

Cu \pm Ag QUARTZ VEINS

by David V. Lefebure ${ }^{1}$
Modified for Yukon by A. Fonseca Refer to preface for general references and formatting significance.
May 30, 2005

IDENTIFICATION

SYNONYMS: Churchill-type vein copper, vein copper
COMMODITY (BYPRODUCTS): $\mathrm{Cu}(\mathrm{Ag}$, rarely Au$)$.
EXAMPLES: (British Columbia - Canada/International): Davis-Keays (094K012, 050), Churchill Copper
(Magnum, 094K003), Bull River (082GNW002), Copper Road (092K060), Copper Star (092HNE036), Copper Standard (092HNE079), Rainbow (093L044); Bruce Mines and Crownbridge (Ontario, Canada), Blue Wing and Seaboard (North Carolina, USA), Matahambre (Cuba), Inyati (Zimbabwe), Copper Hills (Western Australia), Tocopilla area (Chile), Burgas district (Bulgaria), Butte (Montana, USA), Rosario (Chile).

GEOLOGICAL CHARACTERISTICS

CAPSULE DESCRIPTION: Quartz-carbonate veins containing patches and disseminations of chalcopyrite with bornite, tetrahedrite, covellite and pyrite. These veins typically crosscut clastic sedimentary or volcanic sequences, however, there are also Cu quartz veins related to porphyry Cu systems and associated with felsic to intermediate intrusions.

TECTONIC SETTINGS: A diversity of tectonic settings reflecting the wide variety of hostrocks including extensional sedimentary basins (often Proterozoic) and volcanic sequences associated with rifting or subduction-related continental and island arc settings.

DEPOSITIONAL ENVIRONMENT / GEOLOGICAL SETTING: Veins emplaced along faults; they commonly postdate major deformation and metamorphism. The veins related to felsic intrusions form adjacent to, and are contemporaneous with, mesozonal stocks.

AGE OF MINERALIZATION: Any age; can be much younger than host rocks. In Yukon, most prospects are associated with Mesozoic intrusions.

HOST/ASSOCIATED ROCK TYPES: $\mathrm{Cu} \pm$ Ag quartz veins occur in virtually any rocks although the most common hosts are clastic metasediments and mafic volcanic sequences. Mafic dykes and sills are commonly spatially associated with metasediment-hosted veins. These veins are also found within and adjacent to felsic to intermediate intrusions.

DEPOSIT FORM: The deposits form simple to complicated veins and vein sets which typically follow high-angle faults which may be associated with major fold sets. Single veins vary in thickness from centimetres up to tens of metres. Major vein systems extend hundreds of metres along strike and down dip. In some exceptional cases the veins extend more than a kilometre along the maximum dimension.

[^0]TEXTURE/STRUCTURE: Sulphide minerals are irregularly distributed as patches and disseminations. Vein breccias and stockworks are associated with some deposits.

ORE MINERALOGY (Principal and subordinate):

- Metasedimentary and volcanic-hosted: Chalcopyrite, pyrite, chalcocite; bornite, tetrahedrite, argentite, pyrrhotite, covellite, galena.
- Intrusion-related: Chalcopyrite, bornite, chalcocite, pyrite, pyrrhotite; enargite, tetrahedrite-tennantite, bismuthinite, molybdenite, sphalerite, native gold and electrum.

GANGUE MINERALOGY (Principal and subordinate): Quartz and carbonate (calcite, dolomite, ankerite or siderite); hematite, specularite, barite.

ALTERATION MINERALOGY: Wallrocks are typically altered for distances of centimetres to tens of metres outwards from the veins.

- Metasediment and volcanic-hosted: The metasedimentary rocks display carbonatization and silicification. At the Churchill and Davis-Keays deposits, decalcification of limy rocks and zones of disseminated pyrite in roughly stratabound zones are reported. The volcanic hostrocks exhibit abundant epidote with associated calcite and chlorite.
- Intrusion-related: Sericitization, in places with clay alteration and chloritization.

WEATHERING: Malachite or azurite staining; silicified linear "ridges".
ORE CONTROLS: Veins and associated dykes follow faults. Ore shoots commonly localized along dilational bends within veins. Sulphide minerals may occur preferentially in parts of veins which crosscut carbonate or other favourable lithologies. Intersections of veins are an important locus for ore.

GENETIC MODEL: The metasediment and volcanic-hosted veins are associated with major faults related to crustal extension which control the ascent of hydrothermal fluids to suitable sites for deposition of metals. The fluids are believed to be derived from mafic intrusions which are also the source for compositionally similar dikes and sills associated with the veins. Intrusion-related veins, like Butte in Montana and Rosario in Chile, are clearly associated with high-level felsic to intermediate intrusions hosting porphyry Cu deposits or prospects.

ASSOCIATED DEPOSIT TYPES:

- Metasediment and volcanic-hosted: Possibly related to sediment-hosted Cu (E04) and basaltic Cu (D03).
- Intrusion-related: High sulphidation (H04), copper skarns (K01), porphyries (L01?, L03, L04) and polymetallic veins (IO5).

COMMENTS: $\mathrm{Cu} \pm \mathrm{Ag}$ quartz veins are common in copper metallogenetic provinces; they commonly are more important as indicators of the presence of other types of copper deposits. Yukon has no known $\mathbf{C u}+/-A g$ quartz vein type deposits, but this type of mineralization occurs associated with other deposit types.

EXPLORATION GUIDES

GEOCHEMICAL SIGNATURE: High Cu and Ag in regional silt samples. The Churchill-type deposits appear to have very limited wallrock dispersion of pathfinder elements; however, alteration halos of silica and carbonate addition or depletion might prove useful. Porphyry-related veins exhibit many of the geochemical signatures of porphyry copper systems.

GEOPHYSICAL SIGNATURE: Large veins with conductive massive sulphides may show up as electromagnetic conductors, particularly on ground surveys. Associated structures may be defined by ground magnetic, very low frequency or electromagnetic surveys. Airborne surveys may identify prospective major structures.

OTHER EXPLORATION GUIDES: Commonly camp-scale or regional structural controls define a dominant orientation for veins.

ECONOMIC FACTORS

GRADE AND TONNAGE: Typically range from 10000 to 1000000 t with grades of 1 to $4 \% \mathrm{Cu}$, nil to $300 \mathrm{~g} / \mathrm{t}$ Ag. The Churchill deposit has reserves of 90000 t of $3 \% \mathrm{Cu}$ and produced 501019 t grading $3 \% \mathrm{Cu}$ and the Davis-Keays deposit has reserves of 1119089 t grading $3.43 \% \mathrm{Cu}$. The Big Bull deposit has reserves of 732000 t grading $1.94 \% \mathrm{Cu}$. The intrusion-related veins range up to millions of tonnes with grades of up to $6 \% \mathrm{Cu}$. The Butte veins in Montana have produced several hundred million tonnes of ore with much of this production from open-pit operations.

ECONOMIC LIMITATIONS: Currently only the large and/or high-grade veins (usually associated with porphyry deposits) are economically attractive.

IMPORTANCE: From pre-historic times until the early 1900s, high-grade copper veins were an important source of this metal. With hand sorting and labour-intensive mining they represented very attractive deposits.

ACKNOWLEDGEMENTS

This deposit profile represents the results of a literature review. It benefited from comments by David Sinclair and Vic Preto.

SELECTED BIBLIOGRPAHY

Benes, K. and Hanus, V., 1967. Structural Control and History of Origin of Hydrothermal Metallogeny in Western Cuba; Mineralium Deposita, Volume 2, pages 318-333.
Carr, J.M. (1971): Geology of the Churchill Copper Deposit; The Canadian Institute of Mining and Metallurgy, Bulletin, Volume 64, pages 50-54.
Hammer, D.F. and Peterson, D.W, 1968. Geology of the Magma Mine Arizona; in Ore Deposits of the United States 1933-1967, Ridge, J.D., Editor, American Institute of Mining Engineers, New York, pages 1282-1310.
Kirkham, R.D., 1984. Vein Copper; in Canadian Mineral Deposit Types: A Geological Synopsis, Eckstrand, O.R., Editor, Geological Survey of Canada, Economic Geology Report 36, page 65.

Kirkham, R.D. and Sinclair, W.D., in press. Vein Copper; in Geology of Canadian Mineral Deposit Types, Eckstrand, O.R., Sinclair, W.D. and Thorpe, R.I., (Editors), Geological Survey of Canada, Geology of Canada, No. 8, pages 383-392.
Kish, S.A. (1989): Post-Acadian Metasomatic Origin for Copper-bearing Vein Deposits of the Virgilina District, North Carolina and Virginia; Economic Geology, Volume 84, pages 1903-1920.
Laznicka, P., 1986. Empirical Metallogeny, Depositional Environments, Lithologic Associations and Metallic Ores, Volume 1, Phanerozoic Environments, Associations and Deposits; Elsevier, New York, 1758 pages.
Nockleberg, W.J., Bundtzen, T.K., Berg, H.C., Brew, D.A., Grybeck, D., Robinson, M.S., Smith, T.E. and Yeend, W., 1987. Significant Metalliferous Lode Deposits and Placer Districts of Alaska, U.S. Geological Survey, Bulletin 1786, 104 pages.
Pearson, W.N. (1979. Copper Metallogeny, North Shore of Lake Huron, Ontario; in Current Research, Part A, Geological Survey of Canada, Paper 79-1A, pages 289-304.
Pearson, W.N., Bretzlaff, R.E. and Carrière, J.J., 1985. Copper Deposits and Occurrences in the North Shore Region of Lake Huron, Ontario; Geological Survey of Canada, Paper 83-28, 34 pages.

Preto, V.A., 1972. Lode Copper Deposits of the Racing River - Gataga River Area; in Geology, Exploration and Mining in British Columbia 1971, B. C. Ministry of Energy, Mines and Petroleum Resources, pages 75-107.
Roberts, A.E., 1973. The Geological Setting of Copper Orebodies at Inyati Mine, Headlans District, Rhodesia; Geological Society of South Africa, Special Publication 3, , pages 189-196.

I06-Cu+/-Ag quartz veins - BC deposits

Deposit	Country	tonnes	Au (g/t)	Ag (g/t)	Cu	Pb	Zn
Dusty Macs	CNBC	93392	6.49	112.99	0.00	0.00	0.00
Baker	CNBC	120449	17.87	269.67	0.00	0.00	0.00
Mets	CNBC	144000	11.30	0.00	0.00	0.00	0.00
Vault	CNBC	152000	14.00	0.00	0.00	0.00	0.00
Gold Wedge	CNBC	329000	24.90	201.20	0.00	0.00	0.00
Black Dome	CNBC	368343	21.48	78.86	0.00	0.00	0.00
Golden Stranger	CNBC	500000	2.70	0.00	0.00	0.00	0.00
Lawyer	CNBC	528337	8.42	168.29	0.00	0.00	0.00
New Moon	CNBC	609900	0.99	15.43	0.00	0.00	0.00
Shasta	CNBC	1071033	4.09	217.50	0.00	0.00	0.00
Sulphur	CNBC	1437000	11.50	783.60	0.00	0.00	0.00
Silba	CNBC	7065528	9.03	188.92	0.03	0.40	0.14
Cinola	CNBC	23800000	2.47	3.10	0.00	0.00	0.00

Yukon MINFILE

MINFILE	NAMES
115A 031	JOHOBO, JAC, MOOSE, ROY, JEAN
105J 003	PIKE
105C 045	TES
105D 011	KNOB HILL
105D 067	MCCLINTOCK, ENNIS HILL
105K 112	STARLIGHT
115A 001	JACKPOT, PET, KEM, KAY, ALDER HILL, TATS, LILL
115F 056	RABBIT
115I 020	COIN
116A 014	AUSTON
116B 094	O'BRIEN, AJ
105D 064	GALCONDA
105F 018	KOPINEC
105F 067	FURY
106D 045	ZULPS
115A 006	MUSH
115B 013	JENNIFER
115I 010	BONANZA CREEK, WILLIAMS \& MERRICE CREEKS
115I 019	BRADENS CANYON
115O 070	BUM
116A 027	IDA
095E 051	STOCKWELL
105C 018	MT. GRANT
105C 024	ROSY
105D 003	MILLET
105D 014	COLLEGE GREEN
105D 034	CROMWELL
105D 089	NAHARNIAK
105D 113	MIDGETT
105D 182	RADELET
105D 195	MIK
105D 196	MIKE
105E 014	SEMENOF
105E 016	CASSIER BAR
105F 059	HOGG
105G 057	RIS
105G 065	INGS
105H 013	FRANCES, MINK, LUCKY, SU, NIPRO, JOE
105H 015	DOUG, EVA
105K 003	RAGS, KO
105L 065	GLAD
105N 007	ETZEL

STATUS
OPEN PIT PAST PRODUCER
DEPOSIT
DRILLED PROSPECT
SHOWING

MINFILE	NAMES	StATUS
105N 008	CARTIER	SHOWING
105N 011	AUREOLE	SHOWING
106C 002	SALUTATION	SHOWING
106C 008	BIBBER	SHOWING
106C 011	MAMMOTH	SHOWING
106C 094	CAROL	SHOWING
106D 041	ELLIOT RIDGE	SHOWING
106D 047	GRAY	SHOWING
106D 048	NEW JERSEY	SHOWING
106D 053	SLATS	SHOWING
106D 060	DRESEN	SHOWING
106D 071	LOUIE	SHOWING
106D 089	ZELON	SHOWING
115A 005	PHOTO	SHOWING
115A 008	FENTON	SHOWING
115A 015	BELOUD, ELLEN, DORTHY ANN, SKID, EARLY	SHOWING
115F 038	LIBERTY	SHOWING
115F 061	KLETSAN	SHOWING
1151009	MERRICE, HOMESTAKE	SHOWING
1151013	HOOCHEKOO	SHOWING
1151051	CASTLE	SHOWING
1151077	CROSSING	SHOWING
1151095	BLUFF	SHOWING
115K 083	RIP, ELDORADO, BEAVER, BA	SHOWING
115K 085	FAIRCLOUGH	SHOWING
1150151	AMANDA	SHOWING
116A 002	WORM	SHOWING
116A 003	RAMA	SHOWING
116A 004	MATTSON	SHOWING
116A 005	SOUP	SHOWING
116A 034	HAWLEY	SHOWING
116A 035	BRIDEN	SHOWING
116B 064	FIFTEEN MILE, JOE, LUCK, CHAMOX, GEM, MOVIE	SHOWING
116B 068	SHAND, SHAND LODE	SHOWING
105L 066	FRENCHMAN	ANOMALY
105 N 005	JOY	ANOMALY
115B 001	PLUG	ANOMALY
105C 042	THOM	UNKNOWN
105K 071	COWARD, TAY, COW	UNKNOWN
115G 102	TREMBLAY	UNKNOWN

[^0]: ${ }^{1}$ British Columbia Geological Survey, Victoria, B.C., Canada

