

PORPHYRY Cu $\pm \mathrm{Mo} \pm \mathrm{Au}$

by Andre Panteleyev ${ }^{1}$
 Modified for Yukon by A. Fonseca
 Refer to preface for general references and formatting significance.

May 30, 2005

IDENTIFICATION

SYNONYM: Calcalkaline porphyry $\mathrm{Cu}, \mathrm{Cu}-\mathrm{Mo}, \mathrm{Cu}-\mathrm{Au}$.
COMMODITIES (BYPRODUCTS): Cu. Mo and Au are generally present but quantities range from insufficient for economic recovery to major ore constituents. Minor Ag in most deposits; rare recovery of Re from Island Copper mine.

EXAMPLES (Yukon): Casino (115J 028), Revenue (115J 042), Nucleus (115I 107), Cash (115I 103), Stu (115I 011);
(British Columbia - Canada/International):

- Volcanic type deposits ($\mathrm{Cu}+\mathrm{Au} \pm \mathrm{Mo}$) - Fish Lake (092O041), Kemess (094E021,094), Hushamu (EXPO, 092L240), Red Dog (092L200), Poison Mountain (092O046), Bell (093M001), Morrison (093M007), Island Copper (092L158); Dos Pobres (USA); Far Southeast (Lepanto/Mankayan), Dizon, Guianaong, Taysan and Santo Thomas II (Philippines), Frieda River and Panguna (Papua New Guinea).
- Classic deposits ($\mathrm{Cu}+\mathrm{Mo} \pm \mathrm{Au}$) - Brenda (092HNE047), Berg (093E046), Huckleberrry (093E037), Schaft Creek (104G015); Casino (Yukon, Canada), Inspiration, Morenci, Ray, Sierrita-Experanza, Twin Buttes, Kalamazoo and Santa Rita (Arizona, USA), Bingham (Utah, USA),El Salvador, (Chile), Bajo de la Alumbrera (Argentina).
- Plutonic deposits ($\mathrm{Cu} \pm \mathrm{Mo}$) - Highland Valley Copper (092ISE001, 011, 012, 045), Gibraltar (093B012,007), Catface (092F120); Chuquicamata, La Escondida and Quebrada Blanca (Chile).

GEOLOGICAL CHARACTERISTICS

CAPSULE DESCRIPTION: Stockwork of quartz veinlets, quartz veins, closely spaced fractures and breccias containing pyrite and chalcopyrite with lesser molybdenite, bornite and magnetite occur in large zones of economically bulk-mineable mineralization in or adjoining porphyritic intrusions and related breccia bodies. Disseminated sulphide minerals are present, generally in subordinate amounts. The mineralization is spatially, temporally and genetically associated with hydrothermal alteration of the hostrock intrusions and wallrocks.

TECTONIC SETTINGS: In orogenic belts at convergent plate boundaries, commonly linked to subduction-related magmatism. Also in association with emplacement of high-level stocks during

[^0]extensional tectonism related to strike-slip faulting and back-arc spreading following continent margin accretion.

DEPOSITIONAL ENVIRONMENT / GEOLOGICAL SETTING: High-level (epizonal) stock emplacement levels in volcano-plutonic arcs, commonly oceanic volcanic island and continentmargin arcs. Virtually any type of country rock can be mineralized, but commonly the high-level stocks and related dykes intrude their coeval and cogenetic volcanic piles.

AGE OF MINERALIZATION: Two main periods in the Canadian Cordillera: the Triassic/Jurassic (210180 Ma) and Cretaceous/Tertiary (85-45 Ma). Elsewhere deposits are mainly Tertiary, but range from Archean to Quaternary.

HOST/ASSOCIATED ROCK TYPES: Intrusions range from coarse-grained phaneritic to porphyritic stocks, batholiths and dyke swarms; rarely pegmatitic. Compositions range from calcalkaline quartz diorite to granodiorite and quartz monzonite. Commonly there is multiple emplacement of successive intrusive phases and a wide variety of breccias. Alkalic porphyry $\mathrm{Cu}-\mathrm{Au}$ deposits are associated with syenitic and other alkalic rocks and are considered to be a distinct deposit type (see model L03). Jurassic intrusions host the majority of porphyry prospects in Yukon. The Casino and Cash deposits, however, are hosted in Upper Cretaceous intrusive rocks; the Revenue deposit is hosted in mid-Cretaceous intrusive rocks; and the Stu deposit is hosted in Triassic intrusive rocks.

DEPOSIT FORM: Large zones of hydrothermally altered rock contain quartz veins and stockworks, sulphide-bearing veinlets; fractures and lesser disseminations in areas up to $10 \mathrm{~km}^{2}$ in size, commonly coincident wholly or in part with hydrothermal or intrusion breccias and dyke swarms. Deposit boundaries are determined by economic factors that outline ore zones within larger areas of low-grade, concentrically zoned mineralization. Cordilleran deposits are commonly subdivided according to their morphology into three classes - classic, volcanic and plutonic (see Sutherland Brown, 1976; McMillan and Panteleyev, 1988):

- Volcanic type deposits (e.g. Island Copper) are associated with multiple intrusions in subvolcanic settings of small stocks, sills, dykes and diverse types of intrusive breccias. Reconstruction of volcanic landforms, structures, vent-proximal extrusive deposits and subvolcanic intrusive centres is possible in many cases, or can be inferred. Mineralization at depths of 1 km , or less, is mainly associated with breccia development or as lithologically controlled preferential replacement in hostrocks with high primary permeability. Propylitic alteration is widespread and generally flanks early, centrally located potassic alteration; the latter is commonly well mineralized. Younger mineralized phyllic alteration commonly overprints the early mineralization. Barren advanced argillic alteration is rarely present as a late, high-level hydrothermal carapace.
- Classic deposits (e.g., Berg, Casino) are stock related with multiple emplacements at shallow depth (1 to 2 km) of generally equant, cylindrical porphyritic intrusions. Numerous dykes and breccias of pre, intra, and post-mineralization age modify the stock geometry. Ore bodies occur along margins and adjacent to intrusions as annular ore shells. Lateral outward zoning of alteration and sulphide minerals from a weakly mineralized potassic/propylitic core is usual. Surrounding ore zones with potassic (commonly biotite-rich) or phyllic alteration contain molybdenite \pm chalcopyrite, then chalcopyrite and a generally widespread propylitic, barren pyritic aureole or 'halo'.
- Plutonic deposits (e.g., the Highland Valley deposits) are found in large plutonic to batholithic intrusions immobilized at relatively deep levels, say 2 to 4 km . Related dykes and intrusive breccia bodies can be emplaced at shallower levels. Hostrocks are phaneritic coarse grained to porphyritic. The intrusions can display internal compositional differences as a result of differentiation with gradational to sharp boundaries between the different phases of magma emplacement. Local swarms of dykes, many with associated breccias, and fault zones are sites of mineralization. Ore bodies around silicified alteration zones tend to occur as diffuse vein
stockworks carrying chalcopyrite, bornite and minor pyrite in intensely fractured rocks but, overall, sulphide minerals are sparse. Much of the early potassic and phyllic alteration in central parts of ore bodies is restricted to the margins of mineralized fractures as selvages. Later phyllicargillic alteration forms envelopes on the veins and fractures and is more pervasive and widespread. Propylitic alteration is widespread but unobtrusive and is indicated by the presence of rare pyrite with chloritized mafic minerals, saussuritized plagioclase and small amounts of epidote.

TEXTURE/STRUCTURE: Quartz, quartz-sulphide and sulphide veinlets and stockworks; sulphide grains in fractures and fracture selvages. Minor disseminated sulphide minerals commonly replacing primary mafic minerals. Quartz phenocrysts can be partially resorbed and overgrown by silica.

ORE MINERALOGY (Principal and subordinate): Pyrite is the predominant sulphide mineral; in some deposits the Fe oxide minerals magnetite, and rarely hematite, are abundant. Ore minerals are chalcopyrite; molybdenite, lesser bornite and rare (primary) chalcocite. Subordinate minerals are tetrahedrite/tennantite, enargite and minor gold, electrum and arsenopyrite. In many deposits late veins commonly contain galena and sphalerite in a gangue of quartz, calcite and barite.

GANGUE MINERALOGY (Principal and subordinate): Gangue minerals in mineralized veins are mainly quartz with lesser biotite, sericite, K-feldspar, magnetite, chlorite, calcite, epidote, anhydrite and tourmaline. Many of these minerals are also pervasive alteration products of primary igneous mineral grains.

ALTERATION MINERALOGY: Quartz, sericite, biotite, K-feldspar, albite, anhydrite/gypsum, magnetite, actinolite, chlorite, epidote, calcite, clay minerals, tourmaline. Early formed alteration can be overprinted by younger assemblages. Central and early formed potassic zones (K-feldspar and biotite) commonly coincide with ore. This alteration can be flanked in volcanic hostrocks by biotite-rich rocks that grade outward into propylitic rocks. The biotite is a fine-grained, 'shreddy' looking secondary mineral that is commonly referred to as an early developed biotite (EDB) or a 'biotite hornfels'. These older alteration assemblages in cupriferous zones can be partially to completely overprinted by later biotite and K-feldspar and then phyllic (quartz-sericite-pyrite) alteration, less commonly argillic, and rarely, in the uppermost parts of some ore deposits, advanced argillic alteration (kaolinite-pyrophyllite) .

WEATHERING: Secondary (supergene) zones carry chalcocite, covellite and other $\mathrm{Cu}_{2} \mathrm{~S}$ minerals (digenite, djurleite, etc.), chrysocolla, native copper and copper oxide, carbonate and sulphate minerals. Oxidized and leached zones at surface are marked by ferruginous 'cappings' with supergene clay minerals, limonite (goethite, hematite and jarosite) and residual quartz.

ORE CONTROLS: Igneous contacts, both internal between intrusive phases and external with wallrocks; cupolas and the uppermost, bifurcating parts of stocks, dyke swarms. Breccias, mainly early formed intrusive and hydrothermal types. Zones of most intensely developed fracturing give rise to ore-grade vein stockworks, notably where there are coincident or intersecting multiple mineralized fracture sets.

ASSOCIATED DEPOSIT TYPES: Skarn Cu (K01), porphyry Au (K02), epithermal Au-Ag in low sulphidation type (H05) or epithermal $\mathrm{Cu}-\mathrm{Au}-\mathrm{Ag}$ as high-sulphidation type enargite-bearing veins (L01), replacements and stockworks; auriferous and polymetallic base metal quartz and quartzcarbonate veins (I01, I05), Au-Ag and base metal sulphide mantos and replacements in carbonate and non-carbonate rocks (M01, M04), placer Au (C01, C02).

COMMENTS: Subdivision of porphyry copper deposits can be made on the basis of metal content, mainly ratios between Cu, Mo and Au . This is a purely arbitrary, economically based criterion, an artifact of mainly metal prices and metallurgy. There are few differences in the style of mineralization
between deposits although the morphology of calcalkaline deposits does provide a basis for subdivision into three distinct subtypes - the 'volcanic, classic, and plutonic' types. A fundamental contrast can be made on the compositional differences between calcalkaline quartz-bearing porphyry copper deposits and the alkalic (silica undersaturated) class. The alkalic porphyry copper deposits are described in a separate model - L03.

EXPLORATION GUIDES

GEOCHEMICAL SIGNATURE: Calcalkalic systems can be zoned with a cupriferous ($\pm \mathrm{Mo}$) ore zone having a 'barren', low-grade pyritic core and surrounded by a pyritic halo with peripheral base and precious metal-bearing veins. Central zones with Cu commonly have coincident Mo, Au and Ag with possibly $\mathrm{Bi}, \mathrm{W}, \mathrm{B}$ and Sr . Peripheral enrichment in $\mathrm{Pb}, \mathrm{Zn}, \mathrm{Mn}, \mathrm{V}, \mathrm{Sb}, \mathrm{As}, \mathrm{Se}, \mathrm{Te}, \mathrm{Co}$, Ba, Rb and possibly Hg is documented. Overall the deposits are large-scale repositories of sulphur, mainly in the form of metal sulphide minerals, chiefly pyrite.

GEOPHYSICAL SIGNATURE: Ore zones, particularly those with higher Au content, can be associated with magnetite-rich rocks and are indicated by magnetic surveys. Alternatively the more intensely hydrothermally altered rocks, particularly those with quartz-pyrite-sericite (phyllic) alteration produce magnetic and resistivity lows. Pyritic haloes surrounding cupriferous rocks respond well to induced polarization (I.P.) surveys but in sulphide-poor systems the ore itself provides the only significant IP response.

OTHER EXPLORATION GUIDES: Porphyry deposits are marked by large-scale, zoned metal and alteration assemblages. Ore zones can form within certain intrusive phases and breccias or are present as vertical 'shells' or mineralized cupolas around particular intrusive bodies. Weathering can produce a pronounced vertical zonation with an oxidized, limonitic leached zone at surface (leached capping), an underlying zone with copper enrichment (supergene zone with secondary copper minerals) and at depth a zone of primary mineralization (the hypogene zone).

ECONOMIC FACTORS

TYPICAL GRADE AND TONNAGE:

Worldwide according Cox and Singer (1988) based on their subdivision of 55 deposits into subtypes according to metal ratios, typical porphyry Cu deposits contain (median values):

Porphyry Cu-Au: $\quad 160 \mathrm{Mt}$ with $0.55 \% \mathrm{Cu}, 0.003 \% \mathrm{Mo}, 0.38 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ and $1.7 \mathrm{~g} / \mathrm{t} \mathrm{Ag}$. Porphyry Cu-Au-Mo: 390 Mt with 0.48 \% Cu, 0.015 \% Mo, $0.15 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ and $1.6 \mathrm{~g} / \mathrm{t} \mathrm{Ag}$. Porphyry Cu-Mo: $\quad 500 \mathrm{Mt}$ with $0.41 \% \mathrm{Cu}, 0.016 \% \mathrm{Mo}, 0.012 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ and $1.22 \mathrm{~g} / \mathrm{t}$ Ag.

A similar subdivision by Cox (1986) using a larger data base results in:
Porphyry Cu: $\quad 140 \mathrm{Mt}$ with $0.54 \% \mathrm{Cu},<0.002 \% \mathrm{Mo},<0.02 \mathrm{~g} / \mathrm{t}$ Au and $<1 \mathrm{~g} / \mathrm{t} \mathrm{Ag}$.
Porphyry Cu-Au: $\quad 100 \mathrm{Mt}$ with $0.5 \% \mathrm{Cu},<0.002 \% \mathrm{Mo}, 0.38 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ and $1 \mathrm{~g} / \mathrm{t} \mathrm{Ag}$. (This includes deposits from the British Columbia alkalic porphyry class, B.C. model L03.)

Porphyry Cu-Mo: $\quad 500 \mathrm{Mt}$ with $0.42 \% \mathrm{Cu}, 0.016 \% \mathrm{Mo}, 0.012 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ and $1.2 \mathrm{~g} / \mathrm{t} \mathrm{Ag}$.
British Columbia porphyry $\mathrm{Cu} \pm \mathrm{Mo} \pm$ Au deposits range from <50 to $>900 \mathrm{Mt}$ with commonly 0.2 to $0.5 \% \mathrm{Cu},<0.1$ to $0.6 \mathrm{~g} / \mathrm{t} \mathrm{Au}$, and 1 to $3 \mathrm{~g} / \mathrm{t} \mathrm{Ag}$. Mo contents are variable from negligible to 0.04 \% Mo. Median values for 40 B.C. deposits with reported reserves are: 115 Mt with 0.37% $\mathrm{Cu}, \sim 0.01 \% \mathrm{Mo}, 0.3 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ and $1.3 \mathrm{~g} / \mathrm{t} \mathrm{Ag}$.

ECONOMIC LIMITATIONS: Mine production in British Columbia is from primary (hypogene) ores. Rare exceptions are Afton mine where native copper was recovered from an oxide zone, and

Gibraltar and Bell mines where incipient supergene enrichment has provided some economic benefits.

END USES: Porphyry copper deposits produce Cu and Mo concentrates, mainly for international export.
IMPORTANCE: Porphyry deposits contain the largest reserves of Cu , significant Mo resources and close to 50 \% of Au reserves in British Columbia.

SELECTED BIBLIOGRAPHY

Beane, R.E. and Titley, S.R., 1981. Porphyry Copper Deposits Part II; Hydrothermal Alteration and Mineralization. In: 75th Anniversary Volume, Economic Geology, pages 235-269.
Bower, B., Payne, J., Delong, C. and Rebagliati, C.M. 1995. The oxide-gold supergene and hypogene zones at the Casino gold-copper-molybdenum deposit, west-central Yukon. In: Schroeter, T.G. (ed.), Porphyry Deposits of the Northwestern Cordillera of North America, Canadian Institute of Mining, Metallurgy and Petroleum, Special Volume 46, p. 352-366.
Cox, D.P., 1986. Descriptive Model of Porphyry Cu, also Porphyry Cu-Au and Porphyry Cu-Mo; in Mineral Deposit Models; United States Geological Survey, Bulletin 1693, pages 76-81, also pages 110-114 and 115-119.
Cox, D.P. and Singer, D.A., 1988. Distribution of Gold in Porphyry Copper Deposits; U.S. Geological Survey, Open File Report 88-46, 23 pages.
Godwin, C.I., 1976. Casino. In: Porphyry deposits of the Canadian Northwestern Cordillera, Canadian Institute of Mining, Metallurgy and Petroleum, Special Volume 15, p. 344-354.
Godwin, C.I., 1975, Geology of the Casino porphyry copper-molybdenum deposit. Unpublished Ph.D thesis, University of British Columbia, Vancouver, BC.
Gustafson, L.B. and Hunt, J.P., 1975. The Porphyry Copper Deposit at El Salvador, Chile; Economic Geology, Volume 70, pages 857-912.
Leblanc, E.R., 1981. The mineralogy and ore petrology of the Stu copper deposit. Unpublished B.Sc. thesis, St. Francis Xavier University, Antigonish, Nova Scotia.
Lowell, J.D. and Guilbert, J.M., 1970. Lateral and Vertical Alteration-Mineralization Zoning in Porphyry Ore Deposits; Economic Geology, Volume 65, pages 373-408.
McMillan, W.J., 1991. Porphyry Deposits in the Canadian Cordillera. In: Ore Deposits, Tectonics and Metallogeny in the Canadian Cordillera, B. C. Ministry of Energy, Mines and Petroleum Resources, Paper 1991-4, pages 253-276.
McMillan, W.J. and Panteleyev, A., 1988. Porphyry Copper Deposits. In: Ore Deposit Models, Roberts, R.G. and Sheahan, P.A., (Eds.), Geoscience Canada Reprint Series 3, Geological Association of Canada, pages 45-58; also in Geoscience Canada, Volume 7, Number 2, pages 52-63.
Sinclair, W.D., Cathro, R.J., and Jensen, E.M., 1981. The Cash porphyry Copper-molybdenum deposit. Canadian Institute of Mining and Metallurgy Bulletin, vol. 74, p. 67-76.
Schroeter, T. G. (Ed.), 1995. Porphyry Copper Deposits of the Northwestern Cordillera of North America. Canadian Institute of Mining, Metallurgy and Petroleum, Special Volume 46, 852 pages.
Sutherland Brown, A. (Ed.), 1976. Porphyry Deposits of the Canadian Cordillera; Canadian Institute of Mining and Metallurgy, Special Volume 15, 510 pages.
Titley, S.R., 1982. Advances in Geology of the Porphyry Copper Deposits, Southwestern North America; The University of Arizona Press, Tucson, 560 pages.
Titley, S.R. and Beane, R.E., 1981. Porphyry Copper Deposits Part I. Geologic Settings, Petrology, and Tectogenesis. In: 75th Anniversary Volume, Economic Geology, pages 214-234.

L04-Porphyry Cu-Mo-Au - BC and Yukon deposits

Deposit	country	tonnes	Cu (\%)	Mo (\%)	$\mathrm{Au}(\mathrm{g} / \mathrm{t})$	$\mathrm{Ag}(\mathrm{g} / \mathrm{t})$
NUCLEUS	CNYK	211900			3.160	
TASEKO	CNBC	9501800	0.580	0.000	0.750	17.000
KRAIN	CNBC	14000000	0.560	0.010	0.000	0.000
OX LAKE	CNBC	17000000	0.330	0.040	0.000	0.000
BIG	CNBC	18000000	0.360	0.000	0.000	0.000
NANIKA	CNBC	18144000	0.440	0.009	0.210	0.380
WILLIAMS CREEK	CNYK	20000000	1.060		0.450	
REY	CNBC	21488290	0.230	0.020	0.000	0.000
RED DOG	CNBC	25000000	0.350	0.000	0.440	0.000
EAGLE	CNBC	30000000	0.410	0.010	0.200	2.710
GNAT	CNBC	30000000	0.390	0.000	0.000	0.000
SWAN	CNBC	36000000	0.200	0.000	0.000	0.000
CASH	CNYK	36300000	0.170	0.018	0.200	0.400
DOROTHY	CNBC	40800000	0.250	0.010	0.000	0.000
ANNOTH	CNBC	43381160	0.270	0.000	0.000	0.000
LOUISE	CNBC	50000000	0.300	0.020	0.300	0.000
KERR	CNBC	60000000	0.860	0.000	0.340	2.000
GRANISLE	CNBC	66434150	0.420	0.000	0.130	1.330
HI-MAR	CNBC	82000000	0.300	0.000	0.300	0.000
MORRISON	CNBC	86000000	0.420	0.000	0.340	3.400
HUCKLEBERRY	CNBC	100000000	0.560	0.017	0.000	0.000
GAMBIE	CNBC	114000000	0.290	0.010	0.000	1.000
WHITIN	CNBC	124000000	0.060	0.030	0.000	0.000
HIGHMONT	CNBC	125000000	0.220	0.020	0.000	0.000
BETHLEHEM	CNBC	134000000	0.440	0.000	0.010	0.740
CATFACE	CNBC	138000000	0.460	0.000	0.050	0.000
BELL	CNBC	143000000	0.420	0.000	0.200	0.480
POPLAR	CNBC	144000000	0.370	0.020	0.000	0.000
O.K.	CNBC	155000000	0.390	0.020	0.000	0.000
POISON MOUNTAIN	CNBC	159000000	0.330	0.010	0.310	0.000
HUSHAMO	CNBC	173000000	0.270	0.010	0.340	0.000
CASINO	CNYK	178200000	0.303	0.028	0.376	
MAGGIE	CNBC	181000000	0.280	0.030	0.000	0.000
BRENDA	CNBC	183000000	0.250	0.040	0.010	1.060
KEMESS	CNBC	230000000	0.230	0.000	0.650	0.000
BERG	CNBC	238000000	0.390	0.030	0.050	2.840
JAR	CNBC	260000000	0.430	0.020	0.000	0.000
ISLAND COPPER	CNBC	373000000	0.370	0.017	0.110	0.940
GIBRALTAR	CNBC	965000000	0.320	0.010	0.070	0.150
FISH LAKE	CNBC	976000000	0.250	0.000	0.480	0.000
SCHAFT CREEK	CNBC	1000000000	0.300	0.020	0.140	1.200
HIGHLAND VALLEY COPPER	CNBC	1200000000	0.372	0.010	0.005	1.730

L04 - Porphyry Cu-Mo-Au - Yukon MINFILE

minfile	names	status
105C 009	RED MOUNTAIN, FOX, BOSWELL RIVER	DEPOSIT
1151037	CASH	DEPOSIT
1151107	NUCLEUS, GOLDEN REVENUE	DEPOSIT
115J 028	CASINO	DEPOSIT
105D 010	CARCROSS	DRILLED PROSPECT
105D 023	FAWLEY, RACA	DRILLED PROSPECT
105D 058	KOOKATSOON	DRILLED PROSPECT
105D 059	DUGDALE, COWLEY PARK	DRILLED PROSPECT
105D 104	SUITS, KING LAKE	DRILLED PROSPECT
105D 180	SILVER QUEEN	DRILLED PROSPECT
115A 002	DALTON, STF	DRILLED PROSPECT
115G 015	CORK	DRILLED PROSPECT
115G 070	RAFT, ALASKITE CREEK	DRILLED PROSPECT
115G 071	ROCKSLIDE	DRILLED PROSPECT
115G 079	RHYOLITE	DRILLED PROSPECT
1151023	PAL	DRILLED PROSPECT
1151026	PELLY	DRILLED PROSPECT
1151038	KLAZAN, NITRO	DRILLED PROSPECT
1151042	REVENUE, GOLDEN REVENUE	DRILLED PROSPECT
1151050	GRANGER, RAG	DRILLED PROSPECT
1151066	CYPRUS, MT. NANSEN	DRILLED PROSPECT
1151070	MALONEY, POT	DRILLED PROSPECT
1151074	COMANCHE	DRILLED PROSPECT
1151081	KERR	DRILLED PROSPECT
1151093	GOULTER, WILLOW CREEK, ELIZA, DISCOVERY CREEK	DRILLED PROSPECT
1151094	GIANT	DRILLED PROSPECT
115J 036	ZAPPA, MOTHERS, KOFFEE	DRILLED PROSPECT
115J 089	PATTISON, PATT, ROSS	DRILLED PROSPECT
115J 090	INDIANA, DOYLE	DRILLED PROSPECT
115J 101	ANA, AZTEC	DRILLED PROSPECT
115K 082	TRUDI, BROADSIDE, SNOW, BA	DRILLED PROSPECT
105B 087	MCPRES, I, TB	PROSPECT
105E 002	TUV, MARS	PROSPECT
106C 001	KOHSE	PROSPECT
115A 012	CAVE, SANDY, MUSH, MOLLY, ROCKY	PROSPECT
115F 034	GARLIC	PROSPECT
1151032	PHELPS	PROSPECT
105B 103	THRALL	SHOWING
105D 015	FINGER	SHOWING
105D 016	LATREILLE	SHOWING
105D 041	ALLIGATOR	SHOWING
105D 100	INCO, RED RIDGE, RED TOP	SHOWING
105D 190	WARD	SHOWING
105F 079	MURPHY	SHOWING
115A 024	DEVILHOLE, GREEN EAGLE, JOY, DENT	SHOWING
115A 043	SOUTHER	SHOWING
115A 045	TATSHENSHINI, WALL, SKY, TUF, WIL	SHOWING
115F 030	SHARPE	SHOWING
115F 031	GALLOPING	SHOWING
115F 047	EPIC	SHOWING
115F 087	CANYON MOUNTAIN	SHOWING
115G 069	TALBOT	SHOWING
115H 003	NIPPON, AH, RAZ	SHOWING
115H 007	SNIPE	SHOWING
115 H 021	SATO, MAK, KL	SHOWING
115H 038	TAHTE, TAH	SHOWING
115H 041	ITTLEMIT, ASH	SHOWING
1151045	NEWKIRK	SHOWING
1151076	TUF	SHOWING
1151108	TOOT	SHOWING
115J 002	KLOT, CHRIS, K, BGD	SHOWING
115J 003	MIM	SHOWING
115J 017	COCKFIELD, RAY, CO, DR, COFIELD, KOKUP, OKE, ITEN	SHOWING
115J 040	BOREAL, DUCHESS, PRINCESS	SHOWING
115J 044	BID	SHOWING
115J 045	VINA	SHOWING
115J 052	TONI TIGER, W, CAFFEINE	SHOWING
115J 072	SCROGGIE, C, SC, BRIDGET	SHOWING
115J 091	AMOCO, CC	SHOWING
115 N 021	ARIES	SHOWING
115 N 026	LADUE	SHOWING
1150085	MCMICHAEL	SHOWING
105B 010	TROY	ANOMALY
105B 108	REGIONAL, CARIBOU, CAR	ANOMALY
105D 080	IMP	ANOMALY
115G 004	MULLER	ANOMALY
115G 014	AMP	ANOMALY
115G 075	TYRRELL	ANOMALY
115 H 027	POPLAR, A	ANOMALY
115H 028	STEVENS, JON	ANOMALY
115H 029	OCCIDENT, STEVE	ANOMALY
115 H 032	KIRI	ANOMALY
1151029	DELTA	ANOMALY
1151039	COM	ANOMALY
1151048	EDGAR	ANOMALY
1151087	KOOK	ANOMALY
1151102	LUMBY	ANOMALY
115J 025	PEG, GAP	ANOMALY
115J 029	HOLE	ANOMALY
115J 031	CLEVELAND, CUB	ANOMALY
115J 032	RONGE, CASH, GUN, BARB, GUY	ANOMALY
115J 034	GEP	ANOMALY
115J 035	AZTEC	ANOMALY
115J 048	HANNA, FBH, EX	ANOMALY
115J 064	LYON, HOLE	ANOMALY
115K 081	WRANGELL	ANOMALY
115N 029	PAX	ANOMALY
1150020	APOLLO	ANOMALY
115P 032	MOZI	ANOMALY
$\begin{aligned} & \text { 115H } 036 \\ & \text { 115J } 015 \end{aligned}$	BILQUIST, ZN, YAM CROCK, ELW	UNKNOWN UNKNOWN

[^0]: ${ }^{1}$ British Columbia Geological Survey, Victoria, B.C., Canada

