19
FIGURE 10: FRACTURE-CONTROLLED AND REPLACEMENT-STYLE ARSENOPYRITE - BORNITE - CHALCOPYRITE OCCURRENCE	20
FIGURE 11: SAMPLE 1893864: MASSIVE MAGNETITE-PYRRHOTITE-CHALCOPYRITE SKARN	20
FIGURE 12: SERICITIC, PYRITIC GOSSANOUS ZONES IN FINE SILICICLASTICS, SOUTHWEST RIDGE	
FIGURE 13: ROCK GEOCHEMICAL SAMPLE LOCATIONS, 2021 PROGRAM (BOTH PHASES)	25
FIGURE 14: COBALT ASSAY VALUE RANGES, 2021 PROGRAM (BOTH PHASES)	26
FIGURE 15: COPPER ASSAY VALUE RANGES, 2021 PROGRAM (BOTH PHASES)	27
FIGURE 16: GOLD ASSAY VALUE RANGES, 2021 PROGRAM (BOTH PHASES)	28
FIGURE 17: SILVER ASSAY VALUE RANGES, 2021 PROGRAM (BOTH PHASES)	
FIGURE 18: PHASE 1 AND 2 SOIL AND SILT GEOCHEMICAL SAMPLE LOCATIONS, 2021 PROGRAM	30
FIGURE 19: GOLD VALUE RANGES, 2021 SOIL AND SILT GEOCHEMICAL SAMPLING PROGRAM (BOTH PHASES)	31
FIGURE 20: COBALT ASSAY VALUE RANGES, 2021 SOIL AND SILT GEOCHEMICAL PROGRAM (BOTH PHASES)	32
FIGURE 21: COPPER ASSAY VALUE RANGES, 2021 SOIL AND SILT GEOCHEMICAL PROGRAM (BOTH PHASES)	33
LIST OF TABLES	
TABLE 1: CLAIM STATUS, MM BLOCK, AS OF JAN 7, 2022 (NOT UPDATED FOR 2021 WORK)	5
TABLE 2: EXPLORATION HISTORY, MT. McCLEERY AREA	
TABLE 3: REGIONAL STRATIGRAPHY, MT. McCLEERY AREA (AFTER COLPRON ET AL, 2016)	
TABLE 4: PROPERTY-SCALE ROCK UNITS, MCCLEERY AREA (AFTER STEPHEN, 1982 AND 1983; BRADSHAW, 1999)	
TABLE 5: PHASE 1 PERSONNEL	
TABLE 6: PHASE 2 PERSONNEL	23

APPENDICES

Appendix I: Statement of Qualifications
Appendix II: 2021 Exploration Expenditures
Appendix III: Claim Status as of January 7, 2022

Appendix IV: 2021 Rock, Soil, Silt Sample Descriptions

Appendix V: Original Assay Certificates

1 **SUMMARY**

In 2021, Overland Resources (BC) Ltd. (Overland) commissioned Aurora Geosciences Ltd. (Aurora) to complete a program of rock, silt and soil geochemical sampling and limited geological mapping on the McCleery property, located 43 km NE of Teslin, Yukon. The program was completed in two phases, in August and September respectively, focusing on due diligence rock and soil sampling of mineralized occurrences discovered in 2020. The program was partially funded by the Hard Rock module of the Yukon Mineral Exploration Program (YMEP), and was recipient #21-066.

The McCleery property comprises 244 full-sized Yukon quartz mining claims for 5,097 Ha (12,590 acres), covering the central portion of the Englishmans Range within in the Watson Lake Mining District. The property is 100% owned by Overland and is located within the traditional territory of the Teslin Tlinkit First Nation (TTFN). The Englishmans Range is a NNW-trending mountain range characterized by rugged terrain ranging from 1,360 to 1,940 metres (4,460 to 6,365 feet) above sea level (asl). The southwest part of the property covers more moderate terrain ranging in elevation from 1,100 to 1,460 metres (3,610 to 4,790 feet) asl. Access to the property is by helicopter from Teslin. Alpine vegetation covers areas above 1,500 metres; thick forests of subalpine fir occur below this. The climate is subarctic, with an alpine influence above 1,500 m. Precipitation, including snowfall, is fairly abundant, limiting the field season at higher elevations to late June through mid-September. There is no infrastructure near the property.

The McCleery Project area has undergone several phases of exploration commencing in 1974. Present acquisition by Overland was based on a 1982 exploration program within the present MM 1-42 block. This program led to identification of several small copper-silver-gold (Cu-Ag-Au) skarn occurrences, including a value of 0.76% cobalt (Co) taken from a central east-west trending ridgeline. A follow-up 1983 program included diamond drilling targeting a tin-tungsten (Sn-W) prospect in the present northern property area.

In 1997, Fairfield Minerals Ltd. staked the CC 1-44 claims covering much of the MM 137-184 block in the southwestern property area. In 1998, Fairfield followed up with a grid soil geochemical program identifying coincident anomalous Cu, Pb and Zn values extending northwest from the "Discovery Showing", as well as high gold soil geochemical values at the "claim post showing" to the north. In April 1999, Brett Resources Inc. optioned the claims and conducted geological mapping and rock sampling. Geological and geochemical interpretation indicate the stratigraphic setting is appropriate to host volcanogenic massive sulphide (VMS) mineralization.

The MM 1-42 claims were staked by Overland in March of 2017 and then added the MM 43-184 claims, in July of 2018. Later in 2018, Geotech Ltd. conducted a helicopter-borne Versatile Time Domain Electromagnetic (VTEM^{EM}) and magnetometer survey across the entire MM 1-184 claim block. Results of this survey led to staking of the MM 185-244 block in November of 2018, adjoining the southeastern property boundary.

In 2020, Aurora conducted a brief exploration program for Overland, comprising geological mapping, rock sampling and prospecting, and reconnaissance-style soil geochemical surveying. The program led to discovery of a stratiform copper-gold occurrence, also of several talus boulders of massive magnetite-pyrrhotite-chalcopyrite skarn, and of a rock sample returning 3.222 g/t gold (Au) at a separate location.

The McCleery property is located within the Yukon-Tanana Terrane (YTT), comprising meta-igneous and meta-sedimentary rock ranging in age from Neoproterozoic to early Tertiary, although the majority are Paleozoic rocks. In the property area, the YTT is marked by Neoproterozoic-Devonian Snowcap

Assemblage fine clastic sediments and minor volcanics, Devono-Mississippian Finlayson Assemblage mafic to felsic volcanic rocks and Mississippian to Permian-aged Klinkit Assemblage mafic to intermediate volcanic rocks, intercalated with limestone, dolostone and chert. The Upper Paleozoic rocks have been intruded by the Late Cretaceous Hake Batholith comprising granite to quartz monzonite and underlying much of the central and northern property area. Geological mapping in 2021 further delineated the local stratigraphic setting, indicating the south-central property covers a succession, from NNE to SSW, comprising Klinkit Assemblage limestone, Klinkit Assemblage mafic volcanics and Snowcap Assemblage clastic sediments. The south margin of the Hake Batholith was also more firmly delineated. Mapping also identified a NW-SE trending fault zone in the south-central area, marked by minor quartz veining and pervasive local limonite - carbonate alteration.

The 2021 program included due-diligence-style evaluation of the stratiform copper occurrence, the massive magnetite-pyrrhotite talus float, and the area of the quartz vein grading 3.222 g/t Au. Both the copper occurrence and massive magnetite-sulphide float were determined to be of very limited extent, eliminating these as viable exploration targets. The auriferous quartz was also found to be of limited extent. Prospecting in 2021, along a low ridgeline southwest of the auriferous quartz, led to sampling of several WNW-trending zones of pyritic sericite schist. Assaying of these returned low gold and base metal values. Rock sampling along a SSW trending ridge southwest of the central east-west ridgeline revealed three elevated Cu ± Co, Ag and Au values within a limited surface area.

Results of 2021 soil geochemical sampling revealed a strongly anomalous value of 0.366 g/t Au taken along strike to the southeast of the NW-SE trending fault zone, and fairly close to the auriferous 2020 rock sample. Another soil sample taken in the south-central MM 1-42 block returned a value of 0.467 g/t Au with elevated silver, base metal and pathfinder element values. An adjacent sample returned a similar, more subdued geochemical signature, indicating an upslope source. Soil sampling also revealed four consecutive elevated copper values along the west flank of a small stream valley.

Although the 2021 program determined low mineral potential across most of the explored property area, these three soil geochemical anomalies warrant some follow-up exploration. The southwest property area hosting the historic "Discovery and Claim Post" showings, indicating potential for VMS-style mineralization, has not been explored by Overland and warrants further exploration. A two-week, campbased program of grid-controlled magnetic and VLF-EM surveying, soil sampling, geological mapping and prospecting is recommended for this area. The program is also recommended to include "ground-truthing" of the three aforementioned 2021 soil geochemical anomalies and the area of copper enrichment from rock sampling. Projected program expenses, including filing fees and 10% contingency, are estimated at CDN\$189,000.

2 INTRODUCTION

In 2021, Overland Resources (BC) Ltd. (Overland) commissioned Aurora Geosciences Ltd. (Aurora) to conduct a program of rock, silt and soil geochemical sampling and limited geological mapping on the McCleery property. The program was completed in two phases: Phase 1, from August 10 - 14, and Phase 2, from September 16 - 18 and September 22.

The property is located about 43 km ENE of Teslin, Yukon, and has been the subject of several episodes of claim staking and exploration commencing in the 1970s. Exploration led to identification of several skarnstyle copper ± silver ± gold occurrences, and one cobalt occurrence, along ridgelines in the central property area.

Aurora prepared an application for funding under the Target Evaluation section of the Hard Rock module of the Yukon Mineral Exploration Program (YMEP), which qualified for funding. This report was prepared to satisfy requirements for funding provided by YMEP, recipient #21-066). It also summarizes the results of rock, silt and soil geochemical sampling, focusing on re-evaluation of the known showings and on exploration for further geochemical anomalies in the southern property area.

2.1 Terms, Definitions and Units

All geographic locations in this report are relative to North American Datum 1983. Non-geodetic coordinates are expressed in Universal Transverse Mercator Zone 08N and 09N metric coordinates. All measurements are expressed in the metric system unless they are measurements quoted from historic reports expressed in other units of measure. "VTEMTM" is the abbreviation for the "Versatile Time Domain Electromagnetic" system, proprietary to Geotech Ltd, which flew an airborne combined magnetic and electromagnetic survey in 2018. Other abbreviations are defined at point of first use.

Gold values are measured in parts per billion (ppb), or grams/tonne (g/t). 1.000 g/t is equivalent to 1,000 ppb or 1.0 ppm. All other element values are expressed either in ppm or in percent (%).

Elemental abbreviations used in this report are:

Au: Gold Ag: Silver Al: Aluminum As: Arsenic B: Boron Ba: Barium Be: Beryllium Bi: Bismuth Ca: Calcium Cd: Cadmium Ce: Cerium Co: Cobalt Cr: Chrome Cs: Cesium Cu: Copper Fe: Iron

Ga: Gallium

Hf: Hafnium

Hg: Mercury

In: Indium

K: Potassium

La: Lanthanum

Li: Lithium

Mg: Magnesium Mn: Manganese Mo: Molybdenum Na: Sodium

Nb: Niobium Ni: Nickel P: Phosphorous Pb: Lead Rb: Rubidium Re: Rhenium S: Sulphur Sb: Antimony Sc: Scandium Se: Selenium Sn: Tin Sr: Strontium Te: Tellurium Ta: Tantalum Th: Thorium Ti: Titanium TI: Thallium U: Uranium V: Vanadium W: Tungsten Y: Yttrium Zn: Zinc

Zr: Zirconium

3 PROPERTY DESCRIPTION AND LOCATION

The MM 1-244 claims, comprising the McCleery property, form a contiguous block located in south-central Yukon, and centered at 60° 18′ 49.1″ N, 132° 0′ 48.5″ W (UTM coordinates: 664970, 6690075, Zone 8) (Figures 1 and 2). The claims comprise approximately 5,097 Ha (12,590 acres), covering the central portion of the Englishmans Range. The property is located in the Watson Lake Mining District, roughly 43 km ENE of the Village of Teslin and about 173 km ESE of the City of Whitehorse, in south-central Yukon. A claim tenure table is shown in Appendix II.

The property is 100% owned by Overland and is located within the traditional territory of the Teslin Tlinkit First Nation (TTFN) which has a settled land claim with the Yukon government. There are no significant environmental liabilities on the property.

The McCleery property covers the central part of the Englishmans Range, a NNW-trending mountain range characterized by rugged terrain ranging from 1,360 to 1,940 metres (4,460 to 6,365 feet) above sea level (asl). The southwest part of the property covers more moderate terrain ranging in elevation from 1,100 to 1,460 metres (3,610 to 4,790 feet) asl. Access to the property is by helicopter from Teslin. Water is fairly abundant, provided by several small tarns and streams large enough to supply adequate water for diamond drilling. Alpine vegetation covers areas above 1,500 metres asl; thick forests of subalpine fir occur below this level and gradually grade downslope to mixed spruce and fir forest with abundant shrub vegetation. The climate is subarctic, combined with an alpine influence above 1,500 m, with strong, irregular winds commonly occurring at higher elevations. Rainfall and winter snowfall are fairly abundant, limiting the field season at higher elevations to late June through mid-September. There is no infrastructure near the property.

In 2021, a Class 1 permit (Q2021-0148, C1Q00339) was in place, allowing for low-impact exploration across selected portions of the property. This will expire by the 2022 field season. A new Class 1 exploration permit, allowing for specifically requested activities, will be required on an annual basis.

Table 1: Claim Status, MM Block, as of Jan 7, 2022 (not updated for 2021 work)

Grant Numbers	Claim Names	No. of Claims	New Expiry Date
YD81304 - YD81345	MM 1 - MM 42	42	2026-03-20
YD81351 - YD81400	MM 43 - MM 92	50	2025-07-30
YD81449 - YD81458	MM 93 - MM 102	10	2025-07-30
YD81459 - YD81462	MM 103 - MM 106	4	2026-07-30
YD81463 - YD81464	MM 107 - MM 108	2	2025-07-30
YD81465 - YD81476	MM 109 - MM 120	12	2026-07-30
YD81477 - YD81478	MM 121- MM 122	2	2025-07-30
YD81479 - YD81480	MM 123 - MM 124	2	2026-07-30
YD81481 - YD81490	MM 125 - MM 134	10	2025-07-30
YD81491	MM 135	1	2026-07-30
YD81492 - YD81502	MM 136 - MM 146	11	2025-07-30
YD81259 - YD81296	MM 147 - MM 184	38	2025-07-30
YD21019 - YD21078	MM 185 - MM 244	60	2025-12-04

Overland Resources (BC) Ltd. Aurora Geosciences Ltd.

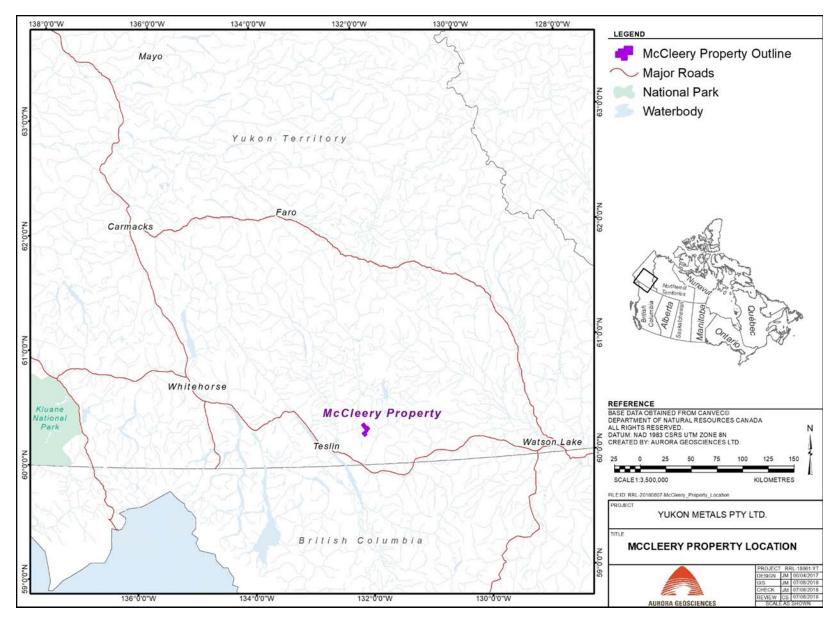


Figure 1: Location Map

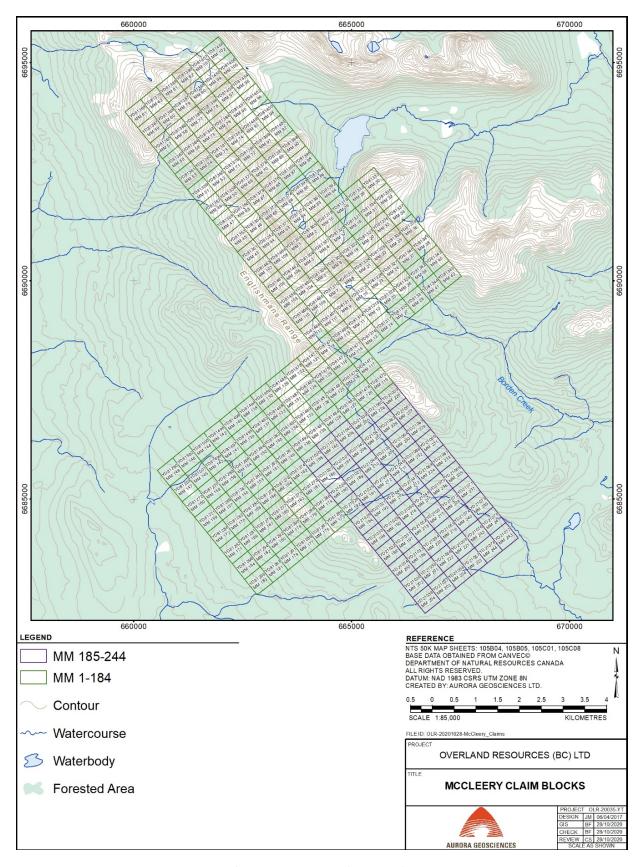


Figure 2: Claim Map. MM 1-244 claims, McCleery property

4 EXPLORATION HISTORY

The Mount McCleery area was first staked in 1974 as the SURETHING 1-3 and JACKALOO 1-8 claims by R.J. Fleming. The claims covered parts of the present north-central property area. In 1975, Fleming optioned the claims to United Keno E (United Keno Hill ML & Falconbridge Nickel ML) (Yukon Minfile, 2019). Later that year United Keno E conducted geological mapping and a 1,029-unit soil sampling program for copper (Cu), with some samples also analyzed for molybdenum (Mo), returning three areas of anomalous Cu values. No further work was recommended and the claims were allowed to lapse.

The present northern property area was staked as the FF 1-44 claims in August, 1982 by J.C. Stephen and funded by the DC Syndicate. Later that year, J.C. Stephen conducted rock geochemical sampling and detailed geological mapping across several known skarn occurrences, returning values to 0.216% tin (Sn) and 0.097% tungsten (W) with slightly elevated gold (Au) values. J.C. Stephen recommended an extensive picket line grid across much of the FF property (Stephen and Webster, 1982).

Also, in 1982, J.C. Stephen staked the CAL 3-26 claims south of the FF claims, and followed up with detailed geological mapping, rock sampling and "talus" soil sampling in August of that year. Rock sampling returned values to 15.6% Cu, 13.5 g/t silver (Ag) and 0.01 oz/ton Au, with "significant cobalt values". The only sample for which cobalt (Co) values were reported was taken from the ridgeline in the present MM 1-42 block. This returned a value of 0.76% Co with 0.42 opt ("oz per ton", equivalent to 13.1 g/t) Ag. The talus soil samples were never analyzed (Stephen, 1982).

In 1983, Stephen returned to the FF property and conducted a surface magnetometer survey and rock geochemical sampling of several skarn occurrences. Rock sampling returned values to 1.750 g/t Au with 2,100 ppm (0.21%) Cu. Stephen recommended a 445-metre diamond drilling program in 3 holes (Stephen, 1983). In 1984, Stephen followed up with diamond drilling totaling 924 feet (281.6m) in two holes testing for Sn and W mineralization towards the northern boundary of the present MM 43-102 sub-block. The best values returned from drilling were 0.36% Sn across 1.1m, and 0.08% Sn across 0.6m (Stephen, 1984).

In 1997, Fairfield Minerals Ltd. staked the CC 1-44 claims covering the southwestern part of the present MM claim block. Fairfield followed up with an 85-line km airborne electromagnetic (EM) and magnetic survey across the CC 1-30 claims, as well as a grid-controlled geological mapping, rock sampling, prospecting and grid soil geochemical program. The airborne survey identified several weak EM and magnetic trends parallel to stratigraphy. Soil sampling identified a "band" of coincident anomalous Cu, Pb, Zn and Ag values in the central and western part of the CC claim block (Ritcey and Balon, 1997).

In 1998, Fairfield followed up with a grid soil geochemical program of 1,069 samples, identifying coincident anomalous Cu, Pb and Zn values extending northwest from the "Discovery Showing", as well as high gold soil geochemical values at the "claim post showing" to the north. Blast trenching was completed at both showings, returning anomalous gold values to 338 ppb from the Claim Post showing (Jakubowski and Balon, 1998).

In April 1999, Brett Resources Inc. optioned the CC 7-54 claims from Fairfield Minerals and conducted a brief program of geological mapping and limited rock sampling. Although rock sampling failed to produce significant values, geological and geochemical interpretation suggested the stratigraphic setting is appropriate to host volcanogenic massive sulphide (VMS) style of mineralization (Bradshaw, 1999).

No further exploration is known to have occurred from 1999 until the MM 1-42 claims were staked by Overland in March, 2017. In July 2018, Overland added the MM 43-184 claims, extending the claim block to the north and southwest. Later in 2018, Geotech Ltd. conducted a helicopter-borne Versatile Time

Domain Electromagnetic (VTEM^{EM}) and magnetometer survey across the entire MM 1-184 claim block. The VTEM survey revealed two significant conductive anomalies; one covered by the MM 120 and MM 127 claims, and the other in the northwest corner of the MM 137-184 block. Results led to staking of the MM 185-244 block late in 2018, adjoining the southeast property boundary (Figure 2).

In 2020, Aurora conducted a brief exploration program for Overland, comprising geological mapping, rock sampling and prospecting, and three complete and one partial ridge-and spur or contour soil geochemical survey lines. The program covered the central MM 1-42 block, the southern MM 113-150 block and the MM 183-244 block. The program led to discovery of a stratiform copper-gold occurrence, a separate copper-gold-silver occurrence, both along the central ridgeline, and several talus boulders of massive magnetite-pyrrhotite-chalcopyrite skarn. Soil sampling returned mainly low values, although several elevated Cu and Au values were returned from the MM 1-42 block.

Table 2 below summarizes the exploration history of the Mount McCleery area.

Table 2: Exploration History, Mt. McCleery area

Years	Operator	Work Performed
1975	United Keno E (United Keno Hill ML & Falconbridge Nickel ML)	SURETHING and JACKALOO claims: Geological mapping, rock and grid soil sampling: 1,029 soil samples.
1982 to 1983	J.C. Stephen (DC Syndicate)	FF block: Rock sampling and geological mapping, surface magnetometer surveying. CAL block: "Talus soil" sampling, rock sampling and geological mapping.
1984	J.C. Stephen (DC Syndicate)	FF block: diamond drilling program of 281.6 metres in 2 holes.
1997	Fairfield Minerals Ltd.	CC claims: 85 line-km airborne magnetometer and EM survey: geological mapping, rock sampling, grid soil sampling.
1998	Fairfield Minerals Ltd.	CC claims: Trenching, grid soil sampling (1,069 samples), geological mapping and rock sampling.
1999	Brett Resources Inc.	Limited geological mapping and rock sampling
2017	Overland Resources (BC) Ltd.	Staked MM 1-42 claims
2018	Overland Resources (BC) Ltd.	Staked MM 43-184 claims, flew airborne magnetometer and "VTEM" survey.
2020	Overland Resources (BC) Ltd.	Soil and rock geochemical sampling, geological mapping

5 REGIONAL GEOLOGY

The McCleery property is located within the Yukon-Tanana Terrane (YTT), comprising part of the Intermontane Superterrane, which in turn comprises several accreted terranes abutting the southwest margin of the Ancient North American Platform. The Tintina Fault Zone, a major regional-scale NW-SE trending structure, forms the boundary between continental margin and accreted terranes. Stratigraphy throughout the accreted terranes trends northwest-southeast. The YTT is the most aerially extensive of the accreted terranes, and comprises meta-igneous and meta-sedimentary rock ranging in age from Neoproterozoic to early Tertiary, although the majority are Paleozoic rocks. Farther east, the Intermontane superterrane includes Slide Mountain Terrane oceanic assemblage sedimentary and volcanic rocks (Colpron et al, 2016).

In the property area, the YTT is marked by Devono-Mississippian Finlayson Assemblage mafic to felsic volcanic rocks having arc and back-arc affinities. The YTT includes Mississippian to Permian-aged Klinkit Assemblage mafic to intermediate volcanic rocks, intercalated with limestone, dolostone and chert (Yukon Geological Survey, Mineral Occurrence website, 2019). The Upper Paleozoic rocks have been intruded by the Late Cretaceous Hake Batholith, comprised of granite to quartz monzonite and coeval with the Seagull Batholith. To the west, the Klinkit and Finlayson assemblages lie in south-dipping thrust-fault contact with Ediacaran (Neoproterozoic) to Devonian Snowcap Assemblage metasediments and minor metavolcanics intruded by Devono-Mississippian-aged metaplutonic rocks (Figures 3 and 4).

Table 3: Regional Stratigraphy, Mt. McCleery area (after Colpron et al, 2016)

Rock Unit	Name	Description	
[Age]	Name		
Late Cretaceous	II-la Darkalirk	Consider any ordinals and any of the	
(103-94 Ma)	Hake Batholith	Granite, granodiorite, quartz monzonite	
Mississippian- Permian (340 – 300 Ma)	Klinkit assemblage	Limestone, dolostone, chert, minor metavolcanics	
Mississippian- Permian (340 – 300 Ma)	Klinkit assemblage	Mafic to intermediate metavolcanic and metavolcaniclastic rocks, minor felsic metavolcaniclastics	
Devono-Mississippian (365 – 345 Ma)	Finlayson Assemblage	Mafic to felsic metavolcanics rocks, arc and back-arc affinities.	
Paleozoic – Devonian (635 – 375 Ma)	Snowcap Assemblage	Metasediments, mainly siliciclastics, including quartzite, pelites, psammites and marble.	

Overland Resources (BC) Ltd. Aurora Geosciences Ltd.

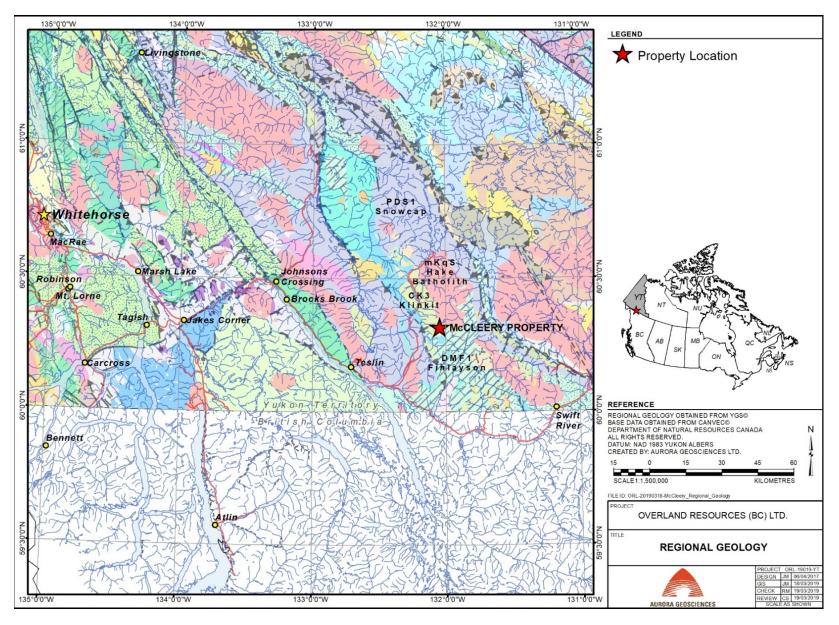


Figure 3: Regional Geology, Mt. McCleery area

Overland Resources (BC) Ltd. Aurora Geosciences Ltd.

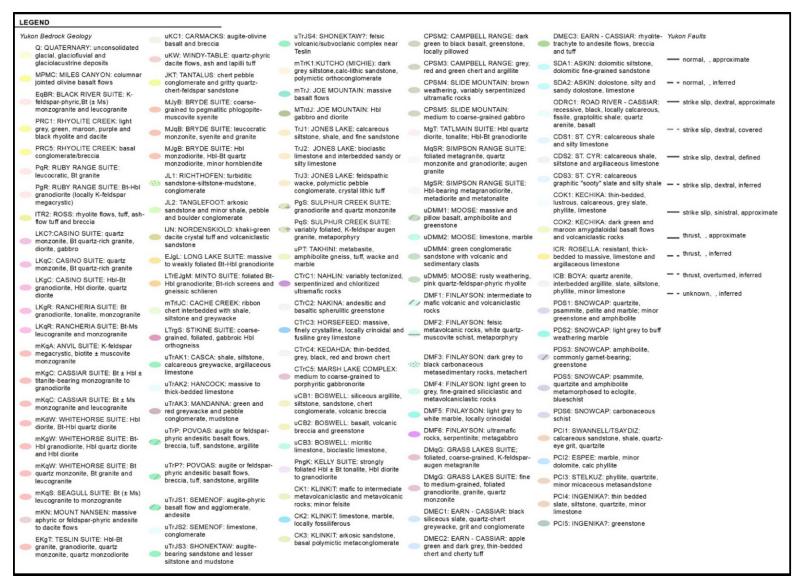


Figure 4: legend, Regional Geology, Mt. McCleery area

6 PROPERTY GEOLOGY AND MINERALIZATION

6.1 Property Geology

This section describes the local geological setting of the Mount McCleery area based upon regional geological compilation by Colpron et al, and from assessment reports filed by J.C. Stephen (1982 and 1983) and Bradshaw (1999).

The MM 1-42 claims cover a unit of Klinkit Assemblage limestone occurring along the southern margin of the Hake Batholith (Figure 5). The western margin of the carbonate unit lies in NW-SE trending contact with Snowcap Assemblage metasedimentary rocks (Stephen, 1982). The eastern and southern boundaries lie in contact with Finlayson Assemblage mafic volcanic rocks. A copper-silver bearing skarn showing, with values up to 15.6% Cu and 461 g/t Ag from rock grab sampling, occurs toward the west boundary of the limestone unit. A single sample was analyzed for cobalt (Co), returning a value of 0.76% Co and 13.1 g/t silver (Ag). Several copper-silver bearing skarn occurrences were also located somewhat northwest of the limestone unit.

The MM 43-102 claims cover the former FF and CAL claims held by J.C. Stephen. The western portion of the former FF block area is underlain by an intercalated sequence of quartzites, argillaceous quartzites and chert-pebble conglomerate, indicating these may be Snowcap assemblage sediments. Towards the northern boundary, a unit of andesitic volcanic tuffs and breccia, likely belonging to the Klinkit Assemblage, was mapped between the Hake Batholith to the east and clastic sediments to the west. A sample of skarn mineralization returning 1.750 g/t Au was obtained from mafic volcanic rocks near the Hake Batholith. Minor Sn-W skarn occurrences, including the target drilled in 1984, were identified within limestone to the northwest (Stephen, 1983).

The former CAL block to the south covers areas now overlain by the MM 1-42 and MM 103-112 claims. The CAL block covered the western margin of the Hake Batholith in western contact with a fairly thin unit of Klinkit Assemblage limestone, in turn lying in NNW-SSE contact with Snowcap Assemblage siliceous argillite and quartzite. The sample returning 0.76% Co was taken from a narrow limestone unit intercalated with volcanic rocks, slightly east of the limestone-siliciclastic contact (Stephen, 1982).

The former CC claims are currently covered by the MM 138-184 sub-block. Bradshaw (1999) mapped the CC claims as underlain primarily by mafic to intermediate metavolcanic tuff, with a lower greenschist metamorphic grade. The Discovery and Claim Post showings occur within the mafic metavolcanics package. Metavolcanic rocks display a strong northwest-striking, gently northeast-dipping penetrative foliation (Bradshaw) which roughly parallels regional stratigraphy. This unit is locally overlain to the east by a light green to grey intermediate to felsic crystal tuff, distinguished by its higher silica content (Bradshaw). These correlate with Finlayson Assemblage mafic to felsic metavolcanics identified by Colpron et al. The east boundary of the felsic unit is bounded by a dark grey to white, thinly bedded limestone and is strongly carbonaceous towards it base. To the northeast, there is a unit of limonitic greenish-grey aphanitic metasedimentary rocks, interpreted as a possible meta-chert (Bradshaw, 1999) and likely belonging to the Snowcap assemblage.

In 2018, a small rubblecrop occurrence of banded fine-grained bornite and lesser chalcopyrite in calcareous siltstone was identified during staking of additional claims along the west property boundary.

A composite grab sample of the showing, located at the boundary of claims MM105 and MM106, returned 2.912% Cu, 51.9 g/t Ag and 0.128 g/t Au.

The 2020 program was too brief to support detailed geological mapping, although existing geological data gained from rock sample and waypoint descriptions has been incorporated into the 2021 geology map (Figure 8). The bulk of the 2020 mapping and sampling occurred within the MM 1-42 block, along the central east-west trending ridgeline that hosts the known mineral occurrences. Mapping roughly substantiated results of earlier workers. The central ridgeline is underlain by Klinkit Assemblage thick to medium bedded limestone (CKI) interbedded with minor siliciclastic sediments. Limited structural measurements indicate bedding strikes northeast-southwest, dipping gently to the northwest. The limestone package hosts fairly abundant metre- to submetre-scale limonitic mafic dykes, potentially a vector for small mineral occurrences. The limestone package lies in NNW trending contact with Snowcap sedimentary rocks and minor metavolcanics (PDs) to the west, and with the southern margin of the Hake Batholith (mKs) to the northeast.

The 2021 program revealed that much of the Klinkit Assemblage limestone assemblage north of the central ridge comprises variably thick and thin-bedded sequences, including rhythmically alternating thick and thin bedded sediments. Much of the area originally mapped as limestone has been determined to be an assemblage of interbedded limestone, fine clastic and calcareous fine clastic sediments. Thin beds of mixed clastic and calcareous sediments exhibit boudined features and separation of beds into a series of lenticular structures (Figure 5), indicating an episode of compressional deformation has occurred. The western area is underlain by the southern margin of the Kake Batholith, manifested as coarse grained equigranular quartz monzonite.

The 2021 mapping to the southwest, within the MM 103, 104 and MM 109-116 and MM 121-123 claims indicated this area is underlain by a large package of Klinkit Assemblage intermediate to mafic volcanic and volcaniclastic "greenschist" rocks (CKv). Quartz-carbonate veining is fairly abundant, increasing in concentration to the southeast. Farther southwest, along a low north-south trending ridgeline, the area is underlain by a broad assemblage of fine siliciclastics with fairly abundant white, fractured limonitic quartz veining. The contact with Klinkit Assemblage volcanics to the northwest may consist of intercalated units of metavolcanics with fine clastic sediments. Siliciclastics are intercalated with 10 to 20 m thick sequences of calcareous sediments showing orange-brown weathering. A NW-SE trending fault line with associated minor quartz veining and fairly pervasive local carbonate alteration within Snowcap Assemblage sediments occurs within claim MM 122, at the north end of the low ridgeline. It also marks the base of a large hill underlain by thin-bedded fine grained siliciclastic rocks.

Bedding measurements throughout the Klinkit Assemblage limestones (CKI), mafic volcanics (CKV) and Snowcap Assemblage (PDs) clastic sediments are fairly consistently east-west to ESE striking, shallowly south to SSW-dipping. Foliation measurements range from NNE-striking, gently to moderately ESE dipping within the northern limestones, to north-south striking, very shallowly east dipping to almost flatlying in the southern area. Sparse shear measurements indicate a potential NW-SE trending lineation in southwestern project areas.

Geological mapping during Phase 2 also focused on the southern portion of the MM 1-42 block. The majority of the area is underlain by Klinkit Assemblage grey thick-bedded limestone, locally crinoid-bearing (Figure 7). Grey limestone units are interbedded with resistant metre-scale thin to medium bedded orange – beige limestone, with minor limonite staining and local dissolution features (Figure 6).

Figure 5: Boudined clastic sedimentary beds in Klinkit Assemblage limestone

Figure 6: Interbedded unit of resistant beige limestone in grey Klinkit Assemblage limestone

Figure 7: Crinoid-bearing Klinkit Assemblage limestone

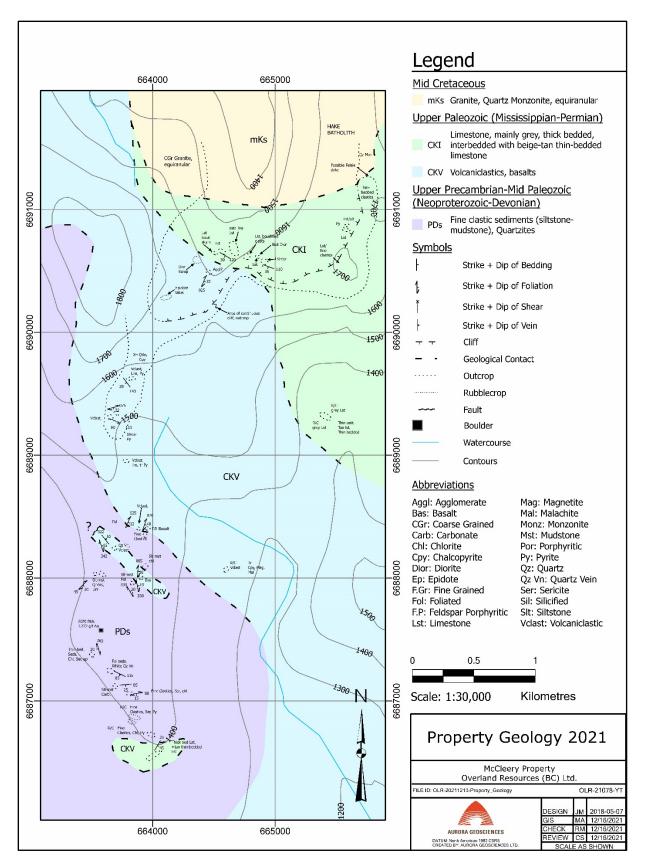


Figure 8: Sketch of local geological setting, Mt McCleery property area

6.1.1 Lithological Units

The following lithological (rock) units are present on the property:

Table 4: property-scale rock units, McCleery area (after Stephen, 1982 and 1983; Bradshaw, 1999)

Rock Unit	Name	Description	
[Age]	Name		
Late Cretaceous	Hake Batholith	Granite, granodiorite, quartz monzonite	
(103 - 94 Ma)	nake batholith		
Mississippian- Permian (340 – 300 Ma)	Klinkit assemblage	Limestone, thin bedded, locally carbonaceous	
Mississippian- Permian (340 – 300 Ma)	Klinkit assemblage	Andesite, volcanic breccia, tuff (Stephen)	
Devono-Mississippian (365 – 345 Ma)	Finlayson Assemblage	Intermediate to felsic tuff (Bradshaw)	
Devono-Mississippian (365 – 345 Ma)	Finlayson Assemblage	Mafic to intermediate tuffs, well foliated (Bradshaw)	
Devono-Mississippian (365 – 345 Ma)	Finlayson Assemblage	Phyllite (Stephen)	
Paleozoic – Devonian	Snowcap Assemblage	Chart nabble conglemerate (Stephen)	
(635 – 375 Ma)		Chert-pebble conglomerate (Stephen)	
Paleozoic – Devonian Snowcap Assemblage (635 – 375 Ma)		Argillaceous quartzite, black argillite, local chert (Stephen).	

6.2 MINERALIZATION

Previous exploration programs identified small occurrences of skarn and replacement-style Au-Ag-Cu \pm Co mineralization along ridgelines in the present MM 1-42 block. The 2020 program identified several new showings of a similar nature, including stratiform copper skarn occurrences and pyrite — pyrrhotite gossans. One of the newly discovered stratiform occurrences is located along the north flank of the eastwest trending ridgeline in the MM 1-42 block (Figure 9). Here, mineralization extends along the contact between overlying limestone, marked by quartz veining, with underlying fine-grained clastic sediments. However, the 2021 program revealed this to be a metre-scale occurrence with negligible economic potential.

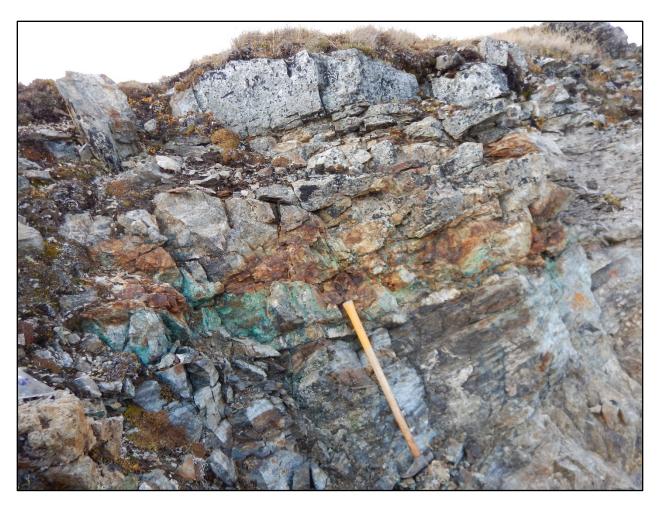


Figure 9: Stratiform copper skarn and vein showing in siliceous calcareous sediments

A separate showing discovered in 2020, along the north flank, comprises vein and fracture-controlled bornite-arsenopyrite mineralization marked by strong malachite and azurite staining (Figure 10). The occurrence is located within an intercalated limestone – volcanic contact. Two mineral assemblages occur within this occurrence: one of bornite – arsenopyrite mineralization with strong epidote alteration, and the other of chalcopyrite-rich mineralization within altered carbonates. The occurrence extends for roughly 15 metres horizontally and about 3 metres vertically. This was not visited in 2021 but is also considered to be a minor occurrence, with very low economic potential.

Figure 10: Fracture-controlled and replacement-style arsenopyrite - bornite - chalcopyrite occurrence

In 2020, several talus float boulders comprising semi-massive magnetite-pyrrhotite-chalcopyrite skarn material (Figure 11) were discovered somewhat downslope of the north flank of the central ridgeline, indicating an upslope source. The 2021 program included due-diligence-style sampling of this area, Although several similar boulders were found, they were too sparsely distributed, below a large inaccessible cliff, to signify a viable exploration target.

Figure 11: Sample 1893864: Massive magnetite-pyrrhotite-chalcopyrite skarn

Scattered minor bornite-malachite occurrences were identified throughout higher elevations of the MM 1-42 block, particularly along the upper extent of the north-flowing stream. These are also very sparsely distributed and represent little economic potential.

Mapping and prospecting in 2021, along the low ridgeline southwest of the MM 1-42 block, revealed several WNW-trending zones of strongly schistose, sericitic fine clastic sediments, with up to 10% medium to fine grained euhedral pyrite (Figure 12). These zones, also marked by moderate to strong silicification and limonitic staining, have been traced along strike for up to 50 metres.

Figure 12: Sericitic, pyritic gossanous zones in fine siliciclastics, southwest ridge

7 DEPOSIT SETTING

The deposit setting in the MM 1-42 block area of the McCleery property can be classed as intrusion-related pro-grade skarn, with a polymetallic suite of mineralization. Skarn deposits are formed along the margins of intrusions emplaced into calcareous units, most typically limestone and calcareous sedimentary or volcanic rocks. Skarn-style mineralization is formed during the final cooling stages of a magma, when incompatible elements (Cu, Ag, Pb, W, Co, and associated "pathfinder elements" including As and Sb) become concentrated in the remaining fluid phase of the melt. The residual melts are comprised mainly of hydrothermal (hot water) fluids enriched in metal ions, and "pneumatolytic" gases, mainly CO₂, and tend to be acidic and siliceous. Interaction of these siliceous fluids with calcareous country rock results in formation of "calc-silicate" minerals. If metal and sulphur ions are both present, these may combine to form sulphide minerals, and the skarn may have economic potential.

Metal-bearing fluids may remain directly along the intrusive-country rock margins, or travel outbound from the stock along permeable zones of "structural preparation". The former is typified by contact skarn occurrences, both within the intrusion (endoskarn mineralization) and adjacent country rock (exoskarn mineralization). The latter is represented by "replacement-style" deposits, formed by the same chemical processes but distal from the intrusion. Stratabound mineralization within particular rock units are examples of the latter setting.

Skarn deposits are typically small and irregular in morphology, but may be high grade. A variety of mineral assemblages may occur, depending on metal ion content in the fluids. These include base metal assemblages (Cu-Pb-Zn, Co), tungsten (W) skarns, tin (Sn) skarns, and precious metal (Au, Ag) skarns. In the McCleery area, the source intrusion may be the Hake Batholith. All of the above assemblages have been identified, indicating a multi-pulsed emplacement history.

8 EXPLORATION

8.1 OVERVIEW

The 2021 exploration program comprised two phases; Phase 1, from August 10-14; and Phase 2 from September 16-18, and September 22.

Phase 1 comprised three ridgeline or contour B-horizon soil sample traverses, geological mapping, rock sampling and prospecting. This phase focused on the south flank of the central ridgeline, the base of the cirque along its northwest flank, and the low ridgeline to the southwest. Soil sampling along the south flank of the central ridge line involved a 50-metre station spacing, whereas a 100-metre station spacing was employed along the other two survey lines. Phase 1 was done by a three-person crew, with a fourth person on site on August 11th, and was accomplished in three actual field days. A total of 16 rock and 62 soil samples were taken.

Phase 2 comprised geological mapping, prospecting, rock sampling, contour soil sampling and stream sediment (silt) sampling along the western and southern margins of the MM 1-42 claims. Three soil sampling traverses with a 100-metre station spacing were completed in the western and southern part of this block. A single silt sampling traverse was completed along the upper reaches of a southeast-flowing stream south of the central ridgeline. Phase 2 was completed by a two-person crew, with a total of 9 rock, 60 soil and 7 silt samples taken.

The following personnel conducted Phase 1 of the survey:

Table 5: Phase 1 Personnel

Carl Schulze	Project Manager, Crew Boss	August 10 – 14, 2021
Diego Parra	Geologist	August 10 – 14, 2021
Philip Uptigrove	Field Technician	August 10 – 14, 2021

The following personnel conducted Phase 2:

Table 6: Phase 2 Personnel

Meghan Ritchie Geologist, Crew Boss September 16 – 18, 22, 2021

Vincent Van Delft Field Technician September 16 – 18, 22, 2021

8.2 Phase 1 Results

A single rock composite grab sample, #1893851, was taken of chalcopyrite-bearing quartz vein material within fine clastic Snowcap Assemblage sediments, southwest of the central ridgeline. This sample returned a value of 540 ppm Cu and 1.4 g/t Ag, with background levels of gold, base metal and pathfinder element values (Figures 13 through 15). Sampling of quartz vein and altered fine siliciclastics along the NW-trending fault at the base of the large hill returned low gold values ranging from 6 to 14 ppb Au, with background base metal and pathfinder element values. Sampling of fractured, limonitic quartz vein float and rubblecrop returned low gold values from 8 to 16 ppb, silver values from 0.4 to 0.9 g/t, and low to background base and pathfinder element values. Similarly low gold values, from 4 to 15 ppb with background silver, base metal and low-to-background pathfinder element values were returned from the pyritic schistose gossanous zones farther southwest along the low ridgeline.

North of the central ridgeline, a grab sample of massive magnetite-pyrrhotite skarn in talus float returned a value of 1,492 ppm (0.149%) Cu, 619 ppm Zn, 120 ppm Co, 161 ppm B, 1.4 g/t Ag and 16 ppb Au. A separate talus grab sample of banded phyllite with 6% chalcopyrite and 3% bornite returned >1.0% Cu, 45.3 g/t Ag, 84 ppm Co, 152 ppm Cr, 672 ppm As, 181 ppm Bi, 58 ppm Sb and 80 ppb Au. Although these values are anomalous, the scarcity of sample material precludes these as viable exploration targets.

Phase 1 soil sampling comprised a ridgeline traverse along the south flank of the central east-west trending ridge; a contour soil traverse covering the basal part of the northern cirque, and a ridgeline traverse along the southern part of a north-south ridgeline, extending onto a lower ridgeline farther southward (Figures 16 through 19). Sampling was done at a 50-metre station spacing for the central traverse, and a 100-metre spacing elsewhere. Precious metal values were mainly low to background, with the exception of a single strongly anomalous value of 0.366 g/t Au with low Ag, Cu, Pb, Zn and pathfinder element values. This was taken near the base of a prominent hill and roughly along the southeast strike extension of the NW-SE trending fault identified in 2021. Somewhat upslope of this, three consecutive samples returned weakly elevated Cu values from 91 ppm to 107 ppm. No other significantly elevated metal or pathfinder values were returned.

8.3 Phase 2 Results

Two samples of interest were identified through Phase 2 rock sampling. A composite grab sample (#1787155) of a gossanous fault zone hosting up to 2% disseminated pyrite within volcaniclastic rocks was taken along the west flank of the SSW-trending ridge spur (Figure 13). The sample returned a value of 1,130 ppm (0.113%) Cu, 0.086 g/t Au and 8.09 g/t Ag. The 4-metre wide fault zone has a strike of 123° and dips steeply SSW at -80°. Sample #1785157 was a composite grab sample of outcrop comprising gossanous, foliated and laminated volcaniclastics with 2-3% disseminated sulphides. A foliation measurement of 143-28 was recorded. This sample returned somewhat elevated values of 391.0 ppm Cu and 44.9 ppm Co. Both samples, and Phase 1 sample #1893581, were taken from a fairly small area, with a maximum separation of about 0.5 km, indicating copper enrichment occurs in this region.

A separate sample (#1787153) of coarse grained, vuggy quartz vein float was taken along the west flank of the southern stream valley. The sample contained a centimetre-scale bleb of dark grey sulphide. Analysis returned a value of 750 ppm Pb, indicating the bleb was likely to be galena. No other significant values were returned from Phase 2 sampling.

The Phase 2 program comprised contour soil sampling extending at an elevation of roughly 1,450 metres and at a 100-metre station spacing, to capture downslope dispersion directly above the tree line (Figure 16). Most values for Cu, Co and Au are low to sub-detection, indicating no significant uphill sources are likely to occur (Figures 17 through 19). However, Sample #1787046 returned a strongly anomalous gold value of 0.467 g/t Au, with 1.05 g/t Ag, 154.5 ppm Cu, 102.5 ppm Co, 69.3 ppm Pb, 123 ppm Zn and weakly elevated Mo, As and Sb values. The adjacent sample to the southwest returned weakly elevated Au, Cu, Zn and Co values. The only other notable anomalous area occurs along the east flank of a prominent north-south trending ridge, and directly west of the stream that has undergone silt sampling. Here, four consecutive samples returned values from 72.7 to 247.0 ppm Cu, although with unelevated values for Zn, Pb, Au, Ag and the pathfinder elements.

Silt sampling, at a 250-metre station spacing, was limited to the south-flowing stream in the narrow connecting portion of the claim block. Although Cu values are slightly elevated, no significantly anomalous metal or pathfinder element values were returned.

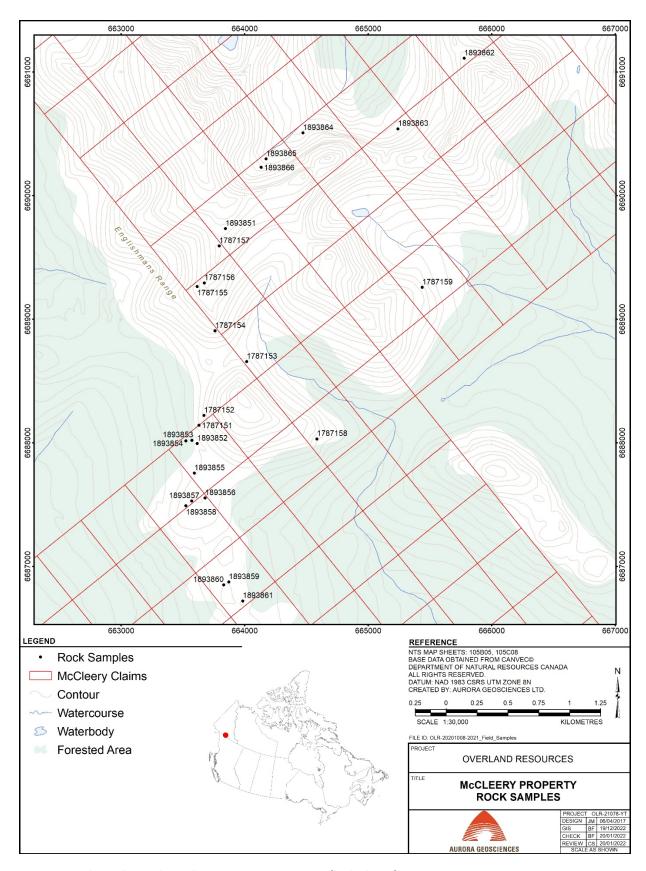


Figure 13: Rock Geochemical Sample Locations, 2021 Program (both phases)

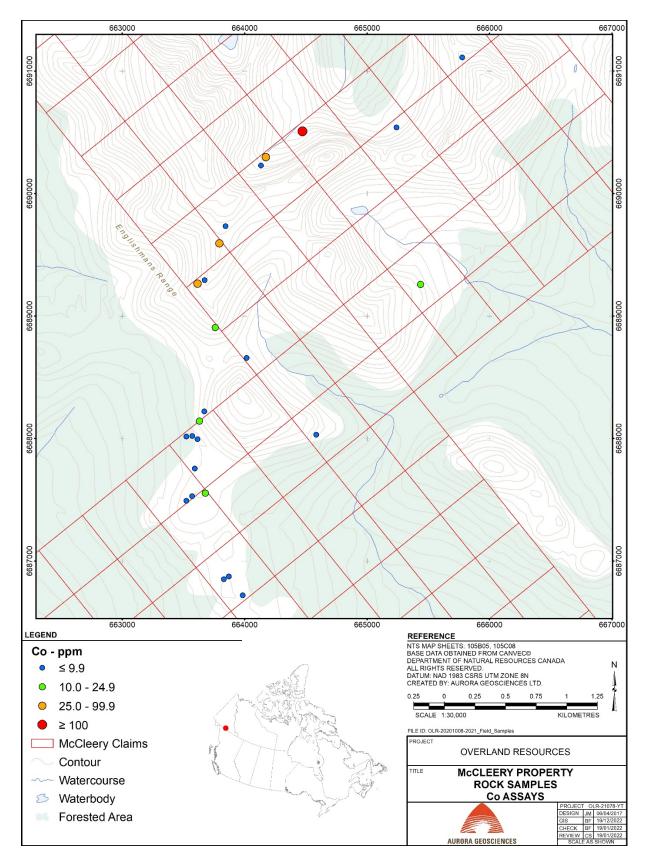


Figure 14: Cobalt Assay Value ranges, 2021 Program (both phases)

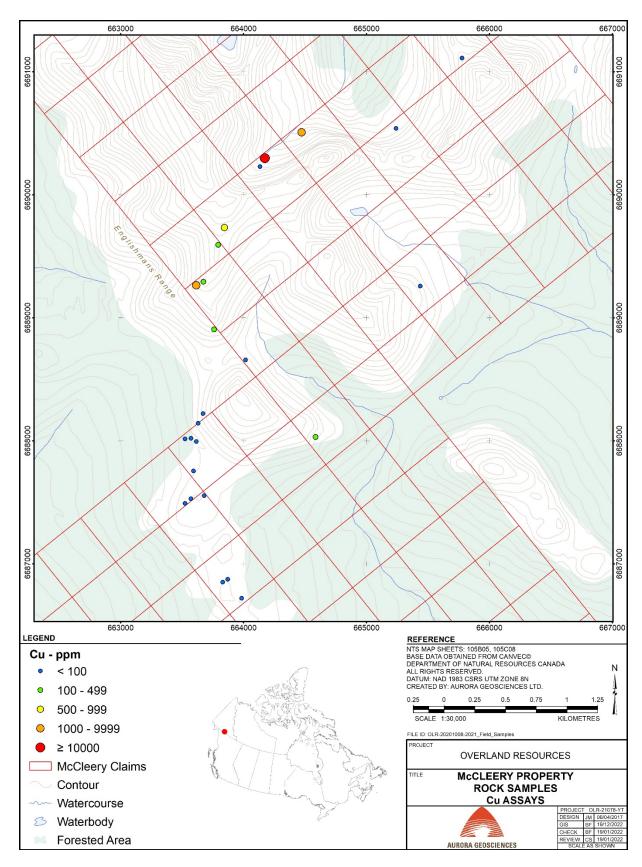


Figure 15: Copper assay value ranges, 2021 program (both phases)

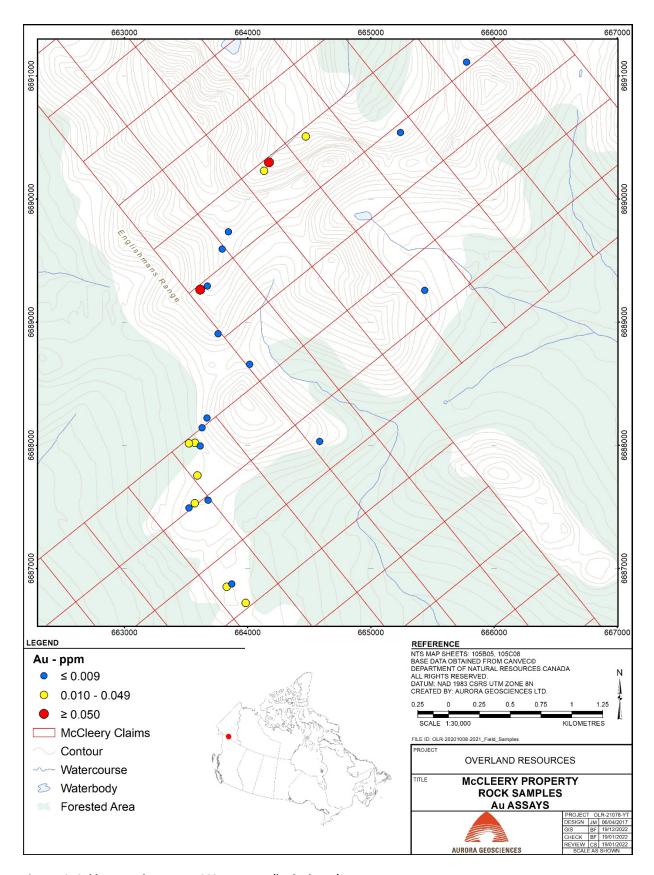


Figure 16: Gold assay value ranges, 2021 program (both phases)

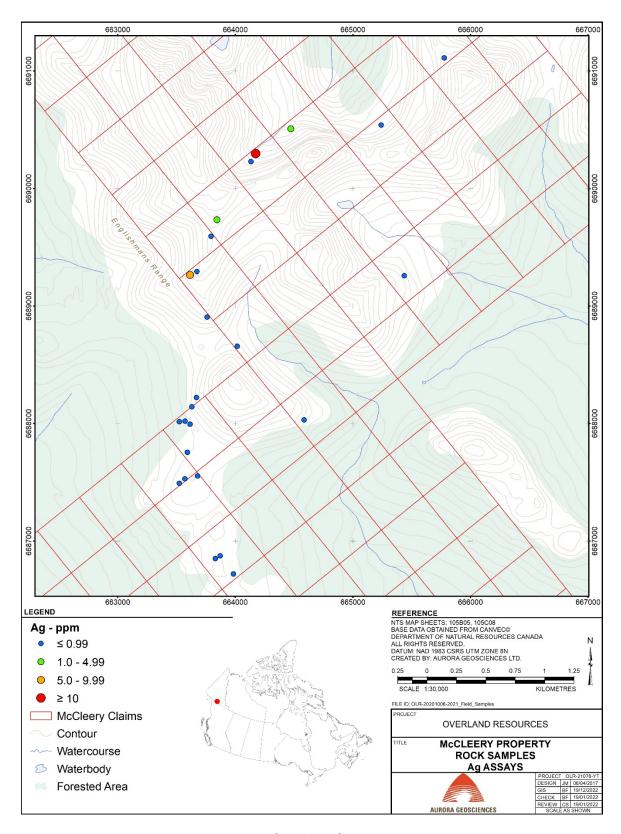


Figure 17: Silver assay value ranges, 2021 program (both phases)

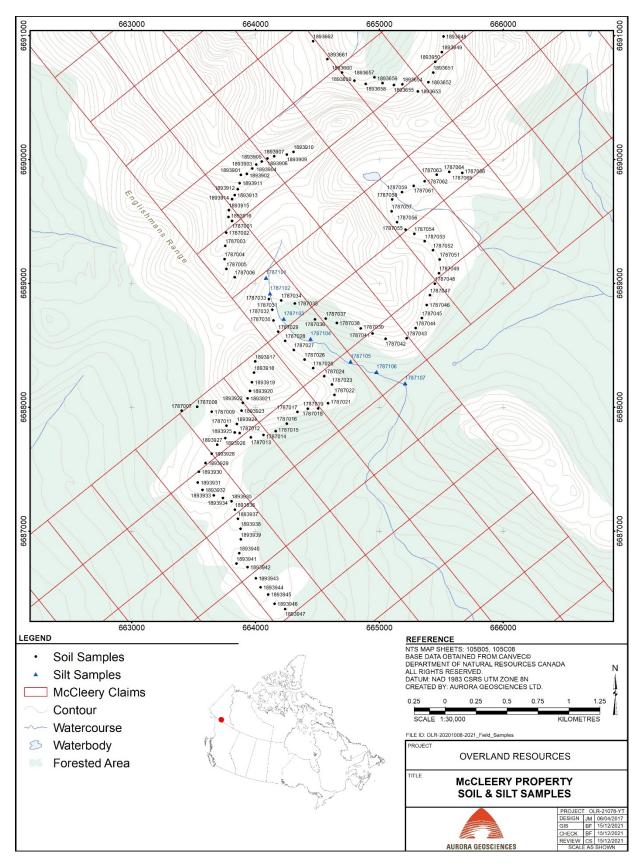


Figure 18: Phase 1 and 2 Soil and Silt Geochemical Sample Locations, 2021 Program

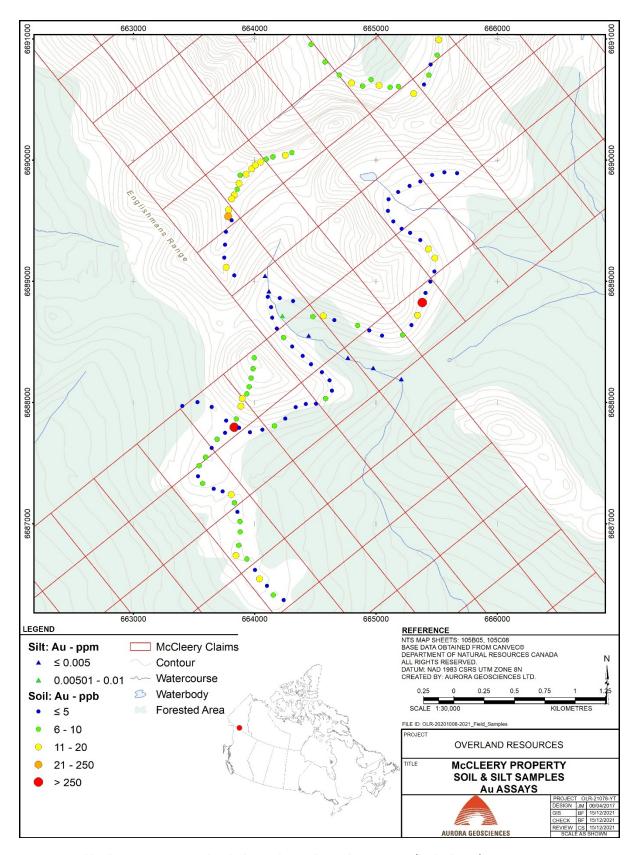


Figure 19: Gold value ranges, 2021 Soil and Silt Geochemical Sampling Program (both phases)

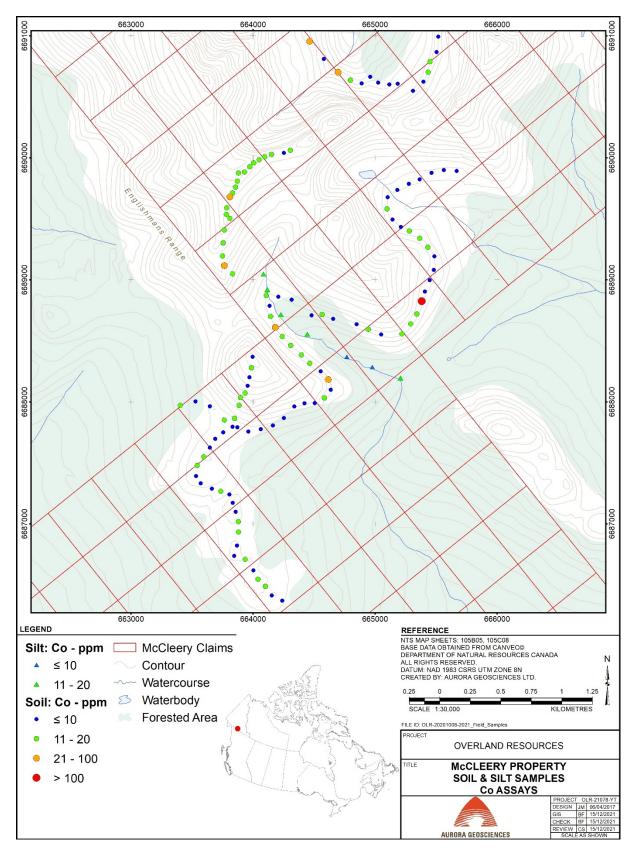


Figure 20: Cobalt assay value ranges, 2021 Soil and Silt Geochemical Program (both phases)

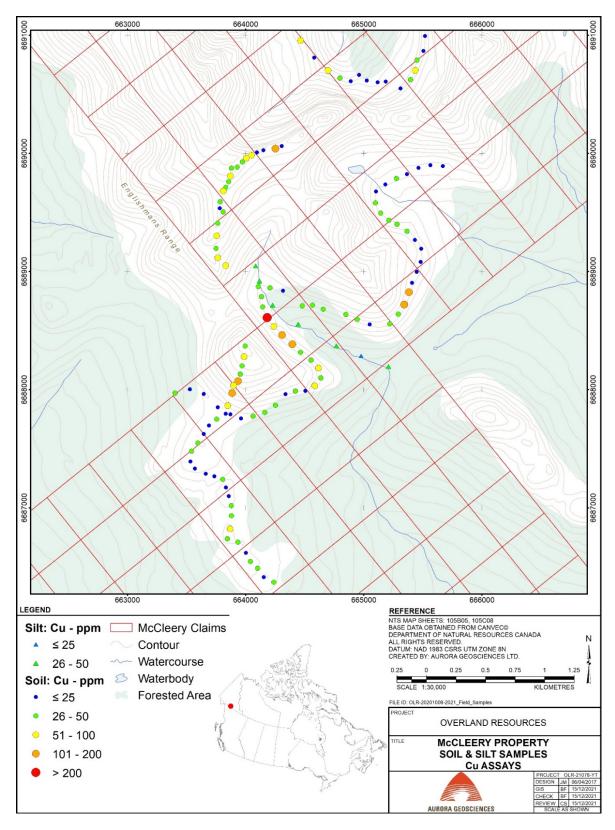


Figure 21: Copper assay value ranges, 2021 Soil and Silt Geochemical Program (both phases)

9 SAMPLE PREPARATION, ANALYSIS AND SECURITY

9.1 Phase 1 Rock Sampling

All rock samples were collected in the field utilizing a Geotool or Estwing rock hammer. Samples were placed in clear 12" by 20" plastic bags, together with a sample tag having a unique number which was also written in indelible ink on the outside of the bag. The sample bag was then bound using a cable tie. The sampled material, together with the empty labelled poly bag, were photographed in the field. At certain locations, the sampled site was also photographed.

All sample locations were recorded by a Global Positioning System (GPS) utilizing Universal Transverse Mercator (UTM) 1983 North American Datum (NAD-83) at the midpoint of the sample. Notes on sample type, UTM locations including elevation, sample type, sample width (for chip samples), date sampled, and sample descriptions focusing on lithology, colour and mineralogy, were recorded in a field book, then transferred to an Excel spreadsheet, where they were matched with analytical results (Appendix 3). This process was continually re-checked to ensure the correct results were associated with the particular descriptions.

Individual samples were placed in rice bags, with the sample number sequences and bag numbers listed on the rice bags, which were also secured with a cable tie. The rice bags were driven by Aurora personnel directly to the Whitehorse preparatory lab of Bureau Veritas. At the prep lab, all samples underwent crushing so that 90% of the sample could pass through a 2 mm mesh, followed by pulverizing to obtain a 250-gram sample passing through a 200-mesh (75 μ m) screen (Procedure Code PRP90-250). All samples underwent Aqua Regia digestion and ICP-ES analysis (code AQ300) providing analysis for Au, Mo, Cu, Pb, Zn, Ag, Ni, Co, Mn, Fe, As, Th, Sr, Cd, Sb, Bi, V, Ca, P, La, Cr, Mg, Ba, Ti, B, Al, Na, K, W, S, Hg, Tl, Ga, and Sc. All samples also underwent gold analysis by 50-gram fire assay (Procedure Code FA350).

9.2 Phase 1 Soil Sampling

The objective of the soil survey was to collect B horizon samples, although C-horizon and B-C horizon samples were taken where deeper C-horizon material was available, and A-B samples were collected where B and C horizon material were sparse or unavailable. The sampling procedure utilized hand augers to drill through the soil profile and extract B-Horizon material. Detailed descriptions, including horizon sampled, sample depth, depth within horizon sampled, colour, parent material, vegetative cover, topographic position, moisture content and percentages of each of organics, angular rock fragments, gravel, sand, silt and clay, were recorded for every sample. At each sample site, a photograph of the sampled material, placed next to the empty Kraft bag, labelled with the Sample ID, was taken.

Samples were bagged in paper Kraft bags and closed with a cable tie ("Zap Strap"). These were then placed in rice bags for transport to the Whitehorse prep lab of Bureau Veritas, with each rice bag sealed by a cable tie. The mechanism of transport to the lab was the same as for rock samples. At the prep lab, all soil samples were dried at 60°C, then sieved through an 80-mesh screen to obtain a 100-gram sample. All samples underwent 1:1:1 Aqua Regia digestion and 0.5-gram ICP-ES analysis (code AQ300) providing analysis for Au, Mo, Cu, Pb, Zn, Ag, Ni, Co, Mn, Fe, As, Th, Sr, Cd, Sb, Bi, V, Ca, P, La, Cr, Mg, Ba, Ti, B, Al, Na, K, W, S, Hg, Tl, Ga, and Sc. All samples also underwent 50-gram lead collection fire assay with ICP-ES finish for gold (Procedure code FA350-Au).

9.3 Phase 2 Rock Sampling

Phase 2 rock sampling field procedures and chain of custody were essentially the same as for Phase 1, except that the samples were submitted to the prep lab of ALS Geochemistry in Whitehorse. At the prep lab, rock samples were crushed so that 70% could pass through a 2 mm screen (prep code PREP-31). Following this, a 250 g subsample was separated by riffle splitter, then pulverized so that 85% passed through a 75-micron (75-µm) screen. A 50-gram sample then underwent fire assay with "Inductively coupled plasma atomic emission spectroscopy" (ICP-AES) analysis for gold (analytical code Au-ICP22). This provided an analytical range of 0.001 to 10 ppm. Also, a 0.5-gram sample underwent aqua regia digestion followed by "super trace" Inductively coupled plasma mass spectrometry (ICP-MS) analysis (analytical code ME-MS41) for Ag, Al, As, Au, B, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga, Ge, Hf, Hg, In, K, La, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Pd, Pt, Rb, Re, S, Sb, Sc, Se, Sn, Sr, Ta, Te, Th, Ti, Tl, U, V, W, Y, Zn and Zr.

9.4 Phase 2 Soil and Silt Sampling

Phase 2 soil sampling field procedures were similar to those of Phase 1, although a greater proportion of samples were of B/C horizon material. The chain of custody procedure was the same as for Phase 1.

Phase 2 silt samples were collected along the upper reaches of the stream within the MM 1-42 block at roughly 250-metre intervals. Each sample comprised several subsamples of fine silt, taken from "plunge pools", fine bank sediments, and/or mossmat if other material was sparse. This ensured a more accurate representation of average element content within the sample. Samples were described as per UTM (NAD 83, Zone 8 and 9), percent fines, colour, stream grade, stream width, date and sampler. A photo of each sample site was also taken. Silt samples were placed in paper Kraft bags together with a sample tag with a unique sample ID number, which was also written on each side of the bag. Samples had a minimum weight of 250 g. Each sample was sealed with a cable tie, and all samples were transported within a larger poly bag back to base where they were dried and sorted. Torn or damaged bags were replaced with fresh, labelled bags. Prior to submission to the ALS prep lab, samples were placed in rice bags which were sealed with a cable tie and individually numbered and labelled as per sample numbers, name and contact information of the submitter, and name of the receiving lab. Aurora personnel handled the entire chain of custody to ensure security.

Soil and silt samples underwent identical preparatory and analytical protocols. All samples underwent drying to 60°C, then sieving to -180 um (80-mesh) (prep code Prep-41). Following this, a 25-gram sample underwent aqua regia digestion, followed by ICP-MS analysis, for the same suite of elements as Phase 2 rock sampling. Note: Although aqua regia dissolves native gold and gold within sulphides, values obtained may not match those of fire assay analysis, depending on soil composition.

9.5 QUALITY CONTROL

9.5.1 Phase 1 Quality Control (QC)

No external Quality Control (QC) samples were inserted into the sample stream during Phase 1. However, comprehensive internal QC protocols, comprising duplicate sampling and insertion of reference material "Standards and Blanks", were employed by Bureau Veritas Laboratories (Bureau Veritas).

Rock QC

The Bureau Veritas lab inserted five rock standard reference material samples: two of OREAS232, one of OREAS262, one of DS11 and one of OXA147, provided by Rocklabs). Also, two blank samples, one for Au and one for multi-element analysis, were inserted and one repeat analysis of rock was done.

Analysis of both samples of gold standard OREAS232 returned Au values within 2 Standard Deviations (2SD) of the Certified Value. Results for OREAS262 returned an Ag value somewhat below the lower 2SD limit of the Certified value, although all others were within upper and lower bounds. Reference material OXA147 returned an Au value within 2SD.

Reanalysis of rock sample 1893865 returned values within upper and lower bounds for Pb and Zn and pathfinder element values. However, both values for Cu exceeded the upper analytical limit of 10,000 ppm (1.0%), therefore its accuracy is indeterminate. No reanalysis for Au was provided.

The blank sample analysis for gold returned a sub-detection value. The multi-element blank reference sample also returned sub-detection values for all elements, indicating the analytical process was free of contamination.

Soil QC

During soil sample analysis, Bureau Veritas inserted four gold reference material standards: one, OREAS232, was provided by OREAS Labs, and three (two OXA 71, one OXA147) were provided by Rocklabs. The lab also inserted four multi-element "standards", one of BVGE001, one of DS11 and two of OREAS262.

The two samples of OXA71 returned Au values within 1SD of the mean Certified Value. The single OXA147 sample returned an Au value slightly over the upper 2SD limit. The single OREAS232 sample also returned an Au value slightly exceeding the upper 2SD limit. This indicates that Au values returned from Phase 1 soil sampling may slightly exceed true values. All multi-element standard samples (BVGEO01, DS11 and OREAS262) returned values within the upper and lower ranges of the certified values.

The repeat value of sample 1893917 returned a value of 20 ppb Au versus an original value of 9 ppb. This indicates potential for a high degree of variability for low Au values. There was insufficient material for the repeat analysis of Sample 1893948. Repeat multi-element analysis of two other samples returned values within the upper and lower limits of the certified values, indicating reliability of multi-element analysis for soil samples.

9.5.2 Phase 2 Quality Control

Rock QC

One sample of "standard" reference material CDN-ME-1309, followed by one sample of "blank" reference material CDN-BL-10 were inserted at the end of the Phase 2 rock sample stream. Standard CDN-ME-1309 provided Certified Values for Cu, Co and Ni, a Provisional Value for Au and an Indicated value for Ag, as well as Certified Values for Pt and Pd, not applicable here. The values for Cu, Co, Ag and Au all fell within 2SD of the known recommended values. The "blank: reference material returned Au and Ag values below the upper range limit. These results indicate values for Cu, Co, Ag and Au are representative of true values, and that no contamination occurred during the analytical process.

Soil QC

The Phase 2 soil and silt sampling program included the insertion of external reference material "Standards and Blanks", at an insertion rate of one Quality Control (QC) sample per 10 samples, as well as

some duplicate sampling. All reference material was provided by Canadian Resource Labs of Langley, British Columbia. Phase 2 soil sampling included one Standard sample of each of reference material CDN ME-1308 (Certified values for Au, Ag, Cu, Pb, Zn), CDN-ME-1309 (Au, Ag, Cu, Co), and CDN-CM-37 (Cu, Mo, Au and Ag). Two samples of "blank" reference material CDN-BL-10 were also inserted, and two duplicate soil samples were taken. During silt sampling, one sample of reference material CDN-ME-1308 and one of CDN-BL-10 were inserted consecutively at the end of the sample stream.

For reference material CDN-ME-1309, all values for Au, Ag, Cu and Co fell within 2SD of the Certified Value, indicating this "standard" provides values adequately representing "true" values. Results for CDN-ME-1308 returned a Cu value exceeding the upper 2SD limit, with values for Ag, Au, Pb and Zn falling within the 2SD range. Results for CDN-CM-37 returned a Cu value exceeding the upper 2SD limit, and a Mo value below the lower 2SD limit. The Cu values for CDN-ME-1308 and CDN-CM-37 both exceed the Certified Values, indicating that Phase 2 Cu values returned likely exceed true values. Although the Mo value from CDN-CM-37 underestimate the true value, Mo is not present in significant amounts, and the inaccuracy is not material to this project. Analysis of "blank" reference material CDN-BL-10 returned Au values below the upper limit of 0.010 g/t Au, indicating a lack of Au contamination within the analytical process.

The single sample of reference material CDN-ME-1308 inserted into the silt sample stream returned a Zn value slightly exceeding the upper 2SD limit, with all other values at or within the 2SD boundaries. This indicates that Zn values from silt sampling may slightly exceed true values, although Zn is not an important element for this project. The blank sample returned an Au value well below the upper limit of 0.010 g/t Au.

10 INTERPRETATION AND CONCLUSIONS

10.1 INTERPRETATIONS

The 2021 program comprised mainly reconnaissance-style geological mapping, soil and rock sampling and limited silt sampling. These results were combined with the 2020 program and historic work, to determine the level of mineral potential on this portion of the property. This pertains to the area near the central ridgeline and areas above tree line to the south and west.

The stratiform prospect visited in 2020 was found to be metre-scale and of very limited economic potential and does not warrant further work. Similarly, rock sampling along the north flank of the cirque directly north of the ridgeline, and in the valley to the west, indicate very limited potential for economic mineralization. Although several talus boulders of massive magnetite-pyrrhotite skarn were found in the western valley, and analytical results of one confirmed the tenor of similar talus boulders sampled in 2020, their extreme scarcity and inaccessible source terrain essentially eliminate potential for these as viable exploration targets. Malachite-stained chalcopyrite - bornite boulders in the western valley are also far too scarce to warrant follow-up exploration. Soil sampling did not return notably high precious, base or pathfinder element values.

Rock sample results of pyritic sericite schist within Snowcap Assemblage (PDs) sediments along the low ridge southwest of the central area returned low to near-background gold, base metal and pathfinder element values. Soil sampling along this ridge also did not return significantly anomalous values of these elements. Farther north, two consecutive anomalous Au values, along a south-facing slope, indicate potential for a small local gold source, although this is unlikely to be of significant size.

Three rock samples taken within an area of limited aerial extent along the SSW-trending ridge extending from the central east-west ridgeline returned anomalous Cu values from 391.0 to 1,130.0 ppm. Two samples returned weakly elevated Co values of 25.5 and 44.9 ppm, and one returned an Ag value of 8.09 g/t and an Au value of 0.086 g/t. These values indicate this is an area of copper enrichment, warranting some follow-up work.

An additional target for follow-up work is indicated by the single high gold-in-soil geochemical value of 366 ppb (0.366 g/t) returned from the southeast strike extension of the NW-SE trending fault zone marking the base of the aforementioned slope. This is fairly close to the 2020 rock sample grading 3.222 g/t Au, although no other 2021 rock or soil samples returned elevated Au results. The high gold-in-soil value may also have resulted from an auriferous glacial "float" boulder; due diligence style soil sampling at this site is required to determine whether a local source exists.

Another target for potential follow-up work was revealed during Phase 2. This comprises the other strongly anomalous gold-in-soil value of 467 ppb (0.467 g/t) Au, 1.05 g/t Ag, 154.5 ppm Cu, 102.5 ppm Co, and weakly elevated Pb, Zn, Mo, As and Sb values. The adjacent sample to the southwest returned weakly elevated Au, Cu, Zn and Co values, indicating some lateral dispersion of source material. The presence and relative consistency of metal values indicates a proximal upslope source.

One other soil geochemical anomaly occurs along the west flank of the stream valley within the southern part of the MM 1-42 block. Here, four soil samples spanning 300 m returned values from 72.7 ppm to 247.0 ppm Cu, although values for elements are at background levels, with the exception of a slightly elevated Co value of 25.7 ppm. The lateral extent indicates potential for an upslope source of some size, although it would likely lack significant precious metal content.

The three viable targets generated in 2021, and any other identified in 2020 or historically, are likely to be of limited extent, and the economic mineral potential of the explored areas of the property is low. The main area that remains unexplored since 2017 is the MM 137-184 block (Figure 2) in the southwestern property area, where work from 1997 to 1999 revealed potential for Volcanogenic Massive Sulphide (VMS) style mineralization.

10.2 CONCLUSIONS

The following conclusions can be made from the results of the 2021 program at the McCleery project:

- The 2021 program resulted in further delineation of the stratigraphy of the project area. The margins of the Hake Batholith, contacts between Klinkit Assemblage volcanic and limestone, and with Snowcap Assemblage metasediments have been firmed up.
- A stratiform copper occurrence discovered in 2020 was determined to be metre-scale in extent, with negligible economic potential. No significant mineralized zones were identified along the central ridgeline.
- The massive magnetite-pyrrhotite talus boulders discovered in 2020 were determined to be very sparsely distributed, originating from an area of inaccessible terrain. These also have negligible economic potential.
- Sparsely distributed copper-enriched talus or alpine glacial float along a north-trending valley returned anomalous Cu values, but also have negligible economic potential due to their scarcity.
- Numerous WNW-ESE trending occurrences of pyritic sericite schist within Snowcap Assemblage sediments did not return significantly elevated gold or other metal values.

- Three fairly closely spaced rock samples along the SSW trending ridgeline indicate an area of copper enrichment, although the degree of which has not been determined fully.
- Although 2021 soil sampling returned mainly low precious and base metal results, one sample
 taken along the southeast strike extension of a NW-SE trending fault zone returned a value of 366
 ppb (0.366 g/t) Au. This is located fairly close to the 2020 rock sample grading 3.222 g/t Au. This
 may represent a fault-controlled source, although no elevated base metal or pathfinder element
 values were returned, and other quartz float samples did not return elevated Au values.
- Phase 2 soil sampling also returned an anomalous value of 467 ppb (0.467 g/t) Au, with elevated Ag, Cu, Co, Pb and Zn values, in the south-central area of the MM 1-42 block. The adjacent sample returned subdued but still weakly elevated values of the same suite of elements, indicating a proximal upslope source.
- A copper anomaly was identified during Phase 2 soil sampling along the west flank of the stream
 valley in the southern part of the MM 1-42 block. The anomaly comprises four consecutive
 samples across 300 m, indicating an upslope source. No significant silver, base metal or pathfinder
 element values were returned.
- The mineral potential throughout the area explored since 2018, as well as property areas to the north, has been deemed to be limited, although some further exploration of the 2021 soil anomalies is warranted.
- The remaining untested area occurs to the southwest within the MM 137-184 block, where previous workers identified potential for volcanogenic massive sulphide (VMS) mineralization.

11 RECOMMENDATIONS

11.1 RECOMMENDATIONS

Further work in the explored area of the property is recommended to focus on the area of Cu enrichment identified from rock sampling along the SSW trending ridge, the two gold-in-soil anomalies and the copper-in-soil anomaly identified in 2021. These may be explored by soil "mini-grids" to delineate their aerial extent, and by rock sampling and geological mapping where applicable, particularly where an upslope source is expected. Each of the three targets could be explored in one day by a two-person helisupported crew. No further work is recommended for other areas of the explored portion of the property.

A program of soil geochemical sampling, rock sampling and geological mapping, as well as combined magnetic - VLF-EM surveying is recommended across most of the MM 137-184 block where previous workers identified potential for volcanogenic massive sulphide (VMS) mineralization. Two prospects, the Discovery and Claim Post showings, occur along a north-south trend of anomalous Cu values. A 42 line-km grid, comprising 21 east-west-trending lines, each 2.0 km in length and with a 100-m line spacing, is recommended. Soil geochemical sampling, at a 100-metre station spacing, tightened up to a 50-metre spacing near the two prospects, is also recommended, for a total of about 500 samples.

The program is projected to be completed by a 4-person crew based from a camp within the grid, with a duration of 15 days, including mobilization and de-mobilization. Expenses, including filing fees, a field report and 10% contingency, are estimated at CDN\$185,000. Alternatively, the program could be accomplished in 13 days if based from motel accommodations at Teslin, for about CDN\$203,500.

11.2 RECOMMENDED BUDGET

NB: Budget for camp-based program		
Personnel, excluding actual geophysical surveying:		\$ 35,970
Geophysical Surveying:		\$ 14,700
Helicopter, including fuel:		\$ 50,441
Truck rental, including fuel:		\$ 4,210
Rock sampling: 70 samples @ \$65 each:		\$ 4,550
Soil sampling: 650 samples @ \$58 each:		\$ 37,700
Reference material "standards":		\$ 495
Accommodations (pilot, final 2 nights):		\$ 579
Camp rental and groceries:		\$ 6,750
Field, camp supplies:		\$ 700
Computer, communications rentals:		\$ 3,075
	Field Total:	\$159,170
Filing fees, including calculation thereof:		\$ 6,730
GIS, drafting:		\$ 3,000
Field Report:		\$ 2,600
	Sub-total:	\$171,500
	10% Contingency:	\$ 17,150
	Proposed Total:	\$188,650

12 REFERENCES

- G.D. Bradshaw, 1999: "Report on Geological and Geochemical Surveys on the Caribou Creek Property, Yukon Territory". Assessment Report #094032, filed with the Watson Lake Mining Recorder, Energy, Mines and Resources, Government of Yukon.
- W. Jakubowski and E.A. Balon, 1999: "1998 Geochemical Report on the Caribou Creek Property (CC 76-54 Claims). Assessment Report #094007, filed with the Watson Lake Mining Recorder, Energy, Mines and Resources, Government of Yukon.
- R.J. Joy and R.E. VanTassell, 1975: "Geological and Geochemical Report on the Surething (1-3 incl) and Jackaloo (1-8 incl) mineral claims, Mt. McCleery area, Watson Lake Mining District". Assessment Report #090006, filed with the Watson Lake Mining Recorder, Energy, Mines and Resources, Government of Yukon.
- F. Repacholi-Muir, 2018: "Independent Geologist's Report, prepared for Rafaella Resources Ltd". Report for Rafaella Resources Ltd, by FRM Geological Services, North Perth, Western Australia.
- D.H. Ritcey and E.A. Balon, 1998: "1997 Geological, Geochemical and Geophysical Report on the Caribou Creek Property (CC 1-44 Claims). Assessment Report #093842, filed with the Watson Lake Mining Recorder, Energy, Mines and Resources, Government of Yukon.
- C.M. Schulze, 2020: "Report on 2020 Geological and Geochemical Exploration, McCleery Project". Assessment Report filed with the Watson Lake Mining Recorder, Energy, Mines and Resources, Government of Yukon.
- J.C. Stephen, 1982: "Geological Report on the CAL 3-26 Claim Group, Watson Lake Mining Division". Assessment Report #091447, filed with the Watson Lake Mining Recorder, Energy, Mines and Resources, Government of Yukon.
- J.C. Stephen, 1983: "Report on Diamond Drilling, FF 1-46 Claim Group, Watson Lake Mining Division". Assessment Report #091547, filed with the Watson Lake Mining Recorder, Energy, Mines and Resources, Government of Yukon.
- J.C. Stephen, H. Awmack, 1983: "Geophysical and Geological Report on the CAL 1-26 Mineral Claims, Watson Lake Mining Division". Assessment Report #091488, filed with the Watson Lake Mining Recorder, Energy, Mines and Resources, Government of Yukon.
- J.C. Stephen, H. Awmack, 1983: "Geophysical and Geological Report on the FF 1-46 Mineral Claims, Watson Lake Mining Division". Assessment Report #091485, filed with the Watson Lake Mining Recorder, Energy, Mines and Resources, Government of Yukon.
- J.C. Stephen, M.P. Webster, 1982: "Geological Geophysical and Geochemical Report on the F.F. Claim Group, Watson Lake Mining Division, Yukon". Assessment Report #091371, filed with the Watson Lake Mining Recorder, Energy, Mines and Resources, Government of Yukon.
- N. Venter, D. Danchenko, T. Shei, J. Soares, A. Pridhodko and K. Khaled, 2018: Report on a Helicopter-borne Versatile Time Domain Electromagnetic (VTEMTM) and Aeromagnetic Geophysical Survey". Report on the McCleery property for Aurora Geosciences Ltd.

Websites:

ALS Global:

file:///C:/Users/Admin/Downloads/ALS%20Geochemistry%20Fee%20Schedule%20CAD%20(2).pdf

Bureau Veritas 2020 Fee Schedule:

https://commodities.bureauveritas.com/sites/g/files/zypfnx241/files/media/document/Metals%20Mine rals%20and%20Environmental 2020 Fee %20Schedule MINING CAD.pdf

Canadian Resource Labs Ltd: Standards Available: http://cdnlabs.com/standards-available/

Scott Automation (Rocklabs): https://scottautomation.com/en/products/mining/certified-reference-materials

Yukon Mining Recorder: https://yukon.ca/en/mining

Respectfully submitted,

Aurora Geosciences Ltd.

CARL SCHULZE

Carl Schulze, BSc, PGeo Senior Project Manager

Reviewed by

Gary Vivian

Gary Vivian, MSc, PGeo Chair, Aurora Geosciences Ltd.

Overland Resources (BC) Ltd.	Aurora Geosciences Ltd.
Appendix I	
Statement of Qualifications	
	Overland Resources (BC) Ltd. Aurora Geosciences Ltd.

I, Carl Schulze, BSc, with business and residence addresses in Whitehorse, Yukon Territory do hereby certify that:

- 1. I am a graduate of Lakehead University with a B.Sc. degree in Geology obtained in 1984.
- 2. I am a Professional Geoscientist registered with the Association of Professional Engineers and Geoscientists of British Columbia (registration number 25393), Association of Professional Geoscientists of Ontario (registration no. 1966) and with the Northwest Territories and Nunavut Association of Professional Engineers and Geoscientists (NAPEG, registration number L3359).
- 3. I have been employed in mineral exploration as a geologist since 1984, primarily on projects in the Yukon Territory, Northwest Territories, Nunavut, Alaska and British Columbia.
- 4. I supervised the work described in this report and wrote this report.
- 5. I have no interest, direct or indirect, nor do I hope to receive any interest, direct or indirect, from Overland Resources (BC) Limited or any of its properties

Dated this 21st day of January, 2022 in Whitehorse, Yukon Territory.

Respectfully Submitted,

Carl Schulze

Carl M. Schulze, BSc. P. Geo.

Overland	Resources	(BC	Itd.

Aurora Geosciences Ltd.

Appendix II

2021 Exploration Expenditures

McCleery Property, Overland Resources (BC) Ltd.

Carl Schulze, Aurora Geosciences Ltd.

Expenditure Type	Expense
Rock assays (Bureau Veritas): 16 @ \$51.15 ea.	\$ 818.40
Rock Assays (ALS Geochemistry): 11 @ \$63.69 ea.	\$ 700.59
Soil/ silt assays (Bureau Veritas): 62 @ \$43.14 ea.	\$ 2,674.68
Soil/ silt assays (ALS Geochemistry): 68 @ \$62.31 ea.	\$ 4,237.08
Sample shipping:	\$ 75.00
Personnel (Project Geologist): 5 days @ \$500/day:	\$ 2,500.00
Personnel (Geologists): 9 @ \$400/day:	\$ 3,600.00
Personnel, Technicians: 9 @ \$350/day:	\$ 3,150.00
WCB:	\$ 440.26
Helicopter Expenses	\$31,544.73
Field Expenses (incl. 1 pilot): 27 person-days @ \$100/day:	\$ 2,700.00
Truck Rental: 9 days @ \$50/day + fuel:	\$ 656.81
Equipment Rentals: 12 days @ \$325/day:	\$ 2,925.00
GIS work, report writing	\$ 5,309.74
Total (including GST):	\$58,407.09

Overland Resources (BC) Ltd.	Aurora Geosciences Ltd.
Appendix III	
	Claim Status, Jan 7, 2022
	McCleery Property, Overland Resources (BC) Ltd.

Carl Schulze, Aurora Geosciences Ltd.

Grant	Claim	Claim		Recording	Expiry	
Number	Name	No.	Claim owner	Date	Date	NTS Map
YD81330	MM	27	OVERLAND RESOURCES (BC) LIMITED - 100%	3/20/2017	3/20/2026	105B05
YD81331	MM	28	OVERLAND RESOURCES (BC) LIMITED - 100%	3/20/2017	3/20/2026	105B05
YD81337	MM	34	OVERLAND RESOURCES (BC) LIMITED - 100%	3/20/2017	3/20/2026	105B05
YD81329	MM	26	OVERLAND RESOURCES (BC) LIMITED - 100%	3/20/2017	3/20/2026	105B05
YD81338	MM	35	OVERLAND RESOURCES (BC) LIMITED - 100%	3/20/2017	3/20/2026	105B05
YD81339	MM	36	OVERLAND RESOURCES (BC) LIMITED - 100%	3/20/2017	3/20/2026	105B05
YD81340	MM	37	OVERLAND RESOURCES (BC) LIMITED - 100%	3/20/2017	3/20/2026	105B05
YD81341	MM	38	OVERLAND RESOURCES (BC) LIMITED - 100%	3/20/2017	3/20/2026	105B05
YD81342	MM	39	OVERLAND RESOURCES (BC) LIMITED - 100%	3/20/2017	3/20/2026	105B05
YD81343	MM	40	OVERLAND RESOURCES (BC) LIMITED - 100%	3/20/2017	3/20/2026	105B05
YD81344	MM	41	OVERLAND RESOURCES (BC) LIMITED - 100%	3/20/2017	3/20/2026	105B05
YD81345	MM	42	OVERLAND RESOURCES (BC) LIMITED - 100%	3/20/2017	3/20/2026	105B05
YD81326	MM	23	OVERLAND RESOURCES (BC) LIMITED - 100%	3/20/2017	3/20/2026	105C08
YD81327	MM	24	OVERLAND RESOURCES (BC) LIMITED - 100%	3/20/2017	3/20/2026	105C08
YD81328	MM	25	OVERLAND RESOURCES (BC) LIMITED - 100%	3/20/2017	3/20/2026	105C08
YD81312	MM	9	OVERLAND RESOURCES (BC) LIMITED - 100%	3/20/2017	3/20/2026	105C08
YD81313	MM	10	OVERLAND RESOURCES (BC) LIMITED - 100%	3/20/2017	3/20/2026	105C08
YD81314	MM	11	OVERLAND RESOURCES (BC) LIMITED - 100%	3/20/2017	3/20/2026	105C08
YD81315	MM	12	OVERLAND RESOURCES (BC) LIMITED - 100%	3/20/2017	3/20/2026	105C08
YD81316	MM	13	OVERLAND RESOURCES (BC) LIMITED - 100%	3/20/2017	3/20/2026	105C08
YD81317	MM	14	OVERLAND RESOURCES (BC) LIMITED - 100%	3/20/2017	3/20/2026	105C08
YD81304	MM	1	OVERLAND RESOURCES (BC) LIMITED - 100%	3/20/2017	3/20/2026	105C08
YD81305	MM	2	OVERLAND RESOURCES (BC) LIMITED - 100%	3/20/2017	3/20/2026	105C08
YD81306	MM	3	OVERLAND RESOURCES (BC) LIMITED - 100%	3/20/2017	3/20/2026	105C08
YD81307	MM	4	OVERLAND RESOURCES (BC) LIMITED - 100%	3/20/2017	3/20/2026	105C08
YD81308	MM	5	OVERLAND RESOURCES (BC) LIMITED - 100%	3/20/2017	3/20/2026	105C08
YD81309	MM	6	OVERLAND RESOURCES (BC) LIMITED - 100%	3/20/2017	3/20/2026	105C08
YD81310	MM	7	OVERLAND RESOURCES (BC) LIMITED - 100%	3/20/2017	3/20/2026	105C08
YD81311	MM	8	OVERLAND RESOURCES (BC) LIMITED - 100%	3/20/2017	3/20/2026	105C08
YD81324	MM	21	OVERLAND RESOURCES (BC) LIMITED - 100%	3/20/2017	3/20/2026	105C08
YD81323	MM	20	OVERLAND RESOURCES (BC) LIMITED - 100%	3/20/2017	3/20/2026	105C08
YD81322	MM	19	OVERLAND RESOURCES (BC) LIMITED - 100%	3/20/2017	3/20/2026	105C08
YD81321	MM	18	OVERLAND RESOURCES (BC) LIMITED - 100%	3/20/2017	3/20/2026	105C08
YD81320	MM	17	OVERLAND RESOURCES (BC) LIMITED - 100%	3/20/2017	3/20/2026	105C08
YD81319	MM	16	OVERLAND RESOURCES (BC) LIMITED - 100%	3/20/2017	3/20/2026	105C08
YD81318	MM	15	OVERLAND RESOURCES (BC) LIMITED - 100%	3/20/2017	3/20/2026	105C08
YD81325	MM	22	OVERLAND RESOURCES (BC) LIMITED - 100%	3/20/2017	3/20/2026	105C08
YD81336	MM	33	OVERLAND RESOURCES (BC) LIMITED - 100%	3/20/2017	3/20/2026	105C08
YD81335	MM	32	OVERLAND RESOURCES (BC) LIMITED - 100%	3/20/2017	3/20/2026	105C08
YD81334	MM	31	OVERLAND RESOURCES (BC) LIMITED - 100%	3/20/2017	3/20/2026	105C08
YD81333	MM	30	OVERLAND RESOURCES (BC) LIMITED - 100%	3/20/2017	3/20/2026	105C08
YD81332	MM	29	OVERLAND RESOURCES (BC) LIMITED - 100%	3/20/2017	3/20/2026	105C08
YD81351	MM	43	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81352	MM	44	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81353	MM	45	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81354	MM	46	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81355	MM	47	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
			, ,			

YD81356	MM	48	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81357	MM	49	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81358	MM	50	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81359	MM	51	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81360	MM	52	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81361	MM	53	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81362	MM	54	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81363	MM	55	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81364	MM	56	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81365	MM	57	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81366	MM	58	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81367	MM	59	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81368	MM	60	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81369	MM	61	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81370	MM	62	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81371	MM	63	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81372	MM	64	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81373	MM	65	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81374	MM	66	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81375	MM	67	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81376	MM	68	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81377	MM	69	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81378	MM	70	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81379	MM	71	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81380	MM	72	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81381	MM	73	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81382	MM	74	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81383	MM	75	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81384	MM	76	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81385	MM	77	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81386	MM	78	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81387	MM	79	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81388	MM	80	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81389	MM	81	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81390	MM	82	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81391	MM	83	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81392	MM	84	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81393	MM	85	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81394	MM	86	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81395	MM	87	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81396	MM	88	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81397	MM	89	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81398	MM	90	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81399	MM	91	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81400	MM	92	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81449	MM	93	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81450	MM	94	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81451	MM	95	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81452	MM	96	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81453	MM	97	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08

YD81454	MM	98	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81455	MM	99	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81456	MM	100	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81457	MM	101	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81458	MM	102	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81459	MM	103	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2026	105C08
YD81460	MM	104	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2026	105C08
YD81461	MM	105	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2026	105C08
YD81462	MM	106	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2026	105C08
YD81463	MM	107	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81464	MM	108	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81465	MM	109	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2026	105C08
YD81466	MM	110	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2026	105C08
YD81467	MM	111	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2026	105C08
YD81468	MM	112	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2026	105C08
YD81469	MM	113	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2026	105C08
YD81470	MM	114	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2026	105C08
YD81471	MM	115	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2026	105C08
YD81472	MM	116	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2026	105C08
YD81473	MM	117	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2026	105C08
YD81474	MM	118	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2026	105C08
YD81475	MM	119	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2026	105C08
YD81476	MM	120	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2026	105C08
YD81477	MM	121	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81478	MM	122	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81479	MM	123	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2026	105C08
YD81480	MM	124	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2026	105C08
YD81481	MM	125	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81482	MM	126	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81483	MM	127	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81484	MM	128	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81485	MM	129	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81486	MM	130	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81487	MM	131	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81488	MM	132	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81489	MM	133	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81490	MM	134	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81491	MM	135	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2026	105C08
YD81492	MM	136	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81493	MM	137	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81494	MM	138	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81495	MM	139	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81496	MM	140	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81497	MM	141	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81498	MM	142	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81499	MM	143	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81500	MM	144	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81501	MM	145	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81502	MM	146	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81259	MM	147	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
			1 3 2 1 2 1 2070	,,	,, =	

YD81260	MM	148	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81261	MM	149	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81262	MM	150	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81263	MM	151	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81264	MM	152	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81265	MM	153	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81266	MM	154	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81267	MM	155	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81268	MM	156	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81269	MM	157	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81270	MM	158	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81271	MM	159	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81272	MM	160	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81273	MM	161	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81274	MM	162	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81275	MM	163	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81276	MM	164	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81277	MM	165	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81278	MM	166	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81279	MM	167	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81280	MM	168	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81281	MM	169	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81282	MM	170	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81283	MM	171	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81284	MM	172	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81285	MM	173	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81286	MM	174	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81287	MM	175	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81288	MM	176	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81289	MM	177	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81290	MM	178	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81291	MM	179	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81292	MM	180	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81293	MM	181	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81294	MM	182	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81295	MM	183	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD81296	MM	184	OVERLAND RESOURCES (BC) LIMITED - 100%	7/30/2018	7/30/2025	105C08
YD21059	MM	225	OVERLAND RESOURCES (BC) LIMITED - 100%	12/4/2018	12/4/2025	105C08
YD21060	MM	226	OVERLAND RESOURCES (BC) LIMITED - 100%	12/4/2018	12/4/2025	105C08
YD21061	MM	227	OVERLAND RESOURCES (BC) LIMITED - 100%	12/4/2018	12/4/2025	105B05
YD21062	MM	228	OVERLAND RESOURCES (BC) LIMITED - 100%	12/4/2018	12/4/2025	105B05
YD21063	MM	229	OVERLAND RESOURCES (BC) LIMITED - 100%	12/4/2018	12/4/2025	105B05
YD21064	MM	230	OVERLAND RESOURCES (BC) LIMITED - 100%	12/4/2018	12/4/2025	105B05
YD21065	MM	231	OVERLAND RESOURCES (BC) LIMITED - 100%	12/4/2018	12/4/2025	105B05
YD21066	MM	232	OVERLAND RESOURCES (BC) LIMITED - 100%	12/4/2018	12/4/2025	105B05
YD21067	MM	233	OVERLAND RESOURCES (BC) LIMITED - 100%	12/4/2018	12/4/2025	105B05
YD21068	MM	234	OVERLAND RESOURCES (BC) LIMITED - 100%	12/4/2018	12/4/2025	105B05
YD21069	MM	235	OVERLAND RESOURCES (BC) LIMITED - 100%	12/4/2018	12/4/2025	105B05
YD21070	MM	236	OVERLAND RESOURCES (BC) LIMITED - 100%	12/4/2018	12/4/2025	105B05
YD21071	MM	237	OVERLAND RESOURCES (BC) LIMITED - 100%	12/4/2018	12/4/2025	105B05

YD21072	MM	238	OVERLAND RESOURCES (BC) LIMITED - 100%	12/4/2018	12/4/2025	105B05
YD21073	MM	239	OVERLAND RESOURCES (BC) LIMITED - 100%	12/4/2018	12/4/2025	105B05
YD21074	MM	240	OVERLAND RESOURCES (BC) LIMITED - 100%	12/4/2018	12/4/2025	105B05
YD21075	MM	241	OVERLAND RESOURCES (BC) LIMITED - 100%	12/4/2018	12/4/2025	105B05
YD21076	MM	242	OVERLAND RESOURCES (BC) LIMITED - 100%	12/4/2018	12/4/2025	105B05
YD21077	MM	243	OVERLAND RESOURCES (BC) LIMITED - 100%	12/4/2018	12/4/2025	105B05
YD21078	MM	244	OVERLAND RESOURCES (BC) LIMITED - 100%	12/4/2018	12/4/2025	105B05
YD21039	MM	205	OVERLAND RESOURCES (BC) LIMITED - 100%	12/4/2018	12/4/2025	105C08
YD21040	MM	206	OVERLAND RESOURCES (BC) LIMITED - 100%	12/4/2018	12/4/2025	105C08
YD21041	MM	207	OVERLAND RESOURCES (BC) LIMITED - 100%	12/4/2018	12/4/2025	105C08
YD21042	MM	208	OVERLAND RESOURCES (BC) LIMITED - 100%	12/4/2018	12/4/2025	105C08
YD21043	MM	209	OVERLAND RESOURCES (BC) LIMITED - 100%	12/4/2018	12/4/2025	105C08
YD21044	MM	210	OVERLAND RESOURCES (BC) LIMITED - 100%	12/4/2018	12/4/2025	105C08
YD21045	MM	211	OVERLAND RESOURCES (BC) LIMITED - 100%	12/4/2018	12/4/2025	105C08
YD21046	MM	212	OVERLAND RESOURCES (BC) LIMITED - 100%	12/4/2018	12/4/2025	105C08
YD21047	MM	213	OVERLAND RESOURCES (BC) LIMITED - 100%	12/4/2018	12/4/2025	105B05
YD21048	MM	214	OVERLAND RESOURCES (BC) LIMITED - 100%	12/4/2018	12/4/2025	105B05
YD21049	MM	215	OVERLAND RESOURCES (BC) LIMITED - 100%	12/4/2018	12/4/2025	105B05
YD21050	MM	216	OVERLAND RESOURCES (BC) LIMITED - 100%	12/4/2018	12/4/2025	105B05
YD21051	MM	217	OVERLAND RESOURCES (BC) LIMITED - 100%	12/4/2018	12/4/2025	105B05
YD21052	MM	218	OVERLAND RESOURCES (BC) LIMITED - 100%	12/4/2018	12/4/2025	105B05
YD21053	MM	219	OVERLAND RESOURCES (BC) LIMITED - 100%	12/4/2018	12/4/2025	105B05
YD21054	MM	220	OVERLAND RESOURCES (BC) LIMITED - 100%	12/4/2018	12/4/2025	105B05
YD21055	MM	221	OVERLAND RESOURCES (BC) LIMITED - 100%	12/4/2018	12/4/2025	105B05
YD21056	MM	222	OVERLAND RESOURCES (BC) LIMITED - 100%	12/4/2018	12/4/2025	105B05
YD21057	MM	223	OVERLAND RESOURCES (BC) LIMITED - 100%	12/4/2018	12/4/2025	105B05
YD21058	MM	224	OVERLAND RESOURCES (BC) LIMITED - 100%	12/4/2018	12/4/2025	105B05
YD21037	MM	203	OVERLAND RESOURCES (BC) LIMITED - 100%	12/4/2018	12/4/2025	105B05
YD21019	MM	185	OVERLAND RESOURCES (BC) LIMITED - 100%	12/4/2018	12/4/2025	105C08
YD21020	MM	186	OVERLAND RESOURCES (BC) LIMITED - 100%	12/4/2018	12/4/2025	105C08
YD21021	MM	187	OVERLAND RESOURCES (BC) LIMITED - 100%	12/4/2018	12/4/2025	105C08
YD21022	MM	188	OVERLAND RESOURCES (BC) LIMITED - 100%	12/4/2018	12/4/2025	105C08
YD21023	MM	189	OVERLAND RESOURCES (BC) LIMITED - 100%	12/4/2018	12/4/2025	105C08
YD21024	MM	190	OVERLAND RESOURCES (BC) LIMITED - 100%	12/4/2018	12/4/2025	105C08
YD21025	MM	191	OVERLAND RESOURCES (BC) LIMITED - 100%	12/4/2018	12/4/2025	105C08
YD21026	MM	192	OVERLAND RESOURCES (BC) LIMITED - 100%	12/4/2018	12/4/2025	105C08
YD21027	MM	193	OVERLAND RESOURCES (BC) LIMITED - 100%	12/4/2018	12/4/2025	105C08
YD21028	MM	194	OVERLAND RESOURCES (BC) LIMITED - 100%	12/4/2018	12/4/2025	105C08
YD21029	MM	195	OVERLAND RESOURCES (BC) LIMITED - 100%	12/4/2018	12/4/2025	105C08
YD21030	MM	196	OVERLAND RESOURCES (BC) LIMITED - 100%	12/4/2018	12/4/2025	105C08
YD21031	MM	197	OVERLAND RESOURCES (BC) LIMITED - 100%	12/4/2018	12/4/2025	105C08
YD21032	MM	198	OVERLAND RESOURCES (BC) LIMITED - 100%	12/4/2018	12/4/2025	105C08
YD21033	MM	199	OVERLAND RESOURCES (BC) LIMITED - 100%	12/4/2018	12/4/2025	105B05
YD21034	MM	200	OVERLAND RESOURCES (BC) LIMITED - 100%	12/4/2018	12/4/2025	105B05
YD21035	MM	201	OVERLAND RESOURCES (BC) LIMITED - 100%	12/4/2018	12/4/2025	105B05
YD21036	MM	202	OVERLAND RESOURCES (BC) LIMITED - 100%	12/4/2018	12/4/2025	105B05
YD21038	MM	204	OVERLAND RESOURCES (BC) LIMITED - 100%	12/4/2018	12/4/2025	105B05

Overland Resources (BC) Ltd.	Aurora Geosciences Ltd.
Appendix IV	
Арреникту	2021 Rock, Soil and Silt Sample Descriptions
	McCleery Property, Overland Resources (BC) Ltd.
	Carl Schulze, Aurora Geosciences Ltd.

Aurora Geosciences Ltd.

2021 Program, McCleery Project (Rocks) Overland Resources (BC) Ltd

ROCK SAMPLE DESCRIPTION SHEET

UTM Datum: NAD 83 1 = weakest, 3 = strongest

Date	Sample No	o. UTM Zone	Easting	Northing	Elevation (m)	Sample Type	Width (m) Description	Formation	Lithology	Modifier	Colour	Carb. Presence Silici	ication	Alteration 1	Alt 2	Other	Mineral 1	Amount (%)	Min 2	Amt (%	Other Min	Amt (%)	Comments
***************************************	1893851	08V	663845	6689734	1769	Grab	Rubblecrop	CKv	Quartz Vein	Vuggy	tan-white					L2	Сру	1.5	malachite	trace			Coarse grained chalcopyrite
																							Within fairly wide silicified, limonitic alteration zone in fine clastic
	1893852	08V	663616			composite grab	Rubblecrop	PDs	Quartz Vein	fractured						L2	pyrite	tr					seds
***********	1893853	08V	663573	6688021	1447	composite grab	Rubblecrop	PDs	Claystone	fractured	tan	S 1		Chl 1		L2	pyrite	4					Moderately oxidized pyrite
#########	1893854	08V	663524	6688016	1444	composite grab		PDs	Claystone	Veined	tan	S1		Ser 1-2		L2	pyrite	3					25% quartz veins
#########	1893855	08V	663593	6687755	1454		0.45 Float	PDs	Fine clastics	Foliated	Tan-yellow	53				L3	pyrite	5					Sub-angular, vfg black pyrite
#########	1893856	08V	663680	6687554	1428	Grab	Float	PDs	Quartz Vein	fractured	Tan-white	53				L2	pyrite	5					Coarse grained, frac-controlled pyrite
***********	1893857	08V	663571	6687530	1472		Prox Float	PDs	Quartz Vein	fractured	White-tan	C1				L1	pyrite	2					Fracture-controlled pyrite
***********	1893858	08V	663524	6687491	1470	Grab	Rubblecrop	PDs	Quartz Vein	ductile	white/tan	S3		Chl 3		L1	pyrite	3	Pyrrhotite	<1	Сру	tr	Sulphides in fracture-filling chlorite
***********	1893859	08V	663872	6686874	1439	composite grab	Rubblecrop	PDs	Fine clastics	Foliated	tan	S 2-3		Ser 2-3		L2	pyrite	8					Med - fine grained euhedral - subhedral Py along foliation
***************************************	1893860	08V	663831	6686851	1435	composite grab	Rubblecrop	PDs	Fine clastics	Foliated	tan	S 2-3		Ser 2		L2	pyrite	10					Partially oxidized pyrite
***********	1893861	08V	663985	6686721	1432	composite grab	Rubblecrop	PDs	Fine clastics	Foliated	tan	S 2		Ser 2	Ch 1	L2	pyrite	6					Strongly foliated; Py along foliation
***************************************	1893862	09V	334452	6691101	1692	composite grab	Rubblecrop	mKs?	Felsic dyke?	Veined	Tan-yellow	S1		A2			pyrite	tr					Locally brecciated
#######################################	1893863	08V	665241	6690541	1483	Grab	Talus	CKI	Fine clastics	Foliated	tan-buff	S1		A1-2	Ser2		pyrite	1.5					Possibly sheared
##########	1893864	08V	664473	6690508	1517	Grab	Talus	CKv	Skarn	Massive	Black			CSil2		L3	Magnetite	35	Pyrrhotite	2	0 Cpy	<1	Massive sulphides but sparse float
***************************************	1893865	V80	664174	6690298	1584	Grab	Talus	CKv	Phyllite	banded	green-grey	S1		CSil1		L1	Chalco	6	Bornite		3 Mal	mod	Banded phyllite - siltstone
***************************************	1893866	08V	664134	6690229	1604	Grab	Talus	CKv	Fine clastics	Banded	green			CSil2	Ep3		Bornite	8					Calc-silicate alteration of seds
																							Float of coarse, vuggy qz vein with trace magnetite and biotite on
	178715	51 08V	663631	6688142	1490	Grab/Cgrab	0.1 Float	PDs	Quartz vein		White			Biotite			Magnetite	0.1					fracture surfaces
																							Irregular 2-3cm quartz veining in foliated greenschist
	178715	52 08V	663670	6688222	1525	Grab/Cgrab	0.03 Outcrop	CKv	Volcaniclastic	Light	Green	Weak		Greenschist									volcaniclastics. Vein 322/60, foliation 342/15 Float of coarse vuggy quartz vein with ~1cm patch of fine-grained
	178719	52 001/	664017	6688658	1522	Grab/Cgrab	0.1 Float	CKv	Quartz vein		White						Arsenopyrite	0.5					dark grey sulphide - possibly arsenopyrite?
	1/6/1:	33 U6V	004017	0000000	1322	Grab/Cgrab	U.1 Float	CKV	Qualitz veili		write						Arsenopyrite	0.3					Finely-laminated volcaniclastic with stockwork of ~1cm matte
																							black aphanitic veins. Weak gossan on fracture surfaces, <1% py
	178715	54 08V	663761	6688906	1608	Grab/Cgrab	Outcrop	CKv	Volcaniclastic	Medium	Orange	Weak		Greenschist	Gossan		Pyrite	1					boxwork?
																							Fault zone with variable gossan on surface with localised patches
	178715	55 08V	663615	6689265	1693	Grab/Cgrab	Outcrop	CKv	Volcaniclastic	Dark	Orange	Mode	ate	Greenschist	Gossan		Pyrite	2					of ~2% disseminated pyrite. Fault zone is ~4m wide, 123/80
																							Gossanous ourcrop of foliated volcaniclastics. Coarse needles of actinolite. No visible sulphides but MUST be there. Foliation
	178719	56 091/	663673	6689294	1715	Grab/Cgrab	Outcrop	CKv	Volcaniclastic	Medium	Orange	Mode	ato	Greenschist	Gorran	Actinolite							075/22
-	1/0/1.	30 084	003073	0003234	1/13	Grab/ Cgrab	Outcrop	CRV	Voicarriciastic	ivieululli	Orange	ivioue	ate	Greenschist	GOSSAII	Actinonte							Outcrop of gossanous, foliated, laminated volcaniclastics.
	178715	57 08V	663794	6689594	1757	Grab/Cgrab	Outcrop	CKv	Volcaniclastic	Medium	Orange	Weak		Greenschist	Gossan		Pyrite	2					Abundant 2-3% disseminated pyrite. Foliation 143/28
																							Float of 8 cm quartz vein in greenschist volcaniclastics, some
																	1	1					chlorite lamellae. Clusters of fine black magnetite + Cpy + trace
	178715	58 08V	664585	6688032	1488	Grab/Cgrab	0.08 Float	CKv	Quartz vein		White						Magnetite	1	Chalcopyrite	0.	.1 Malachite	0.:	1 Mal
																	1	1					Laminated limestone with zones of gossanous staining. Some
	178715	E0 00V	665438	6689258	1.70	Grab/Cgrab	Outcrop	СКІ	Limestone	Light	Crau	Yes		Gossan		1	1	1		1			dissolution features nearby in outcrop, and float with abundant crinoids.
	17871		005438	0089258	14/8	Grab/Cgrab	Outcrop	CKI	Limestone	Light	Grey	162		GOSSAN	+	1	-	1	1	+	1	1	Standard CDN-ME-1309
\vdash	178716								-	-					-		1	1		-		-	Standard CDN-ME-1309 Blank: CDN-BL10
	1/8/16	91													1		1	1	1	1			DIBITAL COTY-DETO

<u>Aurora Geosciences Ltd.</u> 2021 Program, McCleery Project Overland Resources (BC) Ltd

SOIL SAMPLE DESCRIPTION SHEET

UTM Datum: NAD 83

Sample No.	UTM Zone	Easting	Northing	Traverse (Station)	Depth (cm)	Horizon	Depth in Horizon (cm)	Colour	% Organics	% Ang Rock	% Gravel	% Sand	% Silt	% Clay	Parent Material	M Cont	Vegetation	Topo Position	Date	Sampler
1893901	V80	663881	6689875	Central traverse	10-20	B/C	5-10	Dark brown	10	20	5	10	15	40	Weathered Bedrock	Moist	Alpine	Mid-slope	2021-08-11	DP, KH, PU
1893902	08V	663929	6689883	Central traverse	20-30	В	15-20	Light brown	0	5	C	30	40	25	Weathered Bedrock	Moist	Alpine	Mid-slope	2021-08-11	DP, KH, PU
1893903	08V	663974	6689927	Central traverse	20-30	В	15-20	Dark brown	5	0	5	15	50	25	Talus	Moist	Alpine	Mid-slope	2021-08-11	DP, KH, PU
1893904	08V	664006	6689959	Central traverse	20-30	В	10-15	Dark brown	15	0	5	15	50	15	Talus	Moist	Alpine	Mid-slope	2021-08-11	DP, KH, PU
1893905	08V	664050	6689983	Central traverse	20-30	В	20-25	Dark brown	15	5	5	10	50	15	Weathered Bedrock	Moist	Alpine	Ridge top	2021-08-11	DP, KH, PU
1893906	08V	664096	6690007	Central traverse	30-40	В	25-30	Light brown	5	5	0	20	50	20	Weathered Bedrock	Moist	Alpine	Ridge top	2021-08-11	DP, KH, PU
1893907	08V	664150	6690025	Central traverse	30-40	В	10-15	Dark brown	10	0	10	20	40	20	Weathered Bedrock	Moist	Alpine	Ridge top	2021-08-11	DP, KH, PU
1893908	V80	664200	6640042	Central traverse	10-20	В	10-15	Light brown	5	10	0	15	25	25	Weathered Bedrock	Moist	Alpine	Ridge top	2021-08-11	DP, KH, PU
1893909	V80	664253	6690040	Central traverse	20-30	В	15-20	Dark brown	5	0	5	10	30	50	Weathered Bedrock	Moist	Alpine	Ridge top	2021-08-11	DP, KH, PU
1893910	08V	664306	6690061	Central traverse	30-40	В	25-30	Dark brown	10	0	C	15	60	15	Weathered Bedrock	Moist	Alpine	Ridge top	2021-08-11	DP, KH, PU
1893911	V80	663872	6689808	Central traverse	20-30	В	15-20	Dark brown	10	15	5	20	30	20	Weathered Bedrock	Moist	Alpine	Mid-slope	2021-08-11	DP, KH, PU
1893912	08V	663856	6689759	Central traverse	20-30	В	15-20	Dark brown	10	0	5	20		25	Weathered Bedrock	Moist	Alpine	Mid-slope	2021-08-11	DP, KH, PU
1893913	V80	663831	6689711	Central traverse	20-30	В	15-20	Dark brown	10	5	0	15	30	40	Weathered Bedrock	Wet	Alpine	Mid-slope	2021-08-11	DP, KH, PU
1893914	08V	663810	6689679	Central traverse	20-30	B/C	10-15	Dark brown	5	15	15	35		10	Weathered Bedrock	Moist	Alpine	Ridge top	2021-08-11	DP, KH, PU
1893915	08V	663784	6689590	Central traverse	20-30	В	15-20	Dark brown	5	5	0	15	50	25	Weathered Bedrock	Moist	Alpine	Ridge top	2021-08-11	DP, KH, PU
1893916	08V	663781	6689535	Central traverse	30-40	В	25-30	Dark brown	10	10	C	15		15	Weathered Bedrock	Moist	Alpine	Ridge top	2021-08-11	DP, KH, PU
1893917	08V	663997	6688368	Southern Traverse	20-30	В	15-20	Dark brown	5	10		_			Talus	Moist	Alpine	Ridge top	2021-08-12	DP, KH, PU
1893918	08V	663987	6688278	Southern Traverse	20-30	В	20-25	Dark brown	5	5				20	Talus	Moist	Alpine	Ridge top	2021-08-12	DP, KH, PU
1893919	08V	663971	6688201	Southern Traverse	30-40	B/C	25-30	Dark brown	5	10		_			Talus	Moist	Alpine	Ridge top	2021-08-12	DP, KH, PU
1893920	08V	663955	6688130	Southern Traverse	20-30	В	20-25	Dark brown	5	5			_	20	Talus	Moist	Alpine	Ridge top	2021-08-12	DP, KH, PU
1893921	08V	663936	6688071	Southern Traverse	20-30	В	20-25	Dark brown	10	10	10	25		10	Talus	Moist	Alpine	Ridge top	2021-08-12	DP, KH, PU
1893922	V80	663897	6688034	Southern Traverse	20-30	A/B	10-15	Dark brown	15	5		35	30		Talus	Moist	Alpine	Ridge top	2021-08-12	DP, KH, PU
1893923	08V	663886	6687970	Southern Traverse	20-30	B/C	15-20	Light brown	5	15	10	_		10	Talus	Moist	Alpine	Mid-slope	2021-08-12	DP, KH, PU
1893924	V80	663848		Southern Traverse	20-30	В	15-20	Dark brown	10	5		30			Talus	Moist	Alpine	Mid-slope	2021-08-12	
1893925	V80	663832		Southern Traverse	20-30	В	20-25	Dark brown	5	5	10	30	_		Talus	Moist	Alpine	Ridge top	2021-08-12	
1893926	V80	663756		Southern Traverse	10-20	В	15-20	Light brown	5	5	10				Weathered Bedrock	Moist	Alpine	Ridge top	2021-08-12	
1893927	V80	663690	6687697	Southern Traverse	20-30	В	20-25	Light brown	5	5	10	30			Talus	Moist	Alpine	Ridge top	2021-08-12	DP, KH, PU
1893928	V80	663646	6687624	Southern Traverse	20-30	В	20-25	Light brown	5	5	10				Talus	Moist	Alpine	Ridge top	2021-08-12	DP, KH, PU
1893929	V80	663596	6687548	Southern Traverse	20 00	В	20-25	Light brown	5	5		_			Talus	Moist	Alpine	Ridge top	2021-08-12	DP, KH, PU
1893930	V80	663542	6687478	Southern Traverse	20-30	В	15-20	Dark brown	5	5		_			Talus	Moist	Alpine	Ridge top	2021-08-12	DP, KH, PU
1893931	V80	663533		Southern Traverse	20-30	В	15-20	Dark brown	5	5	10				Talus	Moist	Alpine	Ridge top	2021-08-12	
1893932	V80	663571	6687332	Southern Traverse	20-30	В	20-25	Light brown	0	10	10				Talus	Moist	Alpine	Ridge top	2021-08-12	DP, KH, PU
1893933	V80	663663	6687288	Southern Traverse	20-30	В	15-20	Dark brown	5	0	5	25			Talus	Moist	Alpine	Ridge top	2021-08-12	DP, KH, PU
1893934	V80	663735	6687266	Southern Traverse	20-30	В	15-20	Dark brown	5	5					Talus	Moist	Alpine	Ridge top	2021-08-12	DP, KH, PU
1893935	V80	663805		Southern Traverse		В	20-25	Dark brown	5	5					Talus	Moist	Alpine	Mid-slope	2021-08-12	DP, KH, PU
1893936	V80	663833		Southern Traverse	20-30	В	15-20	Dark brown	5	5		20			Talus	Moist	Alpine	Mid-slope	2021-08-12	DP, KH, PU
1893937	08V	663857		Southern Traverse	20-30	В -	20-25	Dark brown	10	5	5	20			Talus	Moist	Alpine	Ridge top	2021-08-12	
1893938	V80	663879		Southern Traverse	30-40	В	15-20	Dark brown	5	5	5	25			Talus	Moist	Alpine	Ridge top	2021-08-12	
1893939	V80	663880		Southern Traverse	30-40	В _	15-20	Dark brown	5	5	15	20			Talus	Moist	Alpine	Ridge top	2021-08-12	
1893940	V80	663868	6686821	Southern Traverse	20-30	В	15-20	Orange	5	10		15			Weathered Bedrock	Moist	Alpine	Ridge top	2021-08-12	DP, KH, PU
1893941	08V	663846	6686737	Southern Traverse	20 00	В	15-20	Dark brown	5	5		25			Talus	Moist	Alpine	Ridge top	2021-08-12	DP, KH, PU
1893942	V80	663936	6686708	Southern Traverse	30-40	В	15-20	Dark brown	5	5					Weathered Bedrock	Moist	Alpine	Ridge top	2021-08-12	DP, KH, PU
1893943	08V	664002	6686618	Southern Traverse	20-30	В	10-15	Dark brown	5	10					Weathered Bedrock	Moist	Alpine	Ridge top	2021-08-12	
1893944	08V	664040	6686545	Southern Traverse	30-40	В	15-20	Light brown	0	5	20	20	_		Weathered Bedrock	Moist	Alpine	Ridge top	2021-08-12	
1893945	V80	664102		Southern Traverse	30-40	В	15-20	Light brown	5	5	5	15			Weathered Bedrock	Moist	Alpine	Ridge top	2021-08-12	
1893946	08V	664154	6686412	Southern Traverse	20-30	В	10-15	Dark brown	5	5		_			Weathered Bedrock	Moist	Alpine	Mid-slope	2021-08-12	DP, KH, PU
1893947	08V	664238	6686370	Southern Traverse	30-40	В (0	15-20	Dark brown	15	5		15			Weathered Bedrock	Moist	Tundra	Mid-slope	2021-08-12	DP, KH, PU
1893948	08V	665517	6690992	Northern Traverse	30-40	A/B	15-20	Light brown	10	10		_			Talus	Moist	Tundra	Mid-slope	2021-08-14	DP, KH, PU
1893949	08V	665504	6690866	Northern Traverse	20-30	A/B	15-20	Dark brown	30	20					Talus	Moist	Alpine	Mid-slope	2021-08-14	DP, KH, PU
1893950	08V	665450	6690788	Northern Traverse	20-30	В	15-20	Dark brown	10	10		_			Talus	Moist	Alpine	Mid-slope	2021-08-14	DP, KH, PU
1893651	V80	665435	6690701	Northern Traverse	20-30	R	10-15	Dark brown	10	10	15	25	30	10	Talus	Moist	Alpine	Mid-slope	2021-08-14	DP, KH, PU

4002652	001/	665306	CC00C22 N		20.20	D	45.20	David harrows	40	45	45	25	25	40	T-1		Alata	a at al a la ca	2024 00 44	DD KII DII
1893652	08V	665396		rthern Traverse	20-30	В	15-20	Dark brown	10 5	15	15	25	25 50		Talus	Moist	Alpine	Mid-slope		DP, KH, PU
1893653	08V	665311		rthern Traverse	20-30	В	10-15	Dark brown		5	10	15			Talus	Moist	Alpine	Mid-slope	2021-08-14	, , -
1893654	08V	665186		rthern Traverse	30-40	В -	15-20	Dark brown	5	0	5	15	55		Talus	Moist	Alpine	Mid-slope	2021-08-14	
1893655	08V	665116		rthern Traverse	30-40	В	15-20	Dark brown	10	5	5	15	55		Talus	Moist	Alpine	Mid-slope	2021-08-14	DP, KH, PU
1893656	08V	665025		rthern Traverse	30-40	В -	15-20	Dark brown	5	5	5	15	60		Talus	Moist	Alpine	Mid-slope	2021-08-14	
1893657	08V	664959		rthern Traverse	30-40	В -	15-20	Light grey	5	5	5	40	30		Talus	Moist	Alpine	Mid-slope	2021-08-14	DP, KH, PU
1893658	08V	664889		rthern Traverse	30-40	В	15-20	Light brown	5	10	15	40	20		Talus	Moist	Tundra	Mid-slope	2021-08-14	DP, KH, PU
1893659	08V	664798		rthern Traverse	10-20	В	10-15	Light brown	10	10	15	30	30		Talus	Moist	Alpine	Mid-slope	2021-08-14	DP, KH, PU
1893660	08V	664697		rthern Traverse	30-40	В	20-25	Dark brown	5	5	5	10	60		Talus	Moist	Alpine	Mid-slope	2021-08-14	DP, KH, PU
1893661	08V	664580		rthern Traverse	30-40	В	20-25	Yellow-Orange	5	5	10	20	50		Talus	Moist	Alpine	Mid-slope	2021-08-14	DP, KH, PU
1893662	08V	664464	6690954 No	rthern Traverse	40-50	В	15-20	Dark brown	10	5	5	10	55	15	Talus	Moist	Alpine	Mid-slope	2021-08-14	DP, KH, PU
1787001	08V	663810	6689503		10-20	B/C	10-15	Dark Brown	5		75		20		Talus	Moist	Alpine	Mid Slope	2021/09/16	M. Ritchie
1787002	08V	663763	6689408		0-10	В	5-10	Light Brown	20		20	20	40		Talus	Moist	Alpine	Ridge Top	2021/09/16	M. Ritchie
1787003	08V	663756	6689302		20-30	В	5-10	Light Brown			10	70	20		Talus	Moist	Alpine	Ridge Top	2021/09/16	M. Ritchie
1787004	08V	663749	6689195		0-10	В	2-5	Light Brown	20		10	30	40		Talus	Moist	Alpine	Bench	2021/09/16	M. Ritchie
1787005	08V	663764	6689115		0-10	В	5-10	Light Brown	20		20	20	40		Talus	Moist	Alpine	Ridge Top	2021/09/16	M. Ritchie
1787006	08V	663831	6689049		0-10	В	2-5	Light Brown	20		20	20	40		Talus	Moist	Alpine	Ridge Top	2021/09/16	M. Ritchie
1787007	08V	663403	6687971		10-20	С	10-15	Light Brown			10	60	30		Talus	Moist	Alpine	Bench	2021/09/17	M. Ritchie
1787008	08V	663528	6688003		0-10	С	5-10	Light Brown			30	30	40		Talus	Moist	Alpine	Bench	2021/09/17	M. Ritchie
1787009	08V	663646	6687963		0-10	С	5-10	Light Brown		20	20	20	40		Talus	Moist	Alpine	Bench	2021/09/17	M. Ritchie
1787010				N-ME-1308													i i			
1787011	08V	663765	6687850		10-20	С	10-15	Light Brown			20	60	20		Talus	Moist	Alpine	Bench	2021/09/17	M. Ritchie
1787012	08V	663872	6687791		10-20	С	10-15	Light Brown		20		60	20		Talus	Moist	Alpine	Bench	2021/09/17	M. Ritchie
1787013	08V	663961	6687755		0-10	В	5-10	Light Brown	20		10	20	40		Talus	Moist	Alpine	Mid Slope	2021/09/17	M. Ritchie
1787014	08V	664063	6687776		10-20	В	10-15	Light Brown	10	10	10	50	20		Talus	Moist	Alpine	Mid Slope	2021/09/17	M. Ritchie
1787015	08V	664162	6687806		0-10	B/C	5-10	Light Brown	10	10	20	20	60		Talus	Moist	Alpine	Mid Slope	2021/09/17	M. Ritchie
1787016	08V	664253	6687867		0-10	B/C	10-15	Light Brown			20	20	60		Talus	Moist	Alpine	Mid Slope	2021/09/17	M. Ritchie
1787017	08V	664338	6687961		0-10	B B	5-10	Light Brown		10	20	60	30		Talus	Moist	Alpine	Mid Slope	2021/09/17	M. Ritchie
1787017	08V	664422	6687987		0-10	B/C	5-10	Light Brown	10	10		60	20		Talus	Moist	Alpine	Mid Slope	2021/09/17	M. Ritchie
1787018	08V	664505	6687989		0-10	D/C	5-10	Light Brown	20	10	20	10	50		Talus	Moist	Alpine	Mid Slope	2021/03/17	M. Ritchie
1787019	084	004303		N-BL-10	0-10	ь	3-10	Light Brown	20		20	10	30		Talus	WIOISE	Alphile	Wild Slope	2021/03/17	IVI. INICCINE
1787020	08V	664584	6688031	IN-DL-10	10-20	D	5-10	Dark Brown	20		30	30	20		Talus	Moist	Alpine	Mid Slope	2021/09/17	M. Ritchie
1787021	08V	664636	6688098		10-20	D D	10-15		20	10	30	20	50		Talus	Moist	Alpine	Mid Slope	2021/09/17	1
					0-10	В		Light Brown		10			50				•			M. Ritchie
1787023	08V 08V	664616 664555	6688182 6688250			В	10-15 10-15	Light Brown	30	20		20 30	30		Talus	Moist	Alpine	Mid Slope	2021/09/17	M. Ritchie
1787024					10-20	В		Light Brown	20	20					Talus	Moist	Alpine	Mid Slope	2021/09/17	M. Ritchie
1787025	08V	664464	6688315		10-20	В	15-20	Light Brown	30	10		10	60		Talus	Moist	Alpine	Mid Slope	2021/09/17	M. Ritchie
1787026	08V	664395	6688384		0-10	В -	10-15	Light Brown	20	10		20	50		Talus	Moist	Alpine	Mid Slope	2021/09/17	M. Ritchie
1787027	08V	664309	6688462		0-10	В	10-15	Light Brown	20	10			40	30	Talus	Moist	Alpine	Mid Slope	2021/09/17	M. Ritchie
1787028	08V	664239	6688535		0-10	В	5-10	Light Brown	10	30		30	30		Talus	Moist	Alpine	Mid Slope	2021/09/17	M. Ritchie
1787029	08V	664183	6688609		10-20	В	15-20	Light Brown					50	50	Talus	Moist	Alpine	Mid Slope	2021/09/17	M. Ritchie
1787030	08V	664144	6688699		10-20	В	10-15	Light Brown	10	20	20	20	30		Talus	Moist	Alpine	Mid Slope	2021/09/17	M. Ritchie
1787031	08V	664135	6688787		20-30	В	15-20	Olive Grey	10			10	40		Talus	Moist	Alpine	Valley Bottom	2021/09/18	M. Ritchie
1787032	08V	664135	6688787 Du	plicate	20-30	В	15-20	Olive Grey	10			10	40		Talus	Moist	Alpine	Valley Bottom	2021/09/18	M. Ritchie
1787033	08V	664108	6688871		10-20	В	10-15	Light Brown	10	10	10	20	30		Talus	Moist	Alpine	Valley Bottom	2021/09/18	M. Ritchie
1787034	08V	664206	6688861		0-10	В	5-10	Light Brown	20	20		20	40		Talus	Moist	Alpine	Mid Slope	2021/09/18	M. Ritchie
1787035	08V	664317	6688837		10-20	B/C	5-10	Light Brown	20	30		30	20		Talus	Moist	Alpine	Mid Slope	2021/09/18	M. Ritchie
1787036	08V	664479	6688709		10-20	A/B	5-10	Dark Brown	40	20		20	20		Talus	Moist	Alpine	Mid Slope	2021/09/18	M. Ritchie
1787037	08V	664567	6688715		0-10	С	5-10	Dark Brown	20	20		20	40		Talus	Moist	Alpine	Mid Slope	2021/09/18	M. Ritchie
1787038	08V	664656	6688679		0-10	A/B	5-10	Dark Brown	20		20	20	40		Talus	Moist	Alpine	Mid Slope	2021/09/18	M. Ritchie
1787039	08V	664849	6688636		0-10	B/C	2-5	Dark Brown	20	10	20	30	20		Talus	Moist	Alpine	Mid Slope	2021/09/18	M. Ritchie
1787040			CM	1-37																
1787041	08V	664945	6688594		0-10	В	15-20	Light Brown	20		20	30	30		Talus	Moist	Alpine	Mid Slope	2021/09/18	M. Ritchie
1787042	08V	665049	6688552		0-10	В	5-10	Dark Brown	20		20	20	20	20	Talus	Moist	Alpine	Mid Slope	2021/09/18	M. Ritchie
1787043	08V	665220	6688556		0-10	B/C	5-10	Light Brown		30		20	50		Talus	Moist	Alpine	Mid Slope	2021/09/18	M. Ritchie
1787044	08V	665292	6688638		0-10	В	5-10	Light Brown	20	20		20	40		Talus	Moist	Alpine	Mid Slope	2021/09/18	M. Ritchie
1787045	08V	665342	6688719		0-10	B/C	10-15	Light Brown	20	20		20	40		Talus	Moist	Alpine	Mid Slope	2021/09/18	M. Ritchie
1787045	08V	665382	6688825		0-10	B/C	5-10	Yellowish Orange	20	10	20	50	20		Talus	Moist	Alpine	Mid Slope	2021/09/18	M. Ritchie
1787047	08V	665408	6688903		0-10	B/C	5-10	Olive Grey	20	20	20	20	40		Talus	Moist	Alpine	Mid Slope	2021/09/18	M. Ritchie
1787047	08V	665447	6688997		10-20	B/C	5-10	Olive Grey	10	10		30	50		Talus	Moist	Alpine	Mid Slope	2021/09/18	M. Ritchie
1/0/048	UOV	003447	0000337		10-20	D/C	3-10	Olive Gley	10	10		30	50		Talus	INIOISE	Aibille	iviiu siope	2021/03/18	ivi. Nittille

1787049	08V	665481	6689081		10-20	B/C	5-10	Dark Brown	30	10		20	40	Talus	Moist	Alpine	Mid Slope	2021/09/18	M. Ritchie
1787050				CDN-BL-10															
1787051	V80	665485	6689192		20-30	B/C	10-15	Olive Grey	10	10		30	50	Talus	Moist	Alpine	Mid Slope	2021/09/18	M. Ritchie
1787052	V80	665433	6689266		20-30	B/C	15-20	Olive Grey	10	20		50	20	Talus	Moist	Alpine	Mid Slope	2021/09/18	M. Ritchie
1787053	08V	665366	6689339		10-20	B/C	5-10	Olive Grey	10	20		20	50	Talus	Moist	Alpine	Mid Slope	2021/09/18	M. Ritchie
1787054	08V	665281	6689399		20-30	B/C	10-15	Dark Brown	10		30	20	40	Talus	Moist	Alpine	Mid Slope	2021/09/18	M. Ritchie
1787055	08V	665212	6689433		0-10	B/C	5-10	Light Brown	20	10		10	60	Talus	Moist	Alpine	Valley Bottom	2021/09/22	M. Ritchie
1787056	08V	665143	6689493		0-10	B/C	5-10	Dark Brown	20	40		20	20	Talus	Moist	Alpine	Mid Slope	2021/09/22	M. Ritchie
1787057	08V	665099	6689581		0-10	B/C	5-10	Yellowish Orange	20	20		10	50	Talus	Moist	Alpine	Mid Slope	2021/09/22	M. Ritchie
1787058	08V	665103	6689676		10-20	B/C	5-10	Yellowish Orange	20	10		20	50	Talus	Moist	Alpine	Mid Slope	2021/09/22	M. Ritchie
1787059	08V	665182	6689736		1-20	B/C	5-10	Dark Brown	20	10		10	60	Talus	Moist	Alpine	Mid Slope	2021/09/22	M. Ritchie
1787060				CDN-ME-1309															
1787061	08V	665277	6689787		20-30	A/B	5-10	Dark Brown	30		10	20	40	Talus	Moist	Alpine	Mid Slope	2021/09/22	M. Ritchie
1787062	08V	665366	6689823		10-20	A/B	5-10	Yellowish Orange	30	10		20	40	Talus	Moist	Alpine	Mid Slope	2021/09/22	M. Ritchie
1787063	V80	665463	6689876		10-20	В	5-10	Light Brown	10		20	20	50	Talus	Moist	Alpine	Mid Slope	2021/09/22	M. Ritchie
1787064	08V	665563	6689899		10-20	В	5-10	Dark Brown	20		10	20	50	Talus	Moist	Alpine	Mid Slope	2021/09/22	M. Ritchie
1787065	V80	665668	6689892		0-10	В	5-10	Dark Brown	20	10		30	40	Talus	Moist	Alpine	Mid Slope	2021/09/22	M. Ritchie
1787066	V80	665668	6689892	Duplicate	0-10	В	5-10	Dark Brown	20	10		30	40	Talus	Moist	Alpine	Mid Slope	2021/09/22	M. Ritchie

Overland Resources (BC) Ltd.	Aurora Geosciences Ltd.
Appendix V	
принци ч	Original Assay Certificates
	McCleery Property, Overland Resources (BC) Ltd.
	Carl Schulze, Aurora Geosciences Ltd.

Bureau Veritas Commodities Canada Ltd.

Client: Overland Resources

September 07, 2021

Level 11, 216 St. Georges Terrace

Perth WA 6000 Australia

Submitted By: Ashley Hood

Receiving Lab: Canada-Whitehorse Received: August 17, 2021

Report Date: October 12, 2021

Page: 1 of 4

Analysis Start:

www.bureauveritas.com/um

9050 Shaughnessy St Vancouver British Columbia V6P 6E5 Canada PHONE (604) 253-3158

CERTIFICATE OF ANALYSIS

WHI21000377.1

CLIENT JOB INFORMATION

Project: McCleery
Shipment ID:

P.O. Number

Number of Samples: 62

SAMPLE DISPOSAL

DISP-PLP Dispose of Pulp After 90 days
DISP-RJT-SOIL Immediate Disposal of Soil Reject

Bureau Veritas does not accept responsibility for samples left at the laboratory after 90 days without prior written instructions for sample storage or return.

Invoice To: Aurora Geosciences Ltd. (Whitehorse)

34A Laberge Road

Whitehorse Yukon Y1A 5Y9

Canada

CC: Carl Schulze

SAMPLE PREPARATION AND ANALYTICAL PROCEDURES

Procedure Code	Number of Samples	Code Description	Test Wgt (g)	Report Status	Lab
SS80	62	Dry at 60C sieve 100g to -80 mesh			WHI
FA350-Au	62	50g lead collection fire assay - ICP-ES finish	50	Completed	VAN
AQ300	60	1:1:1 Aqua Regia digestion ICP-ES analysis	0.5	Completed	VAN
DISPL	62	Disposal of pulps			VAN
SHP01	62	Per sample shipping charges for branch shipments			VAN

ADDITIONAL COMMENTS

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

All results are considered the confidential property of the client. Bureau Veritas assumes the liabilities for actual cost of analysis only. Results apply to samples as submitted.

"*" asterisk indicates that an analytical result could not be provided due to unusually high levels of interference from other elements.

Overland Resources

Level 11, 216 St. Georges Terrace

Perth WA 6000 Australia

Project:

McCleery

Report Date:

October 12, 2021

Bureau Veritas Commodities Canada Ltd.

9050 Shaughnessy St Vancouver British Columbia V6P 6E5 Canada

CERTIFICATE OF ANALVOIS

PHONE (604) 253-3158

Page: 2 of 4

Part: 1 of 2

Method Analyte Hasto Has	Bi ppm 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Bi ppm 3 <3 <3 <3 <3 <3 <3 <3	AQ300 V ppm 1 54 63 59 55	AQ300 Ca % 0.01 0.27 0.40 0.38 0.31	P % 0.001 0.065 0.075 0.097 0.079
Unit ppb ppm ppm	ppm 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	ppm 3 <3 <3 <3 <3 <3 <3 <3	ppm 1 54 63 59 55	% 0.01 0.27 0.40 0.38	0.065 0.075 0.097 0.079
MDL 2 1 1 3 1 0.3 1 1 2 0.01 2 8 2 1 0.5 3 1893901 Soil 7 <1 29 9 53 <0.3 36 11 373 2.60 21 <8 <2 27 <0.5 <3 1893902 Soil 19 <1 49 9 57 <0.3 44 15 433 2.80 23 <8 3 77 <0.5 <3 1893903 Soil 19 <1 43 13 66 <0.3 33 12 531 2.84 29 <8 5 26 <0.5 <3 1893904 Soil 15 <1 75 15 74 <0.3 49 20 489 3.36 48 <8 2 61 <0.5 3 1893905 Soil 15 <1 85	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3 <3 <3 <3 <3 <3	54 63 59 55	0.01 0.27 0.40 0.38	0.065 0.075 0.097 0.079
1893901 Soil 7 <1	3	<3 <3 <3 <3 <3 <3	54 63 59 55	0.27 0.40 0.38	0.065 0.075 0.097 0.079
1893902 Soil 19 <1	3 <3 3 <3 3 <3 3 <3 3 <3	<3 <3 <3 <3	63 59 55	0.40 0.38	0.075 0.097 0.079
1893903 Soil 19 <1 43 13 66 <0.3 33 12 531 2.84 29 <8 5 26 <0.5 <3 1893904 Soil 15 <1	3 <3 3 <3 3 <3 3 <3	<3 <3 <3	59 55	0.38	0.097 0.079
1893904 Soil 15 <1 75 15 74 <0.3 49 20 489 3.36 48 <8 2 61 <0.5 3 1893905 Soil 15 <1	3 <3 3 <3 3 <3	<3 <3	55		0.079
1893905 Soil 15 <1 85 6 60 <0.3 53 16 405 2.65 14 <8 2 37 <0.5 <3 1893906 Soil 6 <1	3 <3	<3		0.31	
1893906 Soil 6 <1 20 3 57 <0.3 61 16 591 3.19 6 <8 2 40 <0.5 <3 1893907 Soil 10 <1	3 <3		5.1		
1893907 Soil 10 <1 19 5 53 <0.3 51 13 435 2.71 8 <8 <2 31 <0.5 <3		<3	J 4	0.49	0.119
	3 <3		52	0.36	0.087
1 1893908 Soil 6 <1 128 18 95 0.5 42 17 1545 2.76 15 <8 2 56 <0.5 <3		<3	53	0.38	0.086
1000000 0011 0 11 120 10 90 0.0 42 11 1040 2.10 10 10 2 00 0.0 10	3 <3	<3	53	0.52	0.080
1893909 Soil 13 <1 141 9 59 <0.3 33 10 531 2.31 11 <8 2 15 <0.5 <3	3 <3	<3	46	0.29	0.059
1893910 Soil 6 <1 20 6 71 <0.3 54 15 480 2.99 13 <8 <2 35 <0.5 <3	3 3	3	60	0.50	0.119
1893911 Soil 17 <1 72 21 70 <0.3 36 18 522 3.21 38 <8 <2 78 <0.5 <3	3 <3	<3	64	0.25	0.059
1893912 Soil 9 <1 43 32 75 <0.3 35 19 673 2.97 56 <8 3 89 <0.5 <3	3 <3	<3	70	0.30	0.062
1893913 Soil 11 <1 48 15 57 <0.3 36 15 504 3.29 71 <8 <2 31 <0.5 <3	3 <3	<3	59	0.19	0.058
1893914 Soil 16 1 71 15 69 <0.3 45 24 811 3.91 68 <8 <2 21 <0.5 <3	3 <3	<3	64	0.18	0.059
1893915 Soil 12 1 33 14 77 <0.3 35 16 421 3.19 10 <8 2 79 <0.5 <3	3 <3	<3	59	0.36	0.097
1893916 Soil 49 <1 22 7 55 <0.3 36 12 339 2.95 12 <8 <2 24 <0.5 <3	3 <3	<3	54	0.28	0.093
1893917 Soil 9 <1 49 5 50 <0.3 31 9 395 2.53 7 <8 4 17 <0.5 <3	3 <3	<3	51	0.28	0.071
1893918 Soil 8 <1 88 4 51 <0.3 33 11 606 2.69 4 <8 3 18 <0.5 <3	3 <3	<3	56	0.31	0.080
1893919 Soil 7 <1 45 4 45 <0.3 26 10 423 2.57 4 <8 <2 14 <0.5 <3	3 <3	<3	54	0.22	0.050
1893920 Soil 7 <1 39 4 47 <0.3 29 10 423 2.64 5 <8 <2 16 <0.5 <3	3 <3	<3	57	0.27	0.059
1893921 Soil 9 <1 102 <3 56 <0.3 21 13 873 3.16 4 <8 2 19 <0.5 <3	3 <3	<3	66	0.29	0.061
1893922 Soil 13 <1 91 <3 55 <0.3 24 12 555 3.00 5 <8 2 18 <0.5 <3	3 <3	<3	62	0.34	0.086
1893923 Soil 19 2 107 10 67 <0.3 23 17 1078 3.24 7 <8 <2 17 <0.5 <3	3 <3	<3	66	0.26	0.101
1893924 Soil 8 <1 54 4 48 <0.3 31 11 483 2.54 4 <8 <2 17 <0.5 <3	3 <3	<3	56	0.30	0.071
1893925 Soil 366 <1 19 31 62 <0.3 23 9 563 2.57 14 <8 <2 12 <0.5 <3	3 <3	<3	46	0.21	0.078
1893926 Soil 4 <1 26 5 52 <0.3 31 10 463 2.48 5 <8 5 19 <0.5 <3	3 <3	<3	47	0.34	0.071
1893927 Soil 6 <1 18 <3 44 <0.3 20 7 374 2.16 4 <8 4 20 <0.5 <3	3 <3	<3	39	0.38	0.082
1893928 Soil 5 <1 23 5 56 <0.3 27 10 547 2.71 7 <8 4 17 <0.5 <3	3 <3	<3	42	0.30	0.074
1893929 Soil 7 <1 34 5 60 <0.3 38 13 623 3.06 6 <8 3 19 <0.5 <3	3 <3	<3	53	0.37	0.065
1893930 Soil 6 <1 32 7 63 <0.3 32 11 616 2.91 7 <8 <2 15 <0.5 <3	3 <3	<3	47	0.32	0.065

Overland Resources

Level 11, 216 St. Georges Terrace

Perth WA 6000 Australia

Project: McCleery

Report Date: October 12, 2021

Bureau Veritas Commodities Canada Ltd.

9050 Shaughnessy St Vancouver British Columbia V6P 6E5 Canada PHONE (604) 253-3158

1 110NL (004) 233-3130

Page: 2 of 4

Part: 2 of 2

CERTIFICATE OF ANALYSIS

WHI21000377.1

	Method	AQ300														
	Analyte	La	Cr	Mg	Ва	Ti	В	Al	Na	K	W	S	Hg	TI	Ga	Sc
	Unit	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	%	ppm	ppm	ppm	ppm
	MDL	1	1	0.01	1	0.001	20	0.01	0.01	0.01	2	0.05	1	5	5	5
1893901 Soil		14	48	0.75	150	0.121	<20	1.99	<0.01	0.13	<2	<0.05	<1	<5	9	<5
1893902 Soil		13	57	0.88	247	0.149	<20	2.27	0.01	0.16	<2	<0.05	<1	<5	9	<5
1893903 Soil		23	37	0.66	147	0.103	<20	1.88	<0.01	0.08	<2	<0.05	<1	<5	8	<5
1893904 Soil		16	38	0.76	180	0.112	<20	2.57	<0.01	0.17	<2	<0.05	<1	<5	10	<5
1893905 Soil		12	70	1.15	193	0.130	<20	2.92	0.02	0.22	<2	<0.05	<1	<5	11	<5
1893906 Soil		12	73	1.37	190	0.137	<20	2.80	0.01	0.22	<2	<0.05	<1	<5	12	6
1893907 Soil		13	78	1.07	167	0.134	<20	2.20	<0.01	0.18	<2	<0.05	<1	<5	10	<5
1893908 Soil		13	42	1.17	159	0.125	<20	2.35	<0.01	0.12	<2	<0.05	<1	<5	10	8
1893909 Soil		13	33	0.59	141	0.080	<20	1.76	<0.01	0.07	<2	<0.05	<1	<5	8	<5
1893910 Soil		13	79	1.48	153	0.168	<20	2.73	<0.01	0.23	<2	<0.05	<1	<5	11	5
1893911 Soil		14	40	0.81	196	0.114	<20	2.74	<0.01	0.14	<2	<0.05	<1	<5	12	<5
1893912 Soil		13	37	0.79	177	0.126	<20	2.54	<0.01	0.09	<2	<0.05	<1	<5	11	<5
1893913 Soil		13	34	0.65	160	0.089	<20	2.22	<0.01	0.09	<2	<0.05	<1	<5	10	<5
1893914 Soil		10	33	0.60	85	0.044	<20	2.31	<0.01	0.10	<2	0.05	<1	<5	10	<5
1893915 Soil		17	42	0.81	138	0.131	<20	2.48	<0.01	0.21	<2	<0.05	<1	<5	11	<5
1893916 Soil		14	37	0.80	181	0.108	<20	2.36	<0.01	0.16	<2	<0.05	<1	<5	11	<5
1893917 Soil		16	34	0.67	144	0.104	<20	1.69	<0.01	0.06	<2	<0.05	<1	<5	8	<5
1893918 Soil		15	50	0.89	161	0.115	<20	1.72	<0.01	0.06	<2	<0.05	<1	<5	7	<5
1893919 Soil		12	32	0.70	74	0.123	<20	1.48	<0.01	0.06	<2	<0.05	<1	<5	7	<5
1893920 Soil		13	35	0.72	79	0.131	<20	1.39	<0.01	0.07	<2	<0.05	<1	<5	7	<5
1893921 Soil		13	32	0.92	98	0.167	<20	1.88	<0.01	0.08	<2	<0.05	<1	<5	8	<5
1893922 Soil		14	33	0.80	104	0.136	<20	1.54	<0.01	0.06	<2	<0.05	<1	<5	7	<5
1893923 Soil		12	33	0.85	116	0.132	<20	2.14	<0.01	0.06	<2	<0.05	<1	<5	10	<5
1893924 Soil		14	38	0.71	223	0.095	<20	1.70	<0.01	0.06	<2	<0.05	<1	<5	8	<5
1893925 Soil		11	31	0.49	84	0.071	<20	1.94	<0.01	0.05	<2	<0.05	<1	<5	8	<5
1893926 Soil		16	32	0.81	164	0.115	<20	1.44	<0.01	0.07	<2	<0.05	<1	<5	6	<5
1893927 Soil		16	26	0.60	104	0.109	<20	0.93	<0.01	0.05	<2	<0.05	<1	<5	<5	<5
1893928 Soil		15	28	0.76	141	0.103	<20	1.64	<0.01	0.07	<2	<0.05	<1	<5	7	<5
1893929 Soil		14	41	0.89	239	0.121	<20	2.02	<0.01	0.09	<2	<0.05	<1	<5	9	<5
1893930 Soil		13	33	0.86	159	0.073	<20	2.03	<0.01	0.09	<2	<0.05	<1	<5	8	<5

Overland Resources

Level 11, 216 St. Georges Terrace

Perth WA 6000 Australia

Project:

McCleery

Report Date:

October 12, 2021

Bureau Veritas Commodities Canada Ltd.

9050 Shaughnessy St Vancouver British Columbia V6P 6E5 Canada

PHONE (604) 253-3158

Page:

3 of 4

Part: 1 of 2

CERTIFICATE OF ANALYSIS

$\Lambda\Lambda/L$	1121		127	7 1
VVI	114 1	$\mathbf{U}\mathbf{U}\mathbf{U}$	JJI	1

	Method	FA350	AQ300																		
	Analyte	Au	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Th	Sr	Cd	Sb	Bi	V	Ca	Р
	Unit	ppb	ppm	%	ppm	%	%														
	MDL	2	1	1	3	1	0.3	1	1	2	0.01	2	8	2	1	0.5	3	3	1	0.01	0.001
1893931 Soil		4	<1	17	4	47	<0.3	28	8	357	2.20	6	<8	5	16	<0.5	<3	<3	40	0.28	0.069
1893932 Soil		10	<1	17	8	55	<0.3	24	8	390	2.37	9	<8	4	12	<0.5	<3	<3	36	0.21	0.051
1893933 Soil		5	<1	22	9	55	<0.3	23	8	411	2.31	7	<8	<2	15	<0.5	<3	<3	35	0.27	0.054
1893934 Soil		5	<1	23	19	79	<0.3	28	11	444	3.10	14	<8	<2	12	<0.5	<3	<3	50	0.20	0.045
1893935 Soil		12	<1	26	6	56	<0.3	25	10	487	2.67	4	<8	<2	13	<0.5	<3	<3	49	0.27	0.066
1893936 Soil		8	<1	20	5	47	<0.3	34	10	373	2.43	5	<8	3	15	<0.5	<3	<3	46	0.26	0.060
1893937 Soil		4	<1	23	6	50	<0.3	33	9	405	2.43	6	<8	2	14	<0.5	<3	<3	44	0.26	0.068
1893938 Soil		7	<1	27	9	65	<0.3	34	13	524	2.93	9	<8	<2	12	<0.5	<3	<3	44	0.25	0.074
1893939 Soil		6	<1	27	15	63	0.3	38	13	584	2.88	8	<8	<2	13	<0.5	<3	<3	49	0.28	0.076
1893940 Soil		10	<1	61	8	32	<0.3	11	6	230	7.95	11	<8	<2	76	<0.5	<3	<3	51	0.06	0.056
1893941 Soil		17	<1	32	8	48	0.3	24	10	697	2.63	6	<8	3	49	<0.5	<3	<3	56	0.34	0.059
1893942 Soil		8	1	32	8	54	< 0.3	36	13	537	2.90	7	<8	<2	13	<0.5	<3	<3	45	0.27	0.071
1893943 Soil		3	1	11	8	30	<0.3	11	5	302	2.13	4	<8	<2	8	<0.5	<3	<3	59	0.12	0.025
1893944 Soil		11	<1	36	10	70	<0.3	37	13	834	2.95	11	<8	<2	11	<0.5	<3	<3	42	0.67	0.039
1893945 Soil		5	<1	29	9	66	<0.3	30	11	584	3.14	12	<8	<2	10	<0.5	<3	<3	46	0.22	0.057
1893946 Soil		6	<1	11	4	19	<0.3	18	5	1776	1.05	6	<8	<2	8	1.3	<3	<3	14	0.40	0.076
1893947 Soil		4	<1	46	7	34	<0.3	12	3	4217	1.98	12	<8	<2	7	1.0	4	<3	23	0.52	0.053
1893948 Soil		18	<1	19	11	47	<0.3	22	6	291	1.52	17	<8	13	14	<0.5	<3	<3	30	0.28	0.059
1893949 Soil		6	I.S.																		
1893950 Soil		5	<1	41	16	92	0.3	38	11	703	1.92	14	<8	2	92	<0.5	<3	<3	38	2.78	0.068
1893651 Soil		10	<1	79	16	95	0.4	47	15	1458	2.15	19	<8	<2	92	0.7	<3	5	34	1.10	0.075
1893652 Soil		5	<1	29	12	68	<0.3	14	5	529	0.80	7	<8	<2	349	0.7	<3	<3	15	17.38	0.048
1893653 Soil		17	I.S.																		
1893654 Soil		8	<1	16	7	36	<0.3	29	7	271	1.88	13	<8	9	19	<0.5	<3	<3	35	0.47	0.058
1893655 Soil		8	<1	23	12	95	<0.3	39	10	674	2.35	17	<8	<2	40	<0.5	<3	<3	51	0.96	0.098
1893656 Soil		12	<1	22	17	68	<0.3	29	9	1002	2.46	15	<8	<2	38	<0.5	<3	<3	44	1.12	0.100
1893657 Soil		8	<1	8	3	22	<0.3	15	3	275	0.61	9	<8	<2	341	0.5	<3	<3	11	24.70	0.039
1893658 Soil		7	<1	22	12	37	<0.3	15	4	519	0.57	7	<8	<2	268	0.9	<3	<3	13	19.58	0.053
1893659 Soil		14	<1	42	16	66	<0.3	47	12	526	1.49	11	<8	<2	219	1.0	<3	<3	34	15.32	0.080
1893660 Soil		7	<1	95	22	109	0.3	171	32	720	3.04	19	<8	<2	78	<0.5	<3	<3	62	1.63	0.104

Overland Resources

Level 11, 216 St. Georges Terrace

Perth WA 6000 Australia

Project:

McCleery

Bureau Veritas Commodities Canada Ltd.

Report Date:

October 12, 2021

9050 Shaughnessy St Vancouver British Columbia V6P 6E5 Canada

PHONE (604) 253-3158

Page: 3 of 4

Part: 2 of 2

CERTIFICATE OF ANALYSIS

WHI21000377.1

	Method	AQ300														
	Analyte	La	Cr	Mg	Ва	Ti	В	AI	Na	K	W	S	Hg	TI	Ga	Sc
	Unit	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	%	ppm	ppm	ppm	ppm
Ī	MDL	1	1	0.01	1	0.001	20	0.01	0.01	0.01	2	0.05	1	5	5	5
1893931 Soil		15	30	0.64	111	0.098	<20	1.28	<0.01	0.06	<2	<0.05	<1	<5	6	<5
1893932 Soil		15	28	0.61	104	0.077	<20	1.54	<0.01	0.08	<2	<0.05	<1	<5	7	<5
1893933 Soil		14	28	0.69	157	0.081	<20	1.50	<0.01	0.04	<2	<0.05	<1	<5	7	<5
1893934 Soil		13	37	0.70	100	0.085	<20	2.20	<0.01	0.08	<2	<0.05	<1	<5	10	<5
1893935 Soil		11	27	0.76	135	0.096	<20	1.81	<0.01	0.09	<2	<0.05	<1	<5	9	<5
1893936 Soil		12	34	0.72	102	0.099	<20	1.59	<0.01	0.06	<2	<0.05	<1	<5	7	<5
1893937 Soil		12	34	0.73	127	0.091	<20	1.56	<0.01	0.06	<2	<0.05	<1	<5	<5	<5
1893938 Soil		11	40	0.80	96	0.094	<20	1.96	<0.01	0.07	<2	<0.05	<1	<5	<5	<5
1893939 Soil		10	55	0.86	122	0.120	<20	2.09	<0.01	0.08	<2	<0.05	<1	<5	<5	<5
1893940 Soil		8	20	0.63	138	0.050	<20	1.83	0.30	0.05	<2	0.91	<1	<5	<5	<5
1893941 Soil		15	30	0.65	179	0.073	<20	1.44	<0.01	0.05	<2	<0.05	<1	<5	<5	<5
1893942 Soil		9	36	0.85	159	0.070	<20	2.23	<0.01	0.09	<2	<0.05	<1	<5	<5	<5
1893943 Soil		7	22	0.32	80	0.144	<20	1.16	<0.01	0.03	<2	<0.05	<1	<5	6	<5
1893944 Soil		13	40	1.20	198	0.056	<20	2.17	<0.01	0.09	<2	<0.05	<1	<5	<5	<5
1893945 Soil		11	35	0.86	135	0.065	<20	2.13	<0.01	0.08	<2	<0.05	<1	<5	<5	<5
1893946 Soil		13	19	0.16	132	0.011	<20	1.62	<0.01	0.02	<2	<0.05	<1	<5	<5	<5
1893947 Soil		13	8	0.17	171	0.025	<20	0.61	<0.01	<0.01	<2	<0.05	2	<5	<5	<5
1893948 Soil		14	21	0.62	126	0.071	<20	0.98	<0.01	0.09	<2	<0.05	<1	<5	<5	<5
1893949 Soil		I.S.														
1893950 Soil		16	51	1.41	315	0.083	<20	1.78	0.03	0.15	<2	<0.05	<1	<5	<5	<5
1893651 Soil		13	42	2.26	540	0.087	<20	2.11	0.02	0.25	<2	<0.05	<1	<5	<5	5
1893652 Soil		7	13	0.61	127	0.036	22	0.86	0.03	0.08	<2	<0.05	<1	<5	<5	<5
1893653 Soil		I.S.														
1893654 Soil		13	29	0.56	89	0.089	<20	1.45	<0.01	0.06	<2	<0.05	<1	<5	<5	<5
1893655 Soil		14	58	1.71	161	0.085	<20	2.27	0.03	0.09	<2	0.06	<1	<5	5	<5
1893656 Soil		15	43	1.34	146	0.068	<20	2.24	0.01	0.05	<2	0.09	<1	<5	6	<5
1893657 Soil		5	15	0.59	43	0.027	<20	0.52	0.01	0.04	<2	<0.05	<1	<5	<5	<5
1893658 Soil		7	13	3.55	55	0.022	27	0.76	0.02	0.09	4	<0.05	<1	<5	<5	<5
1893659 Soil		6	44	2.49	134	0.057	21	1.42	0.03	0.20	<2	<0.05	<1	<5	5	<5
1893660 Soil		12	202	3.63	192	0.134	<20	3.23	0.07	0.08	<2	0.06	<1	<5	8	<5

Overland Resources

Level 11, 216 St. Georges Terrace

Perth WA 6000 Australia

Project:

McCleery

Report Date:

October 12, 2021

Bureau Veritas Commodities Canada Ltd.

9050 Shaughnessy St Vancouver British Columbia V6P 6E5 Canada

PHONE (604) 253-3158

Page:

4 of 4

Part: 1 of 2

C	ERTIFICA	TE OF AN	IALY	′SIS													W	HI21	000	377	.1	
		Method	FA350	AQ300																		
		Analyte	Au	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Th	Sr	Cd	Sb	Bi	V	Ca	Р
		Unit	ppb	ppm	%	ppm	%	%														
		MDL	2	1	1	3	1	0.3	1	1	2	0.01	2	8	2	1	0.5	3	3	1	0.01	0.001
1	893661	Soil	8	2	23	16	70	<0.3	25	8	528	3.09	50	<8	28	13	<0.5	<3	<3	41	0.26	0.046
1	893662	Soil	10	<1	51	9	90	<0.3	77	27	662	3.23	15	<8	<2	54	<0.5	<3	<3	87	1.17	0.072

Overland Resources

Level 11, 216 St. Georges Terrace

Perth WA 6000 Australia

Project:

McCleery

4 of 4

Bureau Veritas Commodities Canada Ltd.

Report Date:

October 12, 2021

9050 Shaughnessy St Vancouver British Columbia V6P 6E5 Canada

PHONE (604) 253-3158

Page:

Part: 2 of 2

CERTIFICATE OF ANALYSIS

WHI21000377.1

	Method	AQ300														
	Analyte	La	Cr	Mg	Ва	Ti	В	Al	Na	K	w	s	Hg	TI	Ga	Sc
	Unit	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	%	ppm	ppm	ppm	ppm
	MDL	1	1	0.01	1	0.001	20	0.01	0.01	0.01	2	0.05	1	5	5	5
1893661	Soil	37	30	0.80	87	0.110	<20	2.18	0.01	0.22	<2	<0.05	<1	<5	8	<5
1893662	Soil	7	130	2.82	154	0.175	<20	3.56	0.09	0.08	<2	0.05	<1	<5	7	9

Client: Overland Resources

Level 11, 216 St. Georges Terrace

Perth WA 6000 Australia

www.bureauveritas.com/um Project: McCleery

Report Date: October 12, 2021

Bureau Veritas Commodities Canada Ltd.

9050 Shaughnessy St Vancouver British Columbia V6P 6E5 Canada

PHONE (604) 253-3158 Page: 1 of 1 Part: 1 of 2

QUALITY CO	NTROL	REP	OR	Т												WH	H21	0003	377.	1	
	Method	FA350	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300								
	Analyte	Au	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Th	Sr	Cd	Sb	Bi	V	Ca	Р
	Unit	ppb	ppm	%	ppm	%	%														
	MDL	2	1	1	3	1	0.3	1	1	2	0.01	2	8	2	1	0.5	3	3	1	0.01	0.001
Pulp Duplicates																					
1893917	Soil	9	<1	49	5	50	<0.3	31	9	395	2.53	7	<8	4	17	<0.5	<3	<3	51	0.28	0.071
REP 1893917	QC	20																			
1893920	Soil	7	<1	39	4	47	<0.3	29	10	423	2.64	5	<8	<2	16	<0.5	<3	<3	57	0.27	0.059
REP 1893920	QC		<1	39	4	46	<0.3	29	10	416	2.66	5	<8	<2	16	<0.5	<3	<3	58	0.27	0.060
1893948	Soil	18	<1	19	11	47	<0.3	22	6	291	1.52	17	<8	13	14	<0.5	<3	<3	30	0.28	0.059
REP 1893948	QC	I.S.																			
1893651	Soil	10	<1	79	16	95	0.4	47	15	1458	2.15	19	<8	<2	92	0.7	<3	5	34	1.10	0.075
REP 1893651	QC		<1	79	15	90	0.5	45	14	1379	2.06	19	<8	<2	85	0.7	<3	5	32	1.02	0.070
Reference Materials																					
STD BVGEO01	Standard		10	4482	187	1736	2.7	160	23	719	3.72	121	<8	12	53	6.0	<3	23	73	1.32	0.073
STD DS11	Standard		14	153	135	354	1.9	77	13	1062	3.10	45	<8	7	69	2.4	7	14	49	1.08	0.070
STD OREAS232	Standard	950																			
STD OREAS262	Standard		<1	120	53	149	0.5	62	26	528	3.28	37	<8	8	35	0.5	3	<3	21	3.02	0.039
STD OREAS262	Standard		<1	121	54	151	0.5	63	27	571	3.29	36	<8	9	36	0.9	3	<3	21	3.03	0.039
STD OXA147	Standard	86																			-
STD OXA71	Standard	87																			
STD OXA71	Standard	84																			-
STD OXA147 Expected		82																			
STD OREAS232 Expected		902																			
STD OXA71 Expected		84.9																			
STD BVGEO01 Expected			10.8	4415	187	1741	2.53	163	25	733	3.7	121		14.4	55	6.5	2.2	25.6	73	1.3219	0.0727
STD DS11 Expected			13.9	156	138	345	1.71	81.9	14.2	1055	3.2082	42.8		7.65	67.3	2.37	7.2	12.2	50	1.063	0.0701
STD OREAS262 Expected				118	56	154	0.45	62	26.9	530	3.284	35.8		9.33	36	0.61	3.39		22.5	2.98	0.04
BLK	Blank	5																			
BLK	Blank	6																			
BLK	Blank		<1	<1	<3	<1	<0.3	<1	<1	<2	<0.01	<2	<8	<2	<1	<0.5	<3	<3	<1	<0.01	<0.001
BLK	Blank		<1	<1	<3	<1	<0.3	<1	<1	<2	<0.01	<2	<8	<2	<1	<0.5	<3	<3	<1	<0.01	<0.001

Client: O

Overland Resources

Level 11, 216 St. Georges Terrace

Perth WA 6000 Australia

Project:

McCleery

Report Date:

October 12, 2021

Bureau Veritas Commodities Canada Ltd.

9050 Shaughnessy St Vancouver British Columbia V6P 6E5 Canada

PHONE (604) 253-3158

Page: 1 of 1

Part: 2 of 2

QUALITY CONTROL REPORT

WHI21000377.1

	Method	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300
	Analyte	La	Cr	Mg	Ва	Ti	В	Al	Na	K	W	s	Hg	TI	Ga	Sc
	Unit	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	%	ppm	ppm	ppm	ppm
	MDL	1	1	0.01	1	0.001	20	0.01	0.01	0.01	2	0.05	1	5	5	5
Pulp Duplicates																
1893917	Soil	16	34	0.67	144	0.104	<20	1.69	<0.01	0.06	<2	<0.05	<1	<5	8	<5
REP 1893917	QC															
1893920	Soil	13	35	0.72	79	0.131	<20	1.39	<0.01	0.07	<2	<0.05	<1	<5	7	<5
REP 1893920	QC	13	35	0.71	79	0.130	<20	1.39	<0.01	0.07	<2	<0.05	<1	<5	7	<5
1893948	Soil	14	21	0.62	126	0.071	<20	0.98	<0.01	0.09	<2	<0.05	<1	<5	<5	<5
REP 1893948	QC															
1893651	Soil	13	42	2.26	540	0.087	<20	2.11	0.02	0.25	<2	<0.05	<1	<5	<5	5
REP 1893651	QC	12	40	2.08	502	0.080	<20	1.95	0.02	0.24	<2	<0.05	<1	<5	<5	<5
Reference Materials																
STD BVGEO01	Standard	24	157	1.29	344	0.234	<20	2.26	0.19	0.89	3	0.69	<1	<5	<5	6
STD DS11	Standard	18	58	0.85	440	0.094	<20	1.19	0.07	0.40	<2	0.28	<1	<5	7	<5
STD OREAS232	Standard															
STD OREAS262	Standard	14	41	1.19	254	0.003	<20	1.19	0.07	0.29	<2	0.27	<1	<5	<5	<5
STD OREAS262	Standard	16	41	1.21	257	0.003	<20	1.32	0.07	0.31	<2	0.26	<1	<5	6	<5
STD OXA147	Standard															
STD OXA71	Standard															
STD OXA71	Standard															
STD OXA147 Expected																
STD OREAS232 Expected																
STD OXA71 Expected																
STD BVGEO01 Expected		25.9	171	1.2963	340	0.233		2.347	0.1924	0.89	3.5	0.6655			7.37	5.97
STD DS11 Expected		18.6	61.5	0.85	417	0.0976	6	1.129	0.0694	0.4	2.9	0.2835	0.3	4.9	4.7	3.1
STD OREAS262 Expected		15.9	41.7	1.17	248	0.003		1.3	0.071	0.312		0.269			3.9	3.24
BLK	Blank															
BLK	Blank															
BLK	Blank	<1	<1	<0.01	<1	<0.001	<20	<0.01	<0.01	<0.01	<2	<0.05	<1	<5	<5	<5
BLK	Blank	<1	<1	<0.01	<1	<0.001	<20	<0.01	<0.01	<0.01	<2	<0.05	<1	<5	<5	<5

Client: Overland Resources

Level 11, 216 St. Georges Terrace

Perth WA 6000 Australia

Submitted By: Ashley Hood

Receiving Lab: Canada-Whitehorse

Received: August 17, 2021
Analysis Start: September 15, 2021

Report Date: October 12, 2021

Page: 1 of 2

Bureau Veritas Commodities Canada Ltd.

9050 Shaughnessy St Vancouver British Columbia V6P 6E5 Canada

PHONE (604) 253-3158

CERTIFICATE OF ANALYSIS

WHI21000378.1

CLIENT JOB INFORMATION

Project: McCleery

Shipment ID:

P.O. Number

Number of Samples: 16

SAMPLE DISPOSAL

DISP-PLP Dispose of Pulp After 90 days
DISP-RJT Dispose of Reject After 60 days

Bureau Veritas does not accept responsibility for samples left at the laboratory after 90 days without prior written instructions for sample storage or return.

Invoice To: Aurora Geosciences Ltd. (Whitehorse)

34A Laberge Road

Whitehorse Yukon Y1A 5Y9

Canada

CC: Carl Schulze

SAMPLE PREPARATION AND ANALYTICAL PROCEDURES

Procedure Code	Number of Samples	Code Description	Test Wgt (g)	Report Status	Lab
PRP90-250	16	Crush (>90%), split and pulverize 250g rock to 200 mesh			WHI
FA350-Au	16	50g Fire assay fusion Au by ICP-ES	50	Completed	VAN
AQ300	16	1:1:1 Aqua Regia digestion ICP-ES analysis	0.5	Completed	VAN
SHP01	16	Per sample shipping charges for branch shipments			VAN

ADDITIONAL COMMENTS

www.bureauveritas.com/um

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only. All results are considered the confidential property of the client. Bureau Veritas assumes the liabilities for actual cost of analysis only. Results apply to samples as submitted.

"*" asterisk indicates that an analytical result could not be provided due to unusually high levels of interference from other elements.

Overland Resources

Level 11, 216 St. Georges Terrace

Perth WA 6000 Australia

Project:

McCleery

Report Date:

October 12, 2021

Bureau Veritas Commodities Canada Ltd.

9050 Shaughnessy St Vancouver British Columbia V6P 6E5 Canada

PHONE (604) 253-3158

Page:

2 of 2

Part: 1 of 2

CERTIFICATE OF ANALYSIS

CERTIFICATE OF ANALTOIS WITIZ 1000370.1															. !							
		Method	WGHT	FA350	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300
		Analyte	Wgt	Au	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Th	Sr	Cd	Sb	Bi	V	Ca
		Unit	kg	ppb	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	%							
		MDL	0.01	2	1	1	3	1	0.3	1	1	2	0.01	2	8	2	1	0.5	3	3	1	0.01
1893851	Rock		1.41	4	<1	540	9	107	1.4	7	5	200	2.32	68	<8	<2	3	<0.5	<3	<3	13	0.12
1893852	Rock		1.23	6	<1	5	6	14	<0.3	1	<1	246	0.75	4	<8	<2	2	<0.5	<3	<3	2	0.02
1893853	Rock		0.95	14	<1	16	30	42	<0.3	2	2	360	1.81	7	<8	<2	4	<0.5	<3	<3	2	0.02
1893854	Rock		0.97	11	<1	8	17	15	<0.3	<1	1	95	1.07	19	<8	<2	3	<0.5	<3	<3	3	0.02
1893855	Rock		1.09	14	2	5	31	3	0.9	<1	<1	35	2.58	22	<8	<2	9	<0.5	<3	<3	3	<0.01
1893856	Rock		1.32	8	<1	24	12	101	0.4	18	16	125	1.65	28	<8	<2	7	<0.5	<3	<3	4	<0.01
1893857	Rock		0.89	16	<1	20	11	13	0.7	6	2	367	1.09	4	<8	<2	27	<0.5	<3	<3	3	1.39
1893858	Rock		1.26	8	4	67	33	105	0.7	20	9	522	2.51	5	<8	4	37	0.6	<3	<3	48	0.40
1893859	Rock		0.99	8	<1	2	3	15	<0.3	<1	<1	34	2.11	2	<8	<2	13	<0.5	<3	<3	<1	0.03
1893860	Rock		0.91	15	<1	6	4	39	<0.3	<1	<1	111	2.91	3	<8	2	14	<0.5	<3	<3	3	0.04
1893861	Rock		0.92	15	<1	19	7	132	<0.3	1	3	438	3.62	<2	<8	<2	13	<0.5	<3	<3	10	0.19
1893862	Rock		0.96	4	<1	1	7	3	<0.3	<1	<1	40	0.44	89	12	39	3	<0.5	7	<3	1	0.06
1893863	Rock		1.13	5	2	5	<3	23	<0.3	<1	<1	130	1.11	<2	<8	3	4	<0.5	<3	<3	1	0.04
1893864	Rock		0.56	16	<1	1492	11	619	1.4	64	120	2513	>40	7	<8	<2	3	3.4	<3	<3	8	0.11
1893865	Rock		0.69	80	5	>10000	15	86	45.3	207	84	161	4.89	672	<8	<2	41	1.3	58	181	37	1.36
1893866	Rock		0.92	11	<1	44	3	15	0.4	5	4	393	7.25	9	<8	<2	44	<0.5	<3	<3	37	2.01

Overland Resources

Level 11, 216 St. Georges Terrace

Perth WA 6000 Australia

www.bureauveritas.com/um

Project:

McCleery

Bureau Veritas Commodities Canada Ltd.

Report Date:

October 12, 2021

9050 Shaughnessy St Vancouver British Columbia V6P 6E5 Canada PHONE (604) 253-3158

Page:

2 of 2

Part: 2 of 2

CERTIFICATE OF ANALYSIS

WHI21000378.1

		Method	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300
		Analyte	Р	La	Cr	Mg	Ва	Ti	В	Al	Na	K	w	s	Hg	TI	Ga	Sc
		Unit	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	%	ppm	ppm	ppm	ppm
		MDL	0.001	1	1	0.01	1	0.001	20	0.01	0.01	0.01	2	0.05	1	5	5	5
1893851	Rock		0.009	3	9	0.20	18	0.001	<20	0.35	<0.01	0.03	<2	<0.05	<1	<5	<5	<5
1893852	Rock		0.006	<1	6	0.01	86	<0.001	<20	0.19	0.05	0.08	<2	<0.05	<1	<5	<5	<5
1893853	Rock		0.013	11	4	0.09	100	0.001	<20	0.63	0.07	0.15	<2	<0.05	<1	<5	<5	<5
1893854	Rock		0.012	10	4	0.04	77	0.001	<20	0.40	0.05	0.18	<2	<0.05	<1	<5	<5	<5
1893855	Rock		0.004	3	5	<0.01	372	<0.001	<20	0.08	<0.01	0.11	<2	0.26	<1	<5	<5	<5
1893856	Rock		0.003	1	7	<0.01	181	<0.001	<20	0.06	<0.01	0.02	<2	1.05	<1	<5	<5	<5
1893857	Rock		0.004	<1	5	0.08	37	<0.001	<20	0.12	<0.01	0.02	<2	0.29	<1	<5	<5	<5
1893858	Rock		0.037	7	24	0.45	183	0.098	<20	1.28	0.03	0.41	<2	0.33	<1	<5	<5	<5
1893859	Rock		0.014	4	3	0.03	233	0.006	<20	0.38	0.02	0.23	<2	1.01	<1	<5	<5	<5
1893860	Rock		0.013	4	3	0.14	132	0.015	<20	0.70	0.04	0.15	<2	0.15	<1	<5	<5	<5
1893861	Rock		0.008	3	3	0.61	78	0.011	<20	1.32	0.07	0.10	<2	2.19	<1	<5	<5	<5
1893862	Rock		0.002	16	4	0.02	11	0.002	<20	0.30	0.02	0.21	<2	<0.05	<1	<5	<5	<5
1893863	Rock		0.011	6	2	0.72	123	0.026	<20	0.79	0.03	0.21	<2	0.06	<1	<5	<5	<5
1893864	Rock		0.047	3	2	6.85	27	0.022	161	0.25	<0.01	0.02	<2	1.73	<1	<5	<5	<5
1893865	Rock		0.045	1	152	1.49	34	0.113	<20	2.40	0.03	0.76	<2	3.78	<1	<5	5	<5
1893866	Rock		0.016	2	12	0.17	6	0.106	<20	0.72	0.02	0.01	<2	<0.05	<1	<5	<5	<5

Overland Resources

Level 11, 216 St. Georges Terrace

Perth WA 6000 Australia

Project:

McCleery

Report Date:

October 12, 2021

Bureau Veritas Commodities Canada Ltd.

9050 Shaughnessy St Vancouver British Columbia V6P 6E5 Canada

PHONE (604) 253-3158

Page: 1 of 1 Part: 1 of 2

QUALITY CONTROL REPORT WHI21000															WH	000	378.	1			
	Method	WGHT	FA350	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300
	Analyte	Wgt	Au	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Th	Sr	Cd	Sb	Bi	V	Ca
	Unit	kg	ppb	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	%							
	MDL	0.01	2	1	1	3	1	0.3	1	1	2	0.01	2	8	2	1	0.5	3	3	1	0.0
Pulp Duplicates																					
1893865	Rock	0.69	80	5	>10000	15	86	45.3	207	84	161	4.89	672	<8	<2	41	1.3	58	181	37	1.36
REP 1893865	QC			5	>10000	16	87	45.6	205	84	163	4.91	669	<8	<2	41	1.4	58	183	38	1.37
Reference Materials																					
STD DS11	Standard			15	149	136	344	1.8	80	14	1042	3.13	47	<8	6	68	2.4	8	12	50	1.06
STD OREAS232	Standard		887																		
STD OREAS262	Standard			<1	121	58	155	0.6	66	28	558	3.33	37	<8	8	35	0.8	3	<3	22	2.95
STD OREAS232	Standard		888																		
STD OXA147	Standard		80																		
STD DS11 Expected				13.9	156	138	345	1.71	81.9	14.2	1055	3.2082	42.8		7.65	67.3	2.37	7.2	12.2	50	1.063
STD OREAS262 Expected					118	56	154	0.45	62	26.9	530	3.284	35.8		9.33	36	0.61	3.39		22.5	2.98
STD OXA147 Expected			82																		
STD OREAS232 Expected			902																		
BLK	Blank			<1	<1	<3	<1	<0.3	<1	<1	<2	<0.01	<2	<8	<2	<1	<0.5	<3	<3	<1	<0.0′
BLK	Blank		<2																		
Prep Wash																					
ROCK-WHI	Prep Blank		<2	<1	3	<3	26	<0.3	<1	4	476	1.79	<2	<8	2	22	<0.5	<3	<3	24	0.55
ROCK-WHI	Prep Blank		<2	1	9	<3	28	<0.3	<1	4	502	1.89	<2	<8	2	21	<0.5	<3	<3	27	0.56

Client: Overland Resources

Level 11, 216 St. Georges Terrace

Perth WA 6000 Australia

www.bureauveritas.com/um Project:

Report Date: October 12, 2021

McCleery

Bureau Veritas Commodities Canada Ltd.

9050 Shaughnessy St Vancouver British Columbia V6P 6E5 Canada

PHONE (604) 253-3158

Page: 1 of 1

Part: 2 of 2

QUALITY CONTROL REPORT

WHI21000378.1

	Method	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300
	Analyte	Р	La	Cr	Mg	Ва	Ti	В	Al	Na	K	w	s	Hg	TI	Ga	Sc
	Unit	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	%	ppm	ppm	ppm	ppm
	MDL	0.001	1	1	0.01	1	0.001	20	0.01	0.01	0.01	2	0.05	1	5	5	5
Pulp Duplicates																	
1893865	Rock	0.045	1	152	1.49	34	0.113	<20	2.40	0.03	0.76	<2	3.78	<1	<5	5	<5
REP 1893865	QC	0.045	1	152	1.50	37	0.119	<20	2.44	0.03	0.77	<2	3.87	<1	<5	6	<5
Reference Materials																	
STD DS11	Standard	0.071	18	58	0.85	430	0.090	<20	1.16	0.08	0.40	2	0.29	<1	6	<5	<5
STD OREAS232	Standard																
STD OREAS262	Standard	0.041	16	43	1.22	250	0.003	<20	1.27	0.07	0.31	<2	0.28	<1	<5	5	<5
STD OREAS232	Standard																
STD OXA147	Standard																
STD DS11 Expected		0.0701	18.6	61.5	0.85	417	0.0976	6	1.129	0.0694	0.4	2.9	0.2835	0.3	4.9	4.7	3.1
STD OREAS262 Expected		0.04	15.9	41.7	1.17	248	0.003		1.3	0.071	0.312		0.269			3.9	3.24
STD OXA147 Expected																	
STD OREAS232 Expected																	
BLK	Blank	<0.001	<1	<1	<0.01	<1	<0.001	<20	<0.01	<0.01	<0.01	<2	<0.05	<1	<5	<5	<5
BLK	Blank																
Prep Wash																	
ROCK-WHI	Prep Blank	0.041	7	4	0.44	58	0.085	<20	0.80	0.09	0.10	<2	<0.05	<1	<5	<5	<5
ROCK-WHI	Prep Blank	0.043	7	4	0.48	56	0.090	<20	0.84	0.10	0.10	<2	<0.05	<1	<5	5	<5