

PALEONTOLOGY**	

	1	1	PALEONTOLOGY**		
MAP ID	NTS 50K 1050/2	FORMATION Jones Lake Fm.	AGE	FOSSIL TYPE	CUR NU
2	105O/7 105O/7	Tsichu Gp., Caribou Pass Fm Tsichu Gp., Caribou Pass Fm	Late Mississippian, late Visean-Serpukhovian Late Mississippian, late Visean-Serpukhovian	conodont conodont	C-1 C-1
3 4 5	1050/7 1050/7 1050/7	Tsichu Gp., Caribou Pass Fm Tsichu Gp., Caribou pass Fm Tsichu Gp., Caribou Pass Fm	Late Mississippian, late Visean-Serpukhovian Late Mississippian, late Visean-Serpukhovian	conodont conodont	C-0 C-0
6 7	1050/7 1050/7 1050/2	Tsichu Gp., sandstone facies Tsichu Gp., chert facies	Late Mississippian, late Visean-Serpukhovian Late Mississippian, late Visean-Serpukhovian	conodont	C-0
8 9	1050/2 1050/7 1050/2	Tsichu Gp., shale facies at base of Tsichu Gp Tsichu Gp., chert facies	Mississippian, late Tournaisian Mississippian, late Tournaisian	conodont	C-1 C-1
10 11	1050/2 1050/2	Tsichu Gp., TEA (SAMOVAR) barite Tsichu Gp., TEA (SAMOVAR) barite	Mississippian, late Tournaisian Mississippian, Tournaisian	conodont conodont	C-0
12 13	105J/15 105O/7	Tsichu Gp., limestone in chert facies Tsichu Gp., shale facies	Mississippian, late Tournaisian Mississippian, early-middle Tournaisian	conodont conodont	C-1 C-0
14 15	105O/7 105P/4	Tsichu Gp., chert facies Tsichu Gp., shale facies	Mississippian, early-middle Tournaisian Mississippian, Tournaisian	conodont conodont	C-0 C-0
16 17	105P/4 105O/7	Tsichu Gp., shale facies Itsi Fm.	Carboniferous Late Devonian, early middle Famennian	conodont conodont	C-0 C-0
18 19 20	1050/8	Portrait Lake Fm., shale facies Portrait Lake Fm., Fuller Lake Mbr Portrait Lake Fm., Fuller Lake Mbr	Late Devonian, middle Famennian Late Devonian, middle Famennian Late Devonian, late Frasnian	conodont conodont conodont	C-0 C-0 C-0
20 21 22	1050/1	Portrait Lake Fm., Fuller Lake Mbr Portrait Lake Fm., Fuller Lake Mbr	Late Devonian, late Frasnian Late Devonian, middle-late Frasnian	conodont	C-1 C-0
23 24	1050/1*	Portrait Lake Fm., Fuller Lake Mbr Portrait Lake Fm., Fuller Lake Mbr	Late Devonian middle-late Frasnian	conodont	C-1 C-0
25 26	105l/13	Portrait Lake Fm., Fuller Lake Mbr Portrait Lake Fm., Fuller Lake Mbr	Late Devonian, middle Frasnian Late Devonian, early Frasnian	conodont	C-1 C-1
27 28	1050/1	Portrait Lake Fm., Fuller Lake Mbr Portrait Lake Fm., Fuller Lake Mbr	Late Devonian, Frasnian Late Devonian, Frasnian	conodont conodont	C-1 C-1
29	1050/1*	Portrait Lake Fm., Fuller Lake Mbr Portrait Lake Fm., Fuller Lake Mbr	Late Devonian, Frasnian Late Devonian	conodont conodont	C-0
31	105P/4	Portrait Lake Fm., Fuller Lake Mbr	probably Late Devonian	conodont	C-0
32 33	105P/4 105O/7	Portrait Lake Fm., Macmillan Pass Mbr Portrait Lake Fm., Niddery Lake Mbr	Late Devonian, probably Frasnian Middle Devonian, Eifelian	conodont conodont	C-1 C-0
34	1050/7	Portrait Lake Fm., Niddery Lake Mbr Portrait Lake Fm., Niddery Lake Mbr Portrait Lake Fm., Niddery Lake Mbr	Middle Devonian, Eifelian Middle Devonian, Eifelian Middle Devonian, Eifelian	conodont conodont	C-0 C-0
36 37	1050/1	Portrait Lake Fm., Niddery Lake Mbr Portrait Lake Fm., Niddery Lake Mbr	Middle Devonian, Eifelian Middle Devonian, Givetian	conodont	C-0
38 39	1050/7	Portrait Lake Fm., Niddery Lake Mbr Portrait Lake Fm., Niddery Lake Mbr	late Early Devonian, Emsian Middle Devonian-Mississippian, Emsian-Tournaisian	conodont	C-0
40 41	105O/7 105O/1	Portrait Lake Fm., Niddery Lake Mbr Portrait Lake Fm., Niddery Lake Mbr	late Early Devonian, Emsian Middle-Late Devonian, Emsian-Frasnian	conodont	C-0
42 43	105O/7 105O/8	Portrait Lake Fm., Niddery Lake Mbr Portrait Lake Fm., Niddery Lake Mbr	Middle Devonian-Early Carboniferous	conodont conodont	C-1 C-1
44 45	105O/7 105O/7	Portrait Lake Fm., Niddery Lake Mbr Portrait Lake Fm., Niddery Lake Mbr	Early Devonian, Emsian Early Devonian, late Pragian-early Emsian	conodont conodont	C-0 C-0
46 47	105O/1 105O/7	Sapper Fm.? above Macmillan Pass volcanics Calc. shale lens in Macmillan Pass volcanics	Middle Devonian-Mississippian, Eifelian-Tournaisian Middle Devonian, middle Eifelian-early Givetian	conodont conodont	C-0 C-0
48 49		Sapper Fm Sapper Fm	Middle Devonian, Eifelian Middle Devonian, Eifelian	conodont conodont	C-0 C-1
50 51	1050/1	Sapper Fm Sapper Fm	Middle Devonian, Eifelian Middle Devonian, probably Eifelian	conodont	C-1 C-1
52 53	1050/1	Sapper Fm Sapper Fm	Early-Middle Devonian Early Devonian, Emsian	conodont	C-1 C-1
54 55	1050/7	Sapper Fm Sapper Fm	probably Early Devonian Early Devonian, Pragian	conodont graptolite	C-1 C-0
56 57	1050/7	Sapper Fm Sapper Fm	Early Devonian, Pragian Early Devonian, Pragian	graptolite graptolite	C-0
58 59	1050/1	Sapper Fm Sapper Fm	latest Silurian, Pridolian Late Silurian, Ludlovian	graptolite graptolite	C-0 C-1
60 61	1050/1	Sapper Fm Sapper Fm	Late Silurian to early Devonian, Ludlovian-Lockovian Ordovician-Devonian	graptolite conodont	C-0 C-1
		Duo Lake Fm	Early Silurian, latest Llandoverian	graptolite	C-0
64	1050/8	Duo Lake Fm Duo Lake Fm	Early Silurian, latest Llandoverian early Silurian, latest Llandoverian	graptolite graptolite	C-0 C-0
	1050/1	Duo Lake Fm Duo Lake Fm	Early Silurian, Late Llandoverian Early Silurian, middle Llandoverian	graptolite graptolite	C-1 C-0 C-0
68	1050/1	Duo Lake Fm Duo Lake Fm Duo Lake Fm	Early Silurian, middle Llandoverian Early Silurian, middle Llandoverian Early Silurian, middle Llandoverian	graptolite graptolite graptolite	C-0 C-0 C-0
	1050/1	Duo Lake Fm Duo Lake Fm Duo Lake Fm	Early Silurian, middle Llandoverian Early Silurian, middle Llandoverian Early Silurian, late Early-Middle Llandoverian	graptolite graptolite	C-0 C-0 C-0
72	1050/7	Duo Lake Fm Duo Lake Fm Duo Lake Fm	Early Silurian, Landovery Late Ordovician, Caradocian or Ashgillian	conodont graptolite	C-0 C-0 C-0
74	1050/1	Duo Lake Fm Duo Lake Fm	Late Ordovician, Caradocian or Ashgillian Late Ordovician, Caradocian or Ashgillian	graptolite graptolite	C-0
76	1050/1	Duo Lake Fm Duo Lake Fm	Late Ordovician, Caradocian or Ashgillian Late Ordovician, Caradocian or Ashgillian	graptolite graptolite	C-0
78	1050/8	Duo Lake Fm Duo Lake Fm	Late Ordovician, Caradocian or Ashgillian latest Early to early Middle Ordovician, Arenigian-Llanvirniar	graptolite	C-0
	1050/7	Duo Lake Fm Duo Lake Fm	Late Ordovician, Caradocian - Ashgillian Late Ordovician, Caradocian	graptolite graptolite	C-0
	105P/4	Duo Lake Fm Duo Lake Fm	Late Ordovician, Caradocian - Ashgillian Late Ordovician, Caradocian - Ashgillian	graptolite graptolite	C-0 C-0
84 85	1050/2	Duo Lake Fm Duo Lake Fm	Late Ordovician, Caradocian - Ashgillian Late Ordovician, Caradocian - early Ashgillian	graptolite graptolite	C-0 C-1
86 87	1050/1	Duo Lake Fm Duo Lake Fm	Late Ordovician, Caradocian Late Ordovician, Caradocian	graptolite graptolite	C-0 C-1
88 89	1050/7	Duo Lake Fm Duo Lake Fm	late Middle Ordovician, Caradocian Late Ordovician, Caradocian	graptolite graptolite	C-1
90 91	1050/8	Duo Lake Fm Duo Lake Fm	late Middle or Late Ordovician late Middle or Late Ordovician	graptolite graptolite	C-0 C-0
92 93	1050/2	Duo Lake Fm Duo Lake Fm	late Middle or Late Ordovician late Middle or Late Ordovician	graptolite graptolite	C-0 C-0
94 95		Duo Lake Fm Duo Lake Fm	Middle to Late Ordovician Lower Ordovician, Arenigian	graptolite graptolite	C-0 C-0
96 97	105O/1 105O/7	Duo Lake Fm Duo Lake Fm	latest Early to Late Ordovician, latest Arenig-Caradocian Ordovician	graptolite conodont	C-1 C-1
98 99		Rabbitkettle Fm Rabbitkettle Fm	Middle Ordovician, late Arenig-Caradocian Middle Ordovician, late Arenig -Caradocian	conodont conodont	C-1 C-1
100	1050/7	Rabbitkettle Fm Rabbitkettle Fm	late Early-Middle Ordovician	conodont	C-1 C-0
101 102 103	1050/7	Rabbitkettle Fm Rabbitkettle Fm	Early Ordovician Early Ordovician	conodont	C-1 C-1
104 105 106	105P/5 105P/5 105O/8	Rabbitkettle Fm Rabbitkettle Fm Rabbitkettle Fm	Early Ordovician, Tremadoc - earliest Arenigian Early Ordovician Late Cambrian-Early Ordovician	graptolite conodont conodont	C-0 C-0 C-1
107	1050/1	Gull Lake Fm	Early Ordovician, Arenigian	graptolite	C-0
108 109 110	105O/1 105O/8 105O/8	Gull Lake Fm Gull Lake Fm Hess River Fm	Early Ordovician, Arenigian Early Ordovician, late Tremadocian or early Arenigian Cambrian	graptolite graptolite protospongia	C-0 C-0
		Sekwi Fm	early Cambrian	archeocyathid	C-0
111 112		Sekwi Fm	early Cambrian	archeocyathid	C-1

* Fossil locality not accurate. **All fossil collections including others not listed here are documented in Norford et al., 1993.

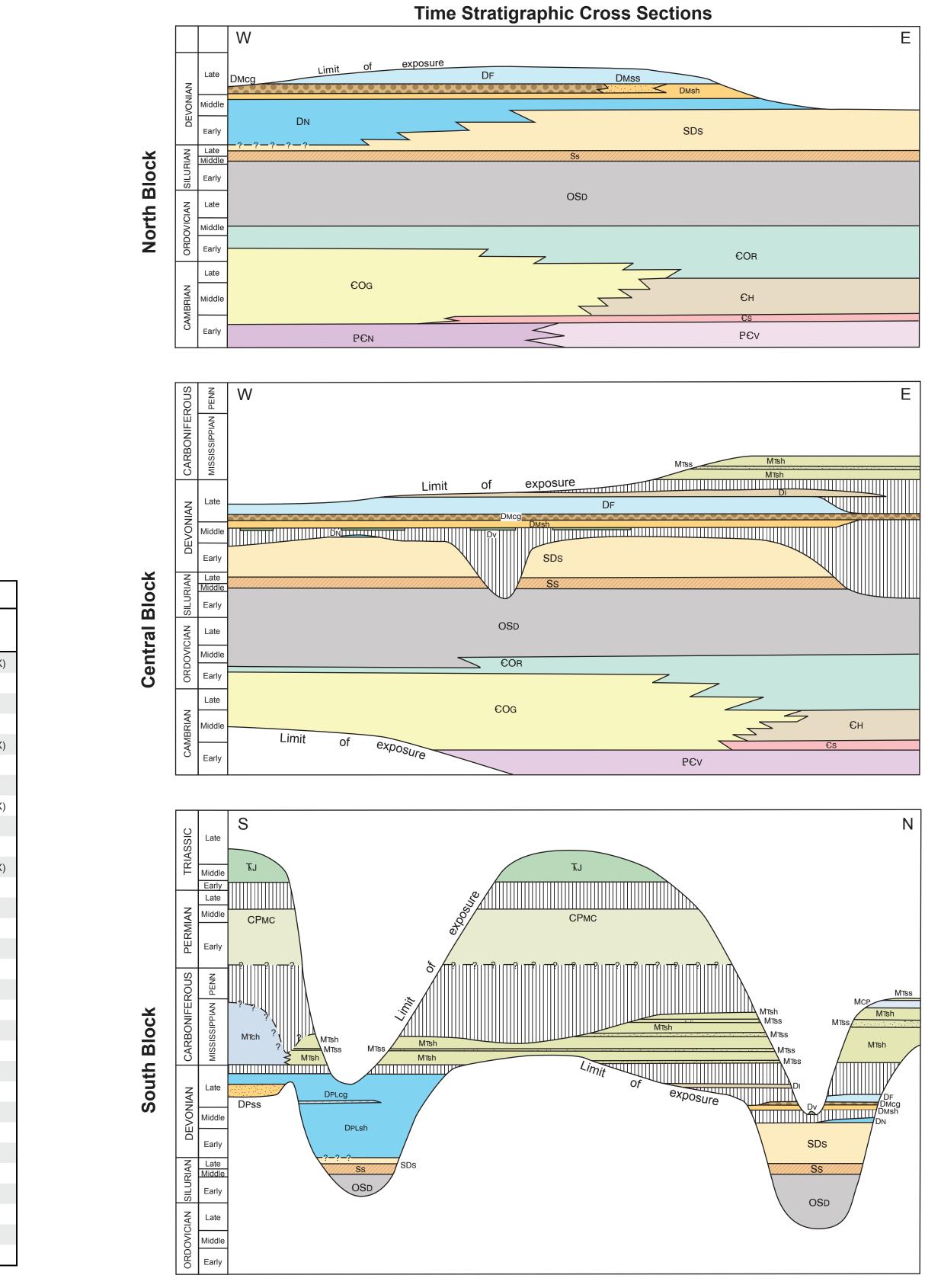
				Yukon Mine	eral Occurrences*	
Occurrence #	Map Symbol	Primary Name	Other Name	Status	Primary Commodity	Yukon Mineral Deposit Profile (YGS OF 2005-5)
105O 001		Tom		deposit	lead, zinc, silver, barite	sedimentary exhalative Zn-Pb-Ag (SEDE)
105O 002		Mactung		deposit	tungsten	W skarn
105O 003		Jeff		unknown	molybdenum	Porphyry Mo (Low F-Type)
105O 004	\diamond	Alp		showing	gold	Au-quartz veins
105O 011	\diamond	Ben		showing	zinc	sedimentary exhalative Zn-Pb-Ag (SEDE>
105O 013	\diamond	Racicot		deposit	barite	sediment-hosted barite
105O 016	\diamond	Standard		showing	lead, zinc, silver	polymetallic veins Ag-Pb-Zn+/-Au
105O 019	\diamond	Jason; Main,	South, End	deposit	lead, zinc, silver, barite	sedimentary exhalative Zn-Pb-Ag (SEDE>
105O 020	\diamond	Samovar	Теа	deposit	barite	sediment-hosted barite
105O 021	\diamond	Walt	Cathy	deposit	barite, zinc	sediment-hosted barite
105O 024	\diamond	Nidd		drilled prospect	barite, zinc	sedimentary exhalative Zn-Pb-Ag (SEDE)
105O 025	ightarrow	Bremner		drilled prospect		unknown
105O 027	\diamond	Gary	Gargantua	deposit	barite	sediment-hosted barite
105O 028	\diamond	Fetch		drilled prospect	barite	sediment-hosted barite
105O 032	\diamond	Neve	Brick	drilled prospect	gold, silver	Au-quartz veins
105O 033	\diamond	Kelvin	Bord	prospect	gold	polymetallic veins Ag-Pb-Zn+/-Au
105O 035	\bigcirc	Amax		unknown		unknown
105O 036	\bigcirc	Fan		showing		unknown
105O 042	\bigcirc	Fal		unknown		unknown
105O 043		Sim		showing	tungsten	W skarn
105O 045	\diamond	Stroshein		showing	barite	sediment-hosted barite
105O 046	\diamond	Minorco		showing	barite	sediment-hosted barite
105O 047	\bigcirc	Bbob		unknown		unknown
105O 048	\diamond	Nuke		showing	gold, lead, silver	polymetallic veins Ag-Pb-Zn+/-Au
105O 052	\diamond	Bailes		prospect		sediment-hosted barite
105P 001	\bigcirc	Mehitabel		drilled prospect	gold	Cu skarn
105O 022	\diamond	Tryala		drilled prospect	barite, zinc	sediment-hosted barite
105J 023	\diamond	Pete		drilled prospect	barite	sediment-hosted barite
105O 060	ightarrow	Hasten		drilled prospect		unknown
105O 061	ightarrow	Fun		unknown		unknown

GSC CURATION		
NUMBER	COLLECTOR	AUTHOR**
C-089946	Abbott, J.G.	M.J. Orchard
C-102271	Abbott, J.G.	M.J. Orchard
C-102272	Abbott, J.G.	M.J. Orchard
C-087569	Gordey, S.P.	M.J. Orchard
C-087567 C-087566	Gordey, S.P.	M.J. Orchard
C-089931	Gordey, S.P. Abbott, J.G.	M.J. Orchard M.J. Orchard
C-108152	Abbott, J.G.	M.J. Orchard
C-108154	Abbott, J.G.	M.J. Orchard
C-089975	Abbott, J.G.	M.J. Orchard
C-086426	Jonasson, I.R.	M.J. Orchard
C-108153	Abbott, J.G.	M.J. Orchard
C-089930	Abbott, J.G.	M.J. Orchard
C-089932	Abbott, J.G.	M.J. Orchard
C-087563	Abbott, J.G.	M.J. Orchard
C-089939	Abbott, J.G.	M.J. Orchard
C-089929	Abbott, J.G.	M.J. Orchard
C-089933	Abbott, J.G.	M.J. Orchard
C-087685	Abbott, J.G.	M.J. Orchard
C-087560	Abbott, J.G.	M.J. Orchard
C-102342	Abbott, J.G.	M.J. Orchard
C-086425	Jonasson, I.R.	M.J. Orchard
C-176309	Turner, R.	M.J. Orchard
C-087557	Abbott, J.G.	M.J. Orchard
C-102321	Abbott, J.G.	M.J. Orchard
C-102281	Abbott, J.G.	M.J. Orchard
C-102340	Abbott, J.G.	M.J. Orchard
C-118030	McClay, K.M.	M.J. Orchard
C-087698	Dawson, K.M.	M.J. Orchard
C-102332	Abbott, J.G.	M.J. Orchard
C-089936	Abbott, J.G.	M.J. Orchard
C-102320	Abbott, J.G.	M.J. Orchard
C-087690	Abbott, J.G.	M.J. Orchard
C-089951	Abbott, J.G.	M.J. Orchard
C-089962	Abbott, J.G.	M.J. Orchard
C-089976	Abbott, J.G.	M.J. Orchard
C-087692	Dawson, K.M.	M.J. Orchard
C-087538	Abbott, J.G.	M.J. Orchard
C-089972	Abbott, J.G.	M.J. Orchard
C-089974	Abbott, J.G.	M.J. Orchard
C-087685	Abbott, J.G.	M.J. Orchard
C-102266	Abbott, J.G.	M.J. Orchard
C-102309	Abbott, J.G.	M.J. Orchard
C-087689	Abbott, J.G.	M.J. Orchard
C-087688	Abbott, J.G.	M.J. Orchard
C-089964	Abbott, J.G.	M.J. Orchard
C-087687	Abbott, J.G.	M.J. Orchard
C-087554	Abbott, J.G.	M.J. Orchard
C-108165	Abbott, J.G.	M.J. Orchard
C-102347	Abbott, J.G.	M.J. Orchard
C-102313	Abbott, J.G.	M.J. Orchard
C-108155	Abbott, J.G.	M.J. Orchard
C-102287	Abbott, J.G.	M.J. Orchard
C-102277	Abbott, J.G.	M.J. Orchard
C-089901	Abbott, J.G.	B.S. Norford
C-089906	Abbott, J.G.	B.S. Norford
C-089989	Abbott, J.G.	B.S. Norford
C-089995	Abbott, J.G.	B.S. Norford
C-108101	Abbott, J.G.	B.S. Norford
C-089998	Abbott, J.G.	B.S. Norford
C-102351	Abbott, J.G.	M.J. Orchard
C-089988	Abbott, J.G.	B.S. Norford
C-089958	Abbott, J.G.	B.S. Norford
C-089959	Abbott, J.G.	B.S. Norford
C-108108	Abbott, J.G.	B.S. Norford
C-89919	Abbott, J.G.	B.S. Norford
C-089909	Abbott, J.G.	B.S. Norford
C-89919	Abbott, J.G.	B.S. Norford
C-089908	Abbott, J.G.	B.S. Norford
C-089903	Abbott, J.G.	B.S. Norford
C-089986	Abbott, J.G.	B.S. Norford
C-089971	Abbott, J.G.	M.J. Orchard
C-089902	Abbott, J.G.	B.S. Norford
C-089904	Abbott, J.G.	B.S. Norford
C-089907	Abbott, J.G.	B.S. Norford
C-089911	Abbott, J.G.	B.S. Norford
C-089912	Abbott, J.G.	B.S. Norford
C-089913	Abbott, J.G.	B.S. Norford
C-108103	Abbott, J.G.	B.S. Norford
C-089985	Abbott, J.G.	B.S. Norford
C-089992	Abbott, J.G.	B.S. Norford
C-089994	Abbott, J.G.	B.S. Norford
C-089993	Abbott, J.G.	B.S. Norford
C-089997	Abbott, J.G.	B.S. Norford
C-108194	Abbott, J.G.	B.S. Norford
C-089944	Abbott, J.G.	B.S. Norford
C-108197	Abbott, J.G.	B.S. Norford
C-89917	Abbott J.G.	B.S. Norford
C-108104	Abbott, J.G.	B.S. Norford
C-089910	Abbott, J.G.	B.S. Norford
C-089960	Abbott, J.G.	B.S. Norford
C-089957	Abbott, J.G.	B.S. Norford
C-089983	Abbott, J.G.	B.S. Norford
C-089996	Abbott, J.G.	B.S. Norford
C-089984	Abbott, J.G.	B.S. Norford
C-108102	Abbott, J.G.	B.S. Norford
C-102267	Abbott, J.G.	M.J. Orchard
C-102276	Abbott, J.G.	M.J. Orchard
C-102278	Abbott, J.G.	M.J. Orchard
C-102269	Abbott, J.G.	M.J. Orchard
C-089977	Abbott, J.G.	M.J. Orchard
C-102290	Abbott, J.G.	M.J. Orchard
C-102311	Abbott, J.G.	M.J. Orchard
C-089990	Abbott, J.G.	B.S. Norford
C-089968	Abbott, J.G.	M.J. Orchard
C-102303	Abbott, J.G.	M.J. Orchard
C-089982	Abbott, J.G.	B.S. Norford
C-089991	Abbott, J.G.	B.S. Norford
C-089916	Abbott, J.G.	B.S. Norford
C-089954	Abbott, J.G.	W.H. Fritz
C-108105	Abbott, J.G.	W.H. Fritz
C-108106	Abbott, J.G.	W.H. Fritz
C-089953	Abbott, J.G.	W.H. Fritz

MOUNT CHRISTIE FORMATION AND TSICHU GROUP CHERT FACIES undivided CPU

MISSISSI	IPPIAN
	TSICHU (CHERT

Mīch	TSICHU GROUP CHERT FACIES: well bedded, orange to brown weathering, black chert and dark grey shale. Contains the SAMOVAR barite occurrence and nearby lenses of limestone with barite
UPPER D	EVONIAN
DPLsh	EARN GROUP PORTRAIT LAKE FORMATION: SHALE FACIES: talus-forming, silver-blue weathering, platy, siliceous shale, minor chert


PREVOST FORMATION: CONGLOMERATE FACIES: dark grey, resistant chert-pebble conglomerate DPcg SANDSTONE FACIES: brown to rusty weathering, dark grey siltstone, silty shale, chert sandstone, granular sandstone DPss

LOWER (?) TO UPPER DEVONIAN
DPLsh	EARN GROUP PORTRAIT LAKE FORM SHALE FACIES: talus-fo
DPLcg	CONGLOMERATE FACI The conglomerate forms

SYMBOLS

51	IVIDULS
Geological contact; defined, approximate, inferred or covered	
Fault, movement not known; defined, approximate, inferred or covered	
Normal fault (symbol on hanging wall side): defined, approximate, inferred or covered	•
Strike slip fault; defined, approximate, inferred or covered	⊕ ⊙
Thrust fault (symbol on hanging wall side): defined, approximate, inferred or covered	
Anticline: upright, overturned	× ×
Syncline: upright, overturned	×
Bedding: upright, vertical, overturned	<u>→</u> + →
Axial plane cleavage; inclined, vertical	
Fold axis	<i>▶</i>
Fossil locality	Ē
Limit of outcrop	
Limit of mapping	• • • • •
Landslide	
Bedded barite +/- limestone	ba
lce/glacier	
Road, trail	
Border, Yukon-Northwest Territories	

CAMBRIA	N TO ORDOVICIAN
EOG	GULL LAKE FORMAT shale with variable an limestone conglomera
NEOPROT	EROZOIC TO LOWE
PEN	HYLAND GROUP NARCHILLA FORMA sandstone

105P/5

105P/4

LEGE				North and Northwest
CR	RETACEOU	JS resistant, blocky, grey weathering, porphyritic to e biotite granite. Metamorphic aureoles around the		
TR	RIASSIC	JONES LAKE FORMATION: recessive, dull brow		
CA		calcareous, micaceous sandstone and shale		
		MOUNT CHRISTIE FORMATION: resistant, dark greenish grey siliceous shale and recessive gree		nering, interbedded
		TSICHU GROUP CARIBOU PASS FORMATION: grey weathering, minor quartz arenite and shale	thick-bedded to mas	ssive bioclastic limestone;
	MTss	SANDSTONE FACIES: dark grey weathering, ma medium-bedded sandstone and quartz arenite w stacked, discontinuous lenses within the shale fa	ith shale interbeds.T	he sandstone facies forms
٦	MTsh	above the Caribou Pass Fm <i>SHALE FACIES</i> : recessive brown, blue-brown ar siliceous shale with minor sandstone and quartz blue weathering siliceous shale probably equivale	arenite. Locally inclu	ides a basal interval of
		equivale	UPPER DE	
			DI	EARN GROUP ITSI FORMATION: resistant, brown weathering, thick-bedded, parallel laminated and ripple cross-laminated micaceous sandstone, siltstone and shale. In southwest 1050/1 and southwest 1050/2, brown weathering shale, siltstone and minor sandstone
			DF	PORTRAIT LAKE FORMATION FULLER LAKE MEMBER: talus-forming silver-blue weathering, platy, siliceous shale, minor chert. Thin beds of coarse-grained limestone and platy, grey weathering barite in beds less than
				1 m thick occur intermittently near the top of the unit
AN RMATION undivided: -forming silver-blue w		aty siliceous shale minor chort		D UPPER DEVONIAN MACMILLAN PASS MEMBER <i>CONGLOMERATE FACIES:</i> resistant grey weathering, massive chert-pebble conglomerate
<i>CIES:</i> black to dark b	olue weatheri	aty, siliceous shale, minor chert ing massive chert-pebble conglomerate. Portrait Lake shale facies	DMcg	with minor sandstone and grit. The conglomerate occurs mainly as a continuous horizon near the top of the MPM but also forms lenses within the shale facies PORTRAIT LAKE FORMATION
	-		DMsb	SANDSTONE FACIES: brown weathering, coarse to medium-grained sandstone, siltstone with lesser chert-pebble conglomerate and shale PORTRAIT LAKE FORMATION SHALE FACIES: brown weathering, thinky leminated "pipetriped" gray shale and siltetone with
				SHALE FACIES: brown weathering, thinly laminated "pinstriped" grey shale and siltstone with lesser chert and quartz sandstone, grit and minor chert conglomerate
			LOWER TO	MIDDLE DEVONIAN NIDDERY LAKE MEMBER: black to dark blue weathering, thin-bedded chert, cherty argillite, and siliceous shale. North of the Macmillan fault zone, light grey bioclastic limestone forms beds up to several meters thick in upper-most exposures of the unit. Barite and limestone lenses up to 30 m thick are widespread and may represent one or more tectonically dismembered horizons
	DDLE DEV	MACMILLAN PASS VOLCANICS: Dv; orange we volcaniclastic rocks and minor related sedimental	ry rocks. Di; blocky, r	
		weathering, coarse-grained gabbro sills and dikes		
С	DSDu	SAPPER, STEEL and DUO LAKE FORMATIONS	S undivided	
		IRIAN TO MIDDLE DEVONIAN SAPPER FORMATION: recessive, buff to tan we black shale. Locally includes lenses of massive of		
	DDLE TO I	black shale. Locally includes lenses of massive g	ரச்த யாestone in 105	
	Ss	STEEL FORMATION: orange to green weatherin and mudstone. Thick beds of orange weathering		
	OWER ORE	DOVICIAN TO MIDDLE SILURIAN DUO LAKE FORMATION: brown weathering, me by silver to dark blue weathering, thin-bedded, bl to chert equivalent to the Elmer Creek Formation zone	ack chert and siliceo	ous shale. Grades westward
	PPER CAM	IBRIAN TO MIDDLE ORDOVICIAN RABBITKETTLE FORMATION: buff to grey weat limestone and grey shale interbeds. Northwester		
		bedded grey and orange weathering limestone		HESS RIVER FORMATION: blue-brown weathering, siliceous black shale with minor limestone
		ninated bioturbated grey and olive green	Сн LOWER TO	and limestone conglomerate
		stone, grey limestone and minor ommon in the Central Block	£s	SEKWI FORMATION: orange, tan and grey weathering, massive to thin-bedded, grey limestone, oolitic limestone, limestone conglomerate, and grey and green shale
TION: maroon, green	and brown w	veathering shale, quartz grit and	NEOPROTE P€v	EROZOIC TO LOWER CAMBRIAN <i>VAMPIRE FORMATION:</i> resistant, dark brown and grey weathering, grey shale, siltstone and minor quartz arenite. Quartz arenite comprises up to 10% of eastern-most exposures. Widely and irregularly spaced quartz sandstone laminae characterize western exposures
				NOTES
		made only to the stratigraphy of the Gull Lake, F Strata as young as Lower Ordovician are includ	Portrait Lake, and Mo	Formation. This interpretation conforms to that of Cecile in the adjacent area to the north, but differs
		markedly from that of Gordey (1993) to the sout Gull Lake Formation. In the Macmillan Pass are parts of the Rabbitkettle Formation.	h, in the Nahanni ma a, the unconformity i	ap area where the Upper Cambrian and Ordovician Rabbitkettle Formation unconformably overlies th is not evident and the Gull Lake Formation is considered to be in part laterally equivalent to the lower
		consists of a lower interval of blue weathering si and an upper blue weathering siliceous shale in bers of the Portrait Lake Formation. The brown stratigraphic relationships with one another and DMss and DMcg, respectively). The Prevost For Prevost Formation unnamed chert pebble congl	iliceous shale overlat terval. The lower and fine clastic facies tog represent a coheren ormation consists of a omerate forms lense	an Pass member (MPM) of Gordey (1993) is redefined. The type section of the Portrait Lake Formation by brown weathering fine clastic rocks, a middle conglomerate unit (Macmillan Pass Member) dupper siliceous shale units are here named respectively, the Niddery Lake and Fuller Lake mem- gether with a sandstone facies located elsewhere and the chert pebble conglomerate have complex not turbidite fan complex. The Macmillan Pass Member here includes all of these facies (units DMsh, a separate turbidite complex that is younger than the MPM. In the area between the MPM and es within siliceous shale of the Portrait Lake Formation and relationships to the MPM and Prevost Lake Formation cannot be subdivided.
			ert in the Mount Chri n fossils and cannot u	istie Formation and interpreted it to unconformably overlie the Tsichu Group. Here the Mississippian unconformably overly the Tsichu Group of the same age. The Mississippian chert is therefore conside
				REFERENCES
		In: Mineral deposits of the northern Canadian C	ordillera, Yukon-nort	tting of Devonian stratiform sediment-hosted Zn, Pb, Ba deposits, Macmillan Fold Belt, Yukon. heastern British Columbia, Geological Survey of Canada Open File 2169, p. 99-136.
		Columbia, Geological Survey of Canada Open F Cameron, R. S., 1992. Assessment report 0930 Canada, Ltd., 124 p.	⁻ile 2169, p. 243-257 024 on the 1991 dian	nond drill program, Jason property, Macmillan Pass, Yukon Canada. Phelps Dodge Corporation of
		553, 120 p. Goodfellow, W.D. and Rhodes, D., 1991. Geolog	gy, geochemistry and	area, east-central Yukon and adjacent Northwest Territories. Geological Survey of Canada Bulletin d origin of the Tom stratiform Zn-Pb-Ag-barite deposits. <i>In</i> : Mineral deposits of the northern cal Survey of Canada Open File 2169, p. 177-241.
		Gordey, S.P., 1993. Evolution of the northern Co 428, 214 p. Norford, B.S., Orchard, M.J., Norris, A.W., Uyen	ordilleran miogeoclin	cal Survey of Canada Open File 2169, p. 177-241. e, Nahanni map area (105I), Yukon and Northwest Territories. Geological Survey of Canda Memoir Abbott, J.G., Jackson, D.E., Fritz, W.H., Hofmann, H.J., Nowlan, G.S, and Tipnis, R.S., 1993. area, N.T.S. 105O and immediately adjacent map-areas. Geological Survey of Canada, Open File
		2682, 89 p. Rhodes, D., 1992. 1991 assessment report 093	3015, Nidd property, arite deposit, Selwyn	Mayo Mining District, Yukon Territory. Cominco Limited, 57 p. Basin, Canada (NTS 1050/1). <i>In</i> : Mineral deposits of the northern Canadian Cordillera, Yukon-
				KNOWLEDGEMENTS
		are too numerous to mention here. In particular, Nahanni map areas. Craig Hart, Kate Grapes, a Geology near the Jason and Nidd deposits was	Bob Turner, Mike Co and Larry Ladue (dec compiled from asses	ssment reports by Cameron (1992) and Rhodes (1992). An unpublished detailed map of the Neve
		occurrence, generously provided by Paul Metca	lfe and Colorado Re	
		(1:50 000 scale). Yukon Geological Survey Geo	science Map 2013-1	
		Yukon Y1A 2B5. Email geosales@gov.yk.ca.	ukon Geological Surv	velcomed by the Yukon Geological Survey. vey, Energy Mines and Resouces, Government of Yukon, 102 - 300 Main St., Whitehorse, nloaded free of charge from the Yukon Geological Survey website http//www.geology.gov.yk.ca.
			E	Yukon Geological Survey nergy, Mines and Resources
			G k geology o adjace	Government of Yukon Geoscience Map 2013 - 1 f the Macmillan Pass area, Yukon and ent Northwest Territories nd parts of 1050/7, 8 and 105P/4, 5) 1:50 000 scale (Sheet 2 of 2)

by Grant Abbott

Energy, Mines and Resources