Energy, Mines and Resources • Yukon Geological Survey • Energy, Mines and Resources • Yukon Geological Survey

Open File 2006-3

Mineral Assessment of the Eagle Plain Study Area, Yukon

D. Héon

Open File 2006-3

Mineral Assessment of the Eagle Plain Study Area, Yukon

D. Héon

Published under the authority of the Minister of Energy, Mines and Resources, Government of Yukon http://www.emr.gov.yk.ca Printed in Whitehorse, Yukon, 2006.

© Minister of Energy, Mines and Resources, Government of Yukon

This, and other Yukon Geological Survey publications, may be obtained from:

Geoscience and Information Sales c/o Whitehorse Mining Recorder 102-300 Main Street Box 2703 (K102) Whitehorse, Yukon, Canada Y1A 2C6 phone (867) 667-5200, fax (867) 667-5150

Visit the Yukon Geological Survey web site at www.geology.gov.yk.ca

In referring to this publication, please use the following citation: Héon, D., 2006. Mineral Assessment of the Eagle Plain Study Area, Yukon. Yukon Geological Survey, Open File 2006-3. Includes 2 reports: original study (103 p. plus 1 map) and update (12 p. plus 4 maps).

Preface

A mineral resource assessment of the Eagle Plain Study Area was undertaken by the Department of Economic Development at the request of the Department of Renewable Resources. The purpose of the assessment was to determine the mineral potential of the region, and thereby assist in proposed land planning in the area. The mineral assessment was done in March, 1997 and an update to the original assessment was done in 2000. The Yukon Geological Survey is pleased to release in the results of this assessment and follow-up geological field work in this report.

The information is being released as originally prepared and may not conform to current Yukon Geological Survey publication standards. Please note that this report does not include information from any studies that may have been carried out in the area since the mineral assessment was conducted.

Government of Yukon

Department of Economic Development

Mineral Resources Branch

Mineral Potential of Eagle Plain Study Area

By Danièle Héon

1997

SUMMARY

This report outlines the results and the conclusions of a study of the mineral potential of the Eagle Plains area. The accompanying mineral potential map ranks the different tracts according to their relative order of mineral potential, from highest to lowest. The highest ranking rocks occur on the flanks of the Richardson Anticlinorium which corresponds to the flanks of the southern Richardson Mountains.

Other significant contributions resulting from this study include: complete geochemical coverage of the area provided by a new Regional Geochemical Survey and reanalysis of silt samples of a pre-existing survey; the discovery of several new mineral occurrences; the discovery of rocks of possible volcanic origin, previously undocumented in the area; and modifications to the pre-existing geology maps.

TABLE OF CONTENTS

_ _

1. INTRODUCTION	1
2. LOCATION	1
3. METHODOLOGY	1
4. PREVIOUS WORK	4
5. NEW WORK	5
6. GEOLOGICAL SETTING	5
6.1 GEOLOGICAL EVOLUTION	5
7. TRACT DEFINITION AND DESCRIPTION	11
7.1 TRACT 1- ILLTYD FORMATION 7.1.1 Stratigraphy	13
7.1.2 MINERAL OCCURRENCES	13
7.1.3 GEOCHEMICAL SIGNATURE	13
7.1.4 PERTINENT MINERAL DEPOSIT MODELS	14
7.2 TRACT 2- SLATS CREEK FORMATION	14
7.2.1 Stratigraphy	14
7.2.2 MINERAL OCCURRENCES	14
7.2.3 GEOCHEMICAL SIGNATURE	14

36

7.2.4 PERTINENT MINERAL DEPOSIT MODELS	14
7.3 TRACT 3- LOWER ROAD RIVER GROUP (CDR 0,1) (INCLUDES CDR	2)
(NORRIS)/ COR (RABBITKETTLE) AND OSL (CECILE)	14
7.3.1 Stratigraphy	14
7.3.2 MINERAL OCCURRENCES	15
7.3.3 GEOCHEMICAL SIGNATURE	16
7.3.4 PERTINENT MINERAL DEPOSIT MODELS	17
7.4 TRACT 4- UPPER ROAD RIVER GROUP: CDR3 (NORRIS)/ SD (CECH	LE)
AND CDR4/SDV, AND CANOL FORMATION (DCA/DC)	17
7.4.1 STRATIGRAPHY	17
7.4.2 MINERAL OCCURRENCES	19
7.4.3 GEOCHEMICAL SIGNATURE	21
7.4.4 PERTINENT MINERAL DEPOSIT MODELS	22
7.5 TRACT 5- IMPERIAL FORMATION	22
7.5.1 Stratigraphy	22
7.5.2 MINERAL OCCURRENCES	22
7.5.3 GEOCHEMICAL SIGNATURE	23
7.5.4 PERTINENT MINERAL DEPOSIT MODELS	23
7.6 TRACT 6- UNNAMED SHALE	23
7.6.1 Stratigraphy	23
7.6.2 MINERAL OCCURRENCES	23
7.6.3 GEOCHEMICAL SIGNATURE	23
7.6.4 PERTINENT MINERAL DEPOSIT MODELS	23
7.7 TRACT 7- TUTTLE FORMATION, FORD LAKE FORMATION	24
7.7.1 Stratigraphy	24
7.7.2 MINERAL OCCURRENCES	24
7.7.3 GEOCHEMICAL SIGNATURE	24
7.7.4 PERTINENT MINERAL DEPOSIT MODELS	24
7.8 TRACT 8- HART RIVER, BLACKIE, ETTRAIN FORMATION, JUNGLE	
CREEK FORMATION	25
7.8.1 Stratigraphy	25
7.8.2 MINERAL OCCURRENCES	25
7.8.3 GEOCHEMICAL SIGNATURE	25
7.8.4 PERTINENT MINERAL DEPOSIT MODELS	26
7.9 TRACT 9- HUSKY FORMATION, NORTH BRANCH FORMATION,	
CRETACEOUS MARTIN CREEK FORMATION, MOUNT GOODENOUGH	
FORMATION, RAT RIVER FORMATION, EAGLE PLAIN FORMATION.	26
7.9.1 Stratigraphy	26

Î

 \bigcap

 \bigcap

37

7.9.2 MINERAL OCCURRENCES	26
7.9.3 GEOCHEMICAL SIGNATURE	26
7.9.4 PERTINENT MINERAL DEPOSIT MODELS	26
7.10 All tracts: aggregate	27

8. FINAL RANKING AND CONCLUSIONS

9. REFERENCES

29

28

List of Figures

_

Location map	2
RGS Sample Location and Tract map	3
Physiographic regions	6
Paleogeographic elements	7
Stratigraphic correlations	9
Eagle Plain cross-section	10
Summary stratigraphic table	12
Stratigraphic column of Ni-sulphide occurrences	18
	RGS Sample Location and Tract map Physiographic regions Paleogeographic elements Stratigraphic correlations Eagle Plain cross-section Summary stratigraphic table

Appendices

Appendix 1	Minfile Occurrences
Appendix 2	Lithogeochemical results
Appendix 3	Stream Sediment Geochemistry
Appendix 4	Mineral assessment for Territorial parks, a methodology
Appendix 5	Geology map 1: 250 000
Appendix 6	sample location map 1: 250 000
Appendix 7	mineral potential map 1: 250 000

Supplementary Data – available upon request

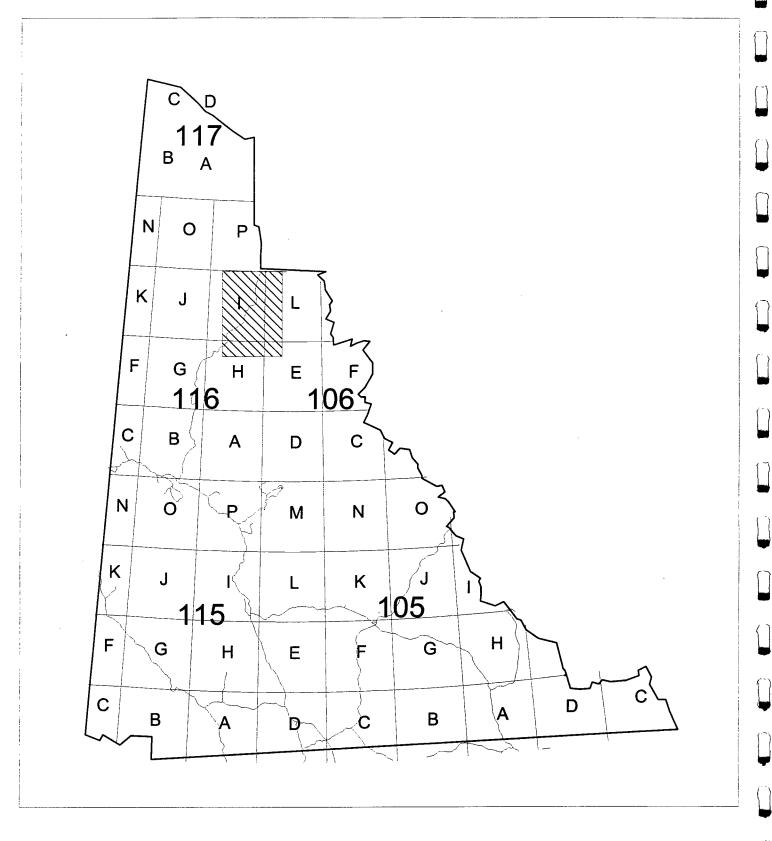
- 1995 RGS survey
- reanalysis of 1976 RGS survey
- Geophysical Interpretation

1. INTRODUCTION

The Department of Economic Development began a mineral potential study of the Eagle Plain area in the spring of 1995. A Territorial Park representing the Eagle Plain ecoregion is proposed and a mineral assessment of the area was requested by the Department of Renewable Resources to help define proposed park boundaries. This assessment provides land planners with a relative ranking of the potential of different geological units to host mineral deposits. Such ranking will help decision-makers in protecting ecological values without compromising access to mineral wealth.

2. LOCATION

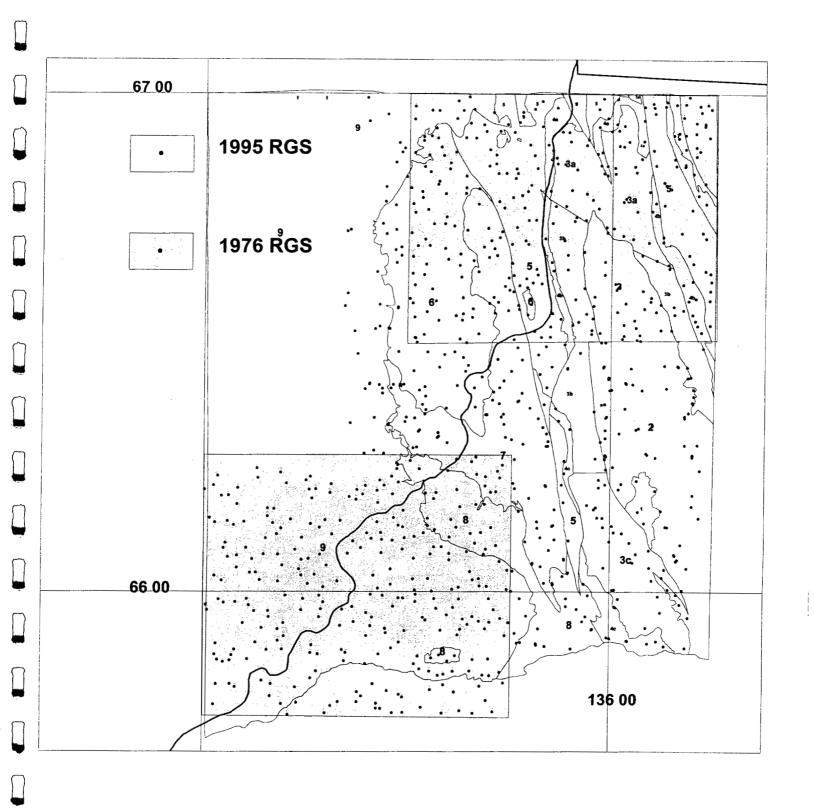
The boundaries of the study area are the Peel River to the south, the height of land west of the Eagle River to the west, 67 deg 00 min N latitude to the north, longitude 135 deg 30 min to the east. The study area (Fig. 1) is encompassed by National Topographic Series map sheet 116 I, the northern part of 116H, the western edge of 106L and the northwestern part of 106 E.


3. METHODOLOGY

The mineral assessment process involved data compilation, fieldwork to address data gaps, and assessment of all data by a mineral assessment panel. A detailed description of the methodology as defined by the mineral assessment steering committee is found in Appendix 4.

An analysis of the published geoscientific information for the area outlined serious gaps in the database. Geophysical data are available but at a level of detail that is too general to permit definition of mineral exploration targets. Regional stream sediment geochemical surveys (RGS) cover part of the area and were analyzed for a limited suite of elements. Geological maps (1: 250 000 scale) are based primarily on air photo-interpretation with limited field checks.

The first field season of this project included the completion of the regional stream sediment geochemical coverage and the reanalysis the earlier samples for a more complete suite of elements. During the second field season, the results of the geochemical survey were checked and rock samples of the different formations were collected to determine their background geochemical signatures.


Following compilation of all past and new data, the stratigraphy was divided into geological tracts (Fig.2). A mineral assessment panel composed of industry and government geologists was convened and a unanimous ranking of the different tracts was reached. Mineral deposit profiles developed by the British Columbia Geological Survey (Open Files 1995-20 and 1996-13) were used for the ranking. A mineral potential map of the study area portraying the relative ranking of the different tracts was delivered to the Department of Renewable Resources on April 1 1997.

 $\left(\right)$

 \square

Fig.1 Location map

Fig. 2 RGS Sample Location and Tract Map

This report documents the information compiled for the assessment and includes a new digital geological map for the area. It does not address the potential for hydrocarbon resources. An evaluation of the potential for oil and gas work is outlined in the NEB report by Davidson (1994).

4. PREVIOUS WORK

The main source of geological information used in this compilation is Geological Survey of Canada Bulletin 422 (Norris, 1997) and accompanying 1: 250 000-scale maps released around 1981. This body of work documents the extensive reconnaissance mapping initiated in the 1960's called Operation Porcupine. This work was started before construction of the Dempster Highway. The geological interpretation is based mainly on air photo interpretation and spot groundchecks, but also incorporates the results of specific geological investigations and well data from the oil industry. These maps were published at a scale of 1: 250 000. Portions of the study area appear on Eagle River (map 1523A), Trail River (map 1524A), Hart River (map 1527A) and Wind River (1529A) map sheets.

Cecile (1982) produced a 1: 125 000-scale geological map based on ground traverses which covers the northern part of the Richardson Anticline, the northeastern part of the study area.

Where both maps of Norris and Cecile overlap, both nomenclatures are used, first Norris's then Cecile's (ex: CDR3 (Norris)/ Sd (Cecile)).

The geological synthesis used herein follow that in relevant parts of Gabrielse and Yorath (1992) as well as Morrow (in press).

A 1976 Regional Stream Sediment Geochemical Survey published by the Geological Survey of Canada covers the southwestern and northeastern end of the study area. Samples were analyzed for a limited suite of elements to assist with uranium and base metal exploration.

Regional aeromagnetic and gravity surveys were conducted at a 3 to 4 km line spacing, which is inadequate for the identification of mineral exploration targets.

A few regional exploration programs targeting lead-zinc mineralization were undertaken in the area during the 1970's. Very little of this work was filed as assessment reports. The publicly available results of these programs are discussed in the respective sections on mineral occurrences. Only one claim remains in good standing in the area.

This area is considered to be under-explored, both from a geological and a mineral exploration perspective.

5. NEW WORK

A new regional stream sediment geochemical survey was contracted out to the Geological Survey of Canada in order to complete first-order geochemical coverage for the study area. The survey was conducted in August 1995, with one sample collected roughly every 13 square km, in tertiary drainages. Samples were analyzed for gold plus a 32-element ICP package. Samples from the 1976 survey were reanalyzed for a similar suite of elements. The respective sampling area for each survey as well as the tract map is shown in Figure 2. The results of these surveys will be released publicly as Open File report once mineral withdrawal is in place.

Geological fieldwork was undertaken to evaluate the previous mapping, to collect representative lithogeochemical samples of the stratigraphic units in order to determine background metal levels, to investigate geochemical anomalies and to prospect for mineralization. Most of the work was focussed on the most prospective stratigraphy. The field season was cut short by early snowfall; anomalies and mineral occurrences at the northern (near the headwaters of the Vittrekwa River), and southern end (near the Peel River) of the study area were not investigated.

An evaluation of the available geophysical data was contracted out to Amerok Geosciences Ltd. The report concluded that the density of existing data was too low to help in the evaluation for potential for mineralization in the area.

6. GEOLOGICAL SETTING

The study area overlaps two ecoregions: the Eagle Plain (169) and the southern part of British-Richardson Mountains (165) ecoregions. These roughly coincide with 2 distinct physiographic as well as sedimentary and tectonic environments. The Richardson Mountains roughly coincide with the Richardson Trough, the site of deep basinal sedimentation from Cambrian to Devonian time. To the west, carbonate rocks of the Porcupine Platform, which rests on the Yukon Stable Block, underlie the Eagle Plain. These represent a shallow, long-lived continental shelf setting.

Physiographic elements are shown in Fig 3, paleogeographic elements are shown in Fig 4, stratigraphic correlations are shown in Fig. 5 and a cross section of the Eagle Plain basin is shown in Fig.6, all from Morrow (in press).

6.1 Geological evolution

The onset of subsidence in the Early Cambrian created three different tectonic blocks of differing style of sedimentation. The Richardson Trough started to subside with respect to the Yukon Block to the west and the Mackenzie Platform to the east and continued to act as a negative entity, thus collecting sediments, until at least the end of the Devonian. The limestones of the *Illtyd Formation* are the oldest rocks documented in the study area. They were deposited in a shallow sea that spanned the width of the study area. As the Richardson Trough deepened, it trapped sediments shed from the Mackenzie Platform to the east. Contrasts in sedimentary facies within the Illtyd Formation reflect this process.

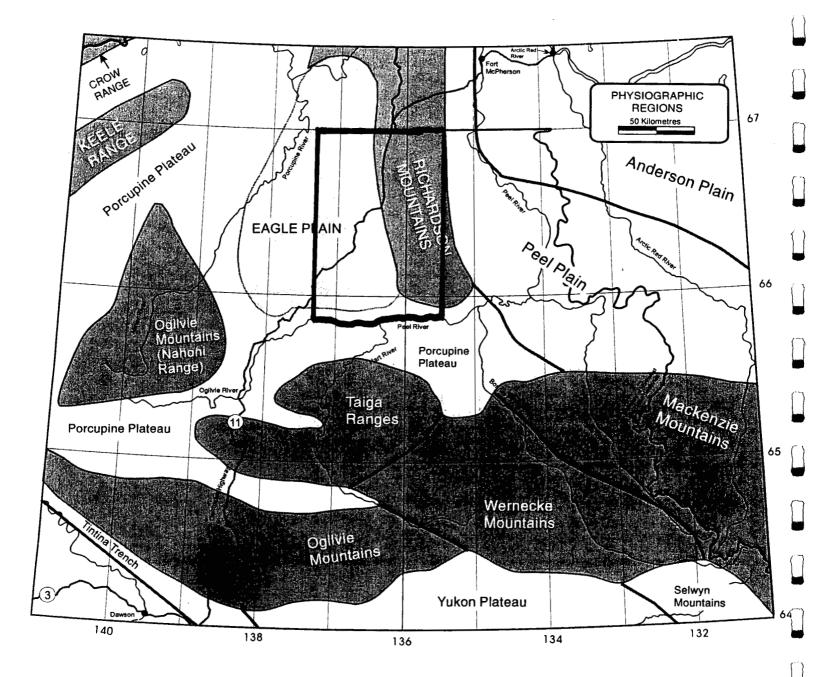
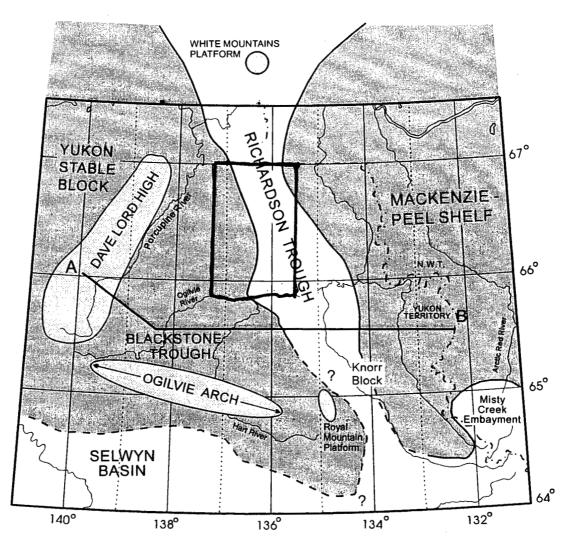



Fig. 3 Physiographic regions (from Morrow, 1997)

N 🖓 🤹 🖓 🖓

PALEOGEOGRAPHIC ELEMENTS

Fig. 4 Paleogeographic elements (from Morrow, 1997)

The sands of the overlying *Slats Creek* Formation were shed from the Yukon Block towards the east into the Richardson Trough in response to block faulting and relative uplift of the Yukon Block.

By mid-Cambrian time, basinal sedimentation in the Richardson Trough was established. The pelagic or hemipelagic limestones of the Cambrian *lower Road River Group* were succeeded by slope facies shale, chert and thin-bedded limestone of the *upper Road River Group*. A distinctive Upper Silurian orange-weathering dolomitic bioturbated siltstone marks deposition in shallower water. The uppermost unit of the Road River Group marks a return to deeper water conditions, followed by deposition of *Canol Formation* cherts and shales during the early Devonian. The Canol Formation was deposited uniformly across the entire Mackenzie shelf and Yukon Block in response to an abrupt rise in sea level, marking the end of regional carbonate platform deposition. The end of the Canol Formation marks the end of deep basinal sedimentation in the Richardson Trough.

During this whole time interval, platformal to basinal (in the Blackstone Trough) carbonate sediments were deposited on the Yukon Block, west of Richardson Trough. Since these rocks do not outcrop in the study area, they will not be discussed here.

Devono-Mississippian tectonism to the north and east caused southward progradation of a clastic wedge into the marine setting of the study area. The upper Devonian turbiditic siltstones and sandstones of the *Imperial Formation* mark the onset of deposition of this clastic wedge. Paleocurrent directions indicate a northerly source. The overlying/interfingering *Devonian Unnamed Shale* is interpreted to represent the base of the Ford Lake shale in a restricted area of the basin. Deposition of the Carboniferous *Tuttle* conglomerate is interpreted to be either a fluvio-deltaic clastic wedge or a marine turbidite deposit. The Carboniferous *Ford Lake* shale is a transgressive/ regressive sequence; it overlies and interfingers with the Tuttle Formation.

The overlying Carboniferous sequence reflects shallowing of this part of the basin. The *Hart River Formation* was deposited in a mid- to upper slope environment. It consists of cherty spiculitic limestone. The overlying *Blackie Formation* reflects shallowing carbonate ramp to platformal sedimentation. The *Ettrain Formation* was deposited in protected to restricted shelf conditions.

Subsequent uplift of the Aklavik Arch to the north of the study area produced widespread erosion reflected in a regional sub-Permian unconformity. It is not clear if this unconformity occurs in the study area or if sedimentation was continuous into the Permian.

The Permian siliciclastics and carbonates of the *Jungle Creek Formation* represent shallow marine to subaerial conditions. No Triassic rocks are documented in the study area.

STRATIGRAPHIC CORRELATIONS OF LOWER PALEOZOIC STRATA ACROSS NORTHERN YUKON TERRITORY - NORRIS, D.K. (1981) and PRESENT STUDY

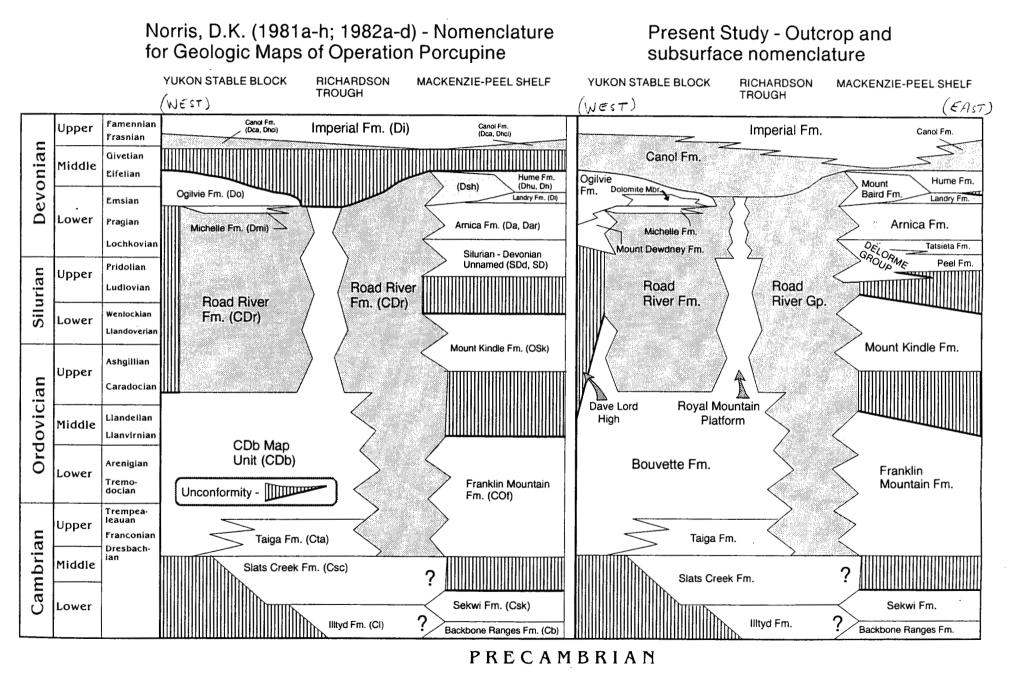


Fig. 5 Stratigraphic correlations (from Morrow, 1997)

EAGLE PLAIN BASIN CROSS SECTION LEGEND Contacts (Conformable, unconformable) Well (dry and abandoned, suspended oil) Syncline; Anticline Eagle River Map Area Porcupine River Map Area Ordovician-Silurian and Devonian-Carboniferous 2(1) 3 5+6 7 4 1 **Organic-Rich Siliciclastics** ÷ ¢ Chance Whitestone RICHARDSON Anticline Syncline - Anticline ANTICLINORIUM + + + ┿ Dca / Chu / Chu + Di CDr Kb Ktb Pic2 Ce Ch Ce Ch Cf Kcc1 Cf Kbi Chr Chr Khi Dempster Jungle Creek Fm. Highway 1000 Ettrain Fm. Eagle Plain Gp. Ca Depth in metres (Datum- Sea Level) Hart Ci ower Cretaceous (Albian shale) -1000 -**River** Fm CDr Hart River Fm. 6 Kilometres Ford Lake Fm. -2000 -Ford Lake Fm. unnamed shale + and Tuttle Fm. 1000 Ogilvie Fm. Sc Imperial Fm. Ogilvie Fm. metres -3000 Road River Fm. Ci Canol Fm Michelle-Road River Fms. undivided ła Bouvette Fm. 24 -4000 +Well Sections - West to East Slats Creek Fm. + 1. Socony Mobil-WM N Cathedral YT B-62 -5000 Socony Mobile al Whitestone N-26 Socony Mobile al Whitestone N-26 Socony Mobil-WM Porcupine River YT K-56 Chevron SOBC WM East Porcupine YT F-18 liltyc + + ? 5. Western Minerals Chance YT #1 L-08 PreCambrian 6. Socony Mobil -WM Chance YT G-08 + + -6000 Canoe River East Chance YT C-18 + + + + +

Fig.6 Eagle Plains Cross Section (from Morrow, 1997)

物品語言

The Jurassic and Cretaceous part of the sequence is characterized by several episodes of marine transgression and regression that reflect alternating phases of rifting and compression. A major unconformity separates Upper Cretaceous from Lower Cretaceous and older strata. The *Eagle Plain Formation* is mostly marine but the top section is partially of fluviatile origin.

Rocks of the Richardson Trough were folded during the Cretaceous and Tertiary periods into the Richardson Anticlinorium. This prominent structure is cut by the Richardson Fault array and is bounded to the west by the Deception fault and to the east by the Trevor fault. Bordering structural elements are: the Eagle Fold Belt to the west and the northern Interior Platform to the east. Subsequent erosion has exposed the older layers in the core of the Anticline.

The Richardson Fault array consists of a system of curviplanar faults controlling the location and depth of the Richardson Trough as well as the subsequent Richardson anticline. These faults are thought to mark the site of much older steepy-dipping structures that once involved basement rocks. These faults are thought to have been reactivated at different times. Normal faulting during Early Cambrian time along these structures initiated subsidence of the Richardson Trough. Late Cretaceous to Tertiary deformation resulted in buckling of the thick sediment pile within the trough into a northerly shallowly plunging antiformal structure, the Richardson Anticlinorium. Reactivation of the faults resulted in both strike-slip and dip-slip displacement. The array corresponds to an area of very high seismicity. Deeply incised drainages, slump features and modern earthquakes all indicate ongoing tectonic activity.

The westernmost limit of continental glaciation lies east of Canyon Creek, not affecting the study area.

7. TRACT DEFINITION AND DESCRIPTION

To facilitate ranking, the area has been divided into nine geologically distinct tracts. The purpose of these tracts is to facilitate ranking by grouping rocks on the basis of similar geology. Tracts are defined stratigraphically, with adjoining stratigraphically similar rock units included in the same tract. Tracts are numbered from 1 to 9, from the oldest to the youngest rocks (see Fig. 2). Fault-related occurrences are included in the tract assigned to either the footwall or hangingwall unit.

The stratigraphy, mineral occurrences, geochemical signature and relevant mineral deposits will be described on a tract-by-tract basis. Geochemical anomalies are defined at the 95th (and 90th) percentile. A summary Table of Formations is shown in Figure 7. Lithological descriptions are based on field observations collected for this study where available, otherwise they are taken from the literature. For detailed and regional stratigraphic descriptions see Norris (1997), Morrow (in press), and Cecile (1982).

A compilation geology map is found in Appendix 5 and a location map for samples collected during this study is found in Appendix 6.

ract#	age	Formation	lithology	sed. environment	appl. min deps	
		:				
		1				
9	Cretaceous	Eagle Plains Gp	sandstone/shale	rifting, 'E to S derived, shoreline to shelf transgression, subsidence	coał	
		· · · · · · · · · · · · · · · · · · ·				
9	Cretaceous	Rat River	sandstone/shale	marine shelf	;	
			fe ten endetene / thick shelp	marine		
9	Cretaceous	Mount Goodenough	f.g. lam sandstone / thick shale			
	UNCO	NFORMITY			i	
	1			1	;	
9	Cretaceous	Martin Creek	sandstone, progradational, shallow marine			
9	Jurassic to Cretaceous	North Branch	sandstone, progradational, shallow marine	marine, unstable epicratonic shelf		
	Jurassic to Cretaceous	Husky Fm	shale dominant	marine		
8	Permian	Jungle Ck	sandstone, cgl, shale and carb	regression, shallow marine to subaerial	evaporite	
	asselian to wordian			· · · · · · · · · · · · · · · · · · ·		
	10.000				'evaporite, uranium	
	UNCO	NFORMITY?	l	<u> </u>	evaponte, uranium	
8	Pennsylvanian	Ettrain	cherty bioclastic carb	shallowing up, protected restricted shelf, margin	phophate	
	moscovian			and slope terrigenous influx from SE		
				erosion		
8	Miss-Pennsylvanian	Blackie	dk grey calc sh+sltstn, silty spiculitic limstn	shallowing upwards basin to slope	evaporites?	
	low Serpukh. to bakshiria	· · · · · · · · · · · · · · · · · · ·	and a sy our on anoth only aproxima infatt	carb ramp to platform		
	Afiaciaciation	Hart Piwer	lam chorty spiculitic limestons	prograde westward shelf	phosphate	
8	Mississipian 'up visean+ low serpukh.	Hart River	lam cherty spiculitic limestone	prograde westward, shelf, mid to upper slope+basin	prospirate	
	ap viscant tow serpukit.					
7.	up dev to u visean (Miss)		silty py sh/sstn (ss)	marine transgression-regression		
	<u>.</u>	equiv to Kayak		mod deep water to shalow pro-delta		
7	upper D.ev to low Miss.	Tuttle	cgl, sandstone	turbidites, northerly derived	coal, U	
-	famm to tournaisian			or fluvio-deltaic clastic wedge		
6	Devonian	Unnamed shale	shale	[sedex, barite	
5	upper Devonian	Imperial	siltstone + sandstone, sh, minor limestone	northerly derived, mod deep	barite	
	frasnian-fammenian		'turbidites, 'x-lam, flow cast structures	progradational, coars. upwards		
		Canal	silianous shale, short	euxenic basin	sedex, barite	
	mid Devonian frasnian-givetian	Canol	siliceous shale, chert		SOUGA, VOINO	
		l	·			
	UNCON	FORMITY				
-	upper Silution	Road River CDr4/ SDv	carbonaceous graptolitic shale	mod to rel deep water- marine	shale-hosted Ni-sulph sedex, emeralds, ba	
4	upper Silurian lower mid-Dev	NUGU PUVBI CUI4/ SUV	เรียนการเลาอาการ สิเลษาณ์แก่ รับเราส		coun, unulus, va	
4	mid+upper Silurian	Road River CDr3/ Sd	wispy laminated platy argillite and	shallowing, bioturbation		
	;	Steele equivalent	dolomitic siltstone. py nodules common			
	ļ	'Road River CDr2	limestone conglomerate	turbidite, // to axis of trough	MVT, sedex, fault controlled	1
3			· · · · · · · · · · · · · · · · · · ·			
3	I	sharpstone breccia				
		· · · · · · · · · · · · · · · · · · ·				
	low. Ord to low. Silurian	· · · · · · · · · · · · · · · · · · ·	black chert/sh/limstn(sil?), dolom in south	mod to rel deep water- marine	MVT	
3		'Road River upper CDr1/ Osl				
3		'Road River upper CDr1/ Osl	black chert/sh/limstn(sil?), dolom in south pyritic limestone, calc sh, chert nod+beds		MVT	
3	upper Cambrian + lower Ordovician	'Road River upper CDr1/ Osl Road River 'lower CDr1/ COr RabbitKettle equivalent	pyritic limestone, calc sh, chert nod+beds	mod to rel deep water- marine	MVT MVT, limestone	
3	upper Cambrian + lower Ordovician	'Road River upper CDr1/ Osl Road River 'lower CDr1/ COr	pyritic limestone, calc sh, chert nod+beds		MVT	
3	upper Cambrian + lower Ordovician mid Cambrian	'Road River upper CDr1/ Osl Road River 'lower CDr1/ COr RabbitKettle equivalent CDr0/Csh	pyritic limestone, calc sh, chert nod+beds siltstone, black shale, sandstone	mod to rel deep water- marine transitional into basinal sed.	MVT MVT, limestone	
3	upper Cambrian + lower Ordovician	'Road River upper CDr1/ Osl Road River 'lower CDr1/ COr RabbitKettle equivalent	pyritic limestone, calc sh, chert nod+beds siltstone, black shale, sandstone	mod to rel deep water- marine	MVT MVT, limestone	

7.1 Tract 1- Cambrian Illtyd Formation

7.1.1 Stratigraphy

The Early Cambrian Illtyd Formation represents the oldest exposed rocks in the study area. In this area, it consists of beige to brown weathering, thin-bedded, micritic knobby limestone. It is locally: wavy bedded, spheroidal-nodular, algal, red weathering and/ or pyritic. Exposures in the study area are at the westernmost extent of its surface expression. It was deposited in relatively shallow water across the Richardson Trough and the Yukon Block, then eroded across most of Yukon Block. Subsidence of the Richardson Trough with respect to the Yukon Block is reflected in the upper Illtyd Formation.

7.1.2 Mineral Occurrences

Within the study area, the Illtyd hosts two Minfile occurrences. The Pilon (106L 033) occurrence contains minor galena, sphalerite and pyrite in vugs and brecciated limestone. The Twice (106L 052) was staked to cover a Pb silt anomaly. Minor pyrite, sphalerite and galena are reported in hairline fractures and in vugs. A 90m long band of colloform smithsonite and galena has been reported in a brecciated fault zone. Both occurrences are located near one of the main strands of the Richardson Fault array, as mapped by Norris (1981).

Field visits to the Twice occurrence confirmed the presence of lead mineralization. Galena (+ sphalerite?) occur in limonitic and manganiferous vuggy breccias that can be traced along strike for 100's of meters. The highest value was 10.23% Pb in limonitic brecciated limestone (95DH-109). Galena from this sample contained was analyzed for its lead isotope ratio, yielding a Cambrian date of mineralization, which would support consideration of these occurrences as Mississippi Valley-type targets. Limestone breccias cemented by drusy quartz and calcite also contain anomalous lead and zinc values (96DH-124).

Fluorite was found in a pyritic calcite vein (96DH-117). Calcite-quartz veins are locally baritic (96DH-98, 99). One limestone sample collected for background lithogeochemical purposes unexpectedly returned values of 7700 ppm Zn and 29 ppm cadmium (96HR-47). Frothy and vuggy limestone is often pyritic, but if not brecciated and/or limonitic, isn't usually anomalous in lead or zinc.

A new mineral occurrence was discovered in float, where massive chalcopyrite coated by crystalline malachite is found in limonitic limestone with milky and clear drusy quartz crystals (96DH-126a and b). This is probably a vein/breccia occurrence, the attitude or extent of which was impossible to determine.

7.1.3 Geochemical signature

The lead content of one silt sample taken within the Illtyd was greater than the 98th percentile range.

7.1.4 Main Pertinent mineral deposit models and regional examples

Mississippi Valley type

Pro: brecciation, cementation, fluorite, anomalous Pb, Zn in silts and soils, Pb-Zn occurrences, regional faults, galena same age as host rocks

Con: No regional unconformity that would have provided erosion and karsting, no clear evidence of solution breccias

• Fault-controlled mineralization

Pro: numerous fault breccias, often mineralized, continuous structures, Con: thin structures, unclear if mineralized structures are regional faults

7.2 Tract 2- Cambrian Slats Creek Formation

7.2.1 Stratigraphy

The Slats Creek Formation outcrops in Richardson Trough and also partially underlies the Yukon Block. It consists of recessive, thin to medium bedded reddish brown to brown sandstone eroded from the Yukon Block in response to block faulting. Its base is not exposed.

7.2.2 Mineral Occurrences

No reported mineral occurrences

7.2.3 Geochemical signature

Low level Pb anomaly in the northern part of the survey. Elevated in REE with respect to the rest of the stratigraphy, probably due to different sedimentology (heavy minerals)

7.2.4 Pertinent mineral deposit models

Red-bed copper, uranium, sandstone-hosted lead (no evidence for mineralization)

7.3 Tract 3- Cambrian to Ordovician Lower Road River Group (CDR 0,1) (includes CDR2) (Norris)/Upper Cambrian and Lower Ordovician COR (Rabbitkettle) and Lower Ordovician to Lower Silurian Osl (Cecile)

7.3.1 Stratigraphy

Usage of Road River nomenclature has been varied, inconsistent and at times confusing. A good review of the history of usage is found in Morrow (in press). In this report, Norris' definition is used in conjunction with Cecile's. Norris uses the Road River Formation as defined by Jackson and Lenz (1962). He divides the formation into 5 units

(CDR0 to 4), with unit CDR0, the base of the Road River, overlying conformably the Slats Creek sandstones. Cecile, on the other hand, uses the Road River Group terminology as defined by Gordey (1993) based on his work in the Selwyn Basin. He divides Norris' CDR1 into two units: a lower COR, which is equivalent to the Rabbitkettle Formation as defined in Selwyn Basin, and an upper Osl (also loucheux formation, informal name) unit which constitutes his base of the Road River Group. The COR is separated from the Slats Creek by a transitional unit (Csh) that is equivalent to Norris' CDR0. Tract 3 includes all units mentioned above which represent the deep basinal setting in the Richardson Trough.

Unit CDR0 (Norris)/ Csh (Cecile) consists of rusty brown weathering siltstone and shale, minor sandstone (Norris includes limestone)

CDR1/ COR and OSI consist of interbedded limestone (locally pyritic), shale and chert, with thin cherty interbeds more common in OsI than in COR. Rocks are dolomitized in the southern part of the study area. Shales in OsI are graptolitic. This unit includes CDR2 (sharpstone breccia), mapped by Norris as representing an extensive debris flow or turbiditic event flowing from the adjoining carbonate bank from near Deception Mountain, along the long axis of the Richardson Trough. This conglomerate consists of angular limestone and chert clasts in a limestone matrix. This unit is locally dolomitized, brecciated and cemented with clear drusy quartz. Similar conglomeratic rocks have been observed north of the extent mapped by Norris (1981b) but with the matrix locally replaced by chert.

Carbonate breccias and veins are common, fragments are cemented by crystalline calcite and/or dolomite.

7.3.2 Mineral Occurrences

Tract 3 was divided in to 3 sub-tracts (a, b and c) due to the variety and density of mineral occurrences and geochemical anomalies, with the highest densities being in the northern (tract 3a) and southern (tract 3c) parts of the tract.

<u>Tract 3a</u> covers the northern tip of the Richardson Anticline. The Touché occurrence (Minfile 116I 064) is located in the core of the Richardson Anticlinorium on one of the main strands of the Richardson Fault Array. The property was staked to cover crystalline barite and Pb-Zn-Ag mineralization discovered by following up geochemical anomalies. Mineralization is related to faults and associated with quartz, quartz-carbonate or carbonate-barite veins. Rocks adjoining the faults are locally altered. The main barite occurrence consists of clear grey barite crystals up to 5 cm in diameter and is covered by the only claim in good standing in the study area. Base metals have been detected in soils along three main faults. Mineralization is sporadic and generally weak. A few anomalies yielded high-grade mineralization (19% Zn and 1.94% Pb, 1% Zn and 49% Ba) but no continuity was found.

The Vittrekwa occurrence (Minfile 106L 055) is described as hosting sphalerite and galena in brecciated limestone and shale.

<u>Tract 3b</u> contains the Joyal occurrence (Minfile 116H 071). Field checking confirmed the presence of copper mineralization. A quartz and calcite vein of very coarse grain size contains 1% interstitial chalcopyrite, malachite and limonite. Sample 95DH-53 returned values of 6810 ppm Cu and 80 ppb Au, the highest gold value in the study area aside from shale-hosted nickel-sulphide mineralization described in the next tract. Coarse calcite veins are common in the area but this rare instance of copper mineralization coincides with the rare occurrence of quartz in this vein.

<u>Tract 3c</u> covers the southern portion of tract 3 in the study area At the southern end of the study area, the Llod occurrence (Minfile 116I 053) is described as hosting sphalerite and galena in locally dolomitized limestone breccia. The neighboring Harival occurrence (Minfile 116I 054) is said to host sphalerite and galena in tectonic breccia in limestone and shale. Work history includes soil geochemistry and packsack drilling. A composite core sample taken from an abandoned core box returned 1260 ppm Pb (96DH-56). Field checking of the Harival occurrence established a correlation between lead soil anomalies (500-1000 ppm Pb) and outcroppings of the CDR2 sharpstone breccia. This conglomeratic rock is preferentially dolomitized, brecciated, recemented with drusy quartz and is locally mineralized. Lead and zinc values vary greatly but graded up to 1460 ppm Pb (96DH-58a) and 3.56% Zn (96DH-50). The greater porosity of this unit as compared to the host limestone/chert sequence would preferentially enhance it's susceptibility to dolomitization and brecciation and would make it a preferred conduit for fluids (ex: as a paleo-aquifer?), an important feature in MVT deposits.

Rocks sampled in or near the side canyon that flows into Canyon Creek (96DH-129 to 146) contain pyrite both as lenses and as graded bands (beds?). The CDR2 unit in the same area contains numerous pyrite clasts. Anomalous values in zinc, vanadium, antimony, cadmium and arsenic were obtained, both in limestone containing pyrite lenses or bands and in black shale, even in samples taken for background lithogeochemistry. One limestone sample (96 DH-132) contains 7020 ppm Zn, 18 ppm Sb, 107 ppm Ni, 100 ppm Cd, and 128 ppm As. This area is therefore considered highly anomalous due to its high metal content.

South of Canyon Creek, sample 96HR-2 returned values of 32.2% Ba, 8.4 ppm Cd and 207 ppm Ni. This anomaly is unexplained and further field work would be necessary to determine it's significance.

7.3.3 Geochemical signature

Tract 3a is characterized by anomalous Zn, Ba, Cu and Pb values as well as a low-level Mo anomaly.

The western part of Tract 3b hosts a weak F anomaly.

<u>Tract 3c</u> contains a linear Sb-Cd-Cu anomaly extending from the canyon area in Canyon Creek southward, a thin north trending F anomaly, and another Sb-Pb-Cu/Mo anomaly.

7.3.4 Pertinent mineral deposit models

Limestone:

Pro: dominant lithology, highway access

Con: thin bedded, chert interbeds, unknown purity, jointed

15 14

• MVT:

Pro: carbonate/shale transition (shale out), Pb-Zn in silts and rocks, primary porosity (CDR2), secondary porosity (brecciation), regional scale dolomitization, dolomite veins, barite occurrences.

Con: sedimentary environment too deep (?), no evidence of erosion/subaerial exposure causing secondary porosity

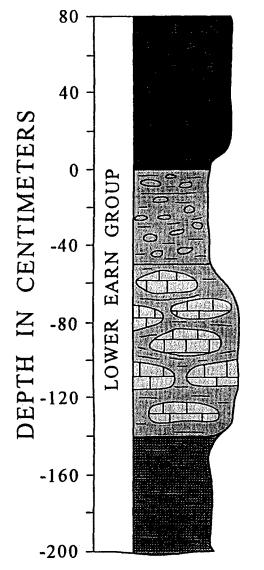
• SEDEX:

Pro: Anomalous Zn/Sb/As in rocks and in silts, bedded pyrite? Same age as Howard's Pass deposit

Con: not classic anoxic environment not thin attenuated crust

7.4 Tract 4- Ordovician to Devonian Upper Road River Group: CDR3 (Norris)/ Sd (Cecile) and CDR4/SDv, and upper Middle Devonian Canol Formation (DCa/Dc)

7.4.1 Stratigraphy


The upper part of the Road River Group is divided into two units. The oldest, CDR3/ Sd (also dempster formation, informal name), consists of platy grey-green wispy laminated argillite interbedded with orange-weathering resistant dolomitic pyritic siltstone. This unit also includes shaly limestone, calcareous shale and intraclast (bioclastic) conglomerate. This rock type is very distinctive, outcrops as resistant knobs or forms cliffy exposures. Intraformational recumbent folding has been observed in several instances. Pyrite is present as lenses or disseminated; barium levels are commonly greater than 1000 ppm, mostly in the dolomitic siltstone facies.

The youngest unit of the Road River, the upper Silurian to lower middle Devonian CDR4 (Norris)/ Sdv (also vittrekwa formation, informal name) (Cecile), consists of recessive carbonaceous graptolitic black shales, interbedded with limestone and white-weathering black chert. Locally, the shale is very poorly lithified (disaggregated) and samples resemble peat. Pyrite nodules and bands are common. Limestone pods or balls occur near the top of the succession. A secondary white crystalline coating, probably gypsum, is common on cliffy exposures in the northern part of the study area.

Unconformably overlying the Road River Group, the Canol Formation (Dca/ Dc) consists of rusty-weathering, thin bedded (pyritic) chert, blue-weathering siliceous shale and local limestone pods. The shales and cherts weather with a distinctive yellow iron-rich earthy coating (jarosite?).

In the southern part of the study area, the contact between the top of the Road River Groupand the Canol Formation is exposed and is characterized by a specific lithologic sequence (Fig. 8). The top of the Road River Group is marked by a limestone concretion-bearing unit within carbonaceous shales. This unit consists of meter-scale

EAGLE PLAINS CAMP SECTION WDG94-3

Thin bedded black carbonaceous cherty with shaky partings

Nickel-PGE horizon; rusty weathering

Small dark grey carbonate concretions hosted within black shale

Dark grey carbonate concretions (up to 1m across) lasted within balck carbonaceous shale

Black to dark grey carbonaceous shale

Fig. 8 Stratigraphic column of Ni-sulphide occurrence (from Goodfellow et al, 1996)

limestone balls strung out along one bed. This distinctive horizon is overlain by a 30 to 50 cm thick horizon of highly fractured siliceous shale that contains small, locally pyritic, disc-shaped barite nodules that seem to replace limestone. Immediately overlying this horizon, a thin sulphide-rich horizon is host to Ni-PGE-Au mineralization that will be described later. This horizon is in turn overlain by the rusty weathering thin-bedded cherts of the Canol Formation. This same setting has been traced for more than 9 km along strike. Outcrops of this contact have not been found in the northern part of the study area due to its recessive nature.

Two gossanous areas located near small faults at the top of the Canol Formation were sampled (95DH-74, 96DH-3,4,13,14). The exposures consisted mostly of sluff so the material sampled was not strictly in place and contact relationships are obscure. The rock is mostly very porous and coated with earthy red material and appears to be discordant to the adjoining shales. Examination of thin sections revealed the presence of fresh subhedral to euhedral albitic plagioclase and orthoclase set in a densely intergrown groundmass of silt-size quartz grains sharing angular grain boundaries. Vug shapes are euhedral and could be due to plucked out quartz and feldspars. Some samples show silicification textures. Of note is the near absence of mafic or accessory minerals. Silica content is greater than for a typical rhyolite (>90%), but the presence and habit of the feldspars are unusual for a mature sediment. The origin of this rock is still undetermined. It could be a silicified or recrystallized volcanic rock, shallow level intrusive rock, a tuff or a quartz-rich siltstone with an igneous or hydrothermal component.

New mapping in the southern part of the study area outlined the presence of the top of the Road River Group where previous mapping showed the Canol resting unconformably (?) on CDR1/CDr-OSI.

7.4.2 Mineral Occurrences

Tract 4 was divided in to 3 sub-tracts (a, b and c) due to the variety and density of mineral occurrences and geochemical anomalies, with thew highest densities being in the northern (tract 4a) and southern (tract 4c) parts of the tract. The outline of the southern part of tract 4c was defined by using new mapping, interpreting regional geochemistry and incorporating new mineral occurrence information.

Tract 4a

This tract hosts several mineral occurrences, 2 of which were previously documented as Minfile occurrences. The Border occurrence (Minfile 106L 017) consists of a gypsum lens measuring 800X300m, interpreted to have been emplaced along a strand of the Richardson Fault Array (between tract 4a tract 3a) during the Quaternary. The Polley occurrence (Minfile 116I 069) reportedly includes barite veins. The location is unclear but is probably within the Canol Formation.

Several new occurrences were discovered within tract 4a (or between tract 3a and 4a).

Chalcopyrite and red sphalerite occur in a normal fault between CDR1/OSI and CDR3/Sd. Sample 95DH-165 returned values of 2.68% Zn and 1905 ppm Cu.

Unit CDR3/Sd is pyritic, elevated in barite and locally contains pyritic baritic siltstone nodules (95DH-170). No significant occurrences were discovered within this unit.

The black shales of unit CDR4/Sdv have elevated background levels of Zn, Ni, Mo, Cd and Ba, as is found further south in Selwyn Basin. Many shale samples, with or without pyrite beds or pods, were found to be anomalous in those elements even when compared to these high background levels. This unit is very fossiliferous and, in tract 4a, yielded excellent examples of graptolites and nautiloids. Bituminous inclusions are common in quartz veins. Significant barium values (from 14 to 36% Ba) were obtained from what was probably limestone pods being replaced to witherite (?) crystals in a carbonaceous matrix (95DH-157, 96DH-21, 96GM-32, 34), as well as from pods of black recrystallized barite (96GM-33).

A continuous chip sample (95DH-23 to 37) was taken in a cliffy exposure where pyrite beds and lenses occurred at regular intervals, about 2 per meter. Values over 1000 ppm Zn over 7.5m are associated with anomalous As (>50 ppm), Cd (up to 40 ppm), Cu (100-200 ppm), Ni (average 200 ppm) and P (up to 3630 ppm) values. Sample 95DH-11, taken at the same locality, contains 32200 ppm P. Sample 95DH-15, located a few kilometers to the southeast, contains 81.5 ppm Cd.

Metal anomalies within the Canol formation in tract 4a are often fault-related. Samples within one fault zone at the northern end of the study area (95DH-68 to 73) are anomalous in As and P. Another, containing clay balls (96DH-4), is anomalous in P, U and Zn.

Quartz breccias and veins are common. Locally, gossanous rocks and even vegetation are covered by orange-rusty earthy powder, forming gossanous areas. This powder is anomalous in As and P.

Tract 4b

This tract is less anomalous in metal content than tracts 4a and c. Black shales of the CDR4/ Sdv unit are stained with malachite (96DH-184a to c) and contain elevated levels of As, Cu, Sb and Zn.

Tract 4c

A shale hosted nickel-PGE sulphide horizon was discovered by Wayne Goodfellow from the GSC (pers. com., 1996). A thin (1.5 to 4 cm), conformable, sulphide-rich layer occurs at the contact between CDR4/SDv and the overlying Canol Formation. The base of the bed is wavy. Samples 96DH-42 a to h were taken at that original discovery site. The mineralization consists of thin pyrrhotite bands seemingly disrupted by soft-sediment deformation, in a dark organic-rich matrix.

The distinctive stratigraphic setting, described at the beginning of this section, is also present at station 96DH-33. The limestone ball unit is present as well as the fractured shale horizon with small barite nodules. Its upper contact, where the sulphide horizon is expected, is recessively weathered where accessible, or not accessible due to the nature of the exposure. The same setting was found again at stations 96DH-167 to 169.

Here, the top of the barite nodule-bearing fractured shale horizon is slightly folded and overlain by discontinuous rock types: a limestone bed at the southern end of the outcrop hosts disseminated pyrrhotite mineralization (96DH-169a to c). At the northern end, discontinuous carbonaceous bands, green leached coating (annabergite?) and vuggy, earthy, organic-rich material mark the contact. Although nickel values are lower than at 96DH-42 (but still anomalous), gold and PGE values are as high, or higher than where the pyrrhotite occurs as a massive sulphide bed. This occurrence might represent the reworked equivalent of the hydrothermal mineralization found at 96DH-42. The same stratigraphic setting was found again at 96KP-12 but was not investigated.

This highly prospective contact and direct or indirect evidence of mineralization were traced for more than 9 km of strike length. The recessive nature of the contact controls and limits it's exposure. The potential for mineralization along this contact is high. The extension southward of this contact as indicated by the new mapping as well as Goodfellow's documentation of other similar occurrences near and on the Peel River, 50 km south of 96DH-42, increases the prospective value of this horizon.

A thin, rusty, grungy, fractured horizon with bright turquoise and green coating was sampled at a transition from limestone to limestone interbedded with chert (96 DH-170b), down-section from stations 96DH-167 to 169 (in Sdv). This coating is possibly annabergite (or nickel bloom), an alteration product of nickel arsenides. Values were anomalous in the same elements that are characteristic of the shale-hosted nickel-sulphide: 15 ppb Au, 1710 ppm As, 58 ppm Co, 348 ppm Cu, 929 ppm Mo, 10500 ppm Ni, 5690 ppm P, 142 ppm Sb, 140 ppm U and 5980 ppm Zn. Although this horizon is extremely thin, it is significant in that it might indicate that the exhalative activity that produced the nickel-sulphide horizon that is found at the contact between CDR4/SDv and the Canol Formation could also have been active at other times. The time interval where we can expect these types of deposits might therefore be greater that previously thought.

7.4.3 Geochemical signature

<u>Tract 4a</u> is outlined by a large Zn-Ba-Cu anomaly as well as by a more linear Mo and Sb anomaly that overlaps the contact with tract 5. Rock geochemistry is characterized by high As, Ba, Cu, Mo, P, Sb and Zn values.

The western part of tract 4b contains a small linear Cu-Zn-Sb-Mo anomaly. A linear Ni anomaly over tract 5 is interpreted to be transported from it's source rocks in tract 4. The eastern part of tract 4b contains small discrete Ba and Mo anomalies

Very few silt samples were actually taken in tract 4c making precise interpretation difficult. The northern part of tract 4c contains a Zn, Cu, Ba anomaly that also overlaps with tracts 5 and 7. A linear Mo and Sb Ni anomalies are located west of tract 4c but are interpreted as transported anomalies. A Sb-Pb-Cu anomaly as well as two small discrete Mo and Ba anomalies characterize the southernmost tip of tract 4c. The geochemical signature of this tract is consistent with the metallogeny of shale-hosted nickel sulphide occurrences and with the rock geochemistry of the nickel sulphide horizon and it's underlying barite-rich bed.

7.4.4 Pertinent mineral deposit models

• All of tract 4 is prospective for SEDEX, shale hosted nickel sulphide and barite deposits.

Pro: The geochemical signature of <u>Tract 4a</u> is particularly favorable to SEDEX and barite deposits. These deposits occur elsewhere in the Cordillera in similar rocks of similar age. The structural setting of the basin is favorable for SEDEX mineralization. Significant gypsum mineralization is documented. High barite grades are found in discontinuous pods, less high ones in veins. Rocks of <u>Tract 4c</u> contain occurrences of shale-hosted nickel sulphide mineralization that could potentially occur all along the perimeter of the antiform; they are locally anomalous in As, Cu and P.

Con: crust not as attenuated, basin not as deep, sedimentary pile not as thick as in Selwyn basin. No mafic volcanics. No documentation of bedded barite. Nickel-sulphide horizon very thin.

The potential for volcanic-related mineralization depends on the actual origin of the porous feldspar-rich rocks in tract 4a.

- Colombian type emeralds
- Pro: Black shale environment

Con: need a lagoonal depositional environment (shallower than the Richardson Trough) and a cratonic-type source for beryllium.

7.5 Tract 5- upper Devonian Imperial Formation

7.5.1 Stratigraphy

The Imperial Formation conformably overlies the dark siliceous shales and cherts of the Canol formation. These fine- to coarse-grained clastic rocks of turbidite origin are derived from an uplifted area in the north. In the study area, the Imperial consists of brownish, locally nodular, siltstone and sandstone interbedded with grey-brown shale and rare limestone beds. The unit is characterized by graded beds, flutes, load casts, tool marks, all sedimentary features indicative of a high energy environment.

7.5.2 Mineral Occurrences

The Polley occurrence (Minfile 1161 069) is described as a barite vein and is plotted as occurring in the Imperial Formation. Attempts to locate this occurrence during fieldchecking were not successful.

At a fault contact between the Canol and overlying Imperial formations, pyrite occurs in pods (nodules?) and as wisps (96KP-5). This sample is anomalous in Au, As, Cu, P, Pb and Sb.

A small limonitic fault breccia (95DH-14) is anomalous in Co, Ni and Zn. Shale and sandstone sample 96HR-4 is anomalous in Ba (2020 ppm).

7.5.3 Geochemical signature

A thin linear Ni anomaly is interpreted to be transported form source rocks in tract 4. A small Cu-Zn-Sb-Mo anomaly overlaps tract 4b and 5. An anomalous Zn sample occurs in the southern part of tract 5.

. . .

7.5.4 Pertinent mineral deposit models

Barite (no evidence found)

7.6 Tract 6- Devonian Unnamed shale

7.6.1 Stratigraphy

The Devonian Unnamed shale has been correlated with the McCann Hill chert of Alaska which has also been correlated with the Canol Formation. It can be interpreted to represent sedimentation of Canol equivalent on the Yukon Block. D.K. Norris refers to this unit as the basal part of the Ford Lake Formation (pers. comm.) This unit outcrops very poorly. Exposures in the study area are limited to road quarries, to bare hillsides of poorly lithified or decomposed rock and rare outcrops.

Rock exposures in the study area consist of friable or fractured yellow to grey weathering, dark grey to grey waxy shale with thin rusty locally nodular siltstone interbeds as well as sandstone beds. Locally, both the siltstone and the shale can be pyritic.

7.6.2 Mineral Occurrences

At station 96DH-96, massive to disseminated pyrite appears bedded. One sample (96DH-96a) is slightly anomalous in Cu and Zn. A few samples contain more than 1000 ppm Ba. The yellow weathering is reminiscent of the Canol Formation, a strong sulphide smell is not uncommon.

7.6.3 Geochemical signature

A thin linear weak Ba anomaly occurs parallel to the eastern contact with the Ford Lake Formation.

7.6.4 Pertinent mineral deposit models

• SEDEX and barite

Pro: bedded ? pyrite, favourable deep basinal environment Con: no evidence

23

7.7 Tract 7- Carboniferous Tuttle Formation (Upper Devonian to mid- Tournaisian), Ford Lake Formation (Upper Devonian to Viséan)

7.7.1 Stratigraphy

The Tuttle Formation consists of alternating fine- to coarse-grained clastics interpreted to be either a southward-advancing fluvio-deltaic clastic wedge or a marine turbidite. Transport direction was to the south. This unit is composed of white to beige to rusty weathering conglomerate to sandstone and minor shale. It forms resistant ridges. Chert clasts are common, as well as ironstone nodules. Fossils, plant and coal fragments have been observed as well. One sample (96DH-98) contained conformable fine- to coarse-grained pyrite pods.

The Ford Lake Formation interfingers and overlaps with the Tuttle Formation. It marks the return to basinal sedimentation with the deposition of grey to black pyritic shale, rusty weathering sandstone and local nodular siltstone horizons. It is partly equivalent to the Tuttle Formation. This unit, like the Devonian Unnamed shale, is very friable, recessive and outcrops very poorly.

7.7.2 Mineral Occurrences

Many rusty "gossans" occur in the Tuttle. No significant mineralization has been associated with these oxidized areas. The most significant sample contains slightly elevated values of Cu, V and Zn in a sandstone pervasively altered to hematite or limonite (95DH-41). Another oxidized conglomerate (95DH-193) was slightly anomalous in As, Ni and Pb.

A few Ford Lake Formation samples returned anomalous results. Sample 96HR-6b contained slightly elevated values of Co, Cu, Ni and Zn.

7.7.3 Geochemical signature

A thin elongate Zn anomaly is centered near the contact with tract 6. A Ba and a Zn anomaly occur at the southern end of tract 7, these might be transported from the east. A multi-element anomaly overlaps tracts 4, 5, 6 and 7 in the center of the study area but the portion overlapping tract 7 corresponds to the headwaters of the Eagle River and probably doesn't reflect metal values within tract 7.

7.7.4 Pertinent mineral deposit models

• Coal if non-marine origin of Tuttle formation

Pro: Traces of coal fragments in conglomerate

• epigenetic U if non-marine origin of Tuttle Formation (no evidence)

7.8 Tract 8- Carboniferous Hart River Formation (upper Viséan and lower Serpukhovian), Blackie Formation (lower Serpukhovian to Bashkirian), Ettrain Formation (Moscovian), Permian Jungle Creek Formation (Asselian to Wordian)

> . , e

7.8.1 Stratigraphy

The Carboniferous part of the sequence consists of a carbonate-clastic assemblage. Unconformably overlying the Ford Lake-Tuttle clastic wedge, the sequence includes the Hart River, Blackie and Ettrain Formations of the Lisburne Group.

The Hart River Formation consists mainly of beige-weathering, clean, fine-grained, thinly laminated spiculite and spicule-rich lime packstone and represents basinal to restricted shelf depositional environment. This is the only formation in tract 8 to have been sampled during this project.

The Blackie Formation consists of siliciclastic and carbonate rocks and occurs only in the southernmost part of the study area. This formation records a second basinal shale development succeeded by a shallowing upward succession of carbonate ramp to platform. Rock types include dark grey calcareous shale and siltstone and silty, spiculitic limestone as well as sandy limestone, sandstone and conglomerate.

Ettrain Formation (and unnamed equivalent) forms a shelf complex that appears to prograde westward and southward, reflecting supratidal to upper slope to open shelf conditions. In the study area, rock types include limestone, abundant silty dolostone and siltstone that were deposited in a restricted shelf environment during regression that culminated with regional erosion in the latest Carboniferous or earliest Permian.

This regional unconformity everywhere marks the base of the Permian but it's nature and magnitude in study area is not clear.

The Jungle Creek Formation represents the Permian part of the sequence in the study area. It consists of shallow marine to basinal fine-grained sandstone, siltstone and shale and silty to sandy carbonates.

7.8.2 Mineral Occurrences

Samples of nodular horizon at the top of a friable shale unit near its contact with a overlying limestone contain up to 5.9% P and 369 ppm U (96HR-14a to c). A strong fetid smell was present.

7.8.3 Geochemical signature

The eastern part of tract 8 contains a Ni-Zn anomaly that is interpreted to be transported from the east.

It is to be noted that the topographic characteristics of this tract do not favour strong geochemical signatures.

7.8.4 Pertinent mineral deposit models

- Evaporite: Pro: favourable sedimentary environment
- Phosphate: favourable sedimentary environment, high phosphate content in 3 samples
- Uranium at sub-Permian unconformity: favourable sedimentary environment

7.9 Tract 9- Jurassic to Cretaceous Husky Formation, North Branch Formation, Cretaceous Martin Creek Formation, Mount Goodenough Formation, Rat River Formation, Eagle Plain Formation.

7.9.1 Stratigraphy (from Dixon, 1992)

The Husky Formation is a shale dominant marine succession with thin interbeds of siltstone and very fine-grained sandstone with ironstone concretions. It represents a predominantly marine environment. The North Branch and Martin Creek Formations are progradational, coarsening-upward, shallow marine sandstones.

A major unconformity, cutting down to Devonian strata in the study area, separates the Lower from the Upper Cretaceous. The Mount Goodenough Formation rests unconformably on older beds and consists of thin, basal, transgressive, fine grained, finely laminated sandstone abruptly overlain by a thick shale succession. It represents marine sedimentation. The Rat River Formation consists of marine shelf deposits of thick, coarsening upward cycles overlain by shale and sandstone units. Textures indicate prograding and/or aggrading shelf or shoreline deposits. The sandstones and shales of the Eagle Plain Formation indicate deposition in a near-shore to inner shelf environment and record two large-scale transgressive-regressive cycles. In the younger strata of the Eagle Plain Group, facies changes indicate a northward progression from non-marine to marine shelf deposits. (Note: Dixon disagrees with some of Norris's mapping, mainly on the edges of Eagle Plain). Only the top of the Eagle Plain Group was sampled for this study.

7.9.2 Mineral Occurrences

Coal has been reported in the oil well logs, mostly in minor quantities. Wells I-05 and D-54 report significant coal occurrences in sandstone.

7.9.3 Geochemical signature

No geochemical anomalies are reported within this tract. It is to be noted that the topographic characteristics of this tract do not favour strong geochemical signatures.

7.9.4 Pertinent mineral deposit models

- Coal in non-marine portion of section.
- Pro: some coal documented in well logs

Con: significance of occurrences not clear, no outcrop, section dominantly marine

7.10 All tracts: aggregate

No glacial gravel deposits are found within the limits of the study area. Material suitable for aggregate can be found in the alluvial deposits blanketing the present streambeds as well as in the top pediment layer (1m) that blankets the bedrock. (A. Duk-Rodkin, pers. comm.) Although pediment layers are quite extensive, the thin nature of the gravelly layer does not render it suitable for commercial exploitation.

8. Final Ranking and conclusions

An assessment panel composed of industry and government geologists familiar with the geology and mineral deposit models pertinent to the study area was convened in March 1997. A unanimous ranking of all tracts was reached. A mineral potential map showing the relative ranking of all tracts is included in Appendix 7.

Ranking	Tract number
Highest High Medium Lowest	4a, 4c, 3a, 3c 4b, 3b, 1 6 2, 5, 7
	0.0

Potential for large deposit but insufficient 8,9 information

In conclusion, according to the information available at the time of this study, the greatest mineral potential for metallic minerals in the study area is to be found in rocks underlying the British-Richardson Mountains ecoregion (tracts 1 to 4). The geological setting of the Richardson Trough is favourable for hosting several types of mineral deposits. The northern and southern ends of tracts 3 and 4 hold the greatest promise for hosting economic mineralization. These tracts host mineral occurrences and are highly anomalous in their geochemistry. The central area of these tracts (3b and 4b) is less anomalous in their rock and silt geochemistry and hence rank lower in their mineral potential.

Rocks underlying the Eagle Plain ecoregion generally rank lower. The sedimentary environment of the rocks included in tracts 5 to 7 is less conducive to economic mineralization. Evaluation is hampered by poor rock exposure. Although the sedimentology of the rocks occurring at the western edge of the study area (tracts 8 and 9) is favourable to hosting sizeable deposits (evaporite and coal), the lack of detailed information precludes a confident relative ranking. Rock units occurring only in the subsurface have not been included in this assessment.

Structurally controlled mineralization is documented at the Border (106L 017, tract 4), Touché (106I 064, tract 3a)and Twice (106L 052, tract 1) Minfile occurrences. Mineralization at the Border and Touché is emplaced along strands of the Richardson Fault Array. Mineralization at the Twice is related to structures whose relationship, if any, to the Richardson Fault array is unclear.

28

9. REFERENCES

Cecile, M.P., Hutcheon, I.E. and Gardiner, D.

1982: Geology of the Northern Richardson Anticlinorium. Geological Survey of Canada, Open File 875.

Davidson, J.A.

1994: Petroleum Resource Assessment of the Eagle Plain Basin, Yukon Territory, Canada. Unpublished NEB report, 34p.

Dixon, J.

1992: Stratigraphy of Mesozoic strata, Eagle Plain, Northern Yukon. Geological Survey of Canada, Bulletin 408, 58p.

Fritz, W.H., Cecile, M.P., Norford, B.S., Morrow, D., and Geldsetzer, H.H.J.,

1991: Cambrian to Middle Devonian assemblages. In Geology of the Cordilleran Orogen in Canada, (volume G-2, Geological Society of America, Decade of North American Geology project), H. Gabrielse and C.J. Yorath (eds.); Geological Survey of Canada, Geology of Canada, no. 4, p. 151-218

Goodfellow W. D., Geldsetzer H.

1996 Genesis of Carbonaceous Shale-hosted NI-MO-PGE Deposits, notes for the short course on New Mineral Deposit Models of the Cordillera

Goodfellow W.D., Lydon J.W. and Turner R.

1993 Geology and Genesis of stratiform sediment-hosted (SEDEX) zinc-lead-silver sulphide deposits, in Kirkham, R.V., Sinclair, W.D., Thorpe, R.I. and Duke, J.M. eds., Mineral Deposit Modeling: Geological Association of Canada, Special Paper 40, p. 201-251

Gordey, S.P. and Anderson, R.G.

1993: Evolution of the Northern Cordilleran Miogeocline, Nahanni Map Area (105I), Yukon and Northwest Territories. Geological Survey of Canada, Memoir 428, 214p.

Gordey, S.P., Geldsetzer, H.H.J., Morrow, D., Bamber, E.W., Henderson C.M., Richards, B.C., McGugan, A., Gibson, D.W. and Poulton, T.P.

1991 Part A. Ancestral North America; in Upper Devonian to Middle Jurassic

assemblages, chapter 8 *In* Geology of the Cordilleran Orogen in Canada, (volume G-2, Geological Society of America, Decade of North American Geology project), H. Gabrielse and C.J. Yorath (eds.); Geological Survey of Canada, Geology of Canada, no. 4, p. 219-327

Hulbert, L.J., Gregoire, E. C.D., Paktunk, C. D.,

1992 Sedimentary Nickel, Zinc, and Platinum-group-element Mineralization in Devonian Black Shales at the Nick Property, Yukon, Canada: A New Deposit Type In Explor. Mining Geol., Vol. 1, No.1,pp. 39-62.

- Jackson, D.E. and Lenz, A.C.
- 1962: Zonation of Ordovician and Silurian graptolites in northern Yukon, Canada. American Association of Petroleum Geologists, Bulletin, v. 46, no. 1, p. 30-45.

Leach, D.L. and Sangster D.F.

1993 Mississippi Valley-type Lead-zinc-Deposits, in Kirkham, R.V., Sinclair, W.D., Thorpe, R.I. and Duke, J.M. eds., Mineral Deposit Modeling: Geological Association of Canada, Special Paper 40, p. 289-314

Lefebure, D.V.and Ray G.E., eds.

1996 Selected British Columbia Mineral Deposit Profiles, vol. 1, Open File 1995-20, B.C. Ministry of Energy, Mines and Petroleum Resources, Geological Survey Branch.

Lefebure, D.V.and Hoy, T., eds.

1996 Selected British Columbia Mineral Deposit Profiles, vol. 2, Open File 1996-13, B.C. Ministry of Employment and Investment, Energy and Minerals Division, Geological Survey Branch.

Morrow, D.W.

1997 Lower Paleozoic Stratigraphy- Northern Yukon Territory and Northwestern district of Mackenzie, Geological Survey of Canada Bulletin , in press.

Norris, D.K., ed

- 1997 The Geology, Mineral and Hydrocarbon Potential of Northern Yukon Territory and Northwestern District of Mackenzie, Geological Survey of Canada Bulletin 422.
- 1981b: Geology: Eagle River, Yukon Territory. Geological Survey of Canada, Map1523A.
- 1981c: Geology: Trail River, Yukon Territory. Geological Survey of Canada, Map1524A.
- 1982b: Geology: Hart River, Yukon Territory. Geological Survey of Canada, Map1527A

1982c: Geology: Wind River, Yukon Territory. Geological Survey of Canada, Map1528A.

Ruzika V.

· · ·

1993, Unconformity-type Uranium Deposits, in Kirkham, R.V., Sinclair, W.D., Thorpe, R.I. and Duke, J.M., Eds., Mineral Deposit Modeling: Geological Association of Canada, Special Paper 40, p. 125-149

APPENDIX 1

Minfile Occurrences

MINFILE: PAGE NO: UPDATED: 106L 052 1 of 1 02/18/93

YUKON MINFILE STANDARD REPORT EXPLORATION AND GEOLOGICAL SERVICES DIVISION, DIAND WHITEHORSE

NAME(S): Twice MINFILE #: 106L 052 MAJOR COMMODITIES: Pb,Zn MINOR COMMODITIES: TECTONIC ELEMENT: Mackenzie Platform NTS MAP SHEET: 106 L 4 LATITUDE: 66°10'00''N LONGITUDE: 135°53'00''W DEPOSIT TYPE: Mississippi Valley STATUS: Showing

CLAIMS (PREVIOUS AND CURRENT)

PETE, TWICE, RAS, TUS

WORK HISTORY

Staked in Jul/74 as Pete cl (Y82763) by Ecstall Mg L (Texas Gulf Sulphur); the Ceno cl (Y89448) and Twice cl (Y89433) by Noranda; and the RAS and TUS cl (Y89563) by Amax. All groups were explored with mapping and geochem sampling in 1974 and 1975.

GEOLOGY

The claims cover the north part of a window of Lower Cambrian carbonate rocks exposed through Middle Cambrian shale in the core of a broad anticline. The carbonates are pyritic and have a high lead (up to 800 ppm) and Zn (up to 4000 ppm) background which is partly due to numerous minor occurrences of galena, sphalerite and pyrite in vugs and local breccia zones.

The main showing on the Pete group is 90 m long and consists of colloform smithsonite and galena with white calcite, in a brecciated fault zone.

REFERENCES

MINERAL INDUSTRY REPORT 1974, p. 90-91; 1975, p. 78-79.

MINFILE:	
PAGE NO:	
UPDATED:	

116I 053 1 of 1 02/18/93

YUKON MINFILE STANDARD REPORT EXPLORATION AND GEOLOGICAL SERVICES DIVISION, DIAND WHITEHORSE

NAME(S): Llod MINFILE #: 1161 053 MAJOR COMMODITIES: Zn,Pb MINOR COMMODITIES: TECTONIC ELEMENT: Mackenzie Platform NTS MAP SHEET: 116 I 1 LATITUDE: 66°03'00''N LONGITUDE: 136°00'00''W DEPOSIT TYPE: Mississippi Valley STATUS: Drilled prospect

CLAIMS (PREVIOUS AND CURRENT)

LLOD

WORK HISTORY

Staked as Llod cl (Y90012) in Sep/74 by Amoco Can Pet CL, which conducted mapping and geochem sampling in 1974 and 1975 and drilled some short packsack holes in 1976.

GEOLOGY

Minor sphalerite and galena occur in a locally dolomitized limestone breccia on the west flank of the Richardson Anticlinorium. The mineralization occurs in a sequence of limestone, chert and minor shale stratigraphically equivalent to the Ordovician to Lower Devonian Road River Group.

REFERENCES

AMOCO CANADA PETROLEUM CO. LTD, Oct/75. Assessment Report #090038 by P. Maingot.

GEOLOGICAL SURVEY OF CANADA, 1980. Open File 715.

MINERAL INDUSTRY REPORT 1974, p. 87-88; 1975, p. 92.

 MINFILE:
 1161 054

 PAGE NO:
 1 of 1

 UPDATED:
 02/18/93

YUKON MINFILE STANDARD REPORT EXPLORATION AND GEOLOGICAL SERVICES DIVISION, DIAND WHITEHORSE

NAME(S): Harival MINFILE #: 116I 054 MAJOR COMMODITIES: Zn,Pb MINOR COMMODITIES: TECTONIC ELEMENT: Mackenzie Platform NTS MAP SHEET: 116 I 1 LATITUDE: 66°06'00''N LONGITUDE: 136°05'00''W DEPOSIT TYPE: Vein STATUS: Drilled prospect

CLAIMS (PREVIOUS AND CURRENT)

DOLL

WORK HISTORY

Staked as Doll cl (Y89886) in Aug/74 by Amoco Can Pet CL, which conducted mapping and geochem sampling in 1974 and 1975 and a gravity survey in 1975, and drilled some short packsack holes in 1976.

GEOLOGY

Sphalerite and galena occur in a tectonic breccia formed in limestone and shale on the west flank of the Richardson Anticlinorium. The host rocks are stratigraphically equivalent to the Ordovician to Lower Devonian Road River Group.

REFERENCES

F

GEOLOGICAL SURVEY OF CANADA, 1980. Open File 715.

MINERAL INDUSTRY REPORT 1974, p. 87-88; 1975, p. 91.

MINFILE:	
PAGE NO:	
UPDATED:	

106L 055 1 of 1 02/18/93

YUKON MINFILE STANDARD REPORT EXPLORATION AND GEOLOGICAL SERVICES DIVISION, DIAND WHITEHORSE

NAME(S): Vittrekwa MINFILE #: 106L 055 MAJOR COMMODITIES: Pb,Zn MINOR COMMODITIES: TECTONIC ELEMENT: Mackenzie Platform NTS MAP SHEET: 106 L 13 LATITUDE: 66°46'00''N LONGITUDE: 135°55'00''W DEPOSIT TYPE: Mississippi Valley STATUS: Showing

CLAIMS (PREVIOUS AND CURRENT)

VIT

WORK HISTORY

Staked as 140 Vit cl (89746) in Aug/74 by Amoco Can Pet CL, which conducted mapping and geochem sampling in 1974 and 1975.

GEOLOGY

Minor galena and sphalerite occur in breccia zones in limestone and shale of the Ordovician to Lower Devonian Road River Group. The showing occurs on the east flank of the large north-trending anticline which forms the south end of the Richardson Mountains.

REFERENCES

GEOLOGICAL SURVEY OF CANADA, 1980. Open File 715.

MINERAL INDUSTRY REPORT 1974, p. 91.

MINFILE:	116I 069
PAGE NO:	1 of 1
UPDATED:	/ /83

NAME(S): Polley MINFILE #: 1161 069 MAJOR COMMODITIES: Ba MINOR COMMODITIES: TECTONIC ELEMENT: Mackenzie Platform NTS MAP SHEET: 116 I 16 LATITUDE: 66°57'00''N LONGITUDE: 136°20'00''W DEPOSIT TYPE: Vein STATUS: Showing

CLAIMS (PREVIOUS AND CURRENT)

WORK HISTORY

Mapped by the GSC but never staked.

GEOLOGY

Barite veins are present in an area mapped as Upper Devonian Imperial Formation shale and sandstone.

REFERENCES

GEOLOGICAL SURVEY OF CANADA Open File 875.

MINFILE:	116 I 070
PAGE NO:	1 of 1
UPDATED:	/ /83

NAME(S): Cronin MINFILE #: 1161 070 MAJOR COMMODITIES: Ba MINOR COMMODITIES: Zn TECTONIC ELEMENT: Mackenzie Platform NTS MAP SHEET: 116 I 16 LATITUDE: 66°50'00''N LONGITUDE: 136°22'00''W DEPOSIT TYPE: Vein STATUS: Showing

CLAIMS (PREVIOUS AND CURRENT)

WORK HISTORY

Noted by the GSC but never staked.

GEOLOGY

Barite veins are present in an area mapped as Upper Devonian Canol Formation shale and chert. Hydrozincite was noted in Ordovician to Lower Devonian Road River Group shale about 3 km to the southeast.

REFERENCES

1

GEOLOGICAL SURVEY OF CANADA Open File 875.

MINFILE:	1161 071
PAGE NO:	1 of 1
UPDATED:	/ /83

NAME(S): Joyal MINFILE #: 1161 071 MAJOR COMMODITIES: MINOR COMMODITIES: Cu TECTONIC ELEMENT: Mackenzie Platform NTS MAP SHEET: 116 I 9 LATITUDE: 66°42'00''N LONGITUDE: 136°14'00''W DEPOSIT TYPE: Unknown STATUS: Anomaly

CLAIMS (PREVIOUS AND CURRENT)

WORK HISTORY

Mapped by the GSC but never staked.

GEOLOGY

Malachite is present in a Cambro-Ordovician limestone-shale sequence.

REFERENCES

GEOLOGICAL SURVEY OF CANADA Open File 875.

MINFILE: PAGE NO: UPDATED:

106L 017 1 of 1 02/16/93

YUKON MINFILE STANDARD REPORT EXPLORATION AND GEOLOGICAL SERVICES DIVISION, DIAND WHITEHORSE

NAME(S): Border MINFILE #: 106L 017 MAJOR COMMODITIES: Gypsum MINOR COMMODITIES: -TECTONIC ELEMENT: Mackenzie Platform NTS MAP SHEET: 106 L 13 LATITUDE: 66°59'30''N LONGITUDE: 135°53'30''W DEPOSIT TYPE: Other STATUS: Showing

CLAIMS (PREVIOUS AND CURRENT)

WORK HISTORY

Discovered by the GSC and apparently never staked.

GEOLOGY

A lens of gypsum approximately 800 m long and 300 m wide has been emplaced along a strand of the Richardson Fault Array. This NNW-trending normal fault lies close to the northern limit of the Richardson Anticlinorium and juxtaposes Upper Devonian Imperial Formation shale against black graptolitic Road River Group shale and limestone.

REFERENCES

GEOLOGICAL SURVEY OF CANADA Map 1524A.

NORRIS, D.K., ET AL., 1993. The geology, mineral and hydrocarbon potential of the Northern Yukon Territory and Northwestern District of Mackenzie. Geological Survey of Canada Memoir, in press.

MINFILE:	106L 033
PAGE NO:	1 of 1
UPDATED:	02/18/93

NAME(S): Pilon MINFILE #: 106L 033 MAJOR COMMODITIES: Pb,Zn **MINOR COMMODITIES: -TECTONIC ELEMENT:** Mackenzie Platform

NTS MAP SHEET: 106 L 4 LATITUDE: 66°07'00''N LONGITUDE: 135°48'00''W **DEPOSIT TYPE:** Mississippi Valley **STATUS:** Drilled Prospect

CLAIMS (PREVIOUS AND CURRENT)

ML, ENOC

WORK HISTORY

First noted by the GSC and staked in Jul/74 as ML cl (Y89587) by Amoco and as Enoc cl (Y89472) by Noranda. Noranda conducted mapping and geochem sampling in 1974. Amoco explored with mapping and geochem sampling in 1974 and 1975 and some short packsack holes in 1976.

GEOLOGY

The claims cover part of a window of Lower Cambrian Illtyd Formation limestone exposed by faulting in the core of a broad anticline, through Middle Cambrian Slats Creek and Taiga Formation shale. The carbonate rocks are pyritic and have a high lead (up to 800 ppm) and zinc (up to 400 ppm) background imparted by numerous minor occurrences of galena, sphalerite and pyrite in vugs and local breccia zones.

REFERENCES

GEOLOGICAL SURVEY OF CANADA Paper 74-1A, p. 343.

MINERAL INDUSTRY REPORT 1974, p. 88-89; 1975, p. 78.

APPENDIX 2

Lithogeochemical results

.....

															i					
AMPLE	approx location	formation	description	Au		· · · · · · · · · · · · · · · · · · ·	Ba Bi	Ca Cd			Cu Fe	Mg M		NI P	Pb	Sb Sc			V	W
				ppb	ppm	ppm	ppm ppm	% ppm	ppm	ppm	ppm %	% p	pm ppm	ppm ppm (%P20	ppm	ppm ppr	n ppm %	ppr	n ppm	ppm
														(70-20	551					
5DH-7	km 403.7 1161/9	Di	slicked qtz(also drusy) on coarse brown sandstone	<5	<.2	6	130 <2	0.09 <.5	8	185	14	3.39 0.24	180 1	35	410	4 <2	2 12 <	.01 <10	32	2 <10
5DH-11	km 450 116l/16	SDv	rusty weath loc brecciated //So shale	<5	1.	_	160 <2	2.67		56	74	3.78 0.15	15 51		.32%		1 1035		10 2070	
DH-13A	km 440.9 161/16	Dc	1-3cm thick grey to white weathering sandy bed.pyro?					1											1	
5DH13B		Dc	30cm wide qtz breccia in yellow weath sil shales 042/80	<5	0.2		200 <2		14.5 <1	150	47	3.05 0.02	5 366		7820		24 1475 <			0 <10
5DH-14	Real Rx Ck 116l/16	Di	20-30cm wide limonitic fault breccia in shale, gtz-carb (-gyps?) veinlets		<.2			6.66	2.5 139			5.55 1.36		413	260	10 <2	9 338 <			2 <10
5DH-15A	RRC trib 116I/16	Dc/SDv? fault	2m chip in brecc. limonitic calcareous shale w thin Vq cc and 8cm Vcc	<5	0.6		30 <2	8.95	9 11		78	3.77 0.89 0.27 0.15	215 32 395 1		1610 80 <2	14 6 2 <1	4 516 < 901 <			0 <10
5DH-15B	RRC trib 116I/16 RRC trib 116I/16	Dc/SDv? fault SDv? (Di)	rusty calcite vein Fx in black matrix. in fault sampled above rep sample: black friable limey shale, loc resistant pyritic horizon, chip 2m	<5 <5	<.2 0.6		220 <2	>15.00	1.5 1		68	2.71 1.28	135 3		970		7 237 <			2 <10
5DH-16A 5DH-16B	RRC trib 1161/16	SDV? (Di)	composite of 3 grey pyritic siltstone beds 8, 20 and 25cm thick	<5	0.4		60 <2	12.65 <.5	3			3.05 6.72	655 2		120		5 1190 <			8 <10
5DH-16C	RRC trib 1161/16	SDv? (Di)	1m zone of rusty qtz-cc veining and fracturing w sulph alt	<5	0.6		230 <2	12.3	1.5 18	28	65	3.22 1.63		149	210	8 2	7 522 <	.01 <10) 61	1 <10
5DH-17	RRC trib 1161/16	Dc	1m rep of fin. bedded chert/loc shale, loc yellow and rusty weath	<5	0.4		600 <2	0.11 <.5	<1	41	-	0.38 0.03	5 24		20	2 <2 <1	22 <			5 <10
5DH-18	Real Rx Ck 116l/16	?	float in ck, siltstn cgl-breccia w carb matrix, diss cp bo py <1%		<.2			2 >15.00 <.5	2			0.69 0.38	245 1		2920	2 <2 <1	309 <			8 <10
5DH-19	Real Rx Ck 116l/16	Dc?/SDv?	.5 m chip of fractured shales coated w rusty and white gypsum ?	<5	2.4		110 <2	4.63 3.99	31 45 16.5 6			2.87 0.37 2.23 0.57	305 10 80 25		700		6 542 <			8 <10 2 <10
5DH-20	Real Rx Ck-116I/16	SDv?	brecc. shale w lim-gyps-qtz? coating on fract and lining Fx. tr malach. float samples -23 to 37 : one continuous section from base to top	<5	3.2	2 80	160/<2	3.99	0.5 0	/0	309	2.23 0.57	00 25	140	700	10 52	4 203 4	.01 510		
5DH-023	km 450 116i/16	SDv	carb grapt. limey sh w parts of 2 mass, py pods: slicked ind. stain chip 0.5m	<5	0.8	8 56	50 <2	5.28	24 3	70	107	4.9 0.76	85 43	172	350	14 2	2 478	0.03	10 817	7 <10
5DH-024	km 450 1161/16	SDv	carb graptol.shale, slightly limey. no noted sulphides. chip 0.8m	<5	0.6		690 <2	4.88	28 3			0.93 0.85	70 51		540	8 2	3 485			5 <10
5DH-025	km 450 1161/16	SDv	carb graptol.shale w 1 to 2 cm band py. chip 0.61m	<5	1.2		10 <2	4.07	17 2			6.14 0.65	80 55		1780	18 6	2 175			5 <10
5DH-026	km 450 1161/16	SDv	carb graptol.sh w 2 wavy banded py bands 1 to 1.5 cm. chip 0.4m	<5	0.8		30 <2		15.5 3			4.03 0.58	60 62		1310		3 273			5 <10 0 <10
DH-027	km 450 1161/16	SDv	carb sh w 1 cm py band and 1-4 cm pinch +swell lenses.chip 0.58 cm	<5	0.6	6 58 1 62	20 <2	4.01 2	20.5 3			4.64 0.64 1.86 0.85	60 63 75 64		320		3 248			0<10
5DH-028 5DH-029	km 450 116i/16 km 450 116i/16	SDv SDv	platy siliceous shale w 1cm band of massive py. chip 0.67m carb shale w 1-2 cm sulph band. chip 0.6m	<5	0.6	-	70 <2		19.5 3			3.33 0.71	50 54		1470		2 234			5 <10
DH-030	km 450 116/16	SDv	shale w planar 2-4 cm dark green sulph band, py in core. chip 0.47m	<5	0.8		60 <2	the second se	21.5 2			2.6 0.53	45 61		1140	16 6	3 181	0.03	10 1515	5 <10
DH-031	km 450 1161/16	SDv	sample of sulphide pod in 95 DH-29, 4 cm thick (fold?)	<5	1.8	8 142	10 <2	0.79	3.5 1	133	495	11.05 0.07	10 56		3630	24 12 <1	38	0.07 <10		0 <10
DH-032	km 450 116!/16	SDv	sulphide-rich layer in DH-30, py in core. 4 cm	<5	1.4		10 <2	0.54	2.5 <1	117		7.19 0.06	10 66		190	28 4 <1	28	0.05 <10		5 <10
DH-033	km 450 1161/16	SDv	carb shale w py band 1-2 cm. chip 0.6m	<5	0.8		10 <2		47 4			5.96 0.55	55 69		1000 600		2 111 3 194			5 <10 5 <10
DH-034 DH-035	km 450 116l/16 km 450 116l/16	SDv SDv	shale w 2-4 cm planar sulph band, looks like DH-30. chip 0.55m shale no visible sulph. chip 0.43m	<5 <5	0.8		10 2	4.93 3.08	47 4 38 2			2.96 0.78	80 93 40 72		590		3 189			0 < 10
DH-035 DH-036	km 450 1161/16	SDv	carb shale w brecciated horizon, sulph? chip 0.55m	<5	0.8		30 <2		40.5 1			2.35 0.24	15 81		1370		3 172			0 <10
DH-037	km 450 116//16	SDv	carb shale w tabular sulph-rich horizon. chip 0.58m	<5	1		40 <2	3.23		76		1.93 0.5	55 52		1770	12 6	3 261	0.03	10 1695	5 <10
																				'
DH-038	km 395.6 116l/10	Ct	rep of conglomerate w limonitic coating on fractures			<2	360 <2	0.01 <.5	<1	235	7	0.5 <.01	5 1		140 2910	2 <2 <1				7 <10 8 <10
DH-039	km 395.6 116l/10	Ct	pervasively limonitic Tuttle cgl		<.2 <.2		450 <2	<.01 <.5 <.01 <.5	<1	330 112	21	5.55 0.01 0.28 0.01	40 1 5 <1	1	120:<2	<2 <1	4 5/ <			6 < 10
DH-040 DH-041	km 393.3 116l/10 km 393.3 116l/10		clean sandstone w sl. weath surfaces, some chert Fx-rich laminae s/c pervasively altered med to c.g. sandstone w altern rigs of hem/lim (nod?) float		<.2		60 <2	<.01 <.5	6			0.20 0.01	35 <1	70	620		9 13 <			5 <10
DH-042	km 393.3 1161/10	Ct	clean c.g. clast to matr (sand to fg cgl) supp cgl w elongate chert pebbles s/c		<.2	4	240 <2	0.01 <.5	<1	233		0.46 0.01	5 <1	3	340	2 <2 <1	35 <	.01 <10) 19	9 <10
DH-043	km 403.7 1161/9 S of AC	Di	composite chip of crumbly grey (waxy) shale. 0.53m	<5	<.2	6	400 <2	0.23 <.5	18	49	68	3.7 0.84	235 2		580	16 <2	7 62 <			9 <10
DH-044	km 403.7 116I/9 S of AC	Dí	composite chip of rusty weath grey siltstone. 0.63m		<.2	8	400 <2	0.23	1 18			4.39 0.72	175 2		650		5 42 <			2 <10
DH-045	116I/9 N of AC	Di	composite chip of grey green rusty shale (some thin sstone).1.5m		<.2	20	450 <2	0.25 <.5	8			3.67 0.51	100 2 155 1	·	410 620		6 53 < 5 17 <			7 <10 3 <10
DH-046 DH-047	116I/9 N of AC 116I/9 N of AC	Di	composite chip of rusty weath grey sittstone . 0.27m		<.2 <.2	6 24	160 <2 230 <2	0.24	0.5 14		43	3.85 0.68 3.9 0.59	155 1 150 1		430	34 <2	6 27 <			0 < 10
DH-047 DH-048	1161/9 N of AC	Di	composite chip of rusty weath grey green shale. 0.81m composite chip of rusty weathering of grey siltstone. 0.52m		<.2	4	160 <2		0.5 13			4.51 0.86	220 <1	47	570		5 16 <			6 <10
DH-049	from pit at km 412 116l/9	Sd	rep beige weath grey bioturbated platy argillite, loc sl limey		<.2	2	1100 <2	0.94 <.5	4			2.26 1.05	350 <1	22	290	4 <2	3 50 <	01 <10) 21	1 <10
DH-050	from pit at km 412 1161/9	Sd	orange weath grey pyritic dolom, platy, fissile		<.2	2	2020 2	9.16 <.5	3		19	4.2 3.7	1885 <1	14	240	2 <2	3 320 <			4 <10
DH-051	from pit at km 412 1161/9	OSI	rep of beige grey dolom (60%) and black chert (40%) cut by disc thin Vcarb	<5 <	<.2	<2	110 2	9.95	1 <1	122	24	0.16 5.96	130 3	4	1230 <2	<2 <1	38 <	01 <10	53	3 <10
DH-51B	10	OSI	sigmoidal zebra dolomite w carb-filled sigm and qtz+ opaque in core	<5 <			590 2	>15.00	8.5 <1	62	12	0.13 0.55	65 2	15	190 <2	<2 <1	454 <	01 <10	49	9 < 10
DH-052 DH-053	from pit at km 412 116l/9 Cu showing ridge 116l/9	Dc? OSI vein	brecciated chert in drusy qtz-cc matrix. Fx loc py. Fetid. Small black min. c.g.qtz + sparry calcite w 1% interst. pods of tarnished cp w malach halo	80	1.4			>15.00	1 <1			0.87 1.23	380 <1	1	120	4 2 <1	424 <			1 < 10
DH-054	Cu showing ridge 1161/9	OSI vein	qtz w grey striped sparry cc+seams of yel-brown cc+ 1% pods of lim-cp-mal	<5	0.4			>15.00 <.5	<1			0.63 3.8	1205 <1	<1	10 <2	<2 <1	624 <			3 <10
DH-055	Cu showing ridge 116I/9	OSI?	carbonate breccia almost looks dykish	<5 <				>15.00 <.5	<1	14	13	0.26 3.69	145 <1	1	180 <2	<2 <1				4 <10
DH-056	Cu showing ridge 1161/9	COr?	10m wide v. coarse orange and white cc vein trends 120. dense, baritic?	<5 <				>15.00 <.5	<1	1		0.13 0.33	140 <1		60 <2	<2 <1				3 <10
DH-057	Cu showing ridge 1161/9	COr	rep sample of grey limestone. float	<5 <				>15.00 <.5	<1			0.12 0.49	190 <1	1	610 <2	2 <1	1180 <. 834 <.			3 <10 9 <10
DH-058	Cu showing ridge 1161/9	OSI Sd	rep sample of banded grey, brown and black pyritic limestone, float		:.2 :.2	4	580 <2 970 <2	>15.00 <.5	<1	27		0.22 0.28	125 <1 95 <1		1390 <2 370	2 <1	2 43 <			0 <10
0H-059 0H-060	Cu showing ridge 1161/9 Cu showing ridge 1161/9	Dc	rep sample of platy green grey beige argillite 1m chip of rusty and yellow weathering chert. beds 2-6 cm, very friable		:.2	14	380 <2		0.5 <1			0.73 0.01 <			140		2 37 <			6 < 10
H-061	3.5 km N of lodge1161/7	Dss	fin band friable vel to grey weath grey shale w ox band cut by disc Vcarb?2m		0.2		220 <2	0.41	1 1		44	1.6 0.06	5 6		250		3 44 <.			2 <10
H-062	app km 462 116P/1	Kmg?	large limestone nodule (10 cm in diam) in dark grey-brown brown shale. float	<5 <		16	120 <2	13.75 <.5	6		8	3.28 0.38	435 <1	15	2380	22 <2	3 395 <.	01 <10		7 <10
H-063	NW of km 450 116 l/16		boulder of qtz breccia w open xtall texture. No vis sulph	<5 <	.2	2	430 <2	0.15 <.5	<1			0.37 <.01	15 17		420		3 113 <.			6 <10
H-064	NW of km 450 116 l/16		Qtz brecc w Dc Fx lined w drusy qtz, yellow-green sulph staining. float		0.4		780 <2	0.02 <.5		212		0.56 0.01	10 15		180		1 64 <.			7 <10 1 <10
1-065	NW of km 450 116 1/16	Dc breccia	rusty breccia-vein 4cm w yel drusy qtz lining sh Fx.loc clay gouge. 090/90		0.4		470 <2	0.09 <.5	<1	301		1.02 0.01 0.58 <.01	10 24 5 13		320 1290		1 32 <. 6 241 <.			1 <10
1-066 1-067	NW of km 450 116 1/16 NW of km 450 116 1/16	Dc fault Dc fault	qtz breccia w ang sh Fx, yellow stained qtz matrix, ox fracture planes. s/c rusty weath breccia w angular shale (+qtz?) Fx w limonitic cement-ferricrete?	<5 <5	0.6		130 <2 200 <2	0.07	1.5 <1	210		4.82 0.02	5 63		990		1, 149 <.			5 <10
						4430		<.01 <.5	<1	103		00 0.01 <			83%		8 78 <		10 3550	
H-068 H-069	NW of km 450 116 l/16 NW of km 450 116 l/16		rusty porous limonitic colloform space filling material w some shale Fx grey qtz breccia, quite broken up, dense, yellow alt s/c		0.6		150 <2	<.01 <.5 0.25 <.5	<1	314		1.42 <.01	5 45		4390		1 1770 <.			7 <10
H-069 H-070	NW of km 450 116 1/16		friable oxidized shales cut by network of thin drusy gtz veinlets			682	220 <2	0.01 <.5	<1	206		3.32 0.02	5 46		2060		4 42 <.			7 <10
H-071	NW of km 450 116 l/16	Dc fault	limonitic breccia, angular shale Fx w limonitic cement, porous. ferricrete?	5		1510	130 2		<1	93	14	14.8 0.02	5 69		3540	8 4	6 66 <.	01 1	10 1615	
H-072	NW of km 450 116 1/16	Dc fault	grey breccia w qtz cement + yellow alt, graphitic slick planes		1.2	38	200 <2	0.06 <.5	<1	113		2.16 0.02 <			1530		6 526 <.			3 <10
DH-073	NW of km 450 116 I/16		Vq w drusy qtz around shale Fx, It geen mineral ap? 1m min thick 115 deg		0.8				4.5 <1	348	a successive statements and the second	0.41 < 01	10 7		210		2 108 <.			7 <10
0H-074	NW of km 450 116 l/16		punky porous pink-red weath sandstone w interst orange clay material		0.2		590 <2	0.02 <.5		177		4.58 <.01	5 20		2140 1680	2 6 2 18 2	6 285 <. 4 550 <.			7 <10 3 <10
DH-075 DH-076	NW of km 450 116 1/16		brecciated shales in qtz matrix, some drusy. 295/80. dk purple hem? stain	<5 <5	0.6		550 <2	0.12 <.5	<1 <1	216		0.89 0.01	5 68 5 26		600		4 550 <. 1 177 <.			5 < 10
	NW of km 450 116 l/16	Dc	conc vein-fault, yellow clay stained white qtz w ang sh Fx, graph slick planes	50	U.Z		330 <2	0.0015.0	~1	1001		0.0001	0. 20:					10		

95 results- all samples

· · ·

٦

٦

- .. ---

-	-								1			
SAMPLE	approx location	formation	description	Au Ag As	Ba Bi		· · · · · · · · · · · · · · · · · · ·	u Fe Mg	Mn Mo Ni	P Pb	Sb Sc Sr Ti ppm ppm ppm %	UVWZn ppm ppm ppm
				ppb ppm ppm	ppm pp	om % ppm	ppm ppm p	pm % %	ppm ppm ppm	ppm ppm (%P2O5)	ppm ppm ppm %	ppin ppin ppin
95DH-077	YTG campground 116I/16	Di	Friable rusty weath shale and siltstone chip 2m	<5 0.2	16 330 <2	2 0.041<.5	7 55	42 4.63 0.64	140 3 32	480	18 <2 8 23 <.0	
95DH-078	km ⁻ 450 116l/16	SDv	black grapt sh coated w white + yellow coating on So and fract planes		32 10 <2		56.5 2 71	90 1.04 0.9		390	4 2 2 224	0.01 <10 1115 <10 1525
95DH-079	km 450 1161/16	SDv	rep sample of black graptolitic shales		26 40 <2 8 1050 <2		21.5 2 58	86 0.89 2.3		410	6 <2 3 346 4 2 2 36 < 0	0.03 <10 1175 <10 858 11 <10 427 <10 20
95DH-080	km 440.9 116l/16 km 439 116l/16	Dc Dc vein	rep of carbonaceous shales some yellow staining. sulphur smell. chip 1.3m Qtz-cc vein, loc drusy// wall, w shale Fx. 0.15m, 062/56. cc fills vug-late	<5 0.8 <5 0.2	8 1050 <2 28 290 <2		1 <1 52 <1 254	47 0.24 0.03 47 0.55 <.01	<5 19 24 5 16 16	170 <2		
95DH-081 95DH-082	km 439 1161/16	Dc veili	rep of grey weath + yellow stained platy shales		12 590 <2	and the second sec	1.5 <1 42	103 0.7 0.0		230	4 <2 3 94 <.0	
95DH-083	km 439 116l/16	Dc fault	fault gouge: kaolinite pods wish Fx cut by qtz veining. 085/52		68 110 <2		2.5 <1 91	139 0.97 0.0	15 109 113	1790	2 8 17 585 <.0	
95DH-084	km ⁻ 419 116l/9	Dc?	rep of grey and black banded chert	<5 0.2	4 210 <2	terration with the second s	0.5 <1 238	14 0.34 <.01		30 <2	<2 <1 15 <.0 12 14 2 24 <.0	
95DH-085	km 419 1161/9	SDV? Sd?	rep of platy silicceous beige weath argillite pale pink f.g. qtz vein w lim incl, sh Fx+ thin qtz veining in area of breccia float	<pre><5 2.6 <5 0.2 <2</pre>	28 690 <2		28.5 1 149	118 0.55 0.00 11 0.93 0.13		240	<u>12 14 2 24 <.0</u> 2 <2 1 12 <.0	
95DH-086 95DH-087	ridge at km 438 116l/16 ridge at km 438 116l/16	Sd?	float of Vcg.cc, dense (ba?). loc sheared (micas) w chert Fx. 075	<5 <.2 <2	150 <2		<1 1 <		in the second	10 <2	<2 <1 1080 <.0	
95DH-088-	ridge at km 438-1161/16	OSI .	zebra chert? fracture filling? chalcedonic? s/c	<5 0.4	2 40 <2		<1 230	12 0.22 0.4		270 <2	<2 <1 28 <.0	
95DH-089	ridge at km 438_116I/16	COr	trail of float coarse cc vein w darker orange carb (ank?) tr qtz +host Rx Fx	<5 <.2 <2	100 <2		<1 14	1 0.17 0.98		130 <2	<2 <1 835 <.0	
95DH-090	ridge at.km 438 116I/16	COr	Coarse cc vein 15-20cm wighost host _065/74 (ba?)	<5 < 2	4 60 <2		<1 1 < 0.5 <1 13	1 0.07 0.13 7 0.11 0.18		80 <2	<2 <1 1070 <.0 <2 <1 885 <.0	
95DH-091 95DH-092	ridge at km 438 116l/16 ridge at km 438 116l/16	COr COr	Coarse cc vein w qtz and dirty inclusions, poss sulph grain, ankerite? float rep sample of grey massive limestone		2 120 <2		<1 2 <		· · · · · · · · · · · · · · · · · · ·	350 <2	<2 <1 733 <.0	
95DH-093	ridge at km 438 1161/16	OSI	rep of pale grey to grey weath chert band 15 cm	<5 <.2 <2	140 <2	0.23 <.5	1 238	14 0.61 0.26	the second s	130 <2	<2 1 8 <.0	
95DH-094	ridge at km 438 1161/16	OSI	rep of beige weath limestone i/bedded w above chert	<5 <.2 <2	80 <2		4 16	15 0.77 0.23		960	4 <2 3 137 <.0	
95DH-095	RAS-TUS claims 106L/4	llityd	beige weath, it grey mass to blocky w rusty fract, 1% ox py(+dk blue xtal) float	<5 <.2 <2	80 <2	iii	<1 1 < <1 2		and a second sec	90 20	14 <2 <1 192 <.0 4 <2 <1 172 <.0	
95DH-096	RAS-TUS claims 106L/4	- Ilityd	limestone w rusty brown seams and pods (Fe-carb?) float	<5 <.2 <5 10 246	6 40 30 350	2 >15.00 <.5	<1 2 6 16 6	1 0.28 0.27 56 >15.00 0.04		270	56 14 2 7 <.0	
95DH-097 95DH-098	RAS-TUS claims 106L/4 RAS-TUS claims 106L/4	liityd Ilityd	Vcoarse cc-qtz-lim-limestone Fx (-ba?) float	<5 1.8 19		2 >15.00	0.5 8 21	4 1.43 0.03		10	270 <2 <1 166 <.0	1 <10 1 <10 174
95DH-099	RAS-TUS claims 106L/4	liityd	V coarse cc- barite(-qtz) float	<5 0.2	6 2140 <2		<1 34	4 0.5 <.01	25 <1 1	20	40 <2 <1 129 <.0	
95DH-100	RAS_TUS claims 106L/4	liityd	limonitic breccia float		52 1860	2 0.35	17 69 26	21 >15.00 0.01		310	326 12 <1 20 <.0	
95DH-101	RAS-TUS claims 106L/4	liityd	very hard orange weath vuggy siliceous breccia/vein, fg sugary qtz/carb float		6 600 <2 10 580 <2		0.5 4 69	10 0.96 0.01 1 0.88 0.12		150	82 < 2 < 1 9 < 0 36 < 2 < 1 234 < 0	
95DH-102 95DH-103	RAS-TUS claims 106L/4 RAS-TUS claims 106L/4	COr	limestone.w.porous py.cube-rich.rich horizon, w qtz float rep sample of fg.dk.grey limestone s/c	<5 <.2 <2	300	2 >15.00 <.5	<1 2	1 0.22 1.21		40 <2	<2 <1 1095 <.0	
95DH-104	RAS-TUS claims 106L/4	Illtyd	trail of float of coarse cc (qtz?) vein material	<5 <.2 <2	150	2 >15.00 <.5	<1 <1 <		in the second	<10 <2	<2 <1 476 <.0	
95DH-105	RAS-TUS claims 106L/4	ilityd	V coarse cc in fault between Illtyd +COr. dense- barite? chip 1m	<5 <.2 <2	270 <2		<1 <1 <			<10 <2	<2 <1 519 <.0	
95DH-106	RAS-TUS claims 106L/4	ilityd	rusty brecciated limestone w=lim.vugs.w.1-2% ga float	<5 7.6 2		4 0.47	12 1 123	301 5.1 0.01 6 0.5 0.02		120 7	170 8 <1 6 <.0 44 2 <1 33 <.0	
95DH-107	RAS-TUS claims 106L/4	llitýd	fg grey pinkish limestone w qtz-lined vugs and tr ga+sph. soln breccia? s/c		4 30 <2		<1 89					
95DH-108	RAS-TUS claims 106L/4	liityd	fg sil limstn, soln brecc? vugs lined w drusy qtz+ox py+sph(<1%), loc boxwork	<5 0.2	8 30 <2		<1 54 <1 10	8 0.67 0.03		<u> </u>	52 <2 <1 55 <.0 20% 134 <1 14 <.0	
95DH-109 95DH-110	RAS-TUS claims 106L/4 RAS-TUS claims 106L/4	llityd Ilityd	limonitic brecciated limestone w tr galena, sphalente limestone w horizon 3-4cm rusty spots, ox py?float	<5 118 10	2 40	126 0.13 <.5 2 >15.00	31 < 1 1	2310 >15.00 0.01 18 1.63 0.09	<u>i</u>		446 4 <1 161 <.0	
95DH-110	RAS-TUS claims 106L/4	llityd	limonitic breccia, boxwork texture. cp tr. float	<5 2.8 20		260 0.44 <.5		5370 >15.00 0.02	6160 2 2	90	76 4 <1 13 <.0	
95DH-112	RAS-TUS claims 106L/4	llityd	blocky fractured limestone w earthy hem alt on fract		0 200	2 >15.00 <.5	1 2	19 0.65 0.34		50	22 <2 <1 344 <.0	
95DH-113A	RAS-TUS claims 106L/4	llityd	dense limonitic breccia float, boulder train trends 015 deg	<5 3.2 29			·	1370 >15.00 0.03		90	138 <2 1 56 <.0 16 <2 1 17 <.0	
95DH-113B 95DH-114	RAS-TUS claims 106L/4 Touché 116/l/16	Slatts Ck OSI//Sd	pyritic silicified limestone?, margin of fault zone. py 1% in pods float		2 530 2 780 <2	2 0.98 <.5	6 78	33 2.21 0.67 4 1.01 0.39	270 <1 13	360	4 <2 1 15 <.0	
95DH-114	Touché 116/1/16	OSI?	fault zone, fractured and qtz injected shale/siltstone+vein material, ox py<1%		4 390	2 2.7 <.5	2 132	26 0.66 1.5		280	4 <2 1 20 <.0	1 <10 12 <10 20
95DH-116	W of Touché 116l/16	Slatts Ck	reddish brown weathering grey siltstone	<5 <.2	2 80 <2	0.03 <.5	1 80	3 0.56 0.02		. 60	26 < 2 1 3 < .0	
95DH-118	between Touché+camp	COr	It orange weath sandy limstn or limey sstn w seam py cubes and veinlet. float		2 150	4 >15.00 <.5	1 3	5 0.82 8.86	620 <1 4	160	16 <2 <1 65 <.0 <2 <1 1355 <.0	
95DH-119	between Touché+camp	COr COr	coarse calcite vein.dense, baritic? s/c	<5 <.2 <2 <5 <.2	120 2 30 <2	2 >15.00 <.5 >15.00 <.5	<1 1 < ²	0.03 0.15 51 0.12 0.11	130 <1 <1 170 <1 <1	<10 <2 40	<pre><2 <1 1355<.0 96<2 <1 663<.0</pre>	
95DH-121 95DH-122	km 353.3 116?/??	Cf	Vein of very coarse calcite (qtz-ba?); some rusty seams, float near o/c friable dk grey sh loc rusty weath, nodular siltstn, thin conc+disc V's. 1 m chip		4 130 <2		5 48	27 2.81 0.04		1130	16 < 2 4 66 < .0	
95DH-123	km 350	CHr	rep sample of beige weath it grey, finely bedded (50-30cm) fg limestone		2 20 <2	>15.00 <.5	<1 11	1 0.08 0.19	5 <1 3	100 <2	<2 <1 699 <.0	
95DH-124	km 345 116?/??	Kcc	dirty coarse sandstone w clay nodules, poorly consolidated		4 340 <2		0.5 5 123	17 1.23 0.19		770	6 < 2 2 33 < .0	
95DH-125	km 292.3 116?/??	Kcc	dirty coarse sandstone		8 410 <2		0.5 16 131			1210	16 2 3 27 <.0	
95DH-126	from km 440.9 1161/16	Dc?	grey brown weathering platy limestone? w i/bedded dk grey-black chert. float It orange-grey weath limestone. baritic? fetid. tr malachite staining. float		4 760 <2 2 4620		7 <1 168 0.5 <1 6	66 0.43 0.04 1 0.65 1.46		1340	4 4 3 106 <.0 2 <1 4470 <.0	
95DH-127 95DH-128	from km 440.9 116I/16 from km 440.9 116I/16	SD? SD	platy shale bed (2cm) w 2-3% py rosettes up to 2 cm in diam	<5 <.2	80	2 1.6 <.5	9 42	30 4.06 1.22		310	4 <2 4 55 <.0	
95DH-129	from km 440.9 1161/16	SD	(Imstn)bioclastic cgl w mass py pod 6X3cm+2cm horizon w 2-5% tarnished py	<5 0.4 1		4 >15.00 <.5	40 19	78 7.48 1.59		1980	24 <2 1 555 <.0	· · · · · · · · · · · · · · · · · · ·
95DH-130	from km 440.9 116l/16	SD	rusty shales w small pods of py(+qtz-cc?)		2 100 <2		7 43	35 6.19 0.42		170	6 <2 1 23 <.0	
95DH-131	from km 440.9 116l/16	SD SD	cg bioclastic limstn.cgl w.py.in.pods±in matrix? +lining cavities?	<5 0.4 <5 <.2 <2	6 90 <2 870	>15.00 <.5 2 3.65 <.5	24 18 6 31	13 5.59 0.88 25 2.83 1.51		1710 360	16 <2 <1 498 <.0 4 <2 4 140 <.0	
95DH-132 95DH-133	from km 440.9 116l/16 from km 440.9 116l/16	SD	rusty dolomitic mudstone w py nodules and platy rusty shales.chip 1m rusty dolomitic mdstone w 1-2% py as nodules up to 2-3 cm.chip 0.5m	<5 <.2 <2		2 3.65 <.5	9 30	23 3.78 2.49		270	2 <2 4 169 <.0	
95DH-133	from km 440.9 116l/16	Dc/SDv? vein	coarse calcite vein. float	<5 <.2 <2		>15.00	4 <1 <1 <1		805 <1 1	10 <2	<2 <1 478 <.0	1 <10 15 <10 44
95DH-135	ck-W_of_453.3116I/16	SDv/Dc?	carb+calc sh w 4-6 cm band of tarn mg lin .py(cp?), cut by thin Vcc 1% py	<5 1.8 11		2: 1.34 <.5	4 40	79 >15.00 0.14	20 45 105	90	44 14 <1 71 < 0	
95DH-136	ck W of 453.3 1161/16	SDv/Dc?	carb+calc sh w py bed <1cm, bed above poss baritic. sample 15cm thick	<5 1 <2	70		0.5 10 44	63 5.47 1.19	100 2 48 225 1 75	270	16 2 3 83 0 14 2 2 304 0	
95DH=137 95DH-138	ck W of 453.3 116l/16 ck W of 453.3 116l/16	SDv/Dc? SDv/Dc?	grey shales w several thin pyritiferous horizons: sample 10cm carb shales w clay-weathered sulph-rich pod and thin py-rich band	<5 0.6 <5 0.6 1	6 30 2 90		3.5 8 44 1.5 8 22	147 8.1 2.98 105 5.74 3.45	270 6 62	370	14 <2 3 392 <.0	
95DH-138	ck W of 453.3 116i/16	SDv/Dc?	limey shale w 1-2cm horizon w 10-20% diss py	<5 <.2 2			6.5 7 44		185 1 51	570	6 <2 2 353 <.0	1 <10 29 <10 750
95DH-140	ck W of 453.3 116I/16	SDv/Dc?	Vcoarse cc w org-rich // + coal, hydrocarb? slicked graph planes. fetid. float	<5 <.2	2 320	2 >15.00 <.5	<1 3	1 0.07 0.23	195 <1 13		<2 <1 3600 <.0	
95DH-141	ck W of 453.3 1161/16	Dc?	platy shales w yellow weathering. chip 0.5m	<5 0.2 1			1: 1 78	48 0.81 0.32	5 70 95	1150	4 <2 3 66 <.0 <2 4 60 <.0	
95DH-142	SE of km 452 116l/16 SE of km 452 116l/16	SD OSI	rep sample of grey-green weath bioturbated argilite w small py nodules. s/c finely banded limestone- baritic? float	<5 <.2 <2 <5 <.2	790 2 780	2 1.57 <.5 2 >15.00 <.5	4 40 2 8	32 2.64 1.35 9 0.95 0.51	210 <1 22 565 <1 9	530 <2	2 2 2 555 <.0	
95DH-143 95DH-144	SE of km 452 1161/16	OSI	rusty weath nodular bedded black chert w zones of py casts ("frothy texture")	<5 0.2 <2	140 <2		7 239	32 1.46 0.41		180	8 <2 1 11 <.0	1 <10 23 <10 18
95DH-145	SE of km 452 1161/16	OSI	large coarse calcite vein w carb shale inclusions.dense, bartic?	<5 <.2 <2	40	2 >15.00 <.5	<1 3	3 0.13 0.14	320 <1 1	:10 <2	<2 <1 723 <.0	
95DH-146	SE of km 452 1161/16	OSI	breccia zone w limonitic gouge in coarse calcite vein (of sample-145)	<5 <.2			0.5 1 39	23 3.14 0.15	210 <1 4	100 <2	<2 <1 436 <.0	
95DH-147	SE of km 452 1161/16	OSI	rep sample of carb shales, limy shales and cherts.loc pyritic. chip 2m	<5 0.4 <5 0.2		2 6.57 0	0.5 3 49			2210 340	6 <2 3 89 <.0 10 2 <1 178 <.0	
95DH-148	SE of km 452 116l/16	051	pyritiferous (1-2%) dense (baritic) grey limestone.	NO U.2	701<2	10.00 .0.0	· · · · ·	0.007 0.27				<u> </u>
										i		
					•							
				Da	ge 2					1		95 results- all sample
-				Гd	902					i		•

95 results- all samples

.

1

				Au	Aq	Ae	Ba	BI	Ca	Cd	Co	Cr	Cu Fe	M	a Min	Mo	NI P	Pb	S	b Sc	Sr	TI	UV	W	Zn
MPLE	approx location	formation	description				DDM	ppm	%	DDM	maa		ppm %	%	i		ppm ppr				1 ;ppm	%	ppm pp		n ppi
						1			1	PP							(%)	P2O5)				1			
DH-149	SE of km 452 1161/16	OSI	sh w 4-10cm band of f.g. py+cc veining//+ perp So overlain by sh w framb py	<5	0.8	3 6	<u> </u>	20 2	6	.13	6.5	1 28	48	13.6 0	0.12	70 <1	11	340	16 <			7!<.01	<10	9 <10	
DH-150	SE of km 452 1161/16	OSI	rusty fractured faulted shale w gyps? coating and thin cc veining	<5	0.2	2 <2		140 2	3	.62 <.5	i	7 59	312	1.75 0	0.96	160 <1	35	170	6 <			8i<.01	<10	34 <10	
DH-151	SE of km 452 116I/16	OSI	folded train of rusty gouge +rusty gyps coated shale Fx	<5	0.4	4 6	1	80 <2	4	.33 <.5		3 53	85	3.45 0).49	35 3	23	160	6 <	2	1 3	7 <.01	<10	28 <10	
		OSI	folded train of rusty gouge +rusty gyps coated shale Fx	<5	<.2	<2		10 4	1	3.3 <.5	<1	38	4	0.07 8	3.66	135 <1	1	50 <2	<	2 <1	5	5İ<.01	<10	11 <10	,
DH-151b DH-152	SE of km 452 1161/16	OSI	folded? calcite vein		<.2	4		530 2	>15.00		<1	13	2	0.08			<1	30 <2	<	2 <1	46	2 <.01	<10	2 <10	
DH-152 DH-153	SE of km 452 1161/16	COr	rep sample of pyritic fossilliferous black shale (tweezergraptus)	<5		1<2		110 2			0.5	2 78	126	1.08		15 4	28	3300	2 <	2	4 14	8 <.01	<10	120 <10	
DH-155 DH-155	White Fox Ck E of hway	SDv	rep sample of black carbonaceous siliceous platy shales. Float at base of cliff	<5	0.2	2 26		210 <2	0	.84 <.5	i<1	49	51	1.04 0	0.06	79	56	150	4	2	2 6	3 <.01	<10	636 <10	1
DH-155 DH-156	White Fox Ck E of hway	Dc	grey weath dk grey chert/sil sh. carb coating on weathered surface	<5	1.8	3 26		760 2	1	.74 5	2.5	1 113	69	0.46 0	0.14	20 50	135	880	2	10	3 28		2 <10	1755 <10	
DH-157	White Fox Ck E of hway	SDv	large carb (witherite?) xtals in dk matrix, loc glomerp band. tr cp, malach. float	<5	<.2	8	19.1	10% <2	3	.09 1	2.5 <1	34	33	0.12	0.31	40 6	57	150 <2	<	2 <1	254		<10	147 <10	
DH-158	White Fox Ck E of hway	SDv	V mult bands black bladed carb? in Imstn. contains coal and malach/az on fract	<5	1.8	3 30	76	680 4	1	2.9	4 <1	33	167	0.09 6	5.08	125 <1	16	510 <2		36 <1	155	0 <.01	<10	69 <10	
DH-159	White Fox Ck E of hway	SDv	rusty carb grapt sh w 2 thin horizons semi-/mass py . chip 0.3m	<5	1.6	3 34		40 2	3	.07 8	1.5	3 74	116	2.75 1	1.65	70 62	182	; 290	18	6	3 8	7 0.01	1 <10	941 <10	
DH-160	White Fox Ck E of hway	Sd	pitted beige orange weath (dolomitic) siltstone w 2-3% diss py. float	<5	<.2	2		140 2	8	.28	0.5	2 29	28	3.99 5	5.59	540 <1	12	90	4	2			<10	33 <10	
DH-161	White Fox Ck E of hway	Dc	rep sample of yellow and rusty weathering chert.	<5	0.2	2 6		520 <2	0	.08 <.5	<1	174	8	0.62 0	0.04	10 22	21	60	2 <			6 <.01	<10	111 <10	
DH-162	White Fox Ck E of hway	Dc	finety banded limestone ? w 2% coarse framboidal py (ricochet sample)	<5	<.2	2	7.	110 <2	>15.00)	2 <1	18	6	0.24 (85 2		260 <2	<			5 <.01	<10	37 < 10	
DH-163	White Fox Ck E of hway	Dc	rep sample of yellow and rusty weath sil sh (+chert). chip 0.4m	<5	0.6	6 4	8	860 <2	0	.16 <.5	<1	57	19	0.41 0	0.04	5 25	31	90	2 <			0 <.01	<10	328 <10	
DH-164	SE of km 440.9 116l/16	Sd	rusty limey bioturb argillite w framb py+remob py on fract. float at base of cliff	<5	0.4	2		30 2	2	.86 <.5	2	1 27	39	5.19 1	1.45	240 <1	53	350	16			2 <.01	<10	20 <10	
DH-165	SE of km 440.9 116I/16	Sd/OSI fault	//+ brecc qtz and graphitic material w 1-2% cp, 1-2% red sph, cut by thin Vcc	<5	0.6	5 <2		90 <2		1.3 >100.0		194		0.69 0		20 1		140	2	8 <1		6 <.01	<10	7 17	
DH-166	SE of km 440.9 116I/16	OSI	thin bed. rusty+yellow weath shales+cherts w cc veining // So.	<5	0.6	5 10		130 <2	2	.43 1	6.5	2 63	159	2.65 0).16	10 3	40	8040	18 <	2	2 4	2 <.01	<10	60 <10	+
DH-167	SE of km 440.9 116l/16	OSI	rusty weath black chert bed w large pods of mass fg py at base. py>5%.20cm	<5	<.2	<2		20 <2	0	.98 <.5	1	1 138	21	5.76	0.6	315 <1	47	180	4 <	2 <1	1	9 <.01	<10	7 <10	
H-168	SE of km 440.9 116//16	OSI	black chert w limestone pods-ghosts, not for assay	<5	<.2	6		50 <2	8	.99 <.5		3 37	40	1.55 1	1.51	140 3	29	590	6 <	2	2 9	4 <.01	<10	54 <10	,
				<5	0.2	2		170 <2	0	.15 <.5		4 57	17	2.16 0		40 <1	16	100	4 <	2	1 2	1 <.01	<10	6 <10	,
DH-169	SE of km 440.9 116l/16	OSI	orange weathering, clay altered finely banded limestone		<u> </u>	+ · · · · ·			-									780	4	8	4 10	4 0.04	1 <10	2260 <10	
DH-170	SE of km 440.9 116I/16	Sd	sulphide bearing siltstone nodules		<.2	36		090 <2		.17	18	1 128	53	0.88 0		35 16	3	150 <2	4			6 <.01	<10	6 <10	
DH-171	SE of km 440.9 1161/16	Dc?	hematitically altered argillite	<5	0.2	-		850 <2	-		0.5 <1	27 2 56	28	0.2 0		10 <1 60 2		940	6	6 <1		9 <.01	<10	69 <10	
H-172	Real Rx Riv trib 116I/16	Sd/OSI fault	Bante vein (qtz?)	<5	1.2			40 2 300 2	>15.00		1.5 3 5.5 <1	2 56 28	35	0.4 1		50 6		1760	2 <			4 <.01	<10	173 <10	
)H-175	Real Rx Riv trib 116I/16	OSI	chert bed w large recessive py nodules	<5 <5	<.2	4			>15.00		5.5 < 1	20	11		0.2	165 <1	2	80 <2		2 <1		1 <.01	<10	6 <10	
DH-177	Real Rx Riv trib 1161/16	OSI	cgl? Imstn Fx in dark matrix. sulph clasts? cut by thin V float at base of cliff		<.2 <.2	2			>15.00		<1	14	7	0.08	-	85 <1	2	290 <2				3 <.01	<10	12 <10	
H-178	Real Rx Riv trib 116I/16	OSI	Vcc and angular Fx of limstone in small fault	<5	1.2			30 <2	<u> </u>			5 52	60	2.66 0		40 10	_	840	20			7 <.01	<10	78 <10	
H-179	Real Rx Riv trib 116I/16	OSI?	brecciated vein? carb xtals in dk grey/black matrix. rounded float in ck		<.2	2		90 <2		.49		1 242		0.76 0		35 <1	12	100	2 <			4 <.01	<10	24 <10	, T
H-180	Real Rx Riv trib 116I/16	OSI	black carb calc shales- grungy rusty horizon. o/c but rep taken from float		<.2			30 4		.85 <.5	<1	12		0.11 9			<1	30 <2		2 <1		5 <.01	<10	3 <10	, – †
H-181	Real Rx Riv trib 116I/16	OSI OSI	very rusty chert		<.2	2		60 6		.15 <.5	<1	34	3		9.9	180 <1	1	540	8 <		94	4 <.01	<10	8 <10	,
H-182	E of AC p/out 1161/9	OSI	limestone cut by thin carb veinlets. float limestone/chert w veins and pods of euhedral qtz/cc // So. float			<2		10 <2			0.5 <1	92		0.1 0		40 <1	<1	10 <2		2 <1	30	1 <.01	<10	12 <10	,
H-183	E of AC p/out 1161/9	OSI	coarse gtz and calcite vein. trail of float		<.2	4	2	240 <2	· · · · · · · · · · · · · · · · · · ·	0.4 <.5	<1	210	9	0.92 0		5 1		100	4 <	2 <1	39	9 <.01	<10	30 < 10	,
H-184 H-185	E of AC p/out 116l/9 E of AC p/out 116l/9	Dc	layer of decomposed Rx or soil gouge w/in sil shales. incl crumbly rusty mat	<5	0.8	260	· · · -	510 <2		.69	3 <1	191	301	2.27 0		10 27	162	1560	10	14 2	180	0 <.01	40	441 < 10	
H-185	Heli-recce	Ct	orange coated chert cgl and sandstone. float		<.2	8		10 <2	2	.13 <.5		4 29	29	2.27 0		20 7	40	140	16 <	2	5 33	3 <.01	<10	52 <10	
H-180 H-187	Heli-recce	Dus?	yellow weathering crumbly grey shale w white and blue clay gouge		<.2	16		10 <2		.11 <.5	19	9 42	59	3.49 0).36	90 12	80	260	16 <	2	6 4	1 <.01	<10	63 <10	
1-188	Heli-recce	Dus	rusty brown loc yellow weath grey shale		<.2	4	11	110 <2	<.01	<.5	<1	153	9	0.66 0).04	5 1	4	60	6 <	2	1 19	9 <.01	<10	26 <10	
1-189	Heli-recce	silt	orange slime in creek			++							i							i		1			
		Ct	orange clay-stained sandstone	<5	<.2	10		20 2	0	.66 <.5		7 33	51	10.75 1	.14 1	405 2	36	900	12	2	7 40	0 <.01	<10	69 <10	, [
1-190 1-191	Heli-recce	Dus	soft grey shale, nodular sittstone		<.2	4		690 <2		.02 <.5	<1	222	6	1.05 0		45 1	4	290	4	2	1 36	6 <.01	<10	27 <10	
1-191 1-192	Heli-recce Heli-recce	Ct	slightly oxidized sandstone+cgl. float		<.2	4		400 <2		.01 <.5	<1	132	7	2.26 0		10 <1	2	120	2 <	2	1 17	7 <.01	<10	32 <10	
	Heli-recce	Ct	oxidized fg cgl.float		<.2	230		10 <2		41 < 5	1		27	7.79 0		60 4	97	950	32	2	5 58	8 <.01	<10	122 <10	
H-193 H-194	Heli-recce	Cf	friable grey shale, nodular horizon, yellow weath grunge. faulted?	<5	0.8			130 2				2 169	22		0.2	35 11	62	1700	6 <	2	4 229	9 0.01	1 <10	219 <10	
H-194	Heli-recce	Cf	pervasive hematitic clay att? in argillite, carbonate coating on fract		<.2	6		780 <2		11 <.5		3 132	32	2.69 0	.28	40 <1	14	260	4	41	5 23	-	<10	66 <10	
H-195 H-196	Heli-recce	Di	rusty weathering sand/siltstone			<2		40 <2	<u> </u>	04 < 5	<1	324	2	0.32 <.0		10 <1	4	20 <2	<	2 <1	1	2 <.01	<10	3 <10	
H-190	Heli-recce	JKnb?	clean white sandstone, slightly oxidized		<.2			20 <2	0.	01 <.5	<1	335	2	0.59 <.0	01	10 <1	3	40	2 <	2 <1			<10	4 <10	
H-197	Heli-recce	Di?	slightly brown -oxidized clean sandstone		<.2	4		350 <2		18 <.5		117	20	1.82 0	.22	420 <1	26	820	8	2	3 23	3 <.01	<10	40 <10	
H-199	km 274.7	Kcc	brownish dirty sandstone w small clay balls			t t-				· i															

.

Sheet1

											•		- A- Marije marka kara je sa					
<u> </u>	1		1	9831	2118	2119 212	20 2121 2		2125 2126 2	127 2128	2150 2131	2151 2134	2135 2136	2138	2139 2140 2	141 2142	2143 2145 2146	2147 2148 2149
sample numb	er Em	sample rep description	sample location	Au pp Pt FA+A ppb	Pd Ag A ppb ppm %			Ca Co m % pp	Co Cr nn ppm ppm				Min Mo	Ni P	Pb Sb pm ppm ppm		TI U maga maga	V W Zn
96 DH 2	Dc	X yellow weath platy sil sh	o/c 116l/16 e of hwy, White Fox Ck	<5	1.2	0.58	12 200 <2	0.07 <.5	<1	39 3	0.59 <1	<10 0.04		9	40 8 <2	1	15 <10 <10	69 <10 2
96 DH 3A 96 DH 3B	Dc? Dc?	earthy red weath, bleached grey sh red-marcon weath porous sil rx	float 1161/16 e of hwy, White Fox Ck float 1161/16 e of hwy, White Fox Ck	<5 <5	<.2	0.72	8 2000 <2 2 1740 <2	0.04 <.5		40 3 154 8		<10 0.05 <10 <.01	5 10	6	401 16 <2	<1	78 <10 <10	117 <10 <2 80 <10 2
96 DH 3C	Dc?	red weath dk blocky sil chert? w ox-filled poros	float 116I/16 e of hwy, White Fox Ck	<5	<.2	0.1	6 810 <2	0.03	0.5 <1	229 11	0.68 <1	<10 <.01	15 13	8	40 2 <2	<1	51 <10 <10	89 <10 16
96 DH 4 96 DH 6	Dc Dc? vein	fault breccia with clay balls 30 cm folded qtz-cc vein w slicks +angular sh Fx	o/c 116l/16 e of hwy, White Fox Ck o/c 116l/16 e of hwy, White Fox Ck	<5 <5		15.00 3 0.15 1	34 100 <2 10 220 <2			219 34 172 50	1.43 <1	<10 <.01 20 0.05	5 62 165 16	214	5710 <2		3240 <10 150 139 <10 <10	1105 <10 628 393 <10 1395
96 DH 7	Sd	wispy lam sstn+pyritic bioclastic cgl / w sulph pods	o/c 116l/16 e of hwy, White Fox Ck	<5	0.2	1.1 <2	90 <2	9.11 <.5	12	31 91	3.2 <1	10 1.39	340 <1	29	740 10 <2	4	430 <10 <10	20 <10 98
96 DH 8 96 DH 9A		X beige weathering limestone- baritic? X black shale (carb coating)	a/c 116i/16 e of hwy, White Fox Ck o/c 116i/16 e of hwy, White Fox Ck	<5 <5	<.2	0.32 <2	1180 <2		3.5 7	9 7		<10 6.58 <10 1.29	695 <1 95 59	11	290 2 <2	2 4	996 <10 <10 318 <10 <10	10 <10 36 488 <10 374
96 DH 9B	SDv?		116I/16 e of hwy, White Fox Ck	<5	0.4	0.85 2	26 30 <2	6.08	6 6	38 49	1.27 <1	<10 1.31	80 66	205	350 8 <2	4	285 <10 10	595 <10 474
96 DH 10 96 DH 11A	Dc Dc?	rusty sh chips and rusty soil near ferricrete in stream orange powder/slime on creek bank covering vegetation	float 116I/16 NW of hwy N of campground 116I/16 NW of hwy N of campground	<5	0.6	0.67 3				32 24 22 1		<10 0.03	5 17	8	710 16 <2 2220 10 <2	<1	37 <10 <10 6 <10 <10	99 <10 14 685 <10 30
96 DH 11B	Dc?	orange powder/slime on creek bank covering vegetation	116I/16 NW of hwy N of campground	<5	<.2	0.04 97	76 30 <2	<.01	1 4	20 1	>15.00 <1	<10 <.01	5 64	3	1850 10 <2	<1	3 <10 10	606 <10 28
96 DH-13A 96 DH-13B	voic?	grey-green massive glassy rx w fspar laths very sil, white ad grey, w numerous angular pores-casts	s/c 116i/16 terra cotta showing=95DH-69 s/c 116i/16 terra cotta showing=95DH-69	<5	<1	0.29 3	30 600 <10	0.05 <5	<5	150 15	0.68 <10	0.02	10 15	5	900 5 <10	5	180 <20 <20	180 <20 <5
96 DH-13C	volc?	siliceous porous rx, partially rusty weath, blue green matrix	s/c 116l/16 terra cotta showing=95DH-69	<5	<1	0.2 5				150 15	1.38 <10	0.01		5	600 20 <10		105 <20 <20	80 <20 15
96 DH 13D 96 DH 13E	volc? Dc ? vein		s/c 1161/16 terra cotta showing=95DH-69 float 1161/16 terra cotta showing=95DH-69	<5	<.2	0.25 20	2 860 <2	0.02	0.5 1	194 26	3.53 <1	<10 <.01	10 32	25	1580 2	6 22	150 <10 <10	224 <10 62
96 DH 13F	Dc?	red+yellow weath sil + brecciated "shale" w qtz in drusy pods +veinlets	116I/16 terra cotta showing=95DH-69	<5	0.2	0.13	8 550 <2			306 1		<10 0.04	15 71	4	100 28 <2	<1	30 <10 <10	23 <10 <2
96 DH 14 96 DH 17	volc? or qtzite Dc	dk grey mass sil rx w abundant small euhedral xtals (fspars?), qtz in vugs X platy siliceous shales	o/c 116i/16 terra cotta showing=95DH-69 116i/16 e of hwy, ck behind camp	<5 <5	<.2	0.05	2 190 <2 6 720 <2			254 3 60 2		<10 <.01 <10 0.04	5 9	8	90 <2 <2	2 1	65 <10 <10 24 <10 <10	59 <10 2 212 <10 4
96 DH 21A	SDv	beige baritic pod ? containing small carb xtals	s/c 116l/16 e of hwy, ck behind camp	<5	0.6	0.21 1	6240 <2	0.71	11 <1	92 22	0.61 <1	<10 0.01	50 16		2490 2 <2	1	367 <10 <10	691 <10 400
96 DH 21B 96 DH 21C	SDv SDv		o/c 116i/16 e of hwy, ck behind camp o/c 116i/16 e of hwy, ck behind camp	<5	0.2	0.09 1	6 3610 <2	9.47	6 <1 1	101 127	0.36 <1	<10 0.13	85 13	39	1170 <2	6 1 2	2640 <10 <10	259 <10 340
96 DH 21D	SDv	X siliceous shales, brown-orange-red weathering	o/c 116I/16 e of hwy, ck behind camp	<5	1.6	0.76 4		0.47		91 40		<10 0.09	5 95	77	2390 12	4 5	191 <10 <10	
96 DH 22A 96 DH 22B	SDv SDv		o/c 116i/16 e of hwy, ck behind camp o/c 116i/16 e of hwy, ck behind camp	<5 <5	0.8	0.84 4	6 1580 <2 8 100 <2	4.22		72 123 52 83	1.37 <1 3.2 <1	10 1.08 <10 1.06	70 55	184	840 8 630 10	2 5	289 <10 10 299 <10 <10	1020 <10 848 513 <10 556
96 DH 23A	COr	X beige weath, dk grey	o/c SE 116I/8 E Canyon Ck	<5	<.2	0.69	4 370 <2	4.77 <.5	4	95 7	1.32 <1	10 0.97	220 1	10	190 4 <2	1	106 <10 <10	9 <10 94
96 DH 23B 96 DH 23C	COr COr		o/c SE 1161/8 E Canyon Ck o/c SE 1161/8 E Canyon Ck	<5 <5	<.2	1.11 1		0.81 <.5	11 1.5 9	27 28 87 40	2.61 <1	10 1 <10 0.71	90 5	28	280 28 <2	3	12 <10 <10 57 <10 <10	21 <10 118 27 <10 108
96 DH 23D	COr	rusty weath 1-2cm py pods in limy beds , carb coating	o/c SE 116I/8 E Canyon Ck	<5	0.8	0.97 4	6 70 <2	2.51	1.5 8	92 45		<10 0.93	95 5	42	230 48 <2	2	38 <10 <10	25 <10 142
96 DH 23E 96 DH 23G	COr COr		0/c SE 1161/8 E Canyon Ck 0/c SE 1161/8 E Canyon Ck	<5	<.2	0.63	8 70 <2	6.01 <.5 9.63 <.5	5	70 13 65 12		<10 0.93 <10 0.76	205 1	14	140 18 <2 130 24 <2	1	89 <10 <10 120 <10 <10	7 <10 20
96 DH 24	COr	X massive blocky, loc nodular limestone	o/c SE 116I/8 E Canyon Ck	<5	<.2	0.04 <2	140 <2	>15.00	0.5 <1	5 1	0.08 <1	<10 0.64	35 <1		150 <2 <2		490 <10 <10	19 <10 34
96 DH 24B 96 DH 24C	COr COr		loat SE 116I/8 E Canyon Ck pat? SE 116I/8 E Canyon Ck	<5 <5	<.2	0.04 <2	4860 <2		1.5 <1	6 <1 2 <1		<10 0.81 <10 0.59		<1 <1	200 <2 <2		640 <10 <10 435 <10 <10	14 <10 30 6 <10 10
96 DH 28	COr?	orange weath dolomitized limestone? cc in veins + as open space xtals	/c? SE 116I/8 E Canyon Ck	<5	<.2	0.13 <2	290 <2		<1	3 <1		<10 8.16	205 <1	3	280 <2 <2		846 <10 <10	11 <10 6
96 DH 32 96 DH-33A			o/c SE 1161/8	<5 8 <5	<2 0.2	0.43 0	6 460 <2 2 290 <2	0.08 <.5	<1	68 <1		<10 0.04 < <10 0.01	5 14	18	10 4 <2	<1	8 <10 <10 10 <10 <10	197 <10 2 145 <10 2
96 DH-338	Dc/SDv	rusty, pyritic bedded limestone pod	o/c SE 1161/8	6 <5	<2 <.2	0.15	8 960 <2	>15.00	0.5 1	8 12	0.51 <1	<10 0.32	155 7	44	460 <2 <2		150 <10 <10	51 <10 76
96 DH-33C 96 DH-33D	Dc/SDv Dc/SDv		D/C SE 1161/8		5 10 0.2 <2 <.2	0.96 8		0.05 <.5	<1	39 17		<10 0.08 <10 0.02	20 132	274	480 8	8 3 <1	80 20 <10 52 <10 <10	264 <10 16 51 <10 16
96 DH 34	SDv	med bedded laminated limestone w carbonaceous shales. Vs cc	D/C SE 1161/8	<5	0.4	0.1 22	2 490 <2	13.85	8.5 1	39 29	0.24 <1	10 0.78	60 10	56	350 2	4 3 1	000 <10 <10	337 <10 588
96 DH 35 96 DH 36A	SDv SDv		D/C SE 1161/8	<5	1.2	0.63 200		6.63 3.55	8.5 5	94 202 71 101	6.21 <1	30 0.82 10 0.35	65 68 40 53	184		24 3 12 1	421 <10 20 368 <10 10	
96 DH 36B	SDv	large 8X3cm py nodule, internal banding	Wc SE 1161/8	<5	0.8	0.19 166	6 <10	2 1.28 <.5	6	56 146 >	15.00 <1	<10 0.38	50 17	101	650 40	20 <1	92 <10 <10	235 <10 78
96 DH 378 96 DH 38A	SD CDr1		xmp SE 1161/8 cat SE 1161/8	30 <5	0.3	1.27 <2	4 80 <2	2 1.46 <.5	52 1.5 <1	61 44 4 1		<10 1.09 <10 11.1	150 <1	76	260 20	2 1	31 <10 <10 (68 <10 <10 (
96 DH 38B	CDr2?	qtz-dolomite breccia	SE 1161/8	<5	<.2	0.03 22	2 110 <2	>15.00	1.5 <1	4 <1	0.06 <1	<10 11.55	260 2 <		90 12	6 <1	98 <10 10	13 <10 12
96 DH 39A 96 DH 39B	Sd 2	Yellow-brown, wispy laminated platy siliceous sittstone sample 25 cm X orange weath wispy laminated dolomitic sittstone	Xc SE 1161/8 SE 1161/8	<5 <5	<.2	1.07 <2	260 <2 6 1270 <2	1.61 <.5	0.5 3	44 21 18 10	1.9 <1	10 0.69	430 <1	16	220 2 <2	2 2	25 <10 <10 299 <10 <10	18 <10 54
96 DH 40	SDv or Sd?	black med bedded pyritic chert w lam rich in py nodules. sample 35 cm	0/c SE 1161/8	<5	2.8	0.61 10	0 <10 <2	0.68 <.5	7	68 42 >	15.00 <1	<10 0.2	60 3	35	1080 20	6 <1	18 <10 <10	26 <10 34
96 DH 41A 96 DH 41B	SDv SDv		V/C SE 1161/8	<5 <5	<.2	0.13 4	4 20 <2 6 20 <2	0.39 9.38	0.5 5	19 30 30 32	2.92 <1	<10 0.22 10 5.48	30 <1 640 2	21	80 4 <2	4 4	33 <10 <10 761 <10 <10	5 <10 354 24 <10 52
96 DH-42A	Dc/SDv	ball-bearing unit: small barite nodules	SE 116I/8	<5	<1	0.21 <10	16860 <10		<5 <10	<5	0.86 <10	0.02 <		5	100 15 <10	<5	545 <20 <20	20 <20 <5
96 DH-42B 96 DH-42C	Dc/SDv Dc	'ball-bearing unit: sample of whole horizon: nodules and shales rusty weathering chert	SE 1161/8 SE 1161/8		<2 0.2 <2 <.2	0.77 30	0 50 <2 4 260 <2	0.01 <.5	<1	31 4 45 9		<10 0.07 < <10 0.01	15 24	60	160 6 <2	<1	95 <10 <10 37 <10 <10	137 <10 6 164 <10 8
		me bed. samples 2 to 3m long	SE 1161/8	64 455	00 40	· · ·			100						250 200 4	00 44	83 240 10	129 <10 716
96 DH-42D 96 DH-42E	Dc/SDv ni-sulph Dc/SDv ni-sulph	black weath, loc recessive, 1.5 to 4 cm thick bed of disrupted sulphide laminae. Wavy bas of black weath, loc recessive, 1.5 to 4 cm thick bed of disrupted sulphide laminae. Wavy bas of the black weath, loc recessive, 1.5 to 4 cm thick bed of disrupted sulphide laminae. Wavy bas		64 155		0.44 4310		0.04 <.5			15.00 11 15.00 14	<10 0.03 <10 0.01 <		4.70%		06 <1 92 <1	83 240 10 77 200 10	86 <10 660
96 DH-42F	Dc/SDv ni-sutph	black weath, loc recessive, 1.5 to 4 cm thick bed of disrupted sulphide laminae. Wavy bas		176 290		0.32 4060	0 <10 <2	0.03 <.5	83 1	68 155 >	15.00 13	<10 0.01	40 1960	4.68%	330 36	96 <1	54 190 <10	99 <10 258 155 <10 220
96 DH-42G 96 DH-42H	Dc/SDv ni-sulph Dc/SDv	black weath, loc recessive, 1.5 to 4 cm thick bed of disrupted sulphide laminae. Wavy bas or rusty weathering grey pyritic limestone w start of baritic replacement nodules	VC SE 116//8	80 195 4 10		0.44 3150			72 1 10.5 2	27 143 35 25			5 2320 135 25		270 32 1 670 2	8 <1	49 150 10 870 <10 10	
96 DH-43 96 DH 44	silt		lit SE 1161/8 VC SE 1161/8	<5	0.8			2.54	16 12			10 0.94 <10 0.04		132		6 5 6 2	207 <10 <10 64 <10 <10	
			VC SE 116//8	<5 <5		0.54 8		1.55	2 6 2			<10 0.04					169 <10 <10	83 <10 162
96 DH 46 96 DH 47	COr COr		pat CE116I/1 Harrival pat CE116I/1 Harrival	<5		0.83 12		1.97		58 35 67 2		10 0.37	120 4 35 1		380 8 90 <2 <2		84 <10 <10 74 <10 <10	95 <10 582 7 <10 18
96 DH 48			pat ICE116//1 Harrival	<5		0.01 0		0.06 <.5	<1 2		0.33 <1	<10 0.14 <10 0.02	20 4	<u></u>		<1	4 <10 <10	9 <10 40
96 DH 50 96 DH 52	CDr2 COr?	dolomitic vuggy drusy qtz breccia w qtz-cc intergrowths w <1% sph, in limestone cgl composite of cc veining in grey limestone fil	CE116I/1 Harrival pat CE and SE 116I/1 Harrival	<5		0.01 8		4.36 0.0				10 2.74			980 486 70 8		60 <10 <10 586 <10 10	16 <10 3.56% 8 <10 128
96 DH-53a	CON	rusty soil s	oil CE and SE 116I/1 Harrival	<5	<.2 <.0	2.6 18		4 >15.00			0.05 <1 <	10 0.39	95 1 205 3				19 <10 <10	
96 DH 53B			C CE and SE 116/1 Harrival	<5		0.02 8		2 >15.00	2 <1		0.04 <1		30 2		90 2 <2		585 <10 <10 128 <10 <10	23 <10 70 21 <10 96
96 DH 54 96 DH 55	CDr1	fault/fold in limestone w podiform chert, pervasive fracturing and Vcc cd	bat ICE and SE 116I/1 Harrival	<5 <5	<.2	0.05 6		5.51 4 >15.00	1.5 <1 20		0.55 <1 <		75 2			<1	577 <10 <10	23 <10 40
96 DH 56 96 DH 57	CDr1	composite core sample: tarnished sulph (py?) in limestone and chert, loc in veinlet	re CE and SE 116I/1 Harrival	<5	2.4	0.06 18	40 <2	10.8	1.5 <1			10 6	190 7	6	290 1260	6 <1	59 <10 <10 79 <10 <10	48 <10 150 16 <10 26
96 DH 57 96 DH 58A	CDr1 CDR2		at ICE and SE 116I/1 Harrival	<5 <5	<.2 <.0		0 70 <2 5 50 <2	13.35	1.5 <1 2		0.52 <1 <	10 8.75 10 0.37	1010 2 200 5			4 <1 2 <1	27 <10 <10	24 <10 438
96 DH 58B	CDR2	sharpstone breccia w bedded clasts, brecciated and silica flooded: euhedral qtz flo	at ICE and SE 116I/1 Harrival	<5	2.4	0.04 6	40 <2	3.52	0.5 <1 20	04 7	0.36 <1 <	10 1.92	285 2	5	1560 1135	2!<1	18 <10 <10 13 <10 <10	
96 DH 59 96 DH 61	Dc or SDv? Sd?	dark rusty weathering vuggy chert breccia w cht clasts thinly rimmed by qtz (orange coatin fic pervasively orange clay altered shale or carbonate fic	vat SE 1161/1	<5 <5		0.18 44 0.86 12		0.01 <.5	3 13	32 98 64 86		10 <.01	10 127 485 3	8		10 3 4 8	13 <10 <10 89 <10 <10	
96 DH 62A	Sd X	platy wispy laminated argillite. 25 cm o	/c SE 1161/1	<5	<.2	0.41 2	710 <2	1.19 <.5	7 2	26 25	1.4 <1 <	10 0.43	135 <1	17	330 6	2 4	85 <10 <10	8 <10 44
	Sd X OSI		IC ISE 1161/1 at ISE 1161/1	<5 <5		0.17 6		10.05		16 9 26 37	4.98 <1	10 4.25	850 1		270 12 440 2 <2	2 2 9	9<10 <10	11 <10 24 7 <10 24
96 DH 64B	CDr1? X	grey timestone o	C SE 116I/1 Mt R. 1st ascent	<5	<.2 <.0	1 10	40	6 >15.00	2 <1	1 1	0.05 <1 <	10 0.17	65 1	1	40 22 <2	<1	198 <10 20	1 <10 16
96 DH 65A 96 DH 65B	CDR2 CDR2		c SE 116I/1 Mt R. 1st ascent	<5 <5		0.02 20			2 <1 2 <1 6	91 3 50 41		10 10.2	295 1 < 195 3		90 32 120 36	4 <1	60 <10 <10 59 <10 <10	10 <10 108 18 <10 76
96 DH 69	CDR2	brecciated and silicified	Llod-heli-stop	<5	0.2 <.0	1 2	10 <2	1.08 <.5	<1 25	50 1	0.26 <1 <	10 0.47	75 12	6	360 130 <2	<1	7 <10 <10	10 < 10 318
96 DH 71A 96 DH 71B	Dc Dc		c SE 116!/8 c SE 116!/8	<5 <5		2.3 340 1.44 70		3.56	7 10 16	55 161 42 53	7.37 <1 <	10 1.81			1280 8 620 12		296 <10 <10 239 <10 <10	1085 <10 342 210 <10 196
96 DH 71C	Dc X	siliceous shale 0	C SE 1161/8	<5	0.2	0.47 8	190 <2	0.03 <.5	<1 4	41 1	0.24 <1 <	10 0.02 <5	9	6	20 8 <2	<1	9 <10 <10	55 <10 2
96 DH 72A 96 DH 72B			c SE 1161/8 c SE 1161/8	<5 <5	<.2	0.77 52			3 3		3.13 <1 <	10 0.04		34 89 1	690 24 1410 16		42 <10 <10 37 <10 <10	
						0.00 00		. 1.27 .0	1.01 1	120 -				1 001 1		- 101		

Page 1

j

ہلی

ال

Sheet1

.

1

1

1

				093	2118 2110 21	2121: 2123 2124	2425: 2426: 242	7: 0100 0150 0101 0	151 01041 01061 013	AC 2139. 2139. 2140. 2141. 2142. 2143. 2145. 2146. 2147. 2148. 2149
	+	sample		Aupp Pt Pd	Ag Al As	Ba Bi Ca	Cd Co Cr	7 2128 2150 2131 2 Cu Fe Hg La		NI P Pb Sb Sc Sr TI U V W Zn
sample number		ep description	sample location		ppm % ppr	m ppm ppm %	ppm ppm ppm		om 1% ppm ppm	ppm ppm
96 DH 72C 96 DH 74	Dc (/Di) Osl	massive nodular sulphide rusty weath pyritic nodular chert-brecciated+gtz veining	0/c SE 1161/8 0/c SE 1161/8	<5 <5	<.2 0.38 0.2 0.27	12 <10 2 0.5 2 250 <2 0.13		8 44 >15.00 <1 <1 6 39 1.33 <1 <1	0 0.01 5 <1	17 210 6 <2 1 11 <10 <10 11 <10 0 17 210 6 <2 1 11 <10 <10 12
96 DH 74		X black chert/carbonaceous graptolitic shale/black limestone 40 cm	0/C SE 116//8	<5	0.6 0.33	38 470 <2 4.4		9 61 0.9 <1	10 0.89 50 6	2 176 280 6 4 3 225 <10 <10 692 <10 480
96 DH 77B	SDv	composite sample of chert horizons w rusty pods (sulph?)	0/C SE 1161/8	<5	0.2 0.19	26 490 <2 4.13			0 0.56 40 3	128 190 4<2
96 DH 81	Osl	brecciated grey limestone in matrix of white carbonate xtals. loc large euhedral qtz X bedded limestone/chert, limestone knobby, Fxtal.	SE 1161/8 o/c SE 1161/8	<5	<.2 0.01 <2 <.2 0.01 <2	70 <2 11.95			0 7.12 150 <1	2 230 <2 <2 <1 49 <10 <10 13 <10 28 3 390 <2 <2 <1 303 <10 14 <10 36
96 DH 82 96 DH 83		X becade amestone chert, imestone knobby, Fxtai. X f.g. brown-beige weathering limestone w loc cc veins	0/C SE 116//8	<5	<.2 0.12 <2		<.5 <1 1		0 0.46 45 <1	2 660 <2 <2 <1 810 <10 <10 4 <10 6
96 DH 85	OSI?	X bedded chert/ (limestone/shale) 25 cm	chip CE 116I/1 Canyon Ck	<5	0.4 0.35 <2	50 <2 7.56			10 0.18 65	2 38 3980 2 <2 1 104 <10 <10 174 <10 110
		X siliceous shale	CE 116I/1 Canyon Ck	<5 <5	<.2 0.3 <.2 0.52 <2	6 210 <2 6.14 1710 <2 11.45		4 32 0.79 <1 <1 5 8 4.29 <1 i	0 0.16 100 1	3 26 820 12 2 2 76 <10
		X orange weathering blocky dolomitic siltstone X beige green weathering platy wispy laminated argillite	o/c CE 116I/1 Canyon Ck o/c CE 116I/1 Canyon Ck	<5	<.2 0.52 <2	510 <2 0.86		0 29 1.87 <1	10 4.51 195 1	23 340 6 <2 5 28 <10 <10 20 <10 48
	Di 2	X light grey, orange weathering siltstone w muscovite on fracture planes Vb w friable grey sh	sluff CE 116I/1 Canyon Ck	<5	<.2 2.15				0 0.64 125 <1	48 460 16 2 4 15 <10 <10 49 <10 118
	Ct	f+c.g. sandstone w rusty seams, clay Fx and tr shiny black ox?		<5	<.2 1.56	4 380 <2 0.13			0 0.22 10 <1	15 810 8 2 3 13 <10
		X rusty weath greenish f.g. sandstn 2-5cm i/b w grey weath blocky shale X greenish f to c.g. sandstone to cgl	C+SE 116I/7 Wolverine ck down Corbett Hill C+SE 116I/7 Wolverine ck down Corbett Hill		<.2 2.34 <.2 0.22	10 650 <2 0.03 6 1250 <2 0.04			0 0.28 30 <1	<u>11 170 4 <2 <1 22 <10 <10 03 <10 34</u>
		yellow rusty weath greenish m.g. sandstone w liesegang bands w tr py clots and gp blebs	C+SE 116//7 Wolverine ck down Corbett Hill		0.2 0.9				0 0.13 25	3 19 70 10 <2 2 27 <10 <10 33 <10 92
96 DH 94	Ct-Cf >	X Vb grey maroon shale and it green maroon weath clean sandstone w small dk specs		<5	<.2 0.62	4 390 <2 0.05			0 0.09 20 <1	17 260 6 2 2 14 <10 <10 25 <10 116 16 2190 28 2 4 81 <10 <10 69 <10 70
	Ct-Cf	dk grey, maroon weath sh i/b w siliceous siltstonen nodular and pyritic X thin platy grey-blue, yellow weath sh/sandstone. some graded beds, sulph smell. 25cm	o/c C+SE 116I/7 Wolverine ck down Corbett Hill o/c C+SE 116I/7 Wolverine ck down Corbett Hill	<5	<.2 0.6 <.2 0.89	36 380 <2 1.13 18 800 <2 <.01	<.5 5 5 <.5 <1 2		0 0.67 505 <1 0 0.07 <5	16 2190 28 2 4 81 <10
	Dus >	layer of nodular light grey pyritic siltstone w masss and diss sulph bands and core. beddec		<5	<.2 1.1	26 50 <2 1.07	11 11 3		0 0.84 715 3	4 97 340 12 <2 8 67 <10 10 55 <10 718
96 DH 96C	Dus	composite sample of sulph-rich siltstone- banded (bedded) and podiform	o/c C+SE 1161/7 Wolverine ck down Corbett Hill	<5		46 <10 <2 <.01	<.5 4 59		0 0.05 5 1	1 23 50 8 2 1 6 10 33 10 28 3 23 340 16 2 1 5 10 10 46 10 48
	CI?	coarse sandstone w pod of f to cg py on So	float C+SE 116I/7 Wolverine ck down Corbett Hill sl/c CE 116I/7 E of highway, S of Eagle River	<5	<.2 1.04 <.2 0.17	24 30 <2 0.04 6 450 <2 1.42			0 0.17 5	3 23 340 16 2 1 5 10 10 46 10 48 11 1640 12 2 1 88 10 10 24 10 64
		X Tuttle cgl X unconsolidated blue grey, yellow weathering flaky shale	sl/c CE 1161/7 E of highway, S of Eagle River	<5	<.2 0.59	46 80 <2 0.01			0 0.03 <5	8 4 640 12 <2 2 85 <10 <10 49 <10 24
96 DH-102	Dus or Dss	trail of rusty desintegrated rock	si/c CE 116I/7 E of highway, S of Eagle River	<5	<.2 8.57	38 30 <2 <.01	<.5 2 119	9 21 4.54 <1 <1		4 5 200 12 4 87 13 <10
		X grey, loc yellow eath fractured shale	sl/c CE 116I/7 E of highway, S of Eagle River sl/c CE 116I/7 E of highway, S of Eagle River	<5	<.2 0.8 <.2 0.56	16 750 <2 0.01 6 1350 <2 0.01		3 37 1.21 <1 <1 2 6 0.68 <1 <1		5 8 90 12 2 2 34 <10
96 DH 103B 96 DH 104	Dus Dss or Ct ?	composite sample of rusty-orange weathering shale/siltstone chips blocky orange-red weath siltstone	float CE 1161/7 E of highway, S of Eagle River	<5	<.2 0.56	0 1350 <2 0.01 10 540 <2 0.97			0 1.98 1555 <1	99 240 8 2 8 38 10 10 31 10 134
96 DH 105	Dus	clay altered, fractured grey-black greasy shales, loc yellow weath, one rusty fract siltst bed	o/c NE 116I/7, w of highway, S of bridge	<5	<.2 1.18	16 250 <2 0.15			0 0.35 150	3 22 210 14 2 3 52 <10 <10 42 10 52 1 1 200 2 <2 <1 1015 <10 8 <10 12
	CDr1(COr)	grey weath f.g. limestone cut by stalline cc veins (1-2cm). Where weatheres pinkish, ox py	float CW 106L/4 Ilityd camp		<.2 0.06 <2 <.2 0.01 <2	220 <2 >15.00		5 7 0.18 <1 <1		1 200 <2 <2 <1 1015 <10 8 <10 12 1 40 <2 <2 <1 64 <10 11 10 12
	CDr1(COr) CDr1(COr)	calcite-dolom breccia-vein. Vuggy, w xtal qtz+limonite. amorphous orage-brown coating? X grey weath f.g. pyritic limestone. Silicified? carb coating on fractures	float (CW 106L/4 littyd camp		<.2 0.01 <2	380 <2 >15.00		5 <1 0.18 <1 <1		1 260 <2 <2 <1 1145 <10 <10 4 <10 8
96 DH 109	CDr1(COr)	coarse cc (loc orange-pink) vein w fx dk f.g. limestone in bedded limestone/chert	float (CW 106L/4 Ilityd camp	<5	<.2 0.03 <2	160 <2 >15.00	<.5 <1 4	v <1 0.2 <1 <1	0 0.23 155 <1	
	CDr1(COr)	cc- dolom breccia vein+alt limestone Fx. vugs w light coloured carb. tr ox py			<.2 0.01 <2 <.2 0.31 <2	930 <2 >15.00 80 <2 >15.00		3 <1 0.14 <1 <1		<1
	CDr1(COr) CDr1(COr)	? depends if a or b cc-dolom yuqqy breccia-yein w angular limestone Fx, limonite-py			<.2 0.03 <2	60 <2 >15.00				<1 80 <2 <2 <1 227 <10 <10 2 <10 52
	CDr1	in trace of fault: brecciated limestone injected w carb. looks munched. slicks?	float CW 106L/4 liltyd camp	<5	0.6 0.03 <2	70 <2 >15.00		<1 0.09 <1 <1		<1 10 716 <2 <1 410 <10 <1 <10 186
	CDr1	in trace of fault:cc injected limestone		<5 <5	<.2 0.03 <2 0.6 0.08		<.5 <1 1 <.5 1 2	1 <1 0.07 <1 <1 2 1 0.68 <1 <1		<1
	ilityd Ilityd	rusty weathering thin bedded knobby pitted limestone, cut by thin cc veins cc vein w limestone Fx, fluorite and black and red agglomerates of py xtals		<5		2 230 <2 >15.00	1.5 1 1	7 1.9 <1 <1		12 <10 2180 2 <1 341 <10 <10 1 <10 774
	llityd	white frothy vuggy limestone w 2% tam. py in agglomer. and lining vugs. thin xtalline cc ve	float ICW 106L/4 Ilityd camp	<5	0.6 0.11	6 160 <2 11.25	2.5 10 54	4 1.75 <1 <1		1 19 80 54 <2 <1 105 <10 <10 7 <10 504
	llityd	very coarse pink and white cc vein w vuggy pyritized wall nx. rough chip		<5	<.2 <.01	14 110 6 >15.00 10 50 4 >15.00	2 <1 <1	4 0.29 <1 <1 5 2 0.36 <1 <1		1 40 36 2 <1 706 <10 20 <1 <10 70 3 70 24 2 <1 330 <10 20 1 <10 62
	liityd X Illityd	K red weathering knobular limestone, cut by thin Voc It grey massive limestone w 2-5% oxidixed py cubes diss and in aggregates		<5		28 120 4 >15.00	4.5 <1 4			9 30 134 2 <1 214 10 10 <1 <10 754
	liityd	bleached+breccited limeston w beige and white cc vein, w diss black mineral and 1 bleb g	float CW 106L/4 Ilityd camp	<5	<.2 <.01	14 60 4 >15.00	2.5 <1 3	3 2 0.3 <1 <1	0 0.06 735 <1	1 40 116 <2 <1 293 10 10 <1 <10 178
	llityd	rusty weatherin limonitic breccia and silicified and sheared? limestone. vuggy		<5	2 0.27	30 1330 <2 2.24 12 1070 2 10.8	1 10 132	2 9 3.21 <1 <1 5 0.54 <1 <1	0 0.01 105 3	3 50 70 1705 4 <1
	ilityd littyd	qtz breccia w rounded to ang limestone Fx lined by clear drusy qtz, vugs filled by large cc, limonitic vuggy breccia, altered limestone, coarse dark carb, xtalline limonite lining vugs	float CW 106L/4 liltyd camp	<5		12 2800 <2 5.32	13.5 57 117	10 4.45 1 <1		3 184 40 74 6 <1 80 <10 <10 5 <10 2040
	liltyd	rusty weath porous rx w milky white+clear drusy qtz, mass cp, xtalline malachite, limonite	float CW 106L/4 Illtyd camp	<5	12.8 <.01 2	72 70 Intf* 0.98	2 5 47			8 13 Intt 62 14 1 19 10 20 <1 <10 520
	llityd	rusty weath porous rx w milky white+clear drusy qtz, cp, limonite		<5 <5	0.4 <.01	52 70 Intr 4.02 20 210 14 >15.00	<.5 3 331 2 <1 14	1.04% 3.56 <1 <1 9500 0.71 <1	0 0.02 2100 10 10 0.09 1500	1 8 Intr 6 <2 1 24 <10 <10 2 <10 58 1 2 <10 16 2 <1 839 <10 10 1 <10 34
	Ilityd/ Slatts Creek Slatts Creek X	Qtz-cc vein at contact dark brown weathering f.g. sandstone, some black shale chips			<.2 1.14 <2		<.5 5 167	108 1.66 <1	30 0.39 170 1	1 11 170 6 <2 2 22 <10 <10 9 <10 20
96 DH 128B		tabular brown weathering sandstone	float NW 106L/4 Illtyd camp		<.2 0.63	6 70 <2 8.41	0.5 4 54		10 0.3 665 1	1 8 240 10 2 1 139 <10 <10 6 <10 18 9 32 4100 12 6 3 173 <10 <10 268 <10 742
	CDr (COr or Osl) X			<5	1.6 1.5 2 0.6 0.88 1	22 220 <2 7.39 16 1660 <2 10.2	<u>11 3 77</u> 3 1 25	114 1.08 <1 111 0.82 <1 <1	20 2.46 70 9	9 32 4100 12 6 3 173 <10 <10 268 <10 742 3 14 470 14 4 1 501 <10 153 <10 254
		beige weathering silicified? limestone Otz-cc vein at contact	in pl NW 106L/4 littyd camp	-5	0.0 0.00	10 1000 2 10.2	3 1 23	<1	4.30 100 0	
96 DH 128A-d	Slatts Creek X	dark brown weathering f.g. sandstone, some black shale chips	float NW 106L/4 Illtyd camp					6		
96 DH 1288-d	Slatts Creek X CDr (COr or Osl) X	(tabular brown weathering sandstone	float NW 106L/4 Illtyd camp o/c NE 116l/1 Canyon Ck, below side canyon					8		
		black grey shale	o/c NE 116l/1 Canyon Ck, below side canyon					19		
96 DH 130	CDr (COr or Osl)	rusty weath sandy limestone with thin py seams // So and remob perp,		<5	1.4 0.06 9		10 4 142			4 36 140 26 18 <1 403 <10 <10 19 <10 544 5 73 820 46 26 <1 330 <10 <10 26 <10 36
		rusty weath sandy w bedded py (1-2cm), massive at base (loc podiform) grades into diss. 1cm above base of limestone bed, 1-2cm wavy bed of fine diss py (2-4%)		<5 <5	2.6 0.26 20				D 0.97 45 5 D 0.25 70 7	7 107 170 24 18 <1 722 <10 10 26 <10 7020
		beige weath f.g. dk grey timestone, loc diss sulph, sample 20 cm thick	o/c NE 116I/1 side canyon, Canyon ck	<5	<.2 0.36 1	10 840 4 >15.00	4 <1 14	44 0.45 <1	10 1.36 80 4	4 9 740 14 2 <1 824 <10 10 73 <10 114
96 DH 134	CDr (COr or Osl) X	(black carb. recessive shale (in dom limestone succession)		<5	2.8 1.16 3					8 39 690 30 10 4 404 <10 10 465 <10 1540 7 9 680 16 6 <1 528 <10 10 30 <10 250
		c to f.g limestone w 2-4% py at base, overlain by thin dark pyritiferrous lam massive podiform py and bands lining limestone pods (pink-mottled weath py)		<5 <5	<.2 0.12 2 4.5 0.17 20					5 61 90 60 90 <1 255 <10 <10 30 <10 108
96 DH 137	CDr (COr or Osl)	large py pods-discs on So, loc blue tamish. py lined with lineated cc	float NE 116I/1 side canyon, Canyon ck	<5	2.2 0.17 11	16 10 2 10	<.5 6 25	34 12.2 <1 <1	0 0.65 40 4	4 45 110 38 40 <1 318 <10 <10 15 <10 20
96 DH 138	CDr vein	Xtalline cc vein w angular limestone fx		<5	0.6 0.48 2		9 <1 19			4 15 200 20 6 <1 561 10 10 186 <10 490 1 4 770 14 4 <1 520 <10 20 19 <10 18
	CDr2 CDr2 X	fault, slicked + drusy carb, fractured + veined limestone, some limonite coating			<.2 0.06 <.2 0.05 1		2 <1 6 2.5 <1 4	de marte de la construcción de la c		3 430 16 2 <1 361 <10 20 11 <10 38
96 DH 141	CDr (COr or Osl)	lense of mass py, (w edge as cubes) lined by lineated cc vein, in grey, rusty weath limesto	float NE 116I/1 Canyon Ck, below side canyon	<5	0.4 0.37 7	74 10 2 8.28	3 4 42	35 10.15 <1 <1	0 0.64 45 16	6 15 680 24 20 <1 248 <10 <10 43 <10 290
96 DH 142	CDr (COr or Osl)	1 Cm thick mass py lense lined by and cut by cc, in limestone	float INE 116I/1 Canyon Ck, below side canyon	<5	0.8 0.05 5		1.5 1 4			2 6 150 20 26 <1 521 <10 10 8 <10 26 6 23 250 20 14 <1 225 <10 <10 11 <10 282
	CDr (COr or Osl)	2 thin seams of py+cc form lense in limestone podiform band of blue tarnished mass py (up to 1.5cm, lined by cc, in limestone		<5 <5	0.2 0.2 8		4 7 84 1.5 2 16			6 23 250 20 14 <1 225 <10 <10 11 <10 202 3 17 270 30 30 <1 559 <10 10 26 <10 38
	CDr (COr or Osl)	composite float sample of bands and pods of mass py in limestone	float INE 116I/1 Canyon Ck, below side canyon	<5	3.2 0.32 11	16 40 <2 10.55	3.5 4 28	28 5.81 <1 <1	1.02 40 5	5 33 230 38 24 <1 351 <10 <10 34 <10 238
96 DH 146	CDr (COr or Osl)	pinkish weathering spotty limestone w 2-5% diss f to mg py		<5	0.2 0.32 3		3 1 10			5 11 2630 18 8 <1 693 <10 10 92 <10 120 2 58 480 12 2 8 48 <10 <10 47 <10 178
96 DH 150A 1 96 DH 150B 1		brown and rusty weath sandstone + grey weath shale, carb mat on So clean sandstone w wisps of dk org mat, carbon parting due to fault? loc slicked		<5 <5	<.2 1.88 1 0.2 0.13 <2					7 80 2 <2 <1 26 <10 <10 7 <10 14
96 DH 152A		greenish grey to brown weath argill, foc bioturbated	o/c NE 1181/8	<5	<.2 1.5 <2	650 <2 1.09 <	<.5 7 47	37 2.51 <1	10 1.02 260 <1	20 180 4 <2 4 29 <10 <10 22 <10 50
96 DH 152B	Sd X	rusty orange dolomitic siltstone interbeds			<.2 1.36				10 3.92 2340 <1	29 260 10 2 4 250 <10
96 DH 153A 0 96 DH 154 0					<.2 0.12 2 <.2 0.04 2		2 <1 13			2 3 630 16 4 <1 77 <10 <10 17 <10 26 1 <1 70 20 4 <1 57 <10 10 5 <10 10
96 DH 154 0		white vyggy dolom/qtz ? vein orange weathering ank/dolom? breccia w limestone and vein mat clasts			<.2 0.04 2		2 <1 5		5.94 250 4	4 4 300 28 4 <1 115 <10 10 12 <10 64
96 DH 156 0	Osl	white weath white and grey dolom vein w vugs lined by cream coloured carb	float NE 1181/8	<5	<.2 0.04 2	2 320 <2 >15.00	1.5 <1 6	1 0.07 <1 <1(0 10.5 220 1	1 <1 120 16 4 <1 69 <10 10 6 <10 14
96 DH 157B		coarse cc vein			<.2 0.04	6 150 4 >15.00 8 190 6 >15.00	2 <1 2 2 <1 1		0.49 65 <1 0 0.54 105 1	1 60 18 <2 <1 546 10 20 5 <10 6 1 2 140 16 <2 <1 1010 <10 10 1 <10 2
96 DH 161 0 96 DH 162 0		brecciated and veined limestone w matrix of light orange cc			<.2 <.01 <.2 0.04 1		2 <1 1 2 <1 4			2 3 300 18 2 <1 1365 <10 10 8 <10 8
96 DH 163 0	COr	composite sample of veined, breecciated and bleached limestone, light orange cc veining	float NE 1181/8	<5	<.2 0.07 1	6 150 <2 >15.00	1.5 <1 6	1 0.24 <1 <10	5.25 100 1	1 <1 110 16 2 <1 577 <10 10 1 <10 2
96 DH 164		grey brown weathering fractured shales w rusty podiform siltstone beds. 35cm			0.2 1.38 1		0.5 18 29			89 400 16 2 10 78 <10
96 DH 165A 0 96 DH 165B 0	20 Dr	dk grey weath loc yellow, thin platy siliceous shales. 25cm crumbly rusty siliceous shale in vertical fault trace (25cm)		<5 <5	0.6 0.43 0.6 0.55 3					23 310 8 6 2 40 <10 <10 168 <10 62
96 DH 166					<.2 0.16					

Page 2

Sheet1

			983 2118 Aupp Pt Pd Ag	2119 2120 2121 Al As Ba E	2123; 2124; 212 ii Ca (Cd	5 2126 2127 212 Co Cr Cu	Fe Hg La		2138 2139 2140 2141 2142 P Pb Sb Sc	2143 2145 2146 2147 Sr TI U V V
e number Fm re	sample ap description	sample location	FA+A ppb ppb ppm	% ppm ppm i	pm % ppm	ppm ppm ppm	% ppm ppm	% ppm ppm ppr		ppm ppm ppm ppm r
	X yellow weathering chert	o/c center 116l/8		0.48 60 170		<1 104		0.04 5 142	565 220 8 2 1	100 10 <10 226 < 67 70 <10 359 <
167B Dc	top of (busted up) siliceous shale- some green leached material. no vis sulph. 3-4cm	o/c center 116l/8	150 225 142 2.8			1 3 109 1	5 2.29 2 <10	0.12 20 417	3560 150 26 20 3	60 30 <10 382 <
167C Dc	whole of (busted up) shale horizon, includes few flat and disc-shaped barite nodules. 20 c 1	o/c center 116l/8	22 30 22 1				1 1.44 <1 <10 0 2.53 <1 <10	0.08 5 223	439 110 20 10 1 203 950 4 <2 3	776 <10 <10 116 <
167D SDv?	top of limestone pod, rust rind, carb veining. 8cm	o/c center 1161/8	4 <5 <2 <.2	0.56 52 40			6 4.61 <1 10	1.38 410 206	146 540 6 8 8	753 40 <10 146 <
168A Dc	at contact between shale and chert: thin limestone band 3-6cm	o/c center 1161/8	14 <5 2 0.8	0.62 116 230		<1 24		0.05 <5 106	37 260 16 26 1	37 10 <10 272 <
168B Dc/Sdv?	top of (busted) shale horizon w barite nodules top of shale horiz: vuggy, very light earthy dull brown w wavy laminations. Sinter? algal la	o/c center 1161/8	188 185 110 3.4			1 <1 55		0.05 < 5 184	51 460 28 70 1	41 10 <10 264 <
168C Dc/Sdv	blue siliceous shale w barte nodules. 20 cm	o/c center 116//8	48 60 42 1			<1 49		0.05 < 5 96	73 380 12 14 1	107 50 <10 218 <
169A Dc/Sdv 169B Dc/Sdv	comp sample of alt, fract+veined lim w po/py finely diss along laminae, as wispy lam and b		42 60 26 <.2	0.2 370 10				0.25 150 186	3840 2400 6 12 7	786 20 10 86 <
169C Dc/Sdv	limestone w some po mineralization, approx 2/3 of total bed	o/c center 116I/8	15 <.2	0.3 260 20		5 15 23 5	4 5.65 <1 10		3450 2810 16 16 7	757 10 10 119 <
169D Dc/Sdv	composite sample of mineralized limestone bed , less po than in b	o/c center 116l/8	34 60 20 <.2	0.23 312 10		5 17 37 6	6 7.24 1 10		3100 2160 6 12 5	609 10 <10 79 <
	K W black chert/beige-grey bedded limestone	o/c center 1161/8	<5 0.6			5 <1 153 3	3 0.26 <1 <10		54 160 8 8 1	886 <10 <10 268 < 701 40 140 770 <
70B SDv	rusty grungy fract horizon w turqu to fluo green coating at limestone to chert/limestone tra	o/c center 116l/8	15 4			0 58 58 34	8 3.8 4 30		0000 5690 26 142 1	446 < 10 < 10 175 <
		o/c center 1161/8	<5 1.8				9 0.87 <1 10 9 >15.00 <1 <10		70 340 28 88 <1	19 < 10 < 10 526 <
172 SDv	massive py bed/seam // So, up to 3-4 cmX min 10m	o/c center 1161/8	<5 4.8	0.51 160 <10 <		10 37 2		3.25 360 <1	30 490 10 2 5	237 <10 <10 31 <
	C blocky is minister of the by the	o/c center 116l/8 float center 116l/8	20 0.6	1.33 4 <10		70 80 6	6 9.7 <1 <10		114 250 30 4 3	21 <10 <10 23 <
	(loidings wood only harmaned and one of py in press and and	s/c NE 116//1	<5 0.0	0.49 6 580 <			3 0.46 <1 <10	0.04 10 6	14 30 2 2 1	9 <10 <10 181 <
	K chips of grey (some yellow) weath platy and blocky siliceous shales dark grey shale float patches	float NE 116//1	<5 0.4	0.85 2 2540 <		5 4 62 4	3 1.21 <1 10	0.19 90 1	32 310 6 <2 4	
79 Sd	crinoidal vuggy bioclastic siltstone, py in wisps, replace fossils?	float NE 116I/1	<5 <.2	1.53 <2 1880 <	2 4.16 0.	5 7 36 2	8 2.08 <1 10	0.83 220 1	22 430 6 <2 4	70 <10 <10 30 <
	((rusty weath) pinkish grey to grey chert	NE 1161/1	<5 <.2	0.14 2 160 <	2 0.02 <.5	1 327 2	9 0.88 <1 <10		8 250 2 <2 <1	10 <10 <10 16 <
81A OSI	dark grey, vuggy dolomitized limestone w carb xtals lining vugs + smithsonite?+ cc veining	float INE 116I/1	<5 <.2	0.13 22 250 <		5 <1 6	4 0.72 <1 10		6 360 16 4 <1	873 <10 10 33 <
81B OSI	same as above vuggier, vuggs loc rimmed by py cubes and filled by coarse carbonate xtal	float NE 116I/1	<5 <.2	0.07 20 400 <	2 >15.00 1.	5 <1 5	3 0.59 <1 20	9.04 210 5	3 370 14 4 <1	1025 <10 10 20 <
							000		3 390 16 <2 <1	299 <10 20 13 <
		float NE 116//1	<5 <.2	0.01 10 200		4 <1 13	7 0.06 <1 <10 8 0.29 <1 <10	0.17 70 1	<u>3 390 16 2 1</u> 8 880 14 2 1	469 <10 20 13 <
	t bolge wedenening, ng, platy en intereter en neer plane	float NE 116I/1	<5 <.2	0.33 10 430		5 <1 13 1 5 1 63 36	8 0.29 <1 <10	3.59 250 29		935 <10 <10 513 <
84A SDv	handy block grangy block; cerne thater and the standard and	o/c SW 1161/16 o/c SW 1161/16	<5 1.4	0.13 98 260 <		2 1 191 50	5 0.36 <1 <10	0.00	60 100 2 170 1	379 <10 <10 238 <
848 SDv 84C SDv		0/C SW 116/16	<	0.73 218 70		0 26 58 93	9 1.7 <1 <10		1255 250 4 218 2	225 <10 <10 581 <
84C SDv 84D Dc vein	boulder in scree slope, orange weath mass qtz vein+siliceous breccia, small Rx fx +sl vug		<5 <.2	0.01 2 2250 <		1 <1 339	9 0.35 <1 <10		8 170 2 <2 <1	6 <10 <10 5 <
84E Dc vein	boulder in scree slope, orange weath mass dz vein+siliceous breccia, sinai roc ix vsi vog boulder in scree slope, orange weath mass dz vein+siliceous breccia, small Rx fx +sl vug	float SW 116I/16	<5 <.2	0.11 26 1010 <	2 >15.00 4.	5 1 16 6	0 0.26 <1 <10		83 290 14 18 <1	1350 <10 10 79 <
85 Dc	pale brown weath banded dolom? limestone pod or bed , incl some repla. chert blebs// la	o/c SW 116I/16	<5 <.2	0.05 20 460 <		5 <1 41	5 0.22 <1 <10		15 180 14 4 <1	1485 <10 <10 126 <
	disc shaped sittstone nodules in friable shale i//w rusty weath sittstone	o/c SW 116I/16	<5 <.2	2.77 8 240			7 >15.00 <1 <10		49 750 14 8 18	37 <10 <10 61 < 161 <10 <10 1640 <
187A Dc?/SDv? >	bluish to dk grey, loc rusty and yellow weath platy shales	o/c NW 1161/16	<5 0.6	1.41 26 750 <			5 1.84 <1 10	0.68 30 54	70 2910 6 8 7 154 240 12 6 2	77 <10 10 504 <
88A SDv	an groptonice origin by court	o/c NW 1161/16	<5 0.4	0.91 50 10 <		4 7 51 4	5 6.12 <1 <10 6 7.12 <1 <10	0.72 90 104	152 780 16 8 3	78 <10 40 594 <
88B SDv	dk graptolitic shale w band <1cm of finely diss py	o/c NW 116I/16	<5 1	1.14 46 30 < 1.13 112 10	2 1.13 2 2.35 2.	5 4 107 26	8 11.6 <1 <10	0.43 30 54	81 2320 40 16 <1	63 <10 <10 1110 <
88C SDv		0/C NW 1161/16 0/C NW 1161/16	<5 3.8		2 0.19 <.5		0 >15.00 <1 <10	0.5 40 69	214 530 38 24 <1	6 <10 <10 918 <
88D SDv	L. g. provide a start of the st	0/C NW 116//16	<5 0.8			3 2 78 5	7 0.89 <1 <10	0.96 60 46	147 230 10 2 4	248 <10 10 1060 <
88E SDv X 90 Dc		0/c NW 116//16	<5 <.2			5 <1 10 3	3 0.11 <1 <10	6.66 825 1	7 30 14 12 <1	2240 <10 10 51 <
90 DC		0/C NW 1161/16	<5 <.2	0.34 30 2870 <		0 <1 40 3	3 0.39 <1 <10	8.94 370 13	22 420 14 6 <1	1315 <10 <10 433 <
		float NE 116I/16	<5 <.2	1.15 <2 2030 <		5 5 39 6	9 2.72 <1 10		20 210 2 2 5	172 <10 <10 24 <
	super clean sandstone vitreous grey weath, rusty fracture planes	float NE 1161/16	<5 <.2	0.07 <2 310 <		<1 464	2 0.43 <1 <10	0.02 20 1	5 10 <2 <2 <1	5 <10 <10 5 < 31 <10 <10 32 <
	rusty brown weath col, includes chert Fx	float NE 116I/16	<5 <.2	0.22 20 140 <		2 273	3 2.05 <1 <10	0.04 30 1	8 1220 6 <2 1	31 <10 <10 32 < 155 <10 <10 18 <
195 Jk	dar of rooty pariny root former	float NE 116//16	<5 <.2	0.2 14 590 <		5 1 129 5 <1 101 3	2 2.26 <1 <10 5 0.13 <1 <10	1.51 25 1	6 670 8 2 1	466 < 10 < 10 93 <
198 OSI		o/c NE 116//16 o/c NE 116//16	<5 <.2 <5 <.2	0.03 8 210 <		2 <1 129 26		386 225 3	5 620 8 2 <1	214 <10 <10 119 <
99A OSI		0/C NE 116//16	<5 <2	0.04 2 250 <		5 <1 196 25		1.83 155 2	7 910 4 <2 <1	192 <10 <10 81 <
99B OSI 01 CDr1/COr X		0/C CW 1161/8	<5 <.2	0.04 6 60 <			7 0.21 <1 <10	0.11 210 1	5 490 6 <2 <1	172 <10 <10 6 <
		0/C CW 1161/8	<5 <.2	0.05 24 10 <		5 <1 18	3 0.09 <1 <10	9.47 115 3	1 560 16 4 <1	67 <10 10 19 <
02B CDr2		0/C CW 1161/8	<5 <.2	0.01 10 100 <		5 <1 91	2 0.16 <1 <10	5.83 110 1	1 50 8 2 <1	61 <10 <10 6 <
	chips of beinge weathering chert and cherty shale	float NW 116I/9	<5 0.8				3 0.52 <1 10	0.08 10 26	42 140 10 8 2	16 <10 <10 997 < 195 <10 <10 197 <
04 Dc X		o/c NW 116//9	<5 <.2	0.49 26 270 <		+ +	6 0.39 <1 <10	0.01 5 24	<u>54 80 6 6 2</u>	195 <10 <10 197 < 84 <10 <10 455 <
	beige weep ender and a mitodene	s/c SW 116I/16	<5 0.4	0.27 12 820 <			7 0.44 <1 <10	0.06 30 21 7	27 60 4 2 1	52 <10 <10 83 <
	siliceous shale and yellow weathering chert	SW 116//16	<5 <.2	0.24 6 700 <		<1 106 1 <1 306 1	6 0.42 <1 <10		7 70 <2 <2 <1	20 <10 <10 51 <
05C Dc	milely madalog and que tomba anone on about a brocked	float SW 116i/16 o/c SW 116i/16	<5 0.4					0.01 <5 17	19 80 2 <2 <1	25 <10 <10 169 <
	Carbonaccous anales and cherr w derechnicobous cherry parange	f/c CW 116//16	<5 0.2			7 3 93 8	2 0.93 <1 10	0.04 30 74	121 420 6 8 5	48 <10 <10 707 <
	beige weathering shale/limestone/chert	CW 116/16	<5 <.2	0.33 8 980 <			0 0.56 <1 <10	0.02 <5 28	16 110 4 2 1	43 <10 <10 217 <
		sluff NE 1161/7	<5 <.2	0.55 12 390 <		2 73 1	2 1.27 <1 <10	0.11 20 5	11 70 8 <2 2	24 <10 <10 26 <
2 CDr1	chert breccia w gtz veining	1161/1		0.09 2 120 <			6 0.49 <1 <10	0.11 45 6	15 210 <2 <2 <1	4 <10 <10 36 < 45 <10 <10 7 <
3 CDr2?	dolomitic cgl, qtz lined vugs	1161/1	<5 <.2	0.01 <2 10 <		<1 10 <1	0.13 <1 <10			45 <10 <10 7 < 17 <10 <10 17 <
5 CDr1	chert w qtz veins	116//1	<5 <.2		2 2.01 0.5	5 2 309 12	2 0.5 <1 <10		13 430 <2 <2 <1 5 1040 <2 <2 <1	47 <10 <10 17 <
8 CDr1		Roat 1161/1	<5 <.2		2 3.39 0.0 2 1.71 0.5		3 0.34 <1 <10 1 0.44 <1 <10		5 1040 <2 <2 <1 11 380 <2 <2 <1	20 <10 <10 13 <
1 CDr1	slicked qtz breccia, drusy qtz (cgi?)	1161/1 soil 1161/1	<5 <.2 <5 <.2				4 0.68 <1 <10		3 30 4 2 <1	386 <10 <10 1 <
4 CDr1 5 CDr1	reddish soil in rusty weathering chert gtz breccia in chert, veining and drusy	1161/1	<5 <.2				7 0.41 <1 <10		10 570 <2 <2 <1	20 <10 <10 17 <
	limestone	116//1	<5 <.2	0.07 <2 210 <	2 >15.00 <.5	<1 11	4 0.34 <1 <10	0.25 85 <1	7 270 <2 <2 <1	303 <10 <10 7 <
8 CDr1 A	extensional qtz veining in limestone	1161/1	<5 <.2	0.01 <2 90 <	2 >15.00 0.5	5 <1 12	2 0.06 <1 <10		1 520 <2 <2 <1	669 <10 <10 18 <
9 CDr1	limestone w qtz veins or limestone/chert breccia	1161/1	<5 0.2	0.06 <2 120 <	2 >15.00	1 11	7 0.13 <1 <10			528 <10 <10 29 <
2 CDr2?	cgl w angular chert clasts, pods of euhedral qtz	1161/1		0.01 <2 10 <			0.46 <1 <10		6 40 20 4 <1	8 <10 <10 4 < 388 <10 <10 17 <
3A Sd X	rusty weath wispy dolomitic siltstone, py diss and in agglomerates. 20 cm	1161/1		0.96 <2 1830 <			2 3.95 <1 20		12 350 <2 <2 4 24 340 2 <2 4	
3B Sd X	argillite, diss py	116//1		1.46 <2 1130 <		4 48 34	1 2.04 <1 10 1 0.39 <1 <10		24 340 2 <2 4 1 50 14 <2 <1	336 <10 <10 24 <
	nodular limestone (knobular?). 40 cm.	106L/4	<5 0.2 <5 0.2		2 >15.00 0.5 2 >15.00 <.5		0.39 <1 <10			
	yello-brown weath, light grey vuggy limstn w py and lim aggiomerates	106L/4 loat 106L/4		<.01 <2 1320 < 0.01 <2 70 <		5 <1 1 <1	0.13 <1 <10	0.15 785 <1 <1		328 <10 <10 3 <
9 Ilityd		106L/4	<5 <.2					0.03 2.32% <1	6 40 14 <2 1	18 < 10 20 3 <
) Ilityd 2 SDv	black, rusty weathering limonitic limestone? grey weath black argillite w barte-calcite xtals	0/C 116I/16	<5 0.2				0.3 <1 <10	0.17 105 5	51 2210 <2 2 1	5290 <10 <10 242 <
2 SDV 3 SDV		o/c 116i/16		0.19 6 36.20% <		5 <1 23 15	5 0.15 <1 <10	0.04 15 3	24 540 <2 <2 <1	3630 <10 <10 173 <
SDV SDV		loat 1161/16	<5 0.4	0.74 14 16.80% <	1.47 29.5	5 <1 38 50			140 1620 2 <2 1	332 <10 <10 871 <
5 SDv	otz chert breccia, slicks	loat 116 /16	<5 0.6	0.27 14 2460 <	1.22 8.5	5 <1 303 52		0.7 80 12		
SDV X		o/c 1161/16	<5 2.4			5 2 86 103		0.11 45 132		
7 Sd?	brown weath limestone cgl, ooids?, small rusty clasts	1161/16	<5 <.2	0.06 <2 310 <		1 7	0.71 <1 <10			615 <10 <10 7 < 7 <10 <10 9 <
3 OSI	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	o/c 116l/16	<5 <.2	0.09 <2 280 <		1 258 14			8 210 2 <2 1 12 190 <2 <2 <1	
	chert qtz breccia	116//16	<5 <.2	0.15 <2 1550 <		<1 212 18			<u>12</u> <u>190 <2 <2 <1</u> <u>11</u> <u>120</u> <u>2 <2 <1</u>	7 <10 <10 7 <
) OSI X	grey chert	116//16	<5 <.2	0.16 <2 380 <		1 352 21 5 < 1 6 < 1	0.78 <1 <10			505 <10 <10 16 <
	It grey weath med grey limestone	106L4	<5 <.2	0.01 <2 240 <		5 <1 5 <1 5 <1 18 3	0.15 < 1 < 10		2 1390 <2 <2 <1	421 <10 <10 37 <
4 CDr2?	limestone breccia or cgl, clasts of cc	106L4 o/c 106L4	<pre><5 <.2 <5 <.2</pre>	0.09 <2 300 <		<1 108 <1	0.19 <1 <10		3 320 <2 <2 <1	35 <10 <10 10 <
5 CDr2		0/C 106L4 106L4		0.01 <2 240 <		1 78 4	0.18 <1 <10		4 170 <2 <2 <1	331 <10 <10 24 <
	black chert well bedded rusty weathering black chert. 50 cm	116//9	<5 0.2	0.05 <2 250 <			0.31 <1 <10	0.03 5 19	22 30 8 2 1	11 <10 <10 90 <
	shale. 20 cm	116//9		0.47 12 240 <			0.2 <1 <10	0.05 <5 139	79 10 22 6 1	
		116//9	<5 0.4		0.07 <.5			0.04 <5 10	18 < 10 10 < 2 < 1	7 <10 <10 82 <

Page 3

96 results- all samples

,

Sheet1

1

													0420	2140 2141	2142 2142 2	45 2146 21	471 21481 21491
		sample		983 Aupp Pt	Pd Ag	Al As	2120 2121 Ba	Bi Ca	Cd Co Cr		2131 2151 Hg La M	2134: 2135 213 Mn Mo		Pb Sb S	C Sr TI	U V	W Zn
sample numb		rep description	sample location	FA+A ppb	ppb ppm	% pr	om ppm	ppm 1%	ppm ppm ppm	ppm %	ppm ppm %	ppm ppm	ppm ppm		pm ppm ppr		ppm ppm
96-KP-3A	Di	pyritic nodules	116//9	<5 <5	<.2	3.15 <2		0 < 2 1.45	2 8 3	21 >15.00 8 62 2.61	<1 <10 <1 <10	3.19 1745 0.22 30	1 113 560	14 <2	23 88 <10 6 86 <10		24 <10 268 25 <10 306
96-KP-38 96-KP-4	Di	X broken up shales very rusty weath fissile shale, small scale faults	1161/9	<5	<.2			0.12		6 94 11.2		1.12 1015	2 129 560	12 2	12 27 <10	<10	61 <10 414
96-KP-5	Di/Dc	fault contact, py in pods and as wisps	1161/9	20	· · · · · · · · · · · · · · · · · · ·			<2 5.01		15 149 >15.00		0.07 50	4 73 3440		1 169 < 10		14 <10 242 16 <10 50
96-KP-6 96-KP-7	OSI breccia Osl Breccia	drusy qtz breccia, slicks chert cgi?breccia? chert Fx in loc drusy qtz	116I/9 116I/9	<5 <5	<.2	0.06 <2		2 2.62 2.62 2.62		6 7 0.32 6 15 0.43	<1 <10 <1 <10	0.03 35 5.75 85	1 13 490 3 5 580	1 <2 <2 < 1 <2 2 <			28 <10 126
96-KP-8A			o/c 116i/8	<5		.2 1.69	26 860	<2 0.12		0 37 2.83	<1 <10	0.49 50	2 35 460	34 <2	6 119 <10		34 <10 120
96-KP-8B	Di		o/c 116i/8	<5		.2 1.01 <2		1.33		22 >15.00		2.59 2520 <1	56 1740	1 4 2 1 6 4 -	14 91 <10 1 14 <10		49 <10 562 63 <10 10
96-KP-9 96-KP-13	Dc SDv	qtz vein w minor diss py pods of sulphides up to 10 cm in black shale	116I/8 116I/8	<5	0.	.6 0.16 <2		<pre>1<2 0.02 <2 1.09</pre>		6 4 0.36 2 104 >15.00			2 11 30 7 47 50	32 10	1 10 <10		19 < 10 40
96-KP-15	SDv	pyrite/calcite pod // So in black shale	116//8	<5	2.			<2 4.22			<1 <10		8 41 1860		1 130 <10		10 <10 190
96-KP-16	Sd	X wispy laminated argillite w py nodules	1161/8	<5	<.2	1.4 <2		<2 1.78		30 3.42		1.2 165 <1	37 280	8 <2	4 50 < 10		22 <10 108 5 <10 8
96-KP-17 96-KP-18	Sd Osl	Slicked calcite veins-breccia chert/shales w2.5 cm py bed. py/chert/breccia	1161/8	<5 <5	<.2 4.			<2 >15.00		0 7 0.96	<1 10 1 <10	3.35 170 <1	4 65 3220		1 151 <10		15 <10 226
96-KP-20	CDr1	X massive grey limestone w chert interbeds	116//1	<5	<.2	0.03 <2	280	<2 >15.00	<.5 <1 3	5 4 0.24	<1 <10	1.26 85 <1	4 280	2 <2 <			8 <10 10
96-KP-22	CDr1	coloform brown carbonate on So?	1161/1	<5	<.2	0.01 <2		<2 >15.00		4 6 0.09		0.16 65 <1	<1 110 1 <1 90	2 4 <			12 <10 22 4 <10 8
96-KP-23 96-KP-24	CDr1 CDr1		float 116i/1 s/c 116i/1	<5 <5	<.2	0.03 <2		<pre><2 >15.00</pre> <pre></pre>	<.5 <1 <1 <.5 1 (2 0.31 9 17 0.21		9.76 305 0.43 420 <1	5 780	2 2 4			17 <10 20
96-KP-24	CDr1	chert-calcite breccia	1161/1	<5	<.2	0.03 <2	2050	<2 >15.00	1 <1	5 2 0.15	<1 <10	1.85 105 <1	<1 130	<2 6 <			6 <10 24
96 HR-1		X limestone w chert interbeds	Book	<5 <5	<.2 <.2	0.01	2 170			2 4 0.14 4 6 0.38		0.09 20 0.1 25 1	3 44 160 9 207 570	<2 <2 <			6 <10 34 99 <10 50
96 HR-2 96 HR-3			float o/c 66 08.44, 136 07.93	<5	0.2			<2 >15.00		6 10 0.14			4 11 140				13 <10 66
96 HR-4		X i/bedded orange weathering black shale and fg sandstone		<5	<.2	0.88	12 2020	<2 0.14	0.5 8 16	3 22 2.3	<1 <10	0.25 75	4 93 350				31 <10 180
96 HR-5			float 116 l/1, 66 08.61, 136 12.49	<5 <5	<.2 <.2	1.31	2 920	<2 0.1 <2 0.06		9 52 2.62 3 34 1.14		0.25 60	5 21 280 6 34 150	6 <2			37 <10 80 26 <10 80
96 HR-6A 96 HR-6B		X	66 08.09, 136 15.09 66 08.09, 136 15.09	<5	<.2	1.82		<2 0.65		3 34 1.14 5 231 11.55		0.12 15	7 128 440			<10	64 <10 586
96 HR-7A	Cf	sulphides	1161/1	<5	<.2	0.29	8 130	<2 0.82	<.5 4 17	2 6 9.15	<1 <10	0.39 380	1 27 350				54 <10 94
96 HR-7B	Cf	sulphides		<5 <5	0. <.2			<2 0.01 <2 0.03		2 8 >15.00 9 11 >15.00	2 <10 <.0		15 40	8 <2 <* 10 <2 <*			9 <10 18 6 <10 30
96 HR-7C 96 HR-8	Cf	sulphides X maroon weath dk grey filmsy shale w pinch and swell beds of f.g. sandstone		<5	<.2		18 430			2 23 4.47		0.24 25 <1	37 260		3 22 <10	<10 10	09 <10 172
96 HR-9	Cf	X rusty sandstone, folded	66 06.23, 136 17.65	<5	<.2			<2 0.28		0 14 5.77			23 370		5 20 <10		46 <10 104
96 HR-10		X X	66 02.93, 136 06.61 X 66 01.01, 136 07.24	<5 <5	<.2	0.53 <2			0.5 4 3	6 14 2.94 7 20 1.66			17 260		2 316 <10 1 4 <10		11 <10 62 89 <10 8
96 HR-11 96 HR-12	and the second s	X fractured chert, loc banded	66 09.67, 136 26.10, 1161/1	<5	0.	1 0.23 <2		<2 >15.00		3 12 0.41			12 1040		1 484 < 10	<10	46 <10 64
96 HR-13A	CHr/Cf?	X		<5		4 0.35		<2 >15.00	21 1 12			0.18 30 1	6 49 1330		2 536 <10		13 <10 710 94 <10 86
96 HR-13B		X Fishing and		<5 <5	1.0	6 2.7 2 2.02		<2 3.41	0.5 1 15 <.5 4 6	9 19 1.11 7 16 2.1		0.17 25	3 43 1120 6 50 2.49%		5 310 <10		19 < 10 124
96 HR-14A 96 HR-14B	CHr/Cf?	X friable grey shale w rusty beds and nodules. large nodules overlain by small nod and dayey pods in busted up shales. HS smell		<5	6.6			<2 6.12				0.16 20 4	3 137 5.90%		7 306 <10	30 15	57 <10 362
96 HR-14C	CHr/Cf?	clay attered and red-ochre attered limestone?	1161/2	<5	5.3		32 70	<2 11.95	17 1 11	2 42 0.48		0.41 25 2	0 79 2560		4 515 <10		69 <10 284 8 <10 28
96 HR-15		X clean timestone		<5 <5	<.2	0.1 <2	6 380	<2 14.3 <2 0.99		5 1 0.22		0.61 15 <1 1.11 1390 <1	8 700				25 <10 82
96 HR-16 96 HR-17		X X		<5	<.2	0.93	8 400			0 27 1.49		0.21 35	1 64 160	8 <2	3 27 <10	<10	31 <10 128
96 HR-18	Ci	red soil sample below Ct	66 29.79, 136 36.83	<5	<.2	1.13			<.5 <1 2	1 26 3.36		0.06 5	4 3 140				42 <10 18 33 <10 38
96 HR-19 96 HR-20		X		<5 <5	<.2	0.66	8 660 12 220			2 21 0.98 8 55 2.64		0.09 15	3 8 110 1 77 410				44 <10 258
96 HR-21	Dus Dus	orange gossany chips		<5	<.2	0.2	4 520						1 25 80	4 <2	1 52 <10		12 <10 80
96 HR-22	Ct	X f.g. sandstone		<5	<.2	0.25	6 700			9 9 0.94		0.01 5 <1	6 180		1 27 <10		14 <10 44 15 <10 16
96 HR-23A 96 HR-23B		X rusty		<5 <5	<.2	0.46	6 1280 8 840			0 5 0.52		0.03 5	4 5 40	6 <2			21 < 10 30
96 HR-236		X lorange weathering	66 33.56, 136 55.02	<5	<.2	0.58	2 950		<.5 <1 8	4 9 0.53			7 60	6 <2	1 25 <10	<10	18 <10 24
96 HR-25	Ct	X orange weathering		<5	<.2	0.29	4 460		<.5 <1 18	6 6 0.99			11 200	6 <2 <1 6 <2	1 39 <10		17 <10 10 21 <10 50
96 HR-26 96 HR-27		X		<5 <5	<.2	0.55	2 980 8 790		0.5 1 14 <.5 <1 15	4 16 0.63 9 10 1.43		0.09 15 <1 0.01 5 <1	3 170		1 27 <10		17 <10 16
96 HR-28		x		<5	<.2				<.5 <1 10	5 10 0.41	<1 <10	0.05 5 <1	8 100		1 29 <10		17 <10 18
96 HR-29		X yellow weath, greasy grey friable shale w thin orangy resistant bands. slump, sulphur smell		<5 <5	<.2 <.2	1.73	16 100			9 71 2.31 7 6 1.46		0.57 85 1 0.03 25	2 105 280 1 10 200	14 <2 6 <2 <1	5 64 <10		59 <10 234 16 <10 40
96 HR-30 96 HR-31A	CI? Dus	rusty slump?		<5	<.2		6 1260 16 120			7 37 2.56		0.25 50 1	0 43 120	14 <2	4 53 <10	<10 4	48 <10 84
96 HR-31B	Dus	slime in creek bed, coating boulders	66 33.32, 136 40.05	<5	<.2	0.8	16 160	<2 0.03	<.5 2 1	6 20 6.62		0.12 15	5 11 220	18 <2	3 37 <10		29 <10 46
96 HR-32		X slump rx		<5 <5	<.2 <.2	0.19	8 940 2 400		<.5 <1 15 <.5 10 9	0 9 1 8 29 1.72		0.01 15	1 8 150 1 44 400	4 <2 <1			14 <10 30 31 <10 146
96 HR-33A 96 HR-33B		X folded thick bedded sandstone/shale X folded thick bedded sandstone/shale		<5	<.2	0.7	8 150			9 10 2.64		0.22 35	1 22 380	6 <2	1 11 <10	<10 2	24 <10 52
96 HR-36		X white weathering limestone?		<5	<.2	1.18	2 130					0.65 95 <1	37 370		3 20 <10		48 <10 130 51 <10 166
96 HR-37	Di	X		<5	<.2 <.2	1.03	4 430	<2 0.4 <2 0.03				0.43 100 0.04 70 <1	1 42 540 15 150	8 <2 4 <2 <1			14 <10 58
96 HR-38 96 HR-39		X some rusty X yellow weathering shale, folded, some thicker sittstn beds		<5 <5	<.2		6 160	<2 0.08	<.5 1 23	4 16 0.83	<1 <10	0.02 15 <1	6 320	6 <2 <1	16 <10	<10 2	22 <10 18
96 HR-40A	Ct	X very coarse grained rusty cgl		<5	<.2			<2 <.01									27 <10 6 10 <10 <2
96 HR-40B		X non rusty Ct		<5 <5	<.2			<2 <.01 <2 0.07			<1 <10 <.0 <1 <10		3 70 1 27 480				32 <10 138
96 HR-41 96 HR-42		X X		<5	<.2			<2 <.01			<1 <10 <.0	1 15 <1	3 80	4 <2 <1	13 < 10	<10 1	11 <10 2
96 HR-43	Ct	X		<5	<.2			<2 <.01			<1 <10		3 60	2 <2 <1			17 <10 4 80 <10 142
96 HR-44		X black shale i/bedded w sandstone		<5 <5	0.4			<2 0.06 <2 0.07				0.2 20 <1	28 660 38 1210				82 <10 100
96 HR-45 96 HR-46A	Dus Dc-Sd?	Fe gossan in stream, rusty in chips		<5		2 0.29		<2 0.03		3 14 4.19	<1 <10).01 35 1	1 11 100	4 <2 <1	3 <10	<10 10	07 <10 58
96 HR-46B	Dc?	X black chert		<5	<.2	0.15		<2 <.01			<1 <10			2 <2 <1 64 <2 <1		<10 6	67 <10 6 <10 7700
96 HR-47 96 HR-48		X limestone		<5 <5	<.2	2 0.01		<2 >15.00 <2 0.77			1 <10 <1 30		7 <10				9 <10 134
96 HR-49		X limestone		<5	<.2			<2 >15.00			<1 <10).18 405 <1	<1 <10	38 <2 <1	342 <10	<10 <1	<10 62
96 HR-50	CSc	X brownish sandstone at contact with road river		<5	<.2	1.05	2 130		0.5 7 12				13 180				9 <10 182 31 <10 172
96 HR-51A 96 HR-51B		X thick bedded siltstone/sandstone/shale		<5 <5	<.2 <.2		4 340 6 440		0.5 9 12 0.5 24 4		<1 <10 (1 38 640 1 59 690				48 <10 216
96 HR-51B 96 HR-52A		X		<5	<.2			<2 0.62	0.5 7 8	19 2.1	<1 <10	0.53 115 <1	34 420	8 <2	4 41 <10	<10 3	34 <10 126
96 HR-52B	Cf	X		<5	<.2	1.7	8 400	<2 0.13	<.5 12 6		<1 <10		2 51 360				44 <10 198 17 <10 68
96 HR-53		X rusty Di at contact		<5 <5	<.2			<2 0.05 <2 0.04					18 280 39 140	2 <2 20 <2			89 <10 126
96 HR-54A 96 HR-54B		X black shale w rusty nodules		<5 <5	<.2			<2 0.04					10 60	2 <2	1 7 <10	<10 3	34 <10 44
96 HR-55	Cf	X	66 25.87, 136 31.21	<5	<.2	1.28	32 130	<2 1.34	<.5 7 54	18 9.86	c1 <10 (.65 160					87 <10 124 41 <10 38
96 HR-56	Cf	X unconsolidated material		<5	<.2			<2 <.01				1.05 <5 3 1.27 130 0					41 <10 38 43 <10 26
96 HR-57 96 HR-58		X	66 18.04, 136 18.88 66 19.46, 136 25.04	<5 <5	<.2 <.2		12 640	<2 0.22 <2 0.01								<10 4	44 <10 6
96 HR-59	Ct in Cf	X rusty ogi	66 19.39, 136 26.99	<5	<.2	0.27 <2	480	<2 <.01	<.5 <1 198	7 0.74	<1 <10 (.02 5 <1	4 90	4 <2 <1	20 <10	1	13 <10 10
96 HR-60	Ct in Cf 3	X rusty cgi		<5	<.2				<.5 <1 139				2 4 70				18 < 10 8 67 < 10 38
96 HR-61 96 HR-62		X shale, yellow coating		<5 <5	<.2	0.98	18 310 18 280	<2 0.23 <2 0.07		35 3.28			39 130				94 <10 178
00 110-02	.000				. 0.2		200				······						

Sheet1

- 1

	sample		983 2118 2119 2120 Au pp Pt Pd Ag Al As	2121 2123 2124 2125 2126 2127 Ba Bi Ca Cd Co Cr Cu	2128 2150 2131 2151 2134 2135 2130 Fe Hg La Mg Mn Mo	2138 2139 2140 2141 2142 2143 2145 2146 2147 2148 NI P Pb Sb Sc Sr TI U V W Zn
ample number Fm 96 HR-63 Kcc	rep description X sandstone	sample location Chance #8	FA+A ppb ppm % ppm <5 0.2 1.07 2	ppm ppm <th>n % ppm ppm % ppm ppm 33 2.06 <1 <10 0.54 495</th> <th>Si 2138 2139 2140 2141 2142 2143 2145 2146 2147 2148 INI P Pb Sb Sc Sr TI U V W Zn Ippm ppm ppm</th>	n % ppm ppm % ppm ppm 33 2.06 <1 <10 0.54 495	Si 2138 2139 2140 2141 2142 2143 2145 2146 2147 2148 INI P Pb Sb Sc Sr TI U V W Zn Ippm ppm ppm
6 HR-63 Kcc 6 HR-64 Kcc 6 HR-65 CHr?	X Isandstone X Itimestone	airport 66 15.63, 137 00.97	<5 0.2 0.95 24 <5 < 2 0.12 <2	1280 <2 0.29 0.5 6 134 70 <2 >15.00 <.5 <1 24 <1	22; 1.78 <1 <10 0.34 140 5 0.11 <1 <10 0.68 15 <1	3 33 1200 012 3 39 10 10 10 10 10 10 10 10 10 10 10 10 10
						ŧ
			۱ د			
						1
						• - -
						-
			1			
			-			
			,			· .
			· · · ·			
			. 4 r			
÷	· · · · · · · · · · · · · · · · · · ·		,			
			9 			
			. 4 			
			· · · ·			
	· · · · · · · · · · · · · · · · · · ·					
	· · · · · · · · · · · · · · · · · · ·					
	4					1
	· · · · · · · · · · · · · · · · · · ·					
	· · · · · · · · · · · · · · · · · · ·		- 			96 results- all sam
			Page 5			
						1

C Ilityd- ali samples

Sheet1

				E 1 1	0.2:0	011 2: 11	<u></u>	E: 0E:			E 0.5	10		1 1	8	2	2 1	10	10	1 10
detection limit				Auppb Pt P				5 U.5	<u>Co</u> <u>Cr</u>		e Hg	La Ma	Mn	MoiNi	p U	Pb S	b SciSr	TI	UV	WZn
		isample	sample location	FA+AA ppb p							% ppm			omippm I	oom o			moom	ppm ppm	ppm ppm
sample number F		rep description	RAS-TUS daims 106L/4	PATAA pho h	po ppin //		1 ppin	w phui b	of the	0.5 0.2		0.1		0.5 0.5	90	14	1 05 1	92	8 0.	.5 8 1
	lltyd	X ibeige weath, it grey mass to blocky w rusty fract, 1% ox py(+dk blue xtal) float	RAS-TUS daims 106L/4	4	- 0.1	6 4		0 0.4	0.5 1	1 0.2	9	0.1		0.5 0.5	20		1 0.5	72	8 0.	5 8 3
	lityd	limestone w rusty brown seams and pods (Fe-carb?) float	RAS-TUS daims 106L/4		10	2460 35	2 10.0	0 0.4	0.5 2	56 16.0		0.2		3 56	270	56 14	4 2	7	10	4 8 59
	lityd	limonitic breccia/vein, porous w colloform textures float	RAS-TUS daims 106U4	4		194 274		3 0	10 0	4 14	-	0.0		0.5 17	10	270	1 0.5 1	66	8	1 8 17
	lltyd	Vcoarse cc-qtz-lim-limestone Fx (-ba?) float		4	1.8	6 214		0.0	8 21	4 1.4	-	0.0	25	0.5 1	20	40		29	8 0	5 8 2
	lltyd	V coarse cc- barite(-qtz) float	RAS-TUS daims 106L/4		0.2	52 186			0.5 34		-	0	1 5790	12 218	210	326 13		20	8	2 60 889
	lltyd	limonitic breccia float	RAS-TUS daims 106L/4	4	5			-	69 20		-	0.0		12 210	160	92 1	1 0.5	9	8	6 8 35
	lityd	very hard orange weath vuggy siliceous breccia/vein, fg sugary qtz/carb float	RAS-TUS daims 106L/4	4	2.8	6 60			4 69	10 0.9		0.0		0.5 6	10	36	1 0.5 2	24	8	1 8 31
	lltyd	limestone w porous py cube-rich rich horizon, w qtz float	RAS-TUS daims 106L/4	4	0.6	10 580			2 1	1 0.8		0.1		0.5 0.5	8	1 1	1 0.5 4		8 0.	5 8 1
95DH-104 III	lltyd	trail of float of coarse cc (qt2?) vein material	RAS-TUS daims 106L/4	4	0.1	1 150	2 16.0	0 0.4	0.5 0.5	0.5 0.1	D	0.2	5 90	0.5 0.5			0.0			
1											<u>_</u>		5 245	05 0.5	-		1 0.5 5	10	- 8	1 8 2
	lltyd	V coarse cc in fault between Illtyd +COr. dense- barite? chip 1m	RAS-TUS claims 106L/4	4	0.1	1 270			0.5 0.5	0.5 0.2		0.1	245	0.5 0.5	120 7	170 8	0.5 C	6	- 8	2 10 599
	lltyd	rusty brecciated limestone w lim vugs w 1-2% ga float	RAS-TUS claims 106L/4	4	7.6	20 60	0 1 0.4	/ 12	1 123	301 5.	_	0.0	1 135	4 /	20 7	44		33	- 8	4 8 17
	iltyd	fg grey pinkish limestone w qtz-lined vugs and tr ga+sph. soln breccia? s/c	RAS-TUS claims 106L/4	4	0.6	4 30	1 5.7	2 0.4	0.5 89	6 0.	-	0.0	2 110	0.5 1	30	5 2	-	55	- 8	2 8 19
95DH-108 III	lltyd	ifg sil limstn, soln brecc? vugs lined w drusy qtz+ox py+sph(<1%), loc boxwork	RAS-TUS claims 106L/4	4	0.2	8 30	1 9.6	3 0.4	0.5 54	8 0.6		0.0		0.5 1	50 402	300 134		14	10	2 8 30
	lltyd	limonitic brecciated limestone w tr galena, sphalerite	RAS-TUS claims 106L/4	4	118	102 40	126 0.1	3 0.4	0.5 10			0.0		3 1	10 102	446	4 0.5 1		8 0.	5 20 739
95DH-110 III	lityd	X limestone w horizon 3-4cm rusty spots, ox py?float	RAS-TUS claims 106L/4	4	4.2	12 40	2 16.0	0 31	0.5 1	18 1.6	-	0.0	2 6160	2 2	00	76 /	4 0.5	12		4 8 13
95DH-111	lityd	limonitic breccia, boxwork texture. cp tr. float	RAS-TUS claims 106L/4	4	2.8	200 150	260 0.4	4 0.4	3 2	5370 16.0	-	0.0		2 2	90	22 4	0.5	13	8	5 8 3
	lityd	blocky fractured limestone w earthy hem alt on fract	RAS-TUS daims 106L/4	4	0.1	10 200			1 2	19 0.6		1 0.0		0.5 3	50	22		56	8	4 8 30
	lityd	dense limonitic breccia float, boulder train trends 015 deg	RAS-TUS daims 106L/4	4	3.2	292 150			9 0.5	1370 16.0	-	0.0	3 >1000	0.5 11	90	70	0.5	20 8	8	2 8 21
96 DH 116 C	Cilityd	rusty weathering thin bedded knobby pitted limestone, cut by thin cc veins	s/c CW 106L/4 Illtyd camp	4	0.6 0.		1 16.0		1 2	1 0.6	8 0.5	8 0.	5 1345 0	0.5 3	40	101	0.5 2	20 0		1 8 774
96 DH 117 C	Clilityd	icc vein w limestone Fx, fluorite and black and red agglomerates of py xtals	CW 106L/4 Ilityd camp	4	2.6 0.				1 1	7 1.	9 0.5	8 0.0	9 10/0 0	0.5 12	8 2	100 4		05 8		7 8 50
96 DH 119 C	Clilityd	white frothy vuggy limestone w 2% tarn. py in agglomer. and lining vugs. thin xtalline cc veir	ns float CW 106L/4 liltyd camp	4	0.6 0.				10 54	4 1.7	5 0.5	8 0.0	4 6/0	1 19	80	26	0.5	05 8	20 0	5 8 7
	Cliftyd	very coarse pink and white cc vein w vuggy pyritized wall rx. rough chip	o/c CW 106L/4 Illtyd camp	4	0.1	0 14 110			0.5 0.5	4 0.2	9 0.5	8 0.0	9 805 0	0.5 1	40	30 4		20 8	20 0.	1 8 F
96 DH 121 C	Clilityd	X red weathering knobular limestone, cut by thin Vcc	s/c CW 106L/4 liltyd camp	4	0.1 0.		4 16.0	• · · · · · · · · · · · · · · · · · · ·	0.5 5	2 0.3	6 0.5	8 0.2	1 840 0	0.5 3	70	134 2	2 0.5 3	14 10	10 0	5 8 75
96 DH 122 C	Clilityd	It grey massive limestone w 2-5% oxidixed py cubes diss and in aggregates	float CW 106L/4 Ilityd camp	4	0.2	0 28 120	4 16.0	+	0.5 4	3 1.5	3 0.5	8 0.0	550 0	0.5 9	30	134 4		14 10	10 0.	5 8 17
96 DH 123A C	Cilltyd	bleached+breccited limeston w beige and white cc vein, w diss black mineral and 1 bleb ga		4	0.1	0 14 60	4 16.0	0 2.5	0.5 3	2 0.	3 0.5	8 0.0	5 735 U	0.5 1	40	110	0.5 2	34 0		0 8 157
96 DH 123B C	Clilityd	rusty weatherin limonitic breccia and silicified and sheared? limestone. vuggy	float. ICW 106L/4 Ilityd camp	4	2 0.	27 30 1330	1 2.2	4 1	10 132	9 3.2	1 0.5	8 0.0	1 105	3 50	70 1	100 4	0.5	24 0		2 8 561
	Clilityd	qtz breccia w rounded to ang limestone Fx lined by clear drusy qtz, vugs filled by large cc, li	m float CW 106L/4 Ilityd camp	4		03 12 1070	2 10.	8 12	0.5 63	5 0.5	4 0.5	8 0.0	300	1 5	401 3	74 4	0.5	00 0		5 8 204
	Silltyd	limonitic vuggy breccia, altered limestone, coarse dark carb, xtalline limonite lining vugs	float CW 106L/4 Illtyd camp	4	0.4 0.		1 5.3	2 13.5	57: 117	10 4.4	5 1	8 0.0	1 2620	3 184	40	62 14	0.5	10 10	20 0	5 8 52
96 DH 126A C	Cilltyd	rusty weath porous rx w milky white+clear drusy qtz, mass cp, xtalline malachite, limonite	float CW 106L/4 liltyd camp	4	12.8	0 272 70) Intf* 0.9	8 2	5 47	243000 10.3	5 0.5	8 0.0	895	18 13	Intf*	6 1		24 8	8	2 8 5
96 DH 126B C	Clilityd	rusty weath porous rx w milky white+clear drusy qtz, cp, limonite	float CW 106L/4 Ilityd camp	4	0.4	0 52 70	Intf* 4.0	2 0.4	3 331	10400 3.5	6 0.5	8 0.0	2 2100	1 0	mu			24 0		
96 DH 127-d III	Ityd/ Slatts Creek		in pl NW 106L/4 Ilityd camp							0.5					50	44 4	0.5 3	26 8	- 8	1 8 28
96 GM 27 C	Cliftyd	X inodular limestone (knobular?). 40 cm.	106L/4	4	0.2 0		1 16.0		1 3	1 0.3	9 0.5	8 0.50	8 840 0	0.5 1	50	14	0.5 3	79 8	- 8	1 8 5
	Silityd	X yello-brown weath, light grey vuggy limstn w py and lim agglomerates	106L/4	4	0.2	0 1 1320			0.5 3	0.5 0.3	9 0.5	8 0.1	460 0	0.5 0.5	10	16 1	0.5 2	28 8		3 8 100
	Sliltyd	calcite breccia in limestone, veinlets mm-cm scale	float 106L/4	4	0.1 0.	01 1 70	1 16.0	0 2.5	0.5 1	0.5 0.1	3 0.5	0 0.11	3 23200 (0.5 0.5	40	14 1	0.5 5	18 8	20	3 8 6
	Clilityd	Iblack, rusty weathering limonitic limestone?	106L/4	4		0.1 66 140	1 0.4	8 0.4	8 7	128 16.0		8 0.0		0.5 0		641 1	05 2	38 8	8 0	5 8 770
	Silltyd	X limestone	106L/4	4	0.2 0.		1 16.00	- 1 1	1 5	1 1.1	9 1	8 0.18		0.5 0.5	8	28 1	0.5 3	42 8	8 0.	5 8 6
96 HR-49 C	Cilityd	X limestone	106L/4	4	0.1 0.	03 1 320	1 16.00	0 0.4	0.5 2	1 0.3	1 0.5	8 0.10	405 1	J.5 U.5		30 1	0.5 5			
				+													+			
					-		12 07 00	7 45 - 44	00 20 20	0406 4 4 400		0 1144	1938 4.1	67 22.69	68 2 343	5.3 14.13	1.2 1	83 10	15	3 30 129
			average		6.66 0.1	09 135.3 490.6	43.0/ 3.24	4 /.15 11	1.05 38.16	7 0.6		0.1140	775	07 22.05	40	63 4		64 10	15	2 20 24
			median		1 0.	09 14 145	2 0.9	8 2.5	4 5.5		-	0.00	25	1 1	10	4 2		6 10	10	1 10 1
			min		0.2 0.		2 0.1	3 0.5		1 0.1		0.0	20	10 210	310 1023	12/	; ,	06 10	20	9 60 8890
			max			39 2460 2800		5 31	69 331	243000 10.3		0.00	4094 15 3	89 51.29	0.0	516 33.45	0447 1	70 0	5.345 2.12	1 26.5 2452
			standard dev		,	13 454.4 768.3			5.89 00.35	43574 2.112		0.130		1.7 132.8				87 10	20 6.	8 56 7468
			95th percentile			24 284 2290			8.2 127.1	7885 4.807	-	0.380	4666 11				1.6 3	43 10		6 52 5800
			90th percentile	· i	8.8 0.2	55 214.4 1595	186 10.1	1 18.2 2	4.2 114.2	2310 3.64	9: 1:	0.254	4666 11	51.2	129 148	5.1 14	1.01 3	10 10		5 52 500

Page 1

C llltyd - rep samples

......

Sheet2

detection limit						5		0.2 0.)1	2 1	0 :	2 15	0.5	1	1	1	15	0.5	10			1	1	8	2	2	1		10 1	0 1	10
	-	-	sample			Au ppb Pt	Pd	Ag Al	As	B	a B	i Ca	Cd	Co	Cr	Cu	Fe	Hg	La M	Лg	Mn	Mo	Ni F	-	Pb	Sb	Sc S	Sr TI		JV	W Zn
sample number	r Fm	rep	description		sample location	FA+AA pp	b ppb	ppm %	ppm	n ppr	n ppn	1 %	ppm	ppm	ppm	ppm	%	ppm	ppm %	/0	ppm	ppm	ppm p	pm	ppm	ppm	ppm p	opm ppr	n ppr	n ppm	ppm ppm
95DH-095	Illityd	x	beige weath, it grey mass to blocky w rusty fract, 1% ox py(+dk blue xtal) float		RAS-TUS claims 106L/4	4		0.1		1 8	0	16.00	0.4	0.5	1	0.5	0.29			0.16	620	0.5	0.5	90	14	1	0.5	192		8 0.5	8
96 DH 121	Cilityd		red weathering knobular limestone, cut by thin Vcc	s/c	CW 106L/4 Illtyd camp	4		0.1 0.0	06 1	0 5	0	16.00	2	0.5	5	2	0.36	0.5	8	0.21	840	0.5	3	70	24	2	0.5	330	8 2	0 1	8
96 GM 27	Cilityd	X	nodular limestone (knobular?). 40 cm.		106L/4	4		0.2 0	.1	1 6	0	16.00	0.5	1	3	1	0.39	0.5	8	0.58	840	0!5	1	50	14	1	0.5	336	8	8 1	8 '
96 GM 28	Cilityd	X	yello-brown weath, light grey vuggy limstn w py and lim agglomerates		106L/4	4		0.2	0	1 132	0	16.00	0.4	0.5	3	0.5	0.39	0.5	8	0.16	480	0:5	0.5	10	144	1	0.5	278	8	8 1	8
96 HR-49	Cllltyd	Х	limestone		106L/4	4		0.1 0.	03	1 32	:0	16.00	0.4	0.5	2	1	0.31	0.5	8	0.18	405	0.5	0.5	8	38	1	0.5	342	8	8 0.5	8
					average			0.2 0.0	06 1	10 36	6 4	1	1.25	1	2.8	1.333	0.348			0.258	637		2	55	46.8	2		295.6	2	0 1	
		-			median			0.2 0.0	06 1	0 8	0 4	1	1.25	1	3	1	0.36			0.18	620	_	2	60	24	2		330	2	0 1	
		-			min			0.2 0.	03 1	0 5	0	1	0.5	1	1	1	0.29			0.16	405		1	10	14	· 2		192	2	0 1	
	-				max			0.2 0	.1 1	0 132	0 4	1	2	1	5	2	0.39			0.58	840		3	90	144	2		342	2	0 1	
					standard dev			0 0.)4	544.	9		1.061		1.48	0.577	0.046			0.181	200.7		1.414	34.16	55.22			63.27		C) 104
					95th percentile			0.2 0	.1 1	112	0	1	1.925	1	4.6	1.9	0.39			0.506	840		2.9	87	122.8	2		340.8	2	0 1	23
95DH-110	Illtyd	x	limestone w horizon 3-4cm rusty spots, ox py?float	-	RAS-TUS claims 106L/4	4		4.2		2 4	0	2 16.00	31	0.5	1	18	1.63			0.09	775	1	2	10	446	4	0.5	161		8 0.5	5 20 7:
96 HR-47	Cilltyd	X	limestone		106L/4	4		0.2 0.0	01	4 9	0	16.00	29	1	5	1	1.19	1	8	0.17	465	0.5	7	8	64	1	0.5	238	8	8 0.5	8 77

Page 1

C Illtyd- rep samples

C Slatts Ck- all samples

-

Sheet1

letection limit			•			5		0.2	0.01	2	10	2	15	0.5	1	1	1	15	1	10			1	1	8	2	2	1		10	10	1 10
			sample			Au ppb Pt	Pd	Ag A	A A	s	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	Hg	La M	/lg /	Mn	Mo	Ni	P	Pb	Sb	Sc Sr	TI		UV	W Zn
ample number	Fm	rep	description		sample location	FA+AA ppb	ppb	ppm %			ppm p	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm %	6 F	opm	ppm	ppm	ppm _	ppm	ppm	ppm pp	m ppm		ppm ppm	ppm ppr
95DH-113B	CSlattsCk	x	rep of brown weathering grey siltstone		RAS-TUS claims 106L/4	4		0.1		2	530	2	0.98	0.4	6	78	33	2.21			0.67	270	0.5	13	220	16	1	1	17		8 1	0 8
95DH-116	CSlattsCk	X	reddish brown weathering grey siltstone		W of Touché 116l/16	4		0.1		2	-80	1	0.03	0.4	1	80	3	0.56			0.02	15	1	3	60	26	1	1	3		8	3 8
96 DH 128A-d	CSlattsCk	Х	dark brown weathering f.g. sandstone, some black shale chips	float	NW 106L/4 Illtyd camp	4		0.2	1.2	4	880	1	2.4	0.4	4	93	6	1.62	0.5	30	0.44	190	1	9	170	4	1	2	44	8	8 1	0 8
96 DH 128B-d	CSlattsCk	Х	tabular brown weathering sandstone	float	NW 106L/4 Illtyd camp	4		0.2	0.81	2	60		7.16	0.5	< 5	116	8	1.64	0.5	20	0.34	550	1	10	270	6	2	1	97	8	8	7 8
96 HR-48	CSlattsCk	Х	brownish sandstone			4		0.1	1.32	2	100	1	0.77	0.5	5	122	13	2.18	0.5	30	0.69	145	0.5	11	230	10	1	1	6	8	8	9 8
96 HR-50	CSlattsCk	X	brownish sandstone at contact with Road River			4		0.1	1.05	2	130	1	0.07	0.5	7	120	14	2.55	0.5	30	0.35	160	0.5	13	180	24	1	1	7	8	8	9 8
												-																				
					average	e		0.20	1.10	2.33 29	6.67 1	1.20	1.90	0.50	4.67	101.50	12.83	1.79		27.50	0.42	221.67	0.80	9.83	188.33	14.33	1.25	1.17	29.00		8.0	0 7
					mediar	n l		0.20	1.13	2.00 11	5.00 1	1.00	0.88	0.50	5.00	104.50	10.50	1.91		30.00	0.40	175.00	1.00	10.50	200.00	13.00	1.00	1.00	12.00		9.0	0 4
					mir	ר ר		0.20	0.81	2.00 6	60.00 1	1.00	0.03	0.50	1.00	78.00	3.00	0.56		20.00	0.02	15.00	0.50	3.00	60.00	4.00	1.00	1.00	3.00		3.0	0 1
		_			max	x		0.20	1.32	4.00 88	0.00 2	2:00	7.16	0.50	7.00	122.00	33.00	2.55		30.00	0.69	550.00	1.00	13.00	270.00	26.00	2.00	2.00	97.00		10.0	0 18
		_			standard dev	v		0.00	0.22	0.82 33	5.90 0	0.45	2.72	0.00	2.07	20.30	10.72	0.70		5.00	0.25	180.85	0.27	3.71	72.50	9.24	0.50	0.41	36.56		2.6	8 7
					95th percentile	el le		0.2	1.302	3.5 7	92.5	1.8	5.97	0.5	6.75	121.5	28.25	2.465		30	0.685	480	1	13	260	25.5	1.85	1.75	83.75		1	0

Page 1

C Slatts Creek- all samples

CDr1 Road River-COR/OSI

.

- all samples

Sheet1

			······································										<u> </u>		1	1 9	2 2	1 10	
detection limit		sample		5 Au ppb	Pt Pd	0.2 0.0 Ag Al	1 2 As	10 2 Ba Bi		0.5	1 1 o Cr		15 0.5 10 Fe Hg LaiN	lg Mn	Mo Ni		Pb Sb	Sc Sr Tl	U V W Zn
sample number F	Fm	rep description	sample location	FA+AA	ppb ppb i	ppm %	ррт	ppm ppm	%	ppm ppn	n ppm p	pm	% ppm ppm %	6 ppm	ppm pp	m ppm	ppm ppm	ppm ppm ppm	ppm ppm ppm ppm
		rusty weath black chert bed w large pods of mass Ig py at base. py>5%.20cm	SE of km 440.9 1161/16	<5		0.1	1	20 1	0.98	0.4 1	1 138	21 5.7	76	0.6 315	0.5	47 180	4 1	0.5 9	8 7 5 18
	DSI DSI	orange weathering, clay altered finely banded limestone	SE of km 440.9 116I/16	<5		0.2	2		0.15		4 57	17 2.1	16		0.5	16 100	4 1		8 6 5 54 8 53 5 66
		X rep of beige grey dolom (60%) and black chert (40%) cut by disc thin Vcarb	from pit at km 412 116I/9	<5		0.1	1	110 2	9.95	1 0.		24 0.1		5.96 130 1.23 380		4 1230		0.5 38	8 53 5 66 8 31 5 84
	OSI vein	c.g.qtz + sparry calcite w 1% interst. pods of tarnished cp w malach halo	Cu showing ridge 1161/9 Cu showing ridge 1161/9	80 <5		0.4	6	40 2	16	1 0. 0.4 0.		10 0.8			0.5	0.5 10		0.5 624	8 53 5 34
	DSI vein	qtz w grey striped sparry cc+seams of yel-brown cc+ 1% pods of lim-cp-mal carbonate breccia almost looks dykish	Cu showing ridge 116//9	<5		0.1	2	50 2	16	0.4 0.		13 0.2	and the second s		0.5	1 180		0.5 490	8 4 5 36
	COr?	10m wide v. coarse orange and white cc vein trends 120. dense, baritic?	Cu showing ridge 1161/9	<5		0.1	1	90 1	16	0.4 0.	5 1	55 0.1			0.5			0.5 1340	8 3 5 18 8 13 5 30
95DH-057 C	COr	X rep sample of grey limestone. float	Cu showing ridge 1161/9	<5 <5		0.1	1	280 1	16	0.4 0.		6 0.1 9 0.2	_		0.5	1 610		0.5 1180	8 29 5 34
	DSI	X rep sample of banded grey, brown and black pyritic limestone, float	Cu showing ridge 1161/9 ridge at km 438_1161/16	<5		0.1	2	40 1		0.4 0.		12 0.2		0.47 15		6 270		0.5 28	8 31 5 32
	DSI COr	zebra chert? fracture filling? chalcedonic? s/c trail of float coarse cc vein w darker orange carb (ank?) tr qtz +host Rx Fx	ridge at km 438 1161/16	<5		0.1	1	100 1		0.4 0.	5 14	1 0.1	17			0.5 130		0.5 835	8 2 5 16
	xor xor	Coarse cc vein 15-20cm w ghost host 065/74 (ba?)	ridge at km 438 1161/16	<5		0.1	4	60 1	16	0.4 0.		0.5 0.0				0.5 80		0.5 1070	8 1 5 16 8 3 5 38
	COr	Coarse oc vein w qtz and dirty inclusions, poss sulph grain, ankerite? float	ridge at km 438 116l/16 ridge at km 438 116l/16	<5 <5		0.1	2	140 1 120 1	16	0.5 0.		7 0.1				0.5 350		0.5 733	8 4 5 18
		X rep sample of grey massive limestone X rep of pale grey to grey weath chert band 15 cm	ridge at km 438 1161/16	<5		0.1	1	140 1	0.23	0.4 0.		14 0.6	51		2 1	10 130	1 1	1 8	8 10 5 20
		X rep of beige weath limestone i/bedded w above chert	ridge at km 438 116l/16	<5		0.1	1	80 1	16		4 16	15 0.7				1 960	4 1	3 137	8 11 5 70 8 3 5 22
95DH-103 C	Or	X rep sample of fg dk grey limestone s/c	RAS-TUS claims 106L/4	<5 <5		0.1	1	300 2 780 1	16 0.8	0.4 0.	5 2 4 167	1 0.2			0.5	9 360	4 1	1 15	8 5 5 8
	DSI//Sd	pyritic silicified limestone?, margin of fault zone. py 1% in pods float fault zone, fractured and qtz injected shale/siltstone+vein material, ox py0.5%	Touché 116/1/16 Touché 116/1/16	<5		0.1	4	390 2	2.7	0.4		26 0.6			0.5	15 280	4 1	1 20	8 12 5 20
	DSI? COr	It orange weath sandy limstn or limey sstn w seam py cubes and veinlet. float	between Touché+camp	<5		0.1	2	150 4	16	0.4	1 3	5 0.8		8.86 620		4 160	16 1		8 15 5 40
	20r	coarse calcite vein.dense, baritic? s/c	between Touché+camp	<5		0.1	1	120 2	16	0.4 0.		0.5 0.0			0.5	0.5 8	1 1 96 1	0.5 1355	8 0.5 5 18 8 20 5 36
95DH-121 C	COr	Vein of very coarse calcite (qtz-ba?), some rusty seams. float near o/c	between Touché+camp SE of km 452 116I/16	<5 <5		0.1	2	30 1 780 3	16	0.4 0.	5 12 2 8	51 0.1 9 0.9		0.11 170		9 180	2 1	2 555	8 7 5 34
	DSI DSI	finely banded limestone- baritic? float rusty weath nodular bedded black chert w zones of py casts ("frothy texture")	SE of km 452 1161/16	<5		0.1	1	140 1	0.38		7 239	32 1.4	16	0.41 65	0.5	22 180	8 1	1 11	8 23 5 18
	DSI	large coarse calcite vein w carb shale inclusions.dense, baritic?	SE of km 452 1161/16	<5		0.1	1	40 2	16	0.4 0.9		3 0.1			0.5	1 8		0.5 723	8 2 5 22 8 3 5 156
95DH-146 O	DSI	breccia zone w limonitic gouge in coarse calcite vein (of sample-145)	SE of km 452 1161/16	<5		0.1	4	70 2	16	0.5		23 3.1 04 1.3			0.5	4 100	6 1	0.5 436	8 83 5 86
95DH-147 O		X rep sample of carb shales, limy shales and cherts loc pyritic, chip 2m	SE of km 452 1161/16 SE of km 452 1161/16	<5 <5		0.4	4	70 1	0.57	0.5		30 3.0		0.27 115		12 340	10 2	0.5 178	8 6 5 20
95DH-148 O 95DH-149 O		pyritiferous (1-2%) dense (baritic) grey limestone. sh w 4-10cm band of f.g. py+cc veining//+ perp So overlain by sh w framb py	SE of km 452 1161/16	<5		0.8	6	20 2	6.13	6.5	1 28	48 13	.6			11 340	16 1	0.5 77	8 9 5 1520
95DH-150 0		rusty fractured faulted shale w gyps? coating and thin cc veining	SE of km 452 1161/16	<5		0.2	1	140 2	3.62	0.4		12 1.7	-	0.96 160	1	35 170 23 160	6 1	3 58	8 34 5 102 8 28 5 44
	DSI	folded train of rusty gouge +rusty gyps coated shale Fx	SE of km 452 1161/16	<5 <5		0.4	6	80 1	4.33	0.4 0.4	3 53	85 3.4	- 1	0.49 35 8.66 135	0.5	1 50	1 1	0.5 55	8 11 5 26
95DH-151b O 95DH-152 O)SI	folded train of rusty gouge +rusty gyps coated shale Fx folded? calcite vein	SE of km 452 1161/16	<5		0.1	4	530 2		0.4 0.		2 0.0			0.5		1 1	0.5 462	8 2 5 20
95DH-152 0		X rep sample of pyritic fossilliferous black shale (tweezergraptus)	SE of km 452 1161/16	<5		0.4	1			0.5		26 1.0		1.19 15		28 3300	1 1	4 18	8 120 5 84 8 60 5 1340
95DH-166 O		thin bed. rusty+yellow weath shales+cherts w cc veining // So.	SE of km 440.9 1161/16	<5		0.6	10			16.5		59 2.6 40 1.5		0.16 10		40 8040		2 42	8 54 5 88
95DH-168 O		black chert w limestone pods-ghosts, not for assay	SE of km 440.9 116l/16 Real Rx Riv trib 116l/16	<5 <5		0.1	4	2300 1		0.4 3 5.5 0.5		35 0		1.09 50		12 1760	2 1	1 264	8 173 5 308
95DH-175 0 95DH-177 0		chert bed w large recessive py nodules cgl? Imstn Fx in dark matrix, sulph clasts? cut by thin V float at base of cliff	Real Rx Riv trib 1161/16	<5		0.1	2	170 1		0.4 0.5		11 0.0			0.5	2 80	1 1	0.5 821	8 6 5 30
95DH-178 O		Vcc and angular Fx of limstone in small fault	Real Rx Riv trib 1161/16	<5		0.1	2	120 1		0.4 0.	5 14	7 0.2		1.34 85 0.54 40	0.5	2 290 49 840		1 473	8 12 5 30 8 78 5 148
)SI?	brecciated vein? carb xtals in dk grey/black matrix. rounded float in ck	Real Rx Riv trib 1161/16 Real Rx Riv trib 1161/16	<5 <5		1.2 0.1	14			0.5		60 2.6 29 0.7		0.54 40		12 100	20 4	1 4	8 24 5 14
)SI	black carb calc shales- grungy rusty horizon. o/c but rep taken from float	Real Rx Riv trib 116//16	<5		0.1	4			0.4 0.4		28 0.1	-		0.5	0.5 30	1 1	0.5 45	8 3 5 16
95DH-182 0		limestone cut by thin carb veinlets. float	E of AC p/out 1161/9	<5		0.1	2			0.4 0.5	-	3 0.1			1 0.5	1 540	8 1	0.5 94	8 8 5 20 8 12 5 34
95DH-183 O	SI	limestone/chert w veins and pods of euhedral qtz/cc // So. float	E of AC p/out 1161/9	<5		0.1	1	10 1 240 1		0.5 0.5		19 0 9 0.9		0.16 40	0.5	4 100	4 1	0.5 39	8 30 5 8
)SI	coarse qtz and calcite vein. trail of float grey weath f.g. limestone cut by xtalline cc veins (1-2cm). Where weatheres pinkish, ox py?	E of AC p/out 116l/9 float CW 106L/4 liltyd camp	<5 <5		0.1 0.0	5 1	240 1		0.4 0.	-				0.5	1 200	1 1	0.5 1015 0.50	8 8 5 12
	Dr1(COr) Dr1(COr)	calcite-dolom breccia-vein. Vuggy, w xtal qtz+limonite. amorphous orage-brown coating?	float CW 106L/4 Ilityd camp	<5		0.1 0.0		30 1	16	0.4 0.5	5 4	0.5 0.3			0.5	1 40	1 1	0.5 64 0.50	8 1 5 12
	Dr1(COr)	X grey weath f.g. pyritic limestone. Silicified? carb coating on fractures	float CW 106L/4 Ilityd camp	<5		0.1 0.2		380 1	16	0.4 0.5	-	0.5 0.1	0.0 0		0.5	1 260 0.5 130		0.5 1145 0.50	8 4 5 8 8 3 5 6
	Dr1(COr)	coarse cc (loc orange-pink) vein w fx dk f.g. limestone in bedded limestone/chert	float CW 106L/4 Ilityd camp CW 106L/4 Ilityd camp	<5 <5		0.1 0.0		160 1 930 1	16	0.4 0.5	÷ ·	0.5 0.1				0.5 50		0.5 75 0.50	8 1 5 14
	Dr1(COr)	cc- dolom breccia vein+alt limestone Fx. vugs w light coloured carb. tr ox py ? depends if a or b	CW 106L/4 Ilityd camp	<5		0.1 0.3		80 1	16	0.4					0.5	3 70	1 1	0.5 1030 0.50	8 2 5 6
	Dr1(COr)	cc-dolom vuggy breccia-vein w angular limestone Fx, limonite-py	CW 106L/4 Illtyd camp	<5		0.1 0.03		60 1	16	0.5 0.5	-	0.5 0.2				0.5 80	1 1 716 1	0.5 227 0.50	8 2 5 52 8 0.5 5 186
	Dr1	in trace of fault: brecciated limestone injected w carb. looks munched. slicks?	float CW 106L/4 Ilityd camp	<5 <5	· · · ·	0.6 0.03	-	70 1 250 1	16	0.5 0.5	-			0.19 280				0.5 426 0.50	
96 DH 115B CI		in trace of fault:cc injected limestone	float CW 106L/4 Illtyd camp o/c NE 116l/1 Canyon Ck, below side canyo			1.8 1.2		420 2	9.04	9 2	2 61	94 0.8	3 0.5 10	1.99 70	7	24 3370	10 4	2 202 0.50	
		X black grey shale X beige weathering silicified? limestone	o/c NE 116I/1 Canyon Ck, below side canyo			1.8 0.89	9 6	1670 2	11.4	3 1	1 21	19 0.8	6 0.5 8	5.59 190	3	14 420	8 1	1 566 0.50 0.5 403 0.50	
96 DH 130 CI	Dr (COr or Osl)	rusty weath sandy limestone with thin py seams // So and remob perp.	o/c NE 116I/1 side canyon, Canyon ck	<5		1.4 0.00					4 142 8 26 *			0.19 55				0.5 330 0.50	8 26 5 36
	Dr (COr or Osl)	rusty weath sandy w bedded py (1-2cm), massive at base (loc podiform) grades into diss. 1cm above base of limestone bed, 1-2cm wavy bed of fine diss py (2-4%)	o/c NE 116I/1 side canyon, Canyon ck o/c NE 116I/1 side canyon, Canyon ck	<5 <5		2.6 0.20		10 2 120 2			0 12 1						24 18	0.5 722 0.50	
	Dr (COr or Osl)	X beige weath f.g. dk grey limestone, loc diss sulph. sample 20 cm thick	o/c NE 116I/1 side canyon, Canyon ck	<5		0.1 0.36		840 4	16	4 0.5	5 14	44 0.4	5 0.5 10			9 740			10 73 5 114 10 465 5 1540
	Dr (COr or Osl)	X black carb. recessive shale (in dom limestone succession)	o/c NE 116I/1 side canyon, Canyon ck	<5		2.8 1.10					3 27 1					39 690 9 680	30 10 16 6	4 404 0.50 0.5 528 0.50	
	Dr (COr or Osl)	c to f.g limestone w 2-4% py at base. overlain by thin dark pyritiferrous lam	s/c NE 116i/1 side canyon, Canyon ck o/c NE 116i/1 side canyon, Canyon ck	<5 <5		0.1 0.12		230 2 8 2			5 17 7 46				1 5			0.5 255 0.50	
	Dr (COr or Osl) Dr (COr or Osl)	massive podiform py and bands lining limestone pods (pink-mottled weath py) large py pods-discs on So, loc blue tarnish. py lined with lineated cc	float INE 1161/1 side canyon, Canyon ck	<5		2.2 0.17		10 2					2 0.5 8	0.65 40	1 4	45 110		0.5 318 0.50	
	Dr vein	Xtalline cc vein w angular limestone fx	o/c NE 116I/1 side canyon, Canyon ck	<5		0.6 0.48		390 2		9 0.5			4 0.5 8			15 200		0.5 561 10	
96 DH 141 C	Dr (COr or Osl)	lense of mass py, (w edge as cubes) lined by lineated cc vein, in grey, rusty weath limestone	float INE 116I/1 Canyon Ck, below side canyo float INE 116I/1 Canyon Ck, below side canyo		i	0.4 0.37		10 2 80 2	8.28		4 42 1 1 4		5 0.5 8 2 0.5 8		16	15 680 6 150		0.5 521 0.50	
	Dr (COr or Osl)	1 Cm thick mass py lense lined by and cut by cc, in limestone	float NE 116/1 Canyon Ck, below side canyo	<5		0.8 0.0			7.98				3 0.5 8		6		20 14	0.5 225 0.50	
	Dr (COr or Osl) Dr (COr or Osl)	2 thin seams of py+cc form lense in limestone podiform band of blue tarnished mass py (up to 1.5cm, lined by cc, in limestone	float NE 116I/1 Canyon Ck	<5		1.8 0.09		70 2					5 0.5 8			17 270		0.5 559 0.50	
	Dr (COr or Osl)	composite float sample of bands and pods of mass py in limestone	float NE 116I/1 Canyon Ck, below side canyo			3.2 0.32							1 0.5 8 3 0.5 10		5	33 230 11 2630		0.5 351 0.50	8 34 5 238 10 92 5 120
96 DH 146 CE	Dr (COr or Osl)	pinkish weathering spotty limestone w 2-5% diss f to mg py	float NE 116I/1 Canyon Ck, below side canyo float NE 118I/8	n <5 <5		0.2 0.32		170 2 1560 1		3 1 2 0.5			3 0.5 10 4 0.5 8			3 630		0.5 77 0.50	
96 DH 153A Os		brecc limestone w ang Fx in carb matrix, pod of soft beige mat containing black platy min white vyggy dolom/gt 2 vein	float INE 1181/8	<5		.2 0.12			16.00	2 0.5			7 0.5 8	11.2 260	1 0.5	70	20 4	0.5 57 0.50	10 5 5 10
96 DH 154 Os 96 DH 155 Os		orange weathering ank/dolom? breccia w limestone and vein mat clasts	float NE 1181/8	<5	<	.2 0.04	16	140 1	16.00	2 0.5	5 5			5.94 250				0.5 115 0.50	
96 DH 156 Os	sl	white weath white and grey dolom vein w vugs lined by cream coloured carb	float NE 1181/8	<5		.2 0.04				1.5 0.5			7 0.5 8 9 0.5 8		1 0.5			0.5 69 0.50	
96 DH 157B CC		coarse cc vein	float NE 1181/8	<5 <5		0.1 0.04			16	2 0.5	5 1	2 0.3	2 0.5 8	0.54 105	1		16 1	0.5 1010 0.50	10 1 5 2
96 DH 161 CC 96 DH 162 CC		brecciated and veined limestone w matrix of light orange cc X limestone	NE 118//8	<5		.2 0.04		260 4	16.00	2 0.5	5 4	4 0.3	1 0.5 8	0.27 40	2	3 300	18 2	0.5 1365 0.50	
96 DH 162 CC		composite sample of veined, breecciated and bleached limestone, light orange cc veining	float NE 1181/8	<5	<	.2 0.07	16	150 1					4 0.5 8			110		0.5 577 0.50	
96 DH 180 05	SI	X (nisty weath) pinkish grey to grey chert	NE 1161/1	<5		.2 0.14			0.02	0.4 1	327	29 0.8	8 0.5 8 2 0.5 10			8 250			10 33 5 62
96 DH 181A 05			float INE 1161/1 float INE 1161/1	<5 <5		.2 0.13 .2 0.07		250 1 400 1	16.00	1.5 0.5	5 5	3 0.5	9 0.5 20	9.04 210	1 5	3 370	14 4	0.5 1025 0.50	10 20 5 6
96 DH 181B OS	51	same as above vuggier, vuggs loc rimmed by py cubes and filled by coarse carbonate xtals																	

Page 1

CDr1/ COr- OSI all samples

CDr1 Road River-COR/OSI

- all samples

Sheet1

					0.2 0.0		10: 2: 15	0.5 11		15: 0.5:	107	1	1: 8:	2 2	1 10	10: 1: 10:
detection limit		sample		Au ppb P			Bai Bi Cai	Cd Co	Cr Cu	Fe Ha	La Mg	Mn Mo Ni	P	Pb Sb	SciSr TI	UV WZn
sample number	Fm re	p description	sample location	FA+AA p		ppm p	pm ppm %			% ppm		ppm) ppm pp				ppm ppm ppm ppm
96 DH 183		K beige weathering, f.g. platy dk limestone, carb on fract plane	float NE 116I/1	<5	0.1 0.3	3 10 4	30 2 16	2.5 0.5		29 0.5			8 880		0.5 469 0.50	10 57 5
96 DH 198	OSI	vuggy and veined (cc-qtz\some drusy) conglomeratic limestone, app // So	o/c NE 1161/16	<5	<.2 0.03		90 1 10.9		101 35 0.		8 4.32		6 670	8 2	0.5 466 0.50	8 93 5
96 DH 199A	OSI	later extensional vein w shale Fx, qtz// to vein walls and cc xtals, diss cp 0.5%	o/c NE 1161/16	<5	<.2 0.03		10 1 7.55		129 266 0.		8 3.86	225 3	5 620 7 910	8 2	0.5 214 0.50	8 119 5 8 81 5
	OSI	as -a, shale Fx lined by oblique drusy qtz and ank?, diss cp, az, bn loc in 0.5 cm globs	0/C NE 116I/16 0/C CW 116I/8	<5 <5	<.2 0.04		250 1 5.58	0.5 0.5	196 257 0.	34 0.5	8 1.83	155 2 210 1	5 490	6 1	0.5 172 0.50	8 6 5
96 DH 201		finely banded limestone/chert (loc nodular)	o/c SE 1161/8 E Canyon Ck	<5	0.1 0.04 <.2 0.69		70 1 4.77	0.5 1	95 7 1	21 0.5	10 0.97	220 1	10 190	4 1	1 106 0 50	8 9 5
96 DH 23A 96 DH 23B		beige weath, dk grey black shale	o/c SE 1161/8 E Canyon Ck	<5	<.2 1.1		70 1 0.81	0.4 4	27 28 2	61 0.5	10 0.37	90 5	28 280	28 1	3 12 0.50	8 21 5
96 DH 23D	COr	pod of weathered sulph 6 cm in diam	o/c SE 116//8 E Canyon Ck	<5	0.6 0.8		50 1 2.98	1.5 9	87 40 5	5.1 0.5	8 0.71	110 7	36 240	68 10	2 57 0.50	8 27 5
96 DH 23D	COr	rusty weath 1-2cm py pods in limy beds , carb coating	o/c SE 116I/8 E Canyon Ck	<5	0.8 0.9	46	70 1 2.51	1.5 8	92 45 4.	33 0.5	8 0.93	95 5	42 230	48 1	2 38 0.50	8 25 5
96 DH 23E	COr	mass py pod 1-2 cm in limeston beds, thin discordant Vcc	o/c SE 116I/8 E Canyon Ck	<5	<.2 0.63	8 8	70 1 6.01	0.4 5	70 13 1.	82 0.5	8 0.93	205 1	14 140	18 1	1 89 0.50	8 7 5
96 DH 23G	.COr >	graded limestone bed w diss py in core of bed	o/c SE 116I/8 E Canyon Ck	<5	<.2 0.52		50 1 9.63	0.4 4	65 12 1.	0.0	8 0.76	215 0.5	13 130	24 1	1 120 0.50	8 6 5
96 DH 24	COr >	massive blocky, loc nodular limestone	o/c SE 1161/8 E Canyon Ck	<5	<.2 0.04		40 1 16.00	0.5 0.5	5 1 0.	00 010	8 0.64	35 0.5 0.5		1 1	0.5 2490 0.50	8 19 5
	COr	grey weath dark Imstn w pitted surface, cut by thin Vcc-ank? (baritic)	float SE 116I/8 E Canyon Ck	<5			60 1 16.00	1.5 0.5		0.1 0.5	8 0.81	50 0.5 0.5 35 0.5 0.5			0.5 2640 0.50	8 6 5
96 DH 24C	COr	massive limestone cut by cc fault breccia	float? SE 116I/8 E Canyon Ck o/c? SE 116I/8 E Canyon Ck	<5 <5	<.2 0.07		90 1 16.00	0.4 0.5	2 0.5 0. 3 0.5 1.	22 0.5	8 0.59 8 8.16	205 0.5	3 280		0.5 846 0.50	8 11 5
96 DH 28 96 DH 38A	COr? CDr1	orange weath dolomitized limestone? cc in veins + as open space xtals grey massive blocky limestone, cut by gtz veins (silicified?)	float SE 1161/8 E Canyon Ck	<5	0.1 0.03		80 1 16	1.5 0.5		05 0.5	8 11.1	105 2		10 2	0.5 68 0.50	8 0.5 5
96 DH 38A	COr	chips of clayey orange weathering rx	float (CE116I/1 Harrival	<5	0.4 0.83		20 1 1.97	4.5 6		06 0.5	10 0.37		49 380	8 2	2 84 0.50	8 95 5
96 DH 46	COr	vuggy milky white qtz veins containing chert fx	float CE116I/1 Harrival	<5	<.2 0.01		30 1 2.36			0.2 0.5	8 0.14	35 1	4 90	1 1	0.5 74 0.50	8 7 5
96 DH 48		black blocky chert	float CE116I/1 Harrival	<5	0.1 0.02		90 1 0.06		296 11 0.	33 0.5	8 0.02	20 4	6 90	1 1	0.0 4 0.00	8 9 5
96 DH 52	COr?	composite of cc veining in grey limestone	float CE and SE 116I/1 Harrival	<5	<.2 <.01	10	80 4 16.00	3.5 0.5	11 2 0.		8 0.23	95 1	3 70	8 2	0.5 586 0.50	10 8 5
	COr?	grey weathering, grey limestone, carb veining and coating on fract surfaces	o/c CE and SE 116I/1 Harrival	<5	<.2 0.02		00 2 16.00	2 0.5	3 8 0.	0-1 0.01	8 0.13	30 2	1 90	2 1	0.5 585 0.50	8 23 5 8 23 5
96 DH 55	CDr1	fault/fold in limestone w podiform chert, pervasive fracturing and Vcc	chip CE and SE 116I/1 Harrival	<5	0.1 0.01		90 4 16	2 0.5	78 6 0.	_	8 0.45	75 2	3 110 6 290 1			8 48 5
96 DH 56	CDr1	composite core sample: tarnished sulph (py?) in limestone and chert, loc in veinlet	core CE and SE 116I/1 Harrival float CE and SE 116I/1 Harrival	<5 <5	2.4 0.06		401 1 10.8	1.5 0.5 1.5 0.5	98 16 0. 50 1 0.		8 6	190 7	<u>0</u> ∠90 1 1 80	18 4	0.5 79 0.50	8 16 5
96 DH 57	CDr1 OSI	diss rusty py in chert and py in Vccqtz in dolomitized limestone white sugary qtz w silicified shFx and bitumen ind?, some limonitic vuggy pods	float SE 1161/1	<5	<.2 0.07		80 1 0.08		226 37 0.		8 <.01	10 1 0.5	8 440	2 1	0.5 9 0.50	8 7 5
		grey limestone	o/c SE 1161/1 Mt R. 1st ascent	<5	0.1 (40 6 16	2 0.5		05 0.5	8 0.17	65 1	1 40	22 1	0.5 198 0.50	20 1 5
	Osl	rusty weath pyritic nodular chert-brecciated+qtz veining	0/c SE 1161/8	<5	0.2 0.27	-	50 1 0.13	0.4 4	186 39 1.		8 0.08	30 0.5	17 210	6 1	1 11 0.50	8 19 5
96 DH 81	Osl	brecciated grey limestone in matrix of white carbonate xtals. loc large euhedral qtz	SE 1161/8	<5	<.2 0.01		70 1 12	0	67 1 0.		8 7.12	150 0.5	2 230	1 1	0.01 1010100	8 13 5
96 DH 82	Osl X	bedded limestone/chert. limestone knobby, Fxtal.	o/c SE 1161/8	<5	<.2 0.01		20 1 16.00	0.4 0.5	14 5 0.		8 0.22	45 0.5	3 390	1 1	0.5 303 0.50	8 14 5
	COr X	f.g. brown-beige weathering limestone w loc cc veins	o/c SE 1161/8	<5	<.2 0.12		20 1 16.00	0.4 0.5	8 4 0.		8 0.46	45 0.5	2 660	1 1	0.5 810 0.50	8 4 5
	OSI? X	bedded chert/ (limestone/shale) 25 cm	chip CE 116i/1 Canyon Ck CE 116i/1 Canyon Ck	<5	0.4 0.35 <.2 0.3		50 1 7.56	1.5 1	100 19 0. 24 32 0.		10 0.18	65 2 100 13	38 3980	12 1	2 76 0 50	8 29 5
		siliceous shale	soil CE and SE 1161/1 Harrival	<5	<.2 0.3		10 1 6.14 30 1 0.41	0.41 01	<u>24</u> <u>32</u> 0. <u>32</u> 17 <u>3.</u>		10 0.39	205 3	24 210	28 2	4 19 0.50	8 99 5
	COr? CDr1	rusty soil chert breccia w qtz veining	1161/1	<5	0.2 0.09		20 1 0.2	0.5 1			8 0.11	45 6	15 210	1 1	0.5 4 0.50	8 36 5
	CDrt	chert w qiz veins	1161/1	<5	0.1 0.04		30 1 2.01			.5 0.5	8 1.14	110 9	13 430	1 1	0.5 17 0.50	8 17 5
	CDr1	gtz breccia in chert, gtz drusy and in veins	float 116I/1	<5	0.1 0.03	1	30 1 3.39	0.5 0.5	252 3 0.	34 0.5	8 1.21	80) 1	5 1040	1 1	0.0	8 3 5
96 GM 11	CDr1	slicked qtz breccia, drusy qtz (cgl?)	1161/1	<5	0.1 0.06		70 1 1.71	0.5 1			8 0.95		11 380	1 1	0.5 20 0.50	8 13 5
	CDr1	reddish soil in rusty weathering chert	soil 1161/1	<5	0.1 0.33		20 1 16	0.4 0.5	30 4 0.0		8 0.77	375 0.5	3 30 10 570	4 2	0.5 386 0.50	8 1 5
	CDr1	qtz breccia in chert, veining and drusy	116//1	<5	0.1 0.05		30 1 2.28 10 1 16	0.5 0.5 3	<u>357 7 0.4</u> 11 4 0.5		8 1.28	85 0.5	7 270	1 1	0.5 303 0.50	8 7 5
	CDr1 X CDr1	limestone	1161/1	<5	0.1 0.07	=	10 1 16	0.5 0.5	12 2 0.0		8 0.23	75 0.5	1 520	1 1	0.5 669 0.50	8 18 5
	CDr1	extensional qtz veining in limestone limestone w qtz veins or limestone/chert breccia	116/1	<5	0.1 0.01		20 1 16	1 0.5	11 7 0.		8 0.26	185 0.5	3 2450		0.5 528 0.50	8 29 5
	OSI	rusty black weath massive grey chert	o/c 1161/16	<5	<.2 0.09		80 1 0.06	0.4 1	258 14 1.0	0.5	8 0.01	25 0.5	8 210	2 1	1 7 0.50	8 9 5
	OSI	chert gtz breccia	1161/16	<5	<.2 0.15		50 1 1.49	0.4 0.5	212 18 0.0	66 0.5	8 0.93	70 1	12 190	1 1	0.5 22 0.50	8 7 5
96 GM 40	OSI X	grey chert	1161/16	<5	<.2 0.16		80 1 0.03		352 21 0.		8 0.05		11 120	2 1	0.5 7 0.50	8 5 5
		It grey weath med grey limestone	106L4	<5	0.1 0.01		40 1 16	0.5 0.5	6 0.5 0.		8 0.56	35 0.5	1 60	1 1	0.0 000 0.00	8 16 5 8 24 5
		black chert	106L4	<5	0.2 0.05		50 1 13.6 70 1 11.4	3 0.5	78 4 0.1		8 0.61	20 3	4 170 44 160	1 1	0.5 127 0.50	8 6 5
		limestone w chert interbeds	float	<5	0.1 0.01			0.5 0.5 ⁴ 8.5 0.5		14 0.5 38 0.5	8 0.09	20 3	07 570	1 1	0.5 4630 0.50	8 99 5
		chert/limestone, thin bedded	o/c 66 08.44, 136 07.93	<5	0.1 0.07		50 1 16		66 10 0.		8 0.15		11 140	6 1	0.5 285 0.50	8 13 5
	Osl X	chert/shales w2.5 cm py bed, py/chert/breccia	1161/8	<5	4.8 0.13		8 1 4.69		44 133 16.0		8 0.08		65 3220	156 16	1 151 0.50	8 15 5
		massive grey limestone w chert interbeds	1161/1	<5	0.1 0.03		80 1 16		35 4 0.2	24 0.5	8 1.26	85 0.5	4 280	2 1	0.5 686 0.50	8 8 5
96-KP-22	CDr1	coloform brown carbonate on So?	1161/1	<5	0.1 0.01		30 1 16	0.5 0.5	4 6 0.0		8 0.16		0.5 110	2 4		10 12 5
	CDr1	recrystallized limestone and calcite breccia	float 116l/1	<5	0.1 0.03		80 1 16		0.5 2 0.3		8 9.76		0.5 90	1 2		8 4 5
	CDr1	limestone-calcite breccia	s/c 116l/1 116l/1	<5	0.1 0.07		40 1 16	0.4 1	69 17 0.2 5 2 0.1		8 0.43		5 780 0.5 130	2 2		8 6 5
	CDr1 OSI breccia	chert-calcite breccia	116//1	<5 <5	0.1 0.03		50 1 16 40 1 2.62	0.5 0.5 2			8 1.85		13 490	1 1	0.5 268 0.50	8 16 5
	OSI breccia	drusy qtz breccia, slicks chert col?breccia? chert Fx in loc drusy qtz	1161/9	<5	<.2 0.00		30 1 10.2		106 15 0.4		8 5.75	85 3	5 580	1 2	0.5 66 0.50	8 28 5
3 0-1 \ F -1																
				erage	0.488 0.212	16.52 2608.5	55 1.65 10.3	2.579 2.09 67				138.7 2.63 1		6.63 4.522		8.57 30.7 150
			M	edian	0.1 0.07		30 1 11.9		27 12 0.3		101 0.011	92.5 1	6 205	4 1	0.5 251.5 10	8 13
				Min	0.1 0		10 1 0.02	0.4 0.5	1 0.5 0.0		10 0.01		0.5 8	1 1	0.5 4 10	8 0.5
				Max	4.8 2.6					6 1	20 11.2 3.16 3.04	1205 19 2 160 3.35 2		200 90		1.75 56.2 628
			Standard Devi				1 1.14 6.17		.68 597.2 2.55 8.5 127.4 5.76			375.3 7.7 4				10 119 49
			95th perce 90th perce		2.36 0.922		23 4 16 50 3.8 16		7.2 74 3.06			264 6				10 81.4 22
1			auti perci	CITTING	1.001 0.608	⊨ 4 1.∡ 55	0 0.0 10		1.4 3.00	<u>, , , , , , , , , , , , , , , , , , , </u>		2041 0				

CDr1-COr/OSI rep samples

Sheet2

	1	1				983	1	2118 2	119 2	2120 21	21 21	23 2124	4 2125	2126	2127	2128 215	0 2131	2151 2134 213	5 2136 213	8 21	39 2140	2141 2142	2143 ###	2146 21	147 2148 214
detection limit				1		5		0.2 0	0.01	0.2		2 15	5 0.5	1		1	0.5	10	11	1	2	2 1	10	10	
			sample	1		Au pp P	t Pd	Ag A		As Ba	BI	Ca	a Cd	ColC	r	Cu Fe	Ha	La Mg Mn	MolNi	P	Pb	Sb Sc	Sr Tl	UV	W Zn
sample numbe	r Fm	rep	description		sample location	FA+AA p	ob ippt	b ppm %		mqq mqq	opm	%	6 DDm		-	ppm %	ppm		DDm DDm	ppm	ppm	ppm ppm	nad mad	ppmipp	m ppm ppm
95DH-051	OSI	X	rep of beige grey dolom (60%) and black chert (40%) cut by disc thin Vcarb		from pit at km 412 116l/9	<5		0.1		1 1	10	2 9.95	5 1	0.5	122	24 0.1		5.96 130) 3	4 12	30 1	1 0.5	38		53 <10 6
95DH-057	COr	X	rep sample of grey limestone. float	1	Cu showing ridge 116I/9	<5		0.1		1 2	80	1 16	5 0.4	0.5	6	6 0.1	2	0.49 190	0.5	1 6	10 1	2 0.5	1180	8	13 <10 3
95DH-058	OSI	X	rep sample of banded grey, brown and black pyritic limestone, float		Cu showing ridge 1161/9	<5		0.1		4 5	80	1 16	0.4	0.5	7	9 0.2	2	0.28 12	0.5	2 13	90 1	2 0.5	834	8	29 < 10 3
95DH-092	COr	X	rep sample of grey massive limestone	1	ridge at km 438 1161/16	<5		0.1	`	2 1	20	1 16	0.4	0.5	2	0.5 0.0	6	0.33 40	0.5 0.	5 3	50 1	1 0.5	733	8	4 < 10 1
95DH-093	OSI	X	rep of pale grey to grey weath chert band 15 cm		ridge at km 438 116!/16	<5		0.1		1 1	40	1 0.23	3 0.4	0.5	238	14 0.6	1 1	0.26 40	0.5 1	0 1	30 1	1 1	8	8	10 < 10 2
95DH-094	OSI	X	rep of beige weath limestone i/bedded w above chert		ridge at km 438 116I/16	<5		0.1		1	80	1 16	5 0.4	4	16	15 0.7	7	0.23 340	0.5 1	1 9	60 4	1 3	137	8	11 < 10 7
95DH-103	COr	X	rep sample of fg dk grey limestone s/c	1	RAS-TUS claims 106L/4	<5	·	0.1		1 3	00	2 16	0.4	0.5	2	1 0.2	2	1.21 65	0.5	1	40 1	1 0.5	1095	8	3 < 10 2
95DH-147	OSI		rep sample of carb shales, limy shales and cherts loc pyritic. chip 2m	1	SE of km 452 116l/16	<5		0.4		4 2	60	2 6.57	0.5	3	49	104 1.3	4	1.49 75	8 2	6 22	10 6	1 3	89	8	83 < 10 8
95DH-153	COr	X	rep sample of pyritic fossilliferous black shale (tweezergraptus)	1	SE of km 452 1161/16	<5		0.4		1 1	10	2 0.95	0.5	2	78	126 1.0	8	1.19 15	4 2	B 33	00 1	1 4	18	8 1	120 < 10 8
96 DH 107B	CDr1(COr)		grey weath f.g. pyritic limestone. Silicified? carb coating on fractures	float	CW 106L/4 Ilityd camp	<5		0.1 0).21	0.1 3	80	1 16	6 0.4	0.5	5	0.5 0.1	-	5 1.1 45	0.5	1 2	50 1	1 0.5	1145 <10	8	4 <10
96 DH 133			beige weath f.g. dk grey limestone, loc diss sulph. sample 20 cm thick		NE 116I/1 side canyon, Canyon			0.1 0			40	4 16		0.5	14	44 0.4		10 1.36 80			40 14	2 0.5	824 <10	10	73 <10 11
96 DH 162	COr		limestone		NE 1181/8	<5		0.1 0	.04	12 2	60	4 16		0.5	4	4 0.3	-	5 0.27 40		3 3	00 18	2 0.5	1365 <10	10	8 <10
96 DH 180	OSI		(rusty weath) pinkish grey to grey chert		NE 1161/1	<5		0.1 0			60 1	0.02	2 0.4	1	327	29 0.8		5 0.01 15			50 2	1 0.5	10 < 10	8	16 < 10
96 DH 183	CDr (COr or Osl)		beige weathering, f.g. platy dk limestone, carb on fract plane	float	NE 1161/1	<5		0.1 0		10 4	30	2 16		0.5	13	18 0.2		5 0.81 70			30 14	2 0.5	469 <10	10	57 <10 8
96 DH 201	CDr1/COr		finely banded limestone/chert (loc nodular)	o/c	CW 116I/8	<5		0.1 0		6	60	1 8.97		1	110	17 0.2		5 0.11 210		5 4	0 6	1 0.5	172 <10	8	6 <10 1
96 DH 23A	COr		beige weath, dk grey	o/c	SE 116I/8 E Canyon Ck	<5	-	0.1 0	.69	4 3	70 1	4.77		4	95	7 1.3		10 0.97 220) 19	90 4	1 1	106 < 10	8	9 <10 9
96 DH 23B	COr		black shale		SE 116I/8 E Canyon Ck	<5		0.1 1			70 1	0.81		11	27	28 2.6	-	10 1 90			30 28	1 3	12 <10	8	21 <10 11
96 DH 23G	COr	X	graded limestone bed w diss py in core of bed	o/c	SE 116I/8 E Canyon Ck	<5		0.1 0	.52	6	50 1	9.63		4	65	12 1.9		5 0.76 215			30 24	1 1	120 <10	8	6 < 10 2
96 DH 24	COr	X	massive blocky, loc nodular limestone	o/c	SE 116I/8 E Canyon Ck	<5		0.1 0			40 1	16		0.5	5	1 0.0		5 0.64 35			50 1	1 0.5	2490 <10	8	19 < 10 3
96 DH 48	CDr1?		black blocky chert	float	CE116I/1 Harrival	<5		0.1 0			90	1 0.06	0.4	0.5	296	11 0.3	÷ .	5 0.02 20			90 1	1 0.5	4 <10	8	9 < 10 4
96 DH 53B	COr?	X	grey weathering, grey limestone, carb veining and coating on fract surfaces	o/c	CE and SE 116I/1 Harrival	<5		0.1 0	.02	8 2	00	2 16	2	0.5	3	8 0.0	÷ .	5 0.13 30	2	1 9	0 2	1 0.5	585 <10	8	23 < 10 7
96 DH 64B	CDr1?		grey limestone	o/c	SE 116I/1 Mt R. 1st ascent	<5		0.1	0	10	40	6 16	2	0.5	1	1 0.0		5 0.17 65	1	1	10 22	1 0.5	198 <10	20	1 <10 1
96 DH 82	Osl		bedded limestone/chert. limestone knobby, Fxtal.	o/c	SE 1161/8	<5		0.1 0	.01	1 1	20 1	16	_	0.5	14	5 0.0	-	5 0.22 45			01	1 0.5	303 <10	8	14 < 10 3
96 DH 83	COr		f.g. brown-beige weathering limestone w loc cc veins	o/c	SE 1161/8	<5		0.1 0	.12	1 1	20 1	16	0.4	0.5	8	4 0.1		5 0.46 45	.5	2 60	50 1	1 0.5	810 <10	8	4 <10
96 DH 85	OSI?		bedded chert/ (limestone/shale) 25 cm	chip	CE 116I/1 Canyon Ck	<5		0.4 0	.35	1	50 1	7.56	1.5	1	100	19 0.3	8 < 1	10 0.18 65	2 3	3 398	30 2	1 1	104 <10	8 1	174 <10 11
96 DH 86A	OSI?		siliceous shale		CE 116I/1 Canyon Ck	<5		0.1		6 2	10 1	6.14		5	24	32 0.7		5 0.16 100	13 2	3 82	20 12	1 2	76 <10	8	29 < 10 3
96 GM 17	CDr1	- X	limestone		1161/1	<5		0.1 0	.07	0.1 2	10	1 16	0.4	0.5	11	4 0.3	4 <1	5 0.25 85	0.5	2	0 1	1 0.5	303 <10	8	7 <10 3
96 GM 40	OSI	X	grey chert		1161/16	<5		0.1 0	.16	1 3	80 1	0.03	0.4	1	352	21 0.7	8 < 1	5 0.05 25	.5 1	12	20 2	1 0.5	7 <10	8	5 <10
96 GM 42	CDr1/COr		It grey weath med grey limestone		106L4	<5	_	0.1 0	.01	0.1 2	40	1 16		0.5		0.5 0.1	5 <1	5 0.56 35	0.5	1 6	50 1	1 0.5	505 <10	8	16 < 10 4
96 GM 47	CDr1/COr		black chert		106L4	<5		0.2 0	.05	0.1 2	50	1 13.55	3	0.5	78	4 0.1	8 <1	5 0.61 50	1 4	1	0 1	1 0.5	331 <10	8	24 <10 6
96 HR-1	CDr1	X	limestone w chert interbeds			<5		0.1 0	.01	2 1	70	1 11.4	0.5	0.5	112	4 0.1	4 <1	5 0.09 20	3 4	1 16	0 1	1 0.5	127 <10	8	6 < 10 3
96 HR-3	CDr1	X	chert/limestone, thin bedded	o/c	66 08.44, 136 07.93	<5		0.2 0	.01	2 3	50	1 16	1.5	0.5	66	10 0.1	4 <1	5 0.15 30	4 1	14	0 6	1 0.5	285 <10	8	13 < 10 6
96-KP-20	CDr1	X	massive grey limestone w chert interbeds		1161/1	<5		0.1 0	.03 (0.1 20	80	1 16	0.4	0.5	35	4 0.2	4 <1	5 1.26 85	0.5	1 28	0 2	1 0.5	686 <10	8	8 < 10 1
		1					_																		
	1				Average			0.15 0.	.19 3.9	946 228.7	79 1.73	9 9.6256	1.06	1.625 6	9.42 18	8.92 0.4	5	6.333 0.69 83	2.481 10.2	641.2	1 6.03	1.23 1.06	459.7	9 26	6.6 45.
	1				Median	1		0.1 0.	.06	2 20	00	1 9.95	0.5	0.5	24	10 0.24	4	5 0.33 65	1 6.	5 28	0 2	1 0.5	285	8	13 3
	1	1			Min		1	0.1	0 (0.1 4	40	1 0.02	0.4	0.5	1	0.5 0.04	4	5 0.01 15	0.5 0.5	5 4	0 1	1 0.5	4	8	1
					Max			0.4 1.	.11	14 84	40	6 16	4	11	352	126 2.6	1 1	10 5.96 340	13 44	398	0 28	2 4	2490	20 1	
	1	1		1	Standard Deviation			0.11 0.	.27 4.0	167.0	1.28	7 6.4286	0.995	2.2877 9	7.06 27	7.88 0.59	91	2.289 1.04 74.4	2.83 11.	908.0	1 7.85	0.43 1.02	541.4	2.849 37	
	+	1			95th percentile			0.4 0.	.66 11	1.3 49	90	4 16	2.9	4.65 3	08.4	74 1.58	<u> 81 </u>	10 1.41 217	7.1 32.	264	6 23.1	2 3	1254	11.5 97	7.8 11

Page 1

CDr1/ COr-OSI reps

CDr2- all samples

Sheet3

																				<u></u>								
		sample			Au ppb Pt		<u> </u>	AI A	s Ba	81	,Ca	Cd	Co C	Cr∣Cu	i Fe	∣Hg	La	Mg	Mn :M	lo N	P	Pb	Sb	SC S	ar TI	U	V W	Zn
sample number	Fm	rep description	1	sample location	FA+AA ppb	ppb p	pm is	% PI	om ppi	m ppm	:%	ppm	ppm p	pm pp	m %	ppm	ppm 5	6 1	opm p	pm pp	m ippm	n ppm	n ppm	ppm p	opm ppm	ppm	ppm ppm	i ppm
			1					İ			i	1							:				i					
96 DH 58A	CDR2	sharpstone breccia w bedded clasts, brecciated and silica flooded: euhedral qtz		CE and SE 116I/1 Harrival	4		2	0.01	6.00 5	0.00	1 1.84	41 1	0.5	232	6 0.	.33	4 0.50	0.37	200	5	6	290 14	60	2 0.5	27 0.5	0 0.50	24 0.	50 438
96 DH 58B	CDR2	sharpstone breccia w bedded clasts, brecciated and silica flooded: euhedral qtz		CE and SE 116I/1 Harrival	4		2.4	0.04	6.00 4	0.00	1 3.52	2 0.5	0.5	204	7 0.	36 0	5 0.50	1.92	285	2	5 1	560 11	351	2 0.5	18 0.5	0.50	13 0.	50 132
96 DH 65A	CDR2	tabular ang Fxtal chert +limst in dolom matrix, zebra dolom in Fx, euhedral qtz in vugs		SE 116I/1 Mt R. 1st ascent	4		0.1	0.02	20.00 1	0.00	1 14.7	7, 2	0.5	9	3 0.	05 0	5 0.50	10.2	295	1	0.5	90	32	4 0.5	60 0.5	0 0.50	10 0.	001 100
96 DH 65B-	CDR2	tabular ang Fxtal chert +limst in dolom matrix, zebra dolom in Fx, euhedral qtz in vugs	o/c	SE 116I/1 Mt R. 1st ascent	4		0.1	0.04	18.00 1	0.00	1 13.15	5 2	0.5	60	4 0.	12 0	5 0.50	8.92	195	3	2	120	36	4 0.5	59 0.5	0 0.50	18 0.	50 70
96 DH 69	CDR2	brecciated and silicified	1	Llod- heli-stop	4		0.2	0	2.00 1	0.00	1 1.08	3 0.4	0.5	250	1 0.	26 0	5 0.50	0.47	75	12	6 3	360 1	30	1 0.5	7 0.5	0 0.50	10 0.5	50 31
96 DH 139	CDr2	fault, slicked + drusy carb, fractured + veined limestone, some limonite coating	o/c	NE 116I/1 Canyon Ck, below side canyon	4		0.1	0.06	8.00 25	0.00	4 16.00) 2	0.5	6	12 0.	39 0	5 0.50	0.86	55	1	4	770	14	4 0.5	520 0.5	0 20	19 0.5	18 ا0ز
96 DH 140	CDr2	X base of bed	o/c	NE 116I/1 Canyon Ck, below side canyon	4		0.1	0.05	12.00 7	0.00	4 16.00	2.5	0.5	4	4 (0.1 0.	5 0.50	0.3	25	0.5	3 4	430	16	2 0.5	361 0.5	0 20	11 0.	30 38
96 DH 182	CDr2	X coarse clasts of limestone, chert, siltstone in limestone (loc chert) matrix	float	NE 1161/1	4		0.1	0.01	10.00 20	0.00	4 16.00) 4	0.5	13	7 0.	06 0.	5 0.50	0.17	70	1	3 3	390	16	1 0.5	299 0.5	0 20	13 0.5	j0 38
96 DH 202A	CDr2	X limestone and chert Fx (some bleached) in limestone matrix. Dolomitized	o/c	CW 116I/8	4		0.1	0.05	24.00 1	0.00	1 13.4	li 1.5	0.5	18	3 0.	09 0.	5 0.50	9.47	115	3	1 1	560	16	4 0.5	67 0.5	0 10	19 0.5	10 ا0د
96 DH 202B	CDr2	as -a, with drusy qtz around Fx and in vugs	o/c	CW 1161/8	4		0.1	0.01	10.00 10	0.00	1 8.76	0.5	0.5	91	2 0.	16 0.	5 0.50	5.83	110	1 1	1	50	8	2 0.5	61 0.5	0 0.50	6 0.5	2 0ز
96 GM 45	CDr2	sharpstone breccia, loc vuggy w euhedral qtz and cc	o/c	106L4	4		0.1	0.01	1 24	0.00	1 7.67	0.4	0.5	108	0.5 0.	18 0.	5 0.50	4.65	230	0.5	3 3	320	1	1 0.5	35 0.5	0 0.50	10 0.5	24 ا0ز
96 DH 50	CDr2	dolomitic vuggy drusy qtz breccia w qtz-cc intergrowths w <1% sph, in limestone cgl		CE116I/1 Harrival	4		1.2	0.01	8.00 3	0.00	1 4.36	5 150	0.5	152	29 0.	38	7 0.50	2.74	310	6	7 9	980 4	86	4 0.5	60 0.5	0 0.50	16 0./	50 3 560 0
96 DH 38B	CDr2?	qtz-dolomite breccia	1	SE 1161/8	4		0.1	0.03	22.00 11	0.00	1 16.00	1.5	0.5	4	0.5 0.	06 0.	5 0.50	11.55	260	2	0.5	90	12	6 0.5	98 0.5	0 10	13 0.	12 (0ز
96 DH 54	CDR2?	cpcgl or breccia w drusy qtz lined vugs	float	CE and SE 116I/1 Harrival	4		0.1	0.05	6.00 12	0.00	1 5.51	1.5	0.5	263	10 0.	55 0.	5 0.50	0.5	70	3	11 9	950	1	1 0.5	128 0.5	0 0.50	21 0.5	96 (0
	CDr2?	dolomitic cgl, qtz lined vugs		1161/1	4		0.1	0.01	1 1	0.00	1 16.00	0.4	0.5	10	0.5 0.	13 0.	5 0.50	9.67	185	.0.5	0.5 2	220	1	1 0.5	45 0.5	0 0.50	7 0.5	
96 GM 22	CDr2?	cgl w angular chert clasts, pods of euhedral qtz		1161/1	4		5.4	0.01	1 1	0.00	1 0.47	0.4	0.5	464	19 0.	46 0.	5 0.50	0.01	40	1	6	40	20	4 0.5	8 0.5	50 0.50	4 0.5	12 الأر
96 GM 44	CDr2?	limestone breccia or cgl, clasts of cc		106L4	4		0.1	0.09	1 30	0.00	1 16.00	0.5	0.5	18	3 0.	19 0.	5 0.50	1.08	60	0.5	2 13	390	1	1 0.5	421 0.5	50 0.50	37 0.5	42 0ز
										1		1						_	1						1			
				average			2.24	0.03	1.69 9	2.35	4 6.769	13.038		112 7.	857 0.	23 5.	5	4.042	151.8	3.15 4	.29 506	6.47 260	1.1 3.4	5	134		14.8	85.88
				min			0.2	0.01	2.00 1	0.00	4 0.47	0.5		4	1 0.	05	4	0.01	25	' 1	1	40	8	2	7	10		2
				max			5.4	0.09	4.00 30	0.00	4 14.7	150		464	29 0.	55	7	11.55	310	12	11 15	560 146	60 <u>/</u>	6	520		37	43
				median			2	0.03 1	0.00 5	0.00	4 5.51	1.5		60	5 0.	18 5.	5	1.92	115	2	3.5 3	360	20	4	60		13	3
				standard dev	1	1	.957	0.02	7.02 9	7.50	0 5.164	41.163		131 7.	745 0.	16 2.1	2	4.271	98.47	3.11 2	.76 468	3.41 482	8 1.2		161		7.95	122.
_				95th percentile			4.8	0.07 2	2.80 26	0.00	4 14.05	62.4		303 2	2.5 0.	48 6.8	5	10.47	298	8.4	8.4 14	424 126	ð5	-	441		26.6	34
			ĺ	90th percentile								i	1					9.882	289	5.8	6.7 11	144 100	05	4	385 #NUM	A! 20	22.2	225

Page 1

CDr2- all samples

1

Sd (CDr3)- all samples

Sheet1

detection limit					5	1	0.2 0.01	2	10	2 15	0.5	1	1	1 15	0.5 10		1	1	8	21	2 1		10 10	1 1	0
			sample		Au ppb Pt	Pd		As	Ba	Bi Ca	1	Co	Cr			a Mn	Mo N	i P		Pb S					V Zn
sample number	Fm	rep	description	sample location	FA+AA ppb			ppm	npm	ppm %		mag	ppm		ppm ppm %	• · · · · ·			pm	iaa maa	-				
	Sd		rep beige weath grey bioturbated platy argillite, loc sl limey	from pit at km 412 1161/9	4	PPD	0.1	2	1100	1 0.94	PP	4	30	25 2.26		.05 35	P P P P	22		4 ppm ppm	1 2	50	п ррп	21 0.5	
	Sd		orange weath grey pyritic dolom, platy, fissile	from pit at km 412 116//9	4		0.1	2		2 9.16		3	19	19 4.2		3.7 188		14	290	2	1 2	320	0	14 0.5	
	Sd	X	rep sample of platy green grey beige argillite	Cu showing ridge 1161/9	4		0.1	2	970	1 1.07	//-		27	35 1.47			5 0.5	19	370		1 2	43	0	20 0.5	-
				ou showing huge i tors			0.1	2		1 1.07	0.4			33 1.47		0.4 9.	0.5	19	- 370		1 2	43	•	20 0.5	<u> </u>
95DH-086	Sd?		pale pink f.g. qtz vein w lim incl, sh Fx+ thin qtz veining in area of breccia	float ridge at km 438 116I/16			0.2	1	1100	1 0.13	0.4	2	221	11 0.93		.13 5	5 1	14	240		1 1	12		16 0,5	0 20
	Sd?		float of Vcg cc, dense (ba?). loc sheared (micas) w chert Fx. 075	ridge at km 438 1161/16	4		0.1	1	150	1 16.00		0.5	1	0.5 0.16		0.16 26	· · · · · · · · · · · · · · · · · · ·	0.5	10		1 0.5	1080	0	2 0.5	
	SD?		It orange-grey weath limestone, baritic? fetid, tr malachite staining.	float from km 440.9 1161/16	4		0.1	2	4620	2 16.00	1	0.5	6	1 0.65		.16 20		0.5	790		2 0.5	4470		40 0.5	-
	SD		platy shale bed (2cm) w 2-3% py rosettes up to 2 cm in diam	from km 440.9 1161/16	4		0.1	1	80	2 10.00	1	0.0	42	30 4.06		.46 20	-	37	310	4	2 0.5	55		26 0.5	
	SD	· · · ·	(Imstr)bioclastic cgl w mass py pod 6X3cm+2cm horizon w 2-5% tarnished py	from km 440.9 1161/16			0.4	12		4 16.00		40	19	78 7.48		.59 480	-	73	1980	24		555	0	26 0.5 9 0.5	
	SD		rusty shales w small pods of py(+qtz-cc?)	from km 440.9 116l/16			0.1	2	100	1 0.34		7	43	35 6.19			0 0.5	25	1960	6	1 1	23	0	17 0.5	
	SD		cg bioclastic limstn cgl w py in pods+in matrix? + lining cavities?	from km 440.9 116//16	A		0.4	6	90	1 16.00	1	24	18	13 5.59		0.88 330		46	1710	16	1 0.5	498	0	6 0.5	
	SD		rusty dolomitic mudstone w py nodules and platy rusty shales.chip 1m	from km 440.9 116/16	A	-	0.1	1	870	2 3.65		6	31	25 2.83		.51 26		22 (360	4	1 0.5	140	8		
	SD		rusty dolomitic mdstone w 1-2% py as nodules up to 2-3 cm.chip 0.5m	from km 440.9 1161/16	4		0.1	2	330	2 4.81		9	30	23 2.83		.51 20		22	270		4	140	8	20 0.5	
	SD		rep sample of grey-green weath bioturbated argillite w small py nodules.	s/c SE of km 452 1161/16	4	+	0.1	1	790	2 4.61		4	40	32 2.64		49 47		24)	530	2	4	60		31 0.5	
	Sd		pitted beige orange weath (dolomitic) siltstone w 2-3% diss py. float	White Fox Ck E of hway	A		0.1		140	2 8.28		* 2	29	28 3.99		5.59 54		12	90	4	2 3			31 0.5	-
	Sd		rusty limey bioturb argillite w framb py+remob py on fract. float at base of cliff	SE of km 440.9 1161/16	4	+ - {	0.4	2	30	2 2.86		21	29	39 5.19		.59 54		53	350	<u> </u>	2 3	1095	8	20 0.5	
	Sd/OSI fault		//+ brecc qtz and graphitic material w 1-2% cp, 1-2% red sph, cut by thin Vcc	SE of km 440.9 116//16	4		0.6	1	90	1 1.3		0.5	194	1905 0.69			0 0.5	33	140		2 4 8 0.5	36	- 0	7 17	-
	Sd		sulphide bearing siltstone nodules	SE of km 440.9 1161/16	4		0.0	36	4090	1 0.17			128	53 0.88			5 16	82	780		8 4	104	- 0	2260 0.5	
	Sd/OSI fault		Barite vein (gtz?)	Real Rx Riv trib 116I/16	4		1.2	22		2 8.07	1.5		56	28 2.19		1.99 60		12	940		6 0.5	279	0	69 0.5	
	Sd		greenish grey to brown weath argill, loc bioturbated	o/c NE 1181/8			0.1 1.5		650	1 1.09			47	37 2.51				20	180		0 0.5	279	0	22	8 50
	Sd		rusty orange dolomitic siltstone interbeds	o/c NE 118//8	4		0.1 1.36		1210	1 8.07			28	23 4.61	0.5 10 1			20	260	10	<u> </u>	29	8 8	18	8 30
	Sd		blocky laminated siltstone w 2-3% py diss + in wisps	o/c center 116I/8	4	1	0.1 1.30		150	1 5.98		10	37	22 3.25				30	490		2 4	230	8 8	31	
	Sd		orange weathering wispy laminated siltstone w py in pods and in bands	float center 116I/8	20		0.6 1.33		1.50	1 0.99		70	80	66 9.7	0.5 8 0			114	250		4 3	237	8 8	23	
	Sd		crinoidal vuggy bioclastic siltstone, py in wisps, replace fossils?	float NE 116I/1	4		0.1 1.53		1880	1 4.16		70	36	28 2.08	0.5 10 0			22	430		4 3	70	8 8	30	
	Sd		light grey green pyritic argillite	float NE 116//16	4		0.1 1.15	h	2030	1 2.34	1.5	5	39	69 2.72	· · · · · · · · · · · · · · · · · · ·		· · · · · ·	22	210		2 5	172	8 8	24	
	SD		composite sample of bioturb dolom, sstn w 2-4cm py pods	comp SE 116//8	30	-	0.3 1.27		2030	2 1.46		52	61	44 9.65				76	210		2 1	31	0 0	17	8 50
	Sd		yellow-brown, wispy laminated platy siliceous siltstone sample 25 cm	o/c SE 1161/8	4	+ +	0.1 1.07		260	1 1.61	0.4	5	44	21 1.9				16	200		<u>2 1</u> 1 3	25	8 8	10	
	Sd		orange weath wispy laminated dolomitic siltstone	SE 1161/8	4		0.1 0.7		1270	1 7.12		3	18	10 3.13				10	230		2 2	299	8 8	12	8 34
	Sd?		pervasively orange clay altered shale or carbonate	float SE 1161/1	4		0.2 0.86			2 0.15		15	64	86 7.18	0.5 10 3			104	1680		2 <u>2</u> 4 8	299	0 0		8 <u>34</u> 8 27 4
	Sd	x	platy wispy laminated argillite. 25 cm	0/c SE 1161/1	4		0.1 0.41			1 1.19		7	26	25 1.4	0.5 8 0			17	330		2 4	85	8 8	170 0	
	Sd		thick bedded orange weathering dolomitic siltsone	o/c SE 116//1	4		0.1 0.17			1 10.05		5	16	9 4.98	0.5 10 4			10	270	-	2 2	967	8 8	11 4	8 24
	Sd		wispy lam sstn+pyritic bioclastic cgl / w sulph pods	o/c 1161/16 e of hwy. White Fo	x 4		0.2 1.1	-	90	1 9.11	0.4	12	31	91 3.2	0.5 10 4		-	29	740	10		430	8 8	20	
96 DH 87A	Sd	X	orange weathering blocky dolomitic siltstone	o/c CE 116I/1 Canvon Ck	4		0.1 0.52		1710	1 11.45		2	- 15	8 4.29	0.5 10 4			9	220	2	1 2	430	8 8	11 1	8 26
96 DH 87B	Sd		beige green weathering platy wispy laminated argillite	o/c CE 116I/1 Canyon Ck	4		0.1 1.73		510	1 0.86		2	40	29 1.87	0.5 10 4			23	340	6	1 5	28	8 8	20	0 20 8 · 49
96 GM 23A	Sd		rusty weath wispy dolomitic siltstone, py diss and in agglomerates. 20 cm	1161/1	4		0.1 0.96	<u> </u>	1830	1 7.99		3	31	12 3.95	0.5 20 3			12	350	1	1 4	388	8 8	17 17	40
96 GM 23B	Sd		argillite, diss py	1161/1	4		0.1 1.46	· ·	1130	1 0.81		4	48	34 2.04				24	340	2		33	8 8	24	
96 GM 37	Sd?		brown weath limestone cgl, ooids?, small rusty clasts	116//16	4		0.1 0.06		310	1 16.00		1	7	1 0.71	0.5 8 0			10	1990		1 0.5	615	8 8	7	
	Sd	X		66 02.93, 136 06.61	4		0.1 0.53	1	1010	1 6.61	0.4	4	36	14 2.94			_	17	260	10	1 0.5	316	8 8	11 1	8 67
96 KP-16	Sd	X	wispy laminated argillite w py nodules	116//8	4		0.1 1.4		150	1 1.78		18	81	30 3.42				37	280	8	1 4	50	8 8	22	0 02
96 KP-17	Sd		Slicked calcite veins-breccia	116//8	4		0.1 0.22		350	1 16.00		1	10	7 0.96				5	640		2 0.5	464	8 8	5	
	[·····				·[]-		(<u> </u>			0.4	<u>-</u>		1 0.90	0.0 10 3		0.0		040		2 0.0	404	0 0		<u> </u>
				average		<u> </u> -	0.45 0.98	7.05	1082 70	2.17 3.84	14.75	10.67	45.03	80.16 3.38	10.63 1	.66 456.4	1 3.00	29.55	501.03	8.12 3.2	5 3 38	362.08		80.79	773.95
				mediar	· · · · · · · · · · · · · · · · · · ·		0.40 1.10			2.00 1.78			31.00	28.00 2.94	10.00 1			29.55		6.00 2.0		140.00		20.00	60.00
				mir		<u>├</u> ──	0.20 0.06			2.00 0.13		1.00	1.00	1.00 0.16	10.00 0			4.00		2.00 2.0		140.00		2.00	8.00
				max		\vdash	1.20 1.73			4.00 11.45				1905.00 9.70	20.00 5		0 16.00 1					4470.00			0 26800.00
				standard dev			0.30 0.50			0.58 3.51		14.76		304.83 2.32	20.00 5					7.08 2.1	-	733.89	_	359.13	4278.95
				95th percentile		<u>∤</u> }-	0.93 1.53			2.90 9.52				86.75 7.70		.28 1264.00						1081.50		79.10	4278.95
				90th percentile		-	0.66 1.5	_		2.90 9.52		22.5	80.2	71.7 6.388	12.50 4			73.9		2.70 8.00 18.8	7 4.9	685.4			
	<u>لە</u>				·i		0.00 1.0		2024	2 0.344	10.45	22.5	00.2	1.7 0.300	10 3	.14 96/	0.0	13.9	10001	10.0	1 4.9	005.4		34.4 170	U) 166.

CDr3/ Sd- all samples

.

.

Sd (CDr3)- rep samples

Sheet2

-

	detection limit	-	T	1				5		0	0.2 0	.01	2	10	2 15	0.5	1	1	1	15	0.5	10			1	1	8	2	2	1		10	0 10	1	10
				sample				Au ppb Pt	Pd		AI	As		Ba B	i Ca			Cr	Cu	Fe	Hg	La Mg	Ma	n	Mo	1	P	Pb	Sb	Sc S	ir	TI	UV		WZn
	sample number	r Em		descrip			sample location	FA+AA ppt			%	pon	n	ppm ppr	n %	maa	ppm	ppm	mag	%	mqq	ppm %	op	m	ppm p	pm	ppm	ppm	ppm	ppm p	pm	ppm	ppm pp	om	ppm ppm
	sample number		- iep	descrip	pion			pp.						PP PP		P P P	PP					-					<u></u>								
	05011.040				size weath grow biotychologi alaty grojilite. Les al limay		from pit at km 412 116I/9				0.1		2	1100	1 0.94	0.4	4	30	25	2.26			1.05	350	0.5	22	290	4	1	3	50		8	21	8 4
irgillite	95DH-049				eige weath grey bioturbated platy argillite, loc sl limey		Cu showing ridge 1161/9	4	_		0.1		2	970	1 1.07			27		1.47			0.4	95	0.5	19		6	1	2	43	1	8	20	8 3
	95DH-059	Sd			ample of platy green grey beige argillite	0/0	SE of km 452 116I/16	4			0.1		1		2 1.57		· · · ·	40		2.64			1.35		0.5	22	530	1	1	4	60		8	31	8
	95DH-142 95DH-164	SD			ample of grey-green weath bioturbated argillite w small py nodules. limey bioturb argillite w framb py+remob py on fract. float at base of cliff	5/0	SE of km 440.9 116l/16	4			0.4				2 2.86				39				1.45		0.5	53		16	2	4	102		8	20	8 6
	95DH-164 96 DH 152A	Sd				0/0	NE 1181/8	4			_	1.5	-1-		1 1.09			47	37	2.51	0.5		1.02	260	0.5	20	·····	4	1	4	29	F	8 8	22	8
		Sd			ish grey to brown weath argill, loc bioturbated		NE 116I/16	4				.15		2030	1 2.34			39	69	2.72			1.43	535	1	20		2	2	5	172	{	8 8	24	8 8
	96 DH 192	Sd			rey green pyritic argillite		SE 1161/8					.07		260	1 1.61				21	1.9	0.5		0.69	430	0.5	16		2	1	3	25		8 8	18	8
	96 DH 39A	Sd			y-brown, wispy laminated platy siliceous siltstone sample 25 cm	· ·	SE 1161/1	. 4				.41	- 2	710	1 1.19				25	1.4	0.5		0.43	135	0.5	17		- 6	2	4	85		8 8	8	8 4
	96 DH 62A	Sd			wispy laminated argillite. 25 cm			4				.73		510	1 0.86			40	29	1.87	0.5	10	0.7			23		6	1	5	28		8 8	20	8 4
	96 DH 87B	Sd	-		green weathering platy wispy laminated argillite	0/0	CE 116I/1 Canyon Ck 116I/1		_			.46			1 0.81			48	34	2.04	0.5	10	0.78	155		24		2	1	4	33	F	8 8	24	8 0
	96 GM 23B	Sd		argillite			1161/8	4				1.4	-1		1 1.78				30		0.5	10	1.2	165		37		- 8	1	4	50	F	8 8	22	8 1
	96-KP-16	Sđ	<u>^</u>	wispy ia	laminated argillite w py nodules		11600		_		5.1			100	1 1.70					0.42										<u> </u>		F	+		
							average			0	40 1	.25 2	2 00	757.27 2.0	0 1.47	1 50	7.82	40.82	34.18	2 4 9	1	0.00	0.95	246.36	1.00	24.82	312.73	5.60	2.00	3.82	61.55	<u> </u>		20.91	60.
							mediar					.40 2			0 1.19	-		40.00						210.00		_	330.00				50.00	(21.00	54.9
							mir							30.00 2.0		-		26.00						95.00			180.00	2.00		2.00		-		8.00	44.
			_	· · · · · · · · · · · · · · · · · · ·			max							030.00 2.0	_			81.00						535.00			530.00			5.00	172.00			31.00	108.
							standard dev								0 0.65			15.61		-				138.57		10.87				0.87	43.97		-	5.49	19.
							95th percentile			0			<u> </u>	580.00 2.0				64.50							1.00		450.00				137.00		+ + +	27.50	96.
							95th percentile			0.	.40 1	.00 2	.00 1	300.00 2.0	2.00	1.00	10.00	04.00		4.01		0.00		102.00											
																-														(<u> </u>	+		
																										L				+					
				_	w					_																									
					·····							-												_									+		
															-																		+ +		
1	95DH-160			nitted b	beige orange weath (dolomitic) siltstone w 2-3% diss py. float		White Fox Ck E of hway	1		_	0.1		2	140	2 8.28	3 0.5	2	29	28	3.99			5.59	540	0.5	; 12	90	- 4	2	3	1095	.[8	33	8
	96 DH 152B	Sd Sd			orange dolomitic siltstone interbeds	0/0	NE 118I/8	4				.36	6	1210	1 8.07		-	28	23		0.5		3.92	2340	0.5	29	260	10	2	4	250	. 1	8 8	18	8
silistone	96 DH 152B	Sd			y laminated siltstone w 2-3% py diss + in wisps		center 116l/8	4				.31		150	1 5.98				22		0.5		3.25	360	0.5	30	490	10	2	. 5	237	1	8 8	31	8
	96 DH 173	Sd	_		e weathering wispy laminated siltstone w py in pods and in bands		center 116l/8	20				.33	4	8	1 0.99				66	9.7	0.5		0.93	260	0.5	114		30	4	3	21	;	8 8	23	8
	96 DH 174	ISD	_		osite sample of bioturb dolom. sstn w 2-4cm py pods		SE 1161/8	30				.27	1	8	2 1.46	-			44	9.65		8	1.09	150	0.5	76	260	20	2	. 1	31	1	8 8	17	8
	96 DH 37B	Sd		·	e weath wispy laminated dolomitic siltstone	comp	SE 1161/8					0.7	6	1270	1 7.12				10	3.13		10	3.25	1135	0.5	10		6	2	. 2	299	1	8 8	12	8 .
	96 DH 39B	Sd			bedded orange weathering dolomitic siltsone	- 0/0	SE 1161/0					0.7	6	970	1 10.05				9	4.98	0.5		4.25	850	1	10	270	12	2	2	967	1	8 8	11	8
	96 DH 87A	Sd			e weathering blocky dolomitic siltstone		CE 116I/1 Canyon Ck	4).52	1	1710	1 11.45	-			8	4.29			4.51	1195	0.5	9	220	2	1	2	431	i	8 8	11	8
	96 GM 23A					0/0	116l/1					.96	1		1 7.99				12	3.95			3.66	950	0.5	12		1	1	4	388	, , , , , , , , , , , , , , , , , , , ,	8 8	17	8
	96 GM 23A 96 HR-10	Sd			weath wispy dolomitic siltstone, py diss and in agglomerates. 20 cm		66 02.93, 136 06.61	4		-).53	1	1010	1 6.61					2.94	0.5		3.02		0.5	17		10	1	2	316		8 8	11	8
		Sd	X	·			00 02.93, 130 00.01			· '				1010	. 0.0	0.0				2.54	0.0				0.0					+-+		<u> </u>	+		
	96 HR-10		1									1					45.00	35.10	22.60	5.05		4.07	2.05					44.50		+		+			46.
	96 HR-10							25.00		∩	45 r	01 5	5 0 0 1	036 25 20	0 6 80	1 1150					1 1		3.351	871.501	1.00	31.90	268.00	11.00	2.29	2.80	403.50			18.40	40.
	96 HR-10		_				average	+			.45 0			036.25 2.0												·	268.00				403.50 307.50	-		18.40	46.
	96 HK-10						mediar	n 25.00		0.	.45 0).96 E	6.00 1	110.00 2.0	0 7.56	6 0.50	4.50	30.00	18.00	4.14	1	0.00	3.46	892.50	1.00	14.50	260.00	10.00	2.00		307.50	0			
							mediar mir	n 25.00		0.	.45 C .30 C).96 €	5.00 1 2.00	110.00 2.0 140.00 2.0	0 7.56	6 0.50 9 0.50	4.50 2.00	30.00 15.00	18.00 8.00	4.14 2.94		0.00 0.00	3.46 0.93	892.50 150.00	1.00 1.00	14.50 9.00	260.00 90.00	10.00 2.00	2.00	2.50 1.00	307.50 21.00	0		17.00 11.00	44.
							mediar	n 25.00 n x 30.00		0. 0. 0.	.45 0 .30 0 .60 1).96 €).17 2 .36 €	5.00 1 2.00 5.00 1	110.002.0140.002.0830.002.0	0 7.56	6 0.50 9 0.50 5 0.50	4.50 2.00 70.00	30.00	18.00 8.00 66.00	4.14 2.94 9.70		0.00 0.00 0.00	3.46 0.93	892.50 150.00 340.00	1.00 1.00	14.50 9.00 114.00	260.00	10.00 2.00 30.00	2.00 2.00 4.00	2.50 1.00 5.00	307.50))		17.00	44.

.

.

CDr3/ Sd- rep samples

SDv- all samples

-

Sheet1

Desc Desc Desc Desc Desc Desc Desc																			····-	AT		21 1 2	1	1 101	10	1 10
	tection limit								D4			- · · · -			1 Cr		15 0.5 Fe Hg	10 La Mg	Mn I	1 1 10 Ni F			Sc Sr			
																					opmpp					ppm ppm
									odda c		ppin									51 65						
		_										16 60	1 2.6	1 12	57	68 2	.71									
								4		0.4																
						F	RC trib 116I/16																			
Gene Apple works for 1 hands for 1 han						F	eal Rx Ck 116l/16	4		3.2		86 160	1 3.99	10.5 0	/6	309 2	.23	0.57		23 140						
										0.9		56 50	1 5.28	24 3	70	107	4.9	0.76	85	43 172	350	14 2	2 4	478		
No. No. No. No. No.																					540	8 . 2	3 4	485		
		_											1 4.07	17 2	2 77	254 6	.14	0.65	80	55 209						
Series Series Series Series </td <th></th> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>4</td> <td></td> <td></td> <td>-</td> <td>54 30</td> <td>1 4.32</td> <td>15.5</td> <td>3 70</td> <td></td> <td>0.00 00</td>								4			-	54 30	1 4.32	15.5	3 70											0.00 00
					carb sh w 1 cm py band, and 1-4 cm pinch +swell lenses chip 0.58 cm			4		0.6																
							m 450 116l/16	4		1																
Gene Market and any any any any any any any any any any																										
	5DH-030	SDv	/												-						3630	24 12	0.5	38		
Section Section <t< td=""><th></th><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.06</td><td>10</td><td>66 98</td><td>190</td><td>28 . 4</td><td>0.5</td><td>28</td><td></td><td></td></t<>		_																0.06	10	66 98	190	28 . 4	0.5	28		
													1 3.42	2 17.5	2 76	194 5	.96						_			
								4		0.8	-	64 10	2 4.9	3 47												
Here Product (1) Product (2) Produc (2) Product (2) P								4			T_															
		_		li			(m 450 116l/16	4		0.8																
							cm 450 1161/16	4		1		42 40	1 3.2	41	<u> /b</u>		.93	0.5		VL 1/1						
Bit Dist Interpretation Dist Dist <thdis< th=""> <thdis< th=""> Dist</thdis<></thdis<>							- 450 - 4401/40			0.8		32 10	1 60	5 56.5	2 71	90 1	.04	0.9	65	69 206	390	4 2				
																							3			
		_													1 149								2			
													-		· · · · · · · · · · · · · · · · · · ·											
	-		······					4		1		1 70	_							-			-			21 0.00
GGE III Control Contro Control Control <th< td=""><th></th><td></td><td></td><td></td><td></td><td>(</td><td>k W of 453.3 1161/16</td><td>4</td><td></td><td></td><td></td><td></td><td></td><td></td><td><u> </u></td><td></td><td></td><td></td><td></td><td></td><td></td><td>· · ·</td><td></td><td></td><td></td><td></td></th<>						(k W of 453.3 1161/16	4							<u> </u>							· · ·				
Bit Mark 1 Bit Mar		-																							8	
Discret Discret <t< td=""><th>5DH-139</th><td></td><td></td><td></td><td>limey shale w 1-2cm horizon w 10-20% diss py</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1 1</td><td>0.5 3</td><td></td><td>8</td><td></td></t<>	5DH-139				limey shale w 1-2cm horizon w 10-20% diss py																	1 1	0.5 3		8	
Disp A Number No. L. C. M. Numer No. L. M. Number No.L. M.		SDv	v/Dc?															0.06	4	79 56	150	4 2	2	63		
BOD Under Start Star																33 ().12	0.31	40						8	
Dist Dist <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>-</th><th>30 7680</th><th>4 12.</th><th>9 4 0</th><th>5 33</th><th>167 (</th><th>0.09</th><th></th><th></th><th>0.0</th><th></th><th></th><th>0.5 1</th><th>1550</th><th>8</th><th></th></th<>											-	30 7680	4 12.	9 4 0	5 33	167 (0.09			0.0			0.5 1	1550	8	
Bit / V Version Bit / V Version Bit / V V Version Bit / V								4	-	1.6		34 40			-								3	006 8	8	
Bit M Bit M <th< td=""><th></th><td></td><td></td><td></td><td></td><td></td><td></td><td>4</td><td></td><td>0.1 0.3</td><td>32</td><td></td><td></td><td></td><td>2 9</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>8 4</td><td></td></th<>								4		0.1 0.3	32				2 9										8 4	
Note Here Note Here <t< td=""><th></th><td>_</td><td></td><td></td><td></td><td>o/c</td><td>16I/16 e of hwy, White Fox Ck</td><td>4</td><td></td><td></td><td>-</td><td></td><td></td><td></td><td>7 56</td><td></td><td></td><td></td><td></td><td></td><td></td><td>8 1</td><td></td><td></td><td></td><td></td></t<>		_				o/c	16I/16 e of hwy, White Fox Ck	4			-				7 56							8 1				
a test A best								4	_						5 02					1		2 1	1	367 8	8	691 8 40
Bit Distribution Distribut	96 DH 21A	SDv	v					4							·				85	13 39	1170	1 6	1 2	2640 8		
Control Contro Control Control								4								40	1.3 0.5	8 0.09	5	95 77	2390	12 ' 4				
Sec. 1 Operation Constraint leading game Administration and a second leading game Administration and administrating administration and administrating administration and administ													1 4.2	2 13	2 72	123	1.37 0.5									
Sign 1 Open interstet inte								4	-		32	68 100	1 4.2	8 4.5	5 52											<u>· · · · · · · · · · · · · · · · · · · </u>
Bit Mar. Dys Dys Distance of Definition of Definitant								4							1 39					10 00		- · ·				001 0
No. No. No. No. No.															5 94 3 71								- 1	368 8		
Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit								4						-		101								92 8	8	
Sign H M M Bit A difference was allowed with string of translaphen of nucleus with string of translaphen of nucleus with string of translaphen of nucleus with string of translaphen of nucleus with string of translaphen of nucleus with string of translaphen of nucleus with string of translaphen of nucleus with string of translaphen of nucleus with string of translaphen of nucleus with string of translaphen of nucleus with string of translaphen of nucleus with string of translaphen of nucleus with string of translaphen of nucleus with string of translaphen of nucleus with string of translaphen of nucleus with string of translaphen of nucleus with string of translaphen of nucleus with string of translaphen of nucleus with string of translaphen of transla								4														20 6	0.5	18 8	8	
Op 11.1 Op 1.1 Op 000000000000000000000000000000000000								4						-								4 1	- 4			
GP (M A Der M A <		-				o/c	SE 116I/8	4															3		8	
Bit Max Max	96 DH 45	SD.	v	X	platy black sh w carb coating, 25 cm																	6 4	3	225 8	8	
BC HT 73 SDV Composite same do not incomo waise post. BiolOMT Dot Composite same do not incomo waise post. BiolOMT Dot Composite same do not incomo waise post. BiolOMT Dot State Table BiolOMT SDV Composite same do not incomo waise post. BiolOMT Dot State SDV SDV Audy groups fract totace waise post. BiolOMT Dot State SDV SDV Audy groups fract totace waise post. BiolOMT Dot SDV SDV Audy groups fract totace waise post. BiolOMT Dot SDV SDV Audy groups fract totace waise. BiolOMT Dot SDV SDV Audy groups fract totace waise. BiolOMT Dot SDV SDV Audy groups fract totace waise. BiolOMT Dot SDV SDV SDV SDV Audy groups fract totace waise. BiolOMT Dot SDV SDV </td <th>96 DH 77A</th> <td></td> <td></td> <td>X</td> <td></td> <td>34 128</td> <td>190</td> <td>4 1</td> <td>1</td> <td>245 8</td> <td></td> <td></td>	96 DH 77A			X																34 128	190	4 1	1	245 8		
Bit Min Solv Markade propriet locks min, and metaboles of the part of the								4	4						7 32	70	2.53 0.5	8 0.24	150	29 293		4 1	3			
BD HT SD unty gamp field inscript wars back growt roles duagene coaling at lineable to draw find OC Order 1100 15 C A A B<								4				22 550	1 7.8	4 13.5 0							·	8 8				
99 Mit 1 S/V N Vack carbon carbon subale and single bads of c owner 116/8 4 1 0.42 20 46 0.5 6 0.20 0.5 </td <th></th> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>15</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_<u> </u></td> <td></td>								15							_ <u> </u>											
99 0H 72 SDv massee by ubdacksam / So. up (b 3 + anx m 10m 00 control field 60 control field 64 0.2 64 0.3 0.3 0.5 <th></th> <td></td> <td></td> <td></td> <td></td> <td>o/c</td> <td></td>						o/c																				
96 M 143 S0.v X dark grey shale float patches float Vest est Vest <																									8	37 8 1
Be DH 144 D/C Make back group whate, some match-ack coaling, undrug?? OC SW 1407 C C <				X								_														
Sign Hild SDV Dick and grey bandled cheft, some maker coating with or gypsum veining Obs Sign Hild SDV Dick and grey bandled cheft, some maker coating with or gypsum veining Obs Sign Hild SDV Dick and grey bandled cheft, some maker coating with or gypsum veining Obs Sign Hild SDV Bit Mild SDV																			50							
88 0H 1442 SUV (pulgy groups to group to															26 58	939	1.7 0.5									
SDV ds graphtite shale w band < ten of finely (ss py)																										
Se DH 1882 SU dk grapolitik shale w graded p ked <1-15 m (k m 160) d (k grapolitik shale w graded p ked <1-15 m (k m 160) m																			1							
96 DH 188D SDv de graptitie shale warded by bed <1.5 m thick, 2m below previous sample de l MV 116/16 4 56 0.9 10 10 10 10 10 10 10 10 10 10 10 2 10 10 10 2 4 246 10 100 8 10 100 8 10 100 8 10 100 8 10 100 8 10 100 8 100 100 100 100 10 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 <					dk graptolitic shale w graded py bed <1cm																					
SDv X black graphentic shale ob/ NV 116V/16 4 0.6 0.4 0.30 1.0 0.30 1.0 0.5 0					dk graptolitic shale w graded py bed <1-1.5 cm thick, 2m below previous sample																					1060 8 5
96 DH 203 SDv7 X chays of beige weathering shale 100dt NW 110/9 4 00dt 0.23 12 1 04 77 0.44 0.5 8 0.06 30 21 54 40 6 6 2 64 8 8 455 8 96 DH 205A SDv X beige weathering shale/imestone/chert 40 0.24 17 3 83 82 0.93 0.5 8 0.17 0.5 5 51 2210 1 2 2 1 2 3 3 2 1 1 2 1 1 </td <th>96 DH 188E</th> <td>SD</td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td>16 8</td> <td></td> <td></td>	96 DH 188E	SD														_					1			16 8		
SDv X beige weath chert shale/immestone/chert Site SW 116/16 4 0.2 0.2 0.2 0.9 0.5 10 0.04 30 74 121 420 6 8 5 468 8 77 6 96 DH 206A SDv X beige weath chert shale/immestone/chert ofc 16/16 4 0.2 0.52 32 500 1 0.4 0.3 0.5 8 0.17 105 5 51 24 50 1 1 0.5 86 0.4						<u> </u>													30				2			
Bit Dig Wartering State/inflexion/Control Inc Or inflexion Inc																										
96 GM 32 SUV jpey Weall black argiline wanted active argivine watchest and shale 0c 116//6 4 0.2 0.19 6 382000 1 936 24.5 0.5 23 15 0.15 0.5 8 0.04 15 3 24.0 1 0.5 38.00 1 55.0 23 15 0.15 0.5 8 0.04 15 3 24.0 160.1 1 0.5 38.00 160.1 150.0 160.0 10.5 8 0.04 15 3 24.0 160.0 1 160.0				X									1 8.4	15 16.5 C												
Solve Doc agains Doc agains </td <th></th> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>4</td> <td></td> <td>0.2 0.</td> <td>19</td> <td></td>								4		0.2 0.	19															
96 GM 35 SDv qt2 chert breccia, slicks fbod 1161/6 4 0.6 0.27 14 2460 1 122 8.5 0.5 3.03 2 0.1 0.5 th>0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.5 0.1 0.5 0.5 0.5 0.5 0.5 <																										
96 GM 36 SDv X nusty weath black shales 20 cm 0/c 116//16 4 2.4 0.87 46 130 1 0.13 37.5 2 0.03 0 1.01 0.13 37.5 2 0.01 0.13 37.5 2 0 0 1.01 0 8 1 0 0 1.01 0.13 37.5 2 0 0 1.01 0 <t< td=""><th></th><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		-																								
96KP-13 SDv pods of sulphides up to 10 cm in black shale 116//8 4 2 0.19 94 6 1 0.9 0.4 0 0		SD)v	Х		o/c																	·			
96-KP-15 SDv pyrite/calcite pod // So in black shale 110/8 4 2 2 10 0 10 0 100 0 100 0 100 0 100 0 100 0 100 0																								130 8	8	10 8 1
average 9.50 1.24 0.51 75.95 13014.93 2.43 4.60 16.20 5.03 16.20 6.00 16	96-KP-15	SD	Dv		pyrite/calcite pod // So in black shale		1101/0	4		2.2 0.		- 10	-													
NOTE: Highlighted values are > max values of reps median 9.50 0.80 0.46 38.00 80.00 2.00 3.52 12.00 3.00 14.00 10.00 554.00 10.00 594.00 10.00 594.00 10.00 594.00 10.00 594.00 10.00 594.00 10.00 594.00 10.00 594.00 10.00 594.00 10.00 500 112.00 465.00 12.00 465.00 12.00 6.00 10.00 594.00 6.00 500 10.00 500 2.00 10.00 500 10.00 500 2.00 10.00 500 2.00 10.00 500 10.00 500 2.00 10.00 500 500 10.00 500 10.00 500 2.00 10.00 500 500 10.00 500 500 10.00 500 10.00 500 10.00 500 10.00 10.00 500 10.00 10.00 500 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 <				1			averanel	9.50		1.24 0	51 7	75.95 13014.93	2.43 4.0	50 16.20 5.	38 70.92	125.09	2.81 4.00	13.64 0.9	9 107.16 5							
NOTE: Highing finded values are > max values of reps min 4.00 0.20 0.06 2.00 10.0 2.00 1.00 1.00 0.01 5.00 1.00 1.00 5.00 2.00 1.00 5.00 5.00 1.00 5.00 5.00 1.00 5.00 5.00 2.00 1.00 5.00 <th></th> <td></td> <td></td> <td></td> <td>NOTE: Highlighted values are > may values of rene</td> <td></td> <td>86.00</td> <td>1.85 4.00</td> <td>10.00 0.5</td> <td>5 65.00 4</td> <td>5.00 112.00</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>					NOTE: Highlighted values are > may values of rene											86.00	1.85 4.00	10.00 0.5	5 65.00 4	5.00 112.00						
max 15.00 5.60 1.14 1710.00 36200.00 4.00 15.00 57.00 1.67 8.00 4.00 30.00 6.72 695.00 32200.00 52.00 218.00 7.00 5290.00 140.00 2300.00 53.00 3200.00 52.00 218.00 7.00 5290.00 140.00 2300.00 53.00 53.00 10.00 3200.00 52.00 218.00 7.00 52.00 218.00 7.00 52.00 218.00 7.00 52.00 218.00 7.00 52.00 218.00 7.00 52.00 218.00 7.00 52.00 218.00 7.00 52.00 218.00 7.00 52.00 218.00 7.00 52.00 218.00 7.00 52.00 218.00 7.00 52.00 218.00 7.00 52.00 218.00 7.00 52.00 218.00 7.00 52.00 218.00 7.00 52.00 218.00 7.00 52.00 218.00 7.00 52.00 218.00 7.00 52.00 218.00 7.00 52.00 20.00 7.00 52.00 20.00 </td <th></th> <td></td> <td></td> <td></td> <td>INUTE. Highlighten values are > max values of reps</td> <td></td> <td></td> <td></td> <td></td> <td>0.20 0.</td> <td>06</td> <td>2.00 10.00</td> <td>2.00 0.</td> <td>11 0.50 1</td> <td>00 3.00</td> <td>1.00</td> <td>0.07 4.00</td> <td>10.00 0.0</td> <td>1 5.00</td> <td>1.00 11.00</td> <td>50.00</td> <td>2.00 2.00</td> <td></td> <td></td> <td></td> <td></td>					INUTE. Highlighten values are > max values of reps					0.20 0.	06	2.00 10.00	2.00 0.	11 0.50 1	00 3.00	1.00	0.07 4.00	10.00 0.0	1 5.00	1.00 11.00	50.00	2.00 2.00				
standard dev 7.78 1.08 0.32 200.67 54744.80 0.85 3.91 16.77 8.00 4.75 11.37.33 2.78 8.09 1.45 141.35 109.85 12.02.62 380.562 11.90 41.13 5.00 2504.00 22.00.61 11.05 5.00 2504.00 12.00 11.05 10.00 11												10 00 362000.00	4.00 15.	00 81.50 58.	00 303.00	939.00 1	1.60 4.00	30.00 6.7	2 695.00 92	9.00 10500.00	33200.00 52	2.00 218.00	1.50 00	90.00		
95th percentile 14.45 3.48 1.09 196.40 87072.00 4.00 12.80 45.80 12.00 150.20 351.90 7.78 4.00 30.00 4.10 435.30 97.00 272.20 2007.30 39.20 71.40 50.00 2010 00.00	······	-1					standard dev	7.78		-		00.67 54744.80	0.85 3.9	01 16.77 8.	00 43.71	137.33	2.78	8.09 1.4	6 433 50 0	9.00 1200.42	2801 50 30	9 20 111 40	5.00 257	70.00		
							95th percentile	14.45		3.48 1.	09 19	96.40 87072.00	4.00 12.	45.80 12.	00 150.20	351.90	1.10 4.00	JU.UU 4.1	01 400.001 S	212.20	2001.00[3	1	0.001 201			

Page 1

CDr4/ SDv- all samples

. . . .

-

SDv- ali samples

Sheet1

							-									<u> </u>						10:	10
detection limit						Au r	5 Pt F		2 0.01 Al	As	2 10 2 Ba Bi	2 15 I Ca		1 1 Cr Cu		0.5 10 Hg La Mg Mn	1 Mo Ni	1 P	8 2 Ph	2 1 Sb Sc Sr	10 TI	10 1 UV	WZn
				sample				opb ppm		ppm		+				om ppm % ppm	ppm ppm	ppm			ppm	ppm ppm	ppm ppm
sample numbe 95DH-11	SDv	,		rusty weath loc brecciated //So shale		km 450 1161/16	4	1.	_			2.67	FF. FF.	56 74		0.15 15		65 3320	FF 11	38 1 103			0.50 660
				rep sample: black friable limey shale, loc resistant pyritic horizon, chip 2m		RRC trib 116I/16	4	0.		10	6 60 1	2.6	1 12			1.28 135		73 97		4 7 23		8 82	0.50 250
95DH-16B	SDv			composite of 3 grey pyritic siltstone beds 8, 20 and 25cm thick		RRC trib 116I/16	4	0.4		10		12.65				6.72 655		19 12		2 5 119			0.50 78
	SDV			1m zone of rusty qtz-cc veining and fracturing w sulph alt brecc. shale w lim-gyps-qtz? coating on fract and lining Fx. tr malach. float		RRC trib 116I/16 Real Rx Ck.116I/16	4	0.		14		12.3		28 65 76 309		1.63 505		149 21 148 70		2 7 52 52 4 28		8 712	
95DH-20	SDV			brecc, shale willingyps-quzr coaung on naci and inning rx. If malacin noac	-				-			0.00	10.0 0	10 303	2.23	0.57 00							
95DH-023	SDv	, †		carb grapt. limey sh w parts of 2 mass. py pods. slicked irid. stain chip 0.5m	1	km 450 1161/16	4	0.0		50		5.28	24 3	70 107	4.9	0.76 85		172 35		2 2 47	-	10 817	
95DH-024				carb graptol.shale, slightly limey. no noted sulphides. chip 0.8m		km 450 1161/16	4	0.0		32		4.88				0.85 70		201 54		2 3 48		10 1225 10 1305	
	SDv SDv			carb graptol.shale w 1 to 2 cm band py. chip 0.61m		km 450 1161/16 km 450 1161/16	4	1.2		114		4.07				0.65 80		209 178		6 2 17 12 3 27	- 1	10 1305	
95DH-026 95DH-027	SDv			carb graptol.sh w 2 wavy banded py bands 1 to 1.5 cm. chip 0.4m carb sh w 1 cm py band and 1-4 cm pinch +swell lenses.chip 0.58 cm		km 450 116l/16	4	0.0		58		4.01		76 143		0.64 60		207 223		14 3 24		10 1560	
	SDv			platy siliceous shale witcm band of massive py, chip 0.67m		km 450 1161/16	4		1	62	2 80 1	4.13		59 104		0.85 75		211 32	0 12	2 3 26		10 1190	
95DH-029~~				carb shale w 1-2 cm sulph band, chip 0.6m			4	0.0	-	56				66 189	3.33	0.71 50		197 147		4 2 23		10 1295	
	SDv			shale w planar 2-4 cm dark green sulph band, py in core. chip 0.47m		km 450 1161/16 km 450 1161/16	4	0.8	8	54 142		3.37	21.5 2	73 144 133 495		0.53 45	in a second second	199 114 99 363		6 3 18 12 0.5 3	8	10 1515 8 1770	
	SDv SDv			sample of sulphide pod in 95 DH-29, 4 cm thick (fold?) sulphide-rich layer in DH-30, py in core. 4 cm	+		4	1.4	4	66						0.06 10		98 19		4 0.5 2	8	8 1325	
	SDv			carb shale w py band 1-2 cm. chip 0.6m			4	0.8		82						0.55 55		222 100	20	8 2 11	1	10 1435	
95DH-034	SDv			shale w 2-4 cm planar sulph band, looks like DH-30. chip 0.55m		km 450 1161/16	4	0.8	-	64						0.78 80	1	268 60		10 3 19	-	20 1785	
	SDv			shale no visible sulph. chip 0.43m		km 450 116l/16	4	1.2	-	38						0.4 40		204 590 171 1370		4 3 18 10 3 17		10 1840 10 1970	
	SDv SDv			carb shale w brecciated horizon, sulph? chip 0.55m carb shale w tabular sulph-rich horizon, chip 0.58m		km 450 1161/16 km 450 1161/16	4 4			42				77 91 76 114		0.24 15		171 1370 171 1770		6 3 26	_	10 1695	
3301-037	3.00				1					-44		0.23				0.0 00					1 1		
	SDv			black grapt sh coated w white + yellow coating on So and fract planes			4	0.6		32		6.05		71 90		0.9 65		206 390		2 2 224		8 1115	
	SDv			rep sample of black graptolitic shales			4	0.8	-	26			21.5 2			2.37 190		163 410	_	1 3 344 14 2 24		8 1175	
	SDV SDv/			rep of platy silicceous beige weath argillite carb+calc sh w 4-6 cm band of tarn mg lin. py(cp?), cut by thin Vcc 1% py		km 419 1161/9 ck W of 453.3 1161/16	4	1.8		112		0.18		149 118 40 79	0.55	0.06 20	42	101 170		14 2 24		8 17	
	SDv/			carb+calc sh w 4-5 cm band of tarring int. py(cpr), cut by thin vcc (/a py			4	1		1		2.62		44 63		1.19 100		48 190		1 3 8	3	8 24	0.50 114
	SDv/			grey shales w several thin pyritiferous horizons. sample 10cm			4	0.6		6	6 30 4			44 147		2.98 225		75 270		1 2 304			0.50 402
	SDv/			carb shales w clay-weathered sulph-rich pod and thin py-rich band			4	0.6		12				22 105		3.45 270	6	62 370 51 570		1 3 392 1 2 353			0.50 192 0.50 750
95DH-139 95DH-140	SDv/			limey shale w 1-2cm horizon w 10-20% diss py Vcoarse cc w org-rich // + coal, hydrocarb? slicked graph planes. fetid. float			4	0.1				9.58		44 231		0.23 195	0.5	13 0.50		1 0.5 3600			0.50 / 30
	SDV			rep sample of black carbonaceous siliceous platy shales. Float at base of cliff			4	0.2		26				49 51		0.06 4		56 150		2 2 63			0.50 108
	SDv			large carb (witherite?) xtals in dk matrix, loc glomerp band. tr cp, malach. float		, , , , , , , , , , , , , , , , , , , ,	4	0.1		8		3.09		34 33	0.12	0.31 40	6	57 : 150		1 0.5 2540			0.50 1240
	SDv			V mult bands black bladed carb? in Imstn. contains coal and malach/az on frac	rt .		4	1.8		30		12.9		33 167		6.08 125	0.5	16 510		6 0.5 1550 6 3 87			0.50 164
95DH-159 96 DH 8	SDv SDv			rusty carb grapt sh w 2 thin horizons semi-/mass py . chip 0.3m beige weathering limestone- baritic?	o/c		4	1.6	0.32	34		3.07	81.5 3 0.4 2	74 116		1.65 70 0.5 8 6.58 695	0.5	182 290		6 3 87 1 1 996		8 10	8 36
	SDv			black shale (carb coating)	0/0		4		1.1	46				56 72		0.5 8 1.29 95	59	179 270		2 4 318		8 488	8 374
	SDv7			5		The To C of Hity, Think T on On	4		0.85	26		0.00		38 49		0.5 8 1.31 80	66	205 350	-	1 4 285	58	10 595	8 474
96 DH 21A				beige baritic pod ? containing small carb xtals			4		0.21	14		0.71		92 22		0.5 8 0.01 50	16	53 2490	2	1 1 367 6 1 2640	7 8	8 691	8 400 8 340
96 DH 21B 96 DH 21D				beige limestone? w folded chert bands +cc veins siliceous shales, brown-orange-red weathering	o/c o/c		4		0.09	16 40		9.47	6 0.5 6 0.5	101 127 91 40		0.5 8 0.13 85 0.5 8 0.09 5	13	39 1170) 12	6 1 2640 4 5 191		8 2300	8 334
96 DH 22A				black carbonaceous graptolitic shales	o/c		4		0.84	46		4.22		72 123		0.5 10 1.08 70	55	184 840		2 5 289	9 8	10 1020	8 848
96 DH 22B				hin red-rusty horizon, locally punky. beige green:desintegrated sulph	o/c	116I/16 e of hwy, ck behind cam	4		0.82	68		4.28	4.5 5	52 83	3.2 0	0.5 8 1.06 90	99	166 630		0 3 299		8 513	8 556
	SDv			med bedded laminated limestone w carbonaceous shales. Vs cc			4		0.1	22		13.85	8.5 1	39 29		0.5 10 0.78 60	10	56 350		4 3 1000		8 337	8 588 8 618
	SDv SDv			semi-massive podiform py layer in grey weath shaly pyritic limestone			4		0.63	206		6.63 3.55	8.5 5	94 202 71 101		0.5 30 0.82 65 0.5 10 0.35 40	53	184 2070 114 780		2 1 368	8 8	20 1395	8 456
	SDv			arge 8X3cm py nodule, internal banding			4		0.19	166		1.28	0.4 6			0.5 8 0.38 50	17	101 650		0 0.5 92	2 8	8 235	8 78
		or Sd?		black med bedded pyritic chert w lam rich in py nodules. sample 35 cm		02 11000	4		0.61	. 10		0.00	0.4 7	68 42		0.5 8 0.2 60	3	35 1080		6 0.5 18		8 26	8 34
	SDv			black carbonnaceous shales with strings of small sulphide rich nodules			4		0.13	4		0.39	0.5 5	19 30		0.5 8 0.22 30		21 80 17 80		1 1 33 4 4 761		8 5	8 354
	SDv SDv			dolomitic limestone contains 2-3% py in irregular aggregates			4		0.37	10		9.38	0.5 5	30 32		0.5 10 5.48 640 0.5 8 0.16 80		80 530		2 3 169	8	8 83	8 162
96 DH 77A				black chert/carbonaceous graptolitic shale/black limestone 40 cm			4		0.33	38			4 1	69 61		0.5 10 0.89 50		176 280		4 3 225	5 8	8 692	8 480
96 DH 77B			c	composite sample of chert horizons w rusty pods (sulph?)			4		0.19	26	in the second se		4 1	76 38		0.5 8 0.56 40		128 190		1 1 245	5 8	8 523	8 288
96 DM 167D				op of limestone pod, rust rind, carb veining. 8cm			4 4		0.56	52		12.75		32 70		0.5 8 0.24 150		293 950 54 160		1 3 776	<u> 8</u>	8 116 8 268	8 514 8 670
96 DH 170A 96 DH 170B				// black chert/beige-grey bedded limestone usty grungy fract horizon w turgu to fluo green coating at limestone to chert/lii	0/c 0/c		5		0.06	22 1710		7.84		153 33 58 348		0.5 8 0.46 35 4 30 0.53 85		54 160 500 5690		2 1 701	40	140 770	8 5980
96 DH 171				black carbonnaceous shale and siltier beds			4		0.42	20			3.5 3			0.5 10 1.37 100		150 3380		4 4 446		8 175	8 626
96 DH 172	SDv		n	nassive py bed/seam // So, up to 3-4 cmX min 10m	o/c	center 116I/8	4		0.51	160	8 1	0.96	6 5	74 79	16.00 0	0.5 8 0.32 35	30	70 340		8 0.5 19		8 526	8 500
96 DH 178				lark grey shale float patches			4		0.85	2		0.14				0.5 10 0.19 90		32 310		1 4 22 6 2 935		8 37 8 513	8 154 8 1325
96 DH 184A 96 DH 184B				laky black grungy shale, some malach-az? coating, round vugs?			4		0.24	78		9.16 3.48	31.5 1 12 1	63 361 191 505		0.5 8 3.59 250 0.5 8 0.24 50		112 420 60 100		-		8 238	8 638
96 DH 184C			0	prungy broken up zone in sh w malach-az coating w carb or gypsum veining			4		0.73	218		4.13		58 939		0.5 8 0.79 395		255 250	4 21			8 581	8 2340
96 DH 188A	SDv		d	k graptolitic shale w thin py seam	o/c	NW 116I/16	4	0.4	0.91	50	10 1	2.49	4 7	51 45	6.12 0	0.5 8 0.77 80	94	154 240	12	6 2 77		10 504	8 338
96 DH 188B				k graptolitic shale w band <1cm of finely diss py			4		1.14	46		1.13			7.12 0			152 780		8 3 78		40 594 8 1110	8 216 8 286
96 DH 188C 96 DH 188D				Ik graptolitic shale w graded py bed <1cm Ik graptolitic shale w graded py bed <1-1.5 cm thick, 2m below previous sam			4		1.13	112			2.5 4	107 268 93 210				81 2320 214 530		6 0.5 63 4 0.5 6	8 8	8 1110 8 918	8 140
96 DH 188E				ack graptolitic shale w graded by bed <1-1.5 cm trick, 2m below previous sam			4		0.84	26		3.36				.5 8 0.96 60		147 230	10	2 4 248	-	10 1060	8 556
96 DH 203				hips of beige weathering chert and cherty shale			4	0.8	0.35	18	410 1		0.5 0.5		0.52 0		26	42 140		8 2 16		8 997	8 152
96 DH 205A				eige weath chert/ shale/ limestone			4		0.27	12					0.44 0			54 80		6 2 84		8 455	8 364 8 412
96 DH 206A				eige weathering shale/limestone/chert			4		0.52	32 10		0.24	17 3 16.5 0.5			0.5 10 0.04 30 0.5 8 0.17 105		121 420 51 2210		8 5 48 2 1 5290		8 707 8 242	8 412
96 GM 32 96 GM 33				rey weath black argillite w bante-calcite xtals od of black xtalline bante in grey/rusty weath chert and shale			4		0.19	6			24.5 0.5		0.15 0		3	24 540		1 0.5 3630		8 173	8 250
96 GM 34				lack argillite w large euhedral barite xtals	float	1161/16	4	0.4	0.74	14	168000 1		29.5 0.5		0.48 0	.5 8 0.11 55		140 1620	2	1 1 332	8	8 871	8 1585
96 GM 35	SDv		q	tz chert breccia, slicks			4		0.27	14			8.5 0.5	303 52	0.61 0	5 8 0.7 80		28 410		1 1 55		8 466	8 142
	SDv			usty weath black shales. 20 cm	o/c		4		0.87	46 94			37.5 2 0.4 6					282 260 47 50		6 7 32 0 1 10		20 1850	8 1885 8 40
96-KP-13 96-KP-15	SDv SDv			ods of sulphides up to 10 cm in black shale yrite/calcite pod // So in black shale			4		0.19	94		1.09				.5 8 0.21 30 .5 8 0.12 70	and the second second second second second second second second second second second second second second second	41 1860		8 1 130	-	8 19	8 190
	5.54		- 1	Jina salato poe a com enancement				<u> </u>			<u>├</u>	7.66	<u>,,,</u>										
						average 9.5		1.24	0.51	75.95						00 13.64 0.99 #####						8.26 719.11	694.99
			N	IOTE: Highlighted values are > max values of reps		median 9.5			0.46	38.00						0 10.00 0.55 65.00				0 3.00 248.00		0.00 594.00	480.00
						min 4.0			0.06	2.00						0 10.00 0.01 5.00				0 1.00 6.00		0.00 5.00	22.00 5980.00
			-+			max 15.00 standard dev 7.70				200.67	54744 80 0.95	3 01	01.5U #### #	3 71 137 33	2 78 ####	00 30.00 6.72 ##### ## 8.09 1.45 #####	109.85 1206	42 3885 62	11.08 41 R	3 1.50 904.64		7.41 621.13	816.77
						95th percentile 14.4					87072.00 4.00	12.80	45.80 #### #	#### 351.90	7.78 4.0	0 30.00 4.16 #####	97.00 272	.20 2801.50	39.20 111.4	0 5.00 2570.00	3	8.00 1843.00	1829.00

Page 1

CDr4/ SDv- all samples

SDv- rep samples

Sheet2

						E	1	0.2	0.01	2	10	2	15	0.51	1	1	11	15	0.5	10			1	1	8	2	2	1	10	10	1	10
detection limit						Au anh D	t Pd	Δα	0.01	Δs ²	Ba	2 Bi	Ca	Cd	Co	Cr	Cu	Fo	Ho	La M	0 M	n –	Mo N	i P		Pb	Sb	Sc Sr	TI	U١	/	W Zn
			sample			Au ppb P		- <u></u>	u				- Ca					1 C		ppm %				-	om	ppm	pom	ppm ppm	n nnm	ppm p	nm	maalmaa
sample numbe			description		sample location	FA+AA p	pp ppp	ppm	% F	opm	ppm	ppm	%	ppm	ppm p	ppm p	opm	70	ppm	ppin %	1.28	125	ppinipi	73	070	10	4	FF. FF.	237	8	82	0.50 250
95DH-16A	SDv? (Di		rep sample: black friable limey shale, loc resistant pyritic horizon, chip 2m	-	RRC trib 116I/16	4		0.6		16	60		2.0	1	12	5/	68	2.71			2.37	100		163	410	6			346	8	1175	0.50 858
95DH-079	SDv	Х	rep sample of black graptolitic shales		km 450 116l/16	4		0.8		26	40	1	6.27	21.5	2	58		0.89				190	55	103	410	12	14	2	24	8	1130	0.50 1040
95DH-085	SDv?		rep of platy silicceous beige weath argillite		km 419 116l/9	4		2.6		28	690	1	0.18	28.5	1	149		0.55			0.06	20	42	50	170	12	2	2	63	8	636	0.50 108
95DH-155	SDv	X	rep sample of black carbonaceous siliceous platy shales. Float at base of cliff		White Fox Ck E of hway	4		0.2		26	210	1	0.84	0.4	0.5	49		1.04			0.06	4	79		200	- 4			996 8	8	10	8 36
96 DH 8	SDv	X	beige weathering limestone/dolomite- baritic?		116I/16 e of hwy, White Fox Ck	4		0.1	0.32	1	1180	1	13.75	0.4	2	9		2.32	0.5	8	1 29	695	0.5	170	290	2			318 8	8	488	8 374
96 DH 9A	SDv	X	black shale (carb coating)		116I/16 e of hwy, White Fox Ck	4		0.4	1.1	46	40	1	6.37	3.5	1	56	12	1.51	0.5	8	1.2.5	95	59	77	270	12	4		101 8	8	2300	8 334
96 DH 21D	SDv	Х	siliceous shales, brown-orange-red weathering		116I/16 e of hwy, ck behind camp			1.6		40	1020	1	0.47	6	0.5	91	40	1.3	0.5		0.09	- 5 -	95	104		- 12	- 4 -		289 8	10	1020	8 848
96 DH 22A	SDv	X	black carbonaceous graptolitic shales		116I/16 e of hwy, ck behind camp	4		0.8	0.84	46	1580	1	4.22	13	2	/2	123	1.3/	0,5	10	1.00		55	104	840	- 0	- 4	- 2	160 8	8	83	8 162
96 DH 45	SDv	X	platy black sh w carb coating, 25 cm	o/c	SE 1161/8	4		0.1	0.45	10	120	1	1.55	2	6	29	35	1.42	0.5	8	0.16	80	24	470	530		2		109 0	0	692	9 192
96 DH 77A	SDv	X	black chert/carbonaceous graptolitic shale/black limestone 40 cm	o/c	SE 116I/8	4		0.6	0.33	38	470	1	4.4	4	1	69	61	0.9	0.5	10	0.89	50	62	1/6	280	6	4	3	225 0	0	268	8 400
96 DH 170A	SDv	X	i// black chert/beige-grey bedded limestone	o/c	center 116I/8	4		0.6		22	550	1	7.84	13.5	0.5	153	33	0.26	0.5	8	0.46	35	11	54	160	8	8		000 0	0	175	010
96 DH 171	SDv	X	black carbonnaceous shale and siltier beds		center 116I/8	4		1.8	0.42	20	440	1	7.88	3.5	3	165	79	0.87	0.5	10	1.37	100	8	150	3380	8	4	4	22 8	0	27	9 154
96 DH 178	SDv	X	dark grey shale float patches	float	NE 116I/1	4		0.4	0.85	2	2540	1	0.14	1.5	4	62	43	1.21	0.5	10	0.19	90	1	32	510	6	- 1	4	22 0	10	1060	0 134
96 DH 188E	SDv	X	black graptolitic shale	o/c	NW 116I/16	4		0.8	0.84	26	490	1	3.36	13	2	78		0.89	0.5	8	0.96	60	46	147	230	10	2		240 0		997	0 152
96 DH 203	SDv?	X	chips of beige weathering chert and cherty shale	float	NW 116I/9	4		0.8	0.35	18	410	1	0.11	0.5	0.5	91		0.52	0.5	10	0.08	10	26	42	140	10	.8	- 2	10 0	0	455	0 264
96 DH 205A	SDv	X	beige weath chert/ shale/ limestone	s/c	SW 116I/16	4		0.4	0.27	12	. 820	1	2.3	21	1	94		0.44	0.5		0.06	30	21	54	80	6	0 -		64 0	0	455	0 304
96 DH 206A	SDv	X	beige weathering shale/limestone/chert	f/c	CW 116I/16	4		0.2	0.52	32	590	1	0.24	17	3	93	82	0.93	0.5	10	0.04	30	/4	121	420	6	8	5	48 0	0		
																								100 00			5.00	3.35 27	4.00	10.00	665.59	436.71
					average			0.84			661.76		3.68					1.13		0.00		05.94	41.31	100.00	648.24	7.41						374.00
					mediar	ן וי		0.60			490.00					2.00 6		0.93	1	0.00	0.46	65.00	44.00	80.00	290.00	8.00		3.00 22		10.00	10.00	374.00
		-			mir	ן		0.20					0.11					0.26	1	0.00	0.04	5.00	1.00	11.00	80.00	2.00	2.00		6.00	10.00		1040.00
			· · · · · · · · · · · · · · · · · · ·		max	(2.60	1.10	1	2540.00		13.75			5.00 123		2.71		0.00					3380.00			7.00 99		0.00	2300.00 587.38	293.39
	-				standard de	v		0.66	0.30		643.38					2.29 30		0.64		0.00	1.00		28.96	56.97	892.76			1.62 28				894.40
					95th percentil	e		2.04	0.95	46.00	1772.00		9.05	23.60	9.00 15	5.40 119	9.00	2.40	1	0.00	3.21 3	816.25	83.00	180.00	2588.00	12.00 1	0.10	5.40 90	8.00	10.00	1400.00	894.40

Page 1

CDr4/ SDv- rep samples

Dc- all samples

1

Sheet1

detection limit	:			5:	1	0.2 0.0		10	2 15 0	.5 1	1 1	51 0.51 101			1 8	3 2	2 1		10 10	1	101
	6	sample	sample location	Au ppb F FA+AA pp		Ag A	A ppm	Ba B				e Hg La 6 ppm ppm	Mg Mn % ppm	Mo ppm pi	NI P pm ppm	Pb ppm	Sb Sc ppm ppm		ppm ppm	Ppm i	ppmi ppm
sample number	irm (rep description			70 pp0					п рул рр			76 2241		Pin PPin						
95DH 138 95DH-017	Dc Dc	30cm wide qtz breccia in yellow weath sil shales 042/80 X 1m rep of fin. bedded chert/loc shale, loc yellow and rusty weath	km 440.9 16l/16 RRC trib 116l/16	4		0.2	532	200		5 0.5 1	50 47 3.0 11 5 0.3	-	0.02 5		17 7820 14 20		46 24	1475	8		0.50 72 0.50 8
95DH-019	Dc?/SDv?	.5 m chip of fractured shales coated w rusty and white gypsum ?	Real Rx Ck 116I/16	4	-	2.4	60	110		31 45 1	4 124 2.8	7	0.37 305		205 2760	20	8 6	542	10		0.50 1190
95DH-052 95DH-060	Dc?	brecciated chert in drusy qtz-cc matrix. Fx loc py. Fetid. Small black min. 1m chip of rusty and yellow weathering chert. beds 2-6 cm, very friable	from pit at km 412 116l/9 Cu showing ridge 116l/9	4	· · · ·	0.1	14	380 1	2 16.00 8. 1 0.04 0.	.5 0.5 6	52 12 0.1 53 44 0.7		0.55 65		15 190 28 140		1 0.5	37	8	96 0	0.50 6
95DH-064	Dc breccia	Qtz brecc w Dc Fx lined w drusy qtz, yellow-green sulph staining. float	NW of km 450 116 l/16 NW of km 450 116 l/16	4		0.4	4	780		4 0.5 21	2 4 0.5 1 3 1.0		0.01 10	15 !	16 180	6		64	8		0.50 20
95DH-065 95DH-066	Dc breccia i Dc fault	nusty breccia-vein 4cm w yei drusy gtz lining ah Fx.loc clay gouge. 090/90 gtz breccia w ang sh Fx, yellow stained gtz matrix, ox fracture planes. s/c	NW of km 450 116 1/16	4		0.6	8	130	1 0.07 1.	.5 0.5 21	0 2 0.5	8	0 5	13	6 1290	12	2 6	241	8	201	0.50 132
95DH-067 95DH-068	Dc fault Dc fault	rusty weath breccia w angular shale (+qtz?) Fx w limonitic cament-femicrate? rusty porous limonitic colloform space filling material w some shale Fx	NW of km 450 116 1/16 NW of km 450 116 1/16	4		1.6	74	200 1		4 0.5 17	7 4.8 3 4 16.0		0.02 5	63 1 176 (18 990 0.5 28300	8	6 1 10 8	149 78	10		0.50 4
95DH-069	Dc fault	grey qtz breccia, quite broken up, dense, yellow alt s/c	NW of km 450 116 1/16	4		0.2	54	150 1	1 0.25 0.	.4 0.5 31	4 13 1.4	2	0 5	45	7 4390		10 21	1770	20		0.50 20
95DH-070 95DH-071	Dc fault Dc fault	friable oxidized shales cut by network of thin drusy qtz veinlets limonitic breccia, angular shale Fx w limonitic cement, porous. femicrete?	NW of km 450 116 l/16 NW of km 450 116 l/16	5		3.4	1510	130 2		4 0.5 20	06 2 3.3 03 14 14		0.02 5	69	5 3540		4 6	66	10	1615	0.50 28
95DH-072	Dc fault	grey breccia w qtz cement + yellow alt, graphitic slick planes	NW of km 450 116 l/16 NW of km 450 116 l/16	4		0.8	38	200 1		4 0.5 11	3 10 2.1 18 16 0.4		0.02 4	37	22 1530 6 210	16	6 6	526 108	10		0.50 4
95DH-074	Dc	Vq w drusy qtz around shale Fx, it geen mineral ap? Im min thick 115 deg punky porous pink-red weath sandstone w interst orange clay material	NW of km 450 116 1/16	4		0.2	184	590 1	0.02 0.	4 1 17	7 55 4.5	B	0 5	20	41 2140	2	6 26	285	B 10		0.50 112
95DH-075 95DH-076	Dc breccia Dc	brecciated shales in qtz matrix, some drusy: 295/80. dk purple hem? stain conc vein-fault, yellow clay stained white qtz w ang sh Fx, graph slick planes	NW of km 450 116 1/16 NW of km 450 116 1/16	4		0.6	22	550 1 330 1		4 0.5 21	6 25 0.8 6 9 0.6		0.01 5	68 26	21 1680 8 600		2 4	177	8	135 (0.50 4
95DH-080	Dc	X rep of carbonaceous shates some yellow staining, sulphur smell, chip 1.3m	km 440.9 1161/16	4		0.8	8			1 0.5 5	2 47 0.2	4	0.03 4	19	24 80	4	2 2	36	8		0.50 20
	Dc vein Dc	Qtz-cc vein, loc drusy// wall, w shale Fx. 0.15m, 062/56. cc fills vug-late X rep of grey weath + yellow stained platy shales	km 439 116i/16	4		1.6	12	590 1			2 103 0.	7	0.02 5		40 230		1 3	94	8	230 0	0.50 102
95DH-083	Dc fault	fault gouge: kaolinite pods w sh Fx cut by qtz veining. 085/52	km 439 1161/16 km 419 1161/9	4		0.2	68	110 1 210 1		5 0.5 9 5 0.5 23	1 139 0.9 8 14 0.3		0.01 15	109 1	13 1790 19 30	2	8 17	585	20		0.50 186
95DH-126	Dc?	X rep of grey and black banded chert grey brown weathering platy limestone? w i/bedded dk grey-black chert. float	from km 440.9 116l/16	4		0.6	14	760 1	0.32	7 0.5 16	8 66 0.4	3	0.04 10	31	59 1340	4	4 3	106	8	1200 (0.50 278
95DH-141 95DH-156	Dc? Dc	X platy shales w yellow weathering, chip 0.5m grey weath dk grey chert/sil sh. carb coating on weathered surface	ck W of 453.3 1161/16 White Fox Ck E of hway	4		0.2	14	490 1 760 2	0.44	1 1 7 .5 1 11	8 48 0.8 3 69 0.4		0.32 5	50 1	95 1150 35 880	4	1 3 10 3	66 287	8	1755 (0.50 2460
95DH-15A	Dc/SDv? fault	2m chip in brecc. Itmonitic calcareous shale w thin Vq cc and 8cm Vcc	RRC trib 116I/16	4		0.6	48	30 1	8.95	9 11 5	2 78 3.7	1	0.89 215	32 1	66 1610	14	6 4 2 0.5	516 901	10		0.50 654
	Dc/SDv? fault	rusty calcite vein Fx in black matrix, in fault sampled above X rep sample of yellow and rusty weathering chert.	RRC trib 1161/16 White Fox Ck E of hway	4		0.1	6	520 1	0.08 0.4	5 1 4 0.5 17	5 13 0.2 4 8 0.6	2	0.04 10	22	21 60	2	1 1	26	8	111 0	0.50 10
95DH-162	Dc	finely banded timestone ? w 2% coarse framboldal py (ricochet sample)	White Fox Ck E of hway White Fox Ck E of hway	4		0.1	2	7110 1	16.00 2	2 0.5 1	8 6 0.2		0.54 85	2 25	26 260	1	1 0.5	1255	8		0.50 84
95DH-171	Dc?	X rep sample of yellow and rusty weath sil sh (+chert). chip 0.4m hematitically altered argilite	SE of km 440.9 1161/16	4		0.2	1	850 1	0.31 0.	5 0.5 2	7 6 0.	2	0.02 10	0.5	3 150	1	1 0.5	6	8	6 0	0.50 44
	Dc Dc	layer of decomposed Rx or soil gouge w/in sil shales, incl crumbly rusty mat rusty sh chips and rusty soil near femorete in stream	E of AC p/out 116I/9 float 116I/16 NW of hwy N of campground	4		0.8	260 7 38	510 1 130 1	0.69	3 0.5 19 4 0.5 3	1 301 2.2 2 24 4.2		0.32 10 0.03 5	27 10	8 710	10	14 20	37	8 8	991	8 14
96 DH 11A	Dc?	orange powder/slime on creek bank covering vegetation	116I/16 NW of hwy N of campground 116I/16 NW of hwy N of campground	1 4	1	0.1 0.0	3 1080	30 1	0.01 0.4		2 1 16.0	0.5 8	0 4	80	4 2220	10	1 0.5	6	8 8	685	8 30
	Dc?	orange powder/slime on creek bank covering vegetation red+yellow weath sil + brecciated "shale" w qtz in drusy pods +veinlets	116/16 NVV of NVV N of campground 116/16 terra cotta showing=95DH-6			0.1 0.04		<u> </u>	0.07 0.4	4 0.5 30	6 1 16.0 6 1 0.6		0.04 15	7	4 100	28	1 0.5	30	8 8	23	8 1
	De	dk grey weath loc yellow, thin platy siliceous shales. 25cm crumbly rusty siliceous shale in vertical fault trace (25cm)	o/c center 116//8 o/c center 116//8	4		0.6 0.43		320 1 120 1		4 0.5 5	0 1 0.1		0.08 4	13 20	16 10 23 310	8	4 0.5	12	8 8	134	8 6
96 DH 166	Dc 2	Crumoly rusty succedus shale in verdical lauk trace (23cm) X dk grey blue w loc yellow weath thin to med bedded chert w sil shale interbeds	o/c center 116l/8	4		0.1 0.16	3 2	300 1	0.07 0.4	4 0.5 12	5 2 0.2	0.5 8	0.01 5	11	8 10		1 0.5	8	8 8	31 226	8 2
96 DH 167A 96 DH 17		X yellow weathering chert X platy siliceous shales	o/c center 116i/8 at NI/S? 116i/16 e of hwy, ck behind camp	10 4	4 2	0.4 0.45		170 1 720 1	0.04 0.4		4 7 1.8 0 2 0.1		0.04 5		65 220 14 40	6	2 1	24	8 8	212	8 4
96 DH 175	Dc?	X rx chips of grey (some yellow) weath platy and blocky siliceous shales	s/c NE 1161/1 float SW 1161/16	4		0.4 0.49		580 1 2250 1	0.05 0.4	4 0.5 5 1 0.5 33	8 23 0.4		0.04 10	6	14 30	2	2 1	9	8 8	181	8 6
6 DH 184D 6 DH 184E	Do vein	boulder in scree slope, orange weath mass qtz vein+silicaous breccia, small Rx fx +sl vuggy boulder in scree slope, orange weath mass qtz vein+siliceous breccia, small Rx fx +sl vuggy	float SW 116I/16	4		0.1 0.11	26	1010 1	16.00 4.5	5 1 1	6 60 0.2	0.5 8	4.06 250		83 290	14	18 0.5	1350	8 10	79	8 200
	Dc Dc?/SDv?	pale brown weath banded dolom? Ilmestone pod or bed , incl some repla. chert blebs// lam X bluish to dk grey, loc rusty and yellow weath platy shales	o/c SW 1161/16 o/c NW 1161/16	4	+	0.1 0.05		460 1	12.9 2.	5 0.5 4 5 2 13	1 <u>5 0.2</u> B 75 1.8		8.86 705 0.68 30		15 180 70 2910	14	4 0.5	1485	8 8	126 1640	8 232
96 DH 190	Dc	co-dolom vein in fault in Dc? chert	o/c NW 1161/16	4		0.1 .0	22	680 1	16.00 6.5 12.6 10		0 33 0.1	0.5 8	6.66 825 8.94 370	1	7 30	14	12 0.5	2240	8 10	51 433	8 120
	Dc)	bartic limestone? pod (dolomitic) X yellow weath platy si ah	o/c NW 1161/16 o/c 1161/16 e of hwy, White Fox Ck	4		0.1 0.34		2870 1 200 1	14.14		9 3 0.5	0.5 8	0.04 15	26	9 40	8	1 1	15	8 8	69	8 2
96 DH 204	Dc >	Yellow weathering bluish fractured chert Siliceous shale and yellow weathering chert	o/c NW 116//9 SW 116//16	4		0.1 0.49		270 1 700 1	0.1 0.4		7 16 0.3 6 19 0.6		0.01 5	24 13	14 1030 27 60	2	2 6	195	8 8	197 83	8 10
6 DH 205C	Dc	finely fractured and qtz veined chert- siliceous breccia	float SW 116I/16	4	1	0.4 0.1	4	200 1	0.01 0.4	4 0.5 30	6 16 0.4	0.5 8	0.01 10	6	7 70	1	1 0.5	20	8 8	51	8 1
		carbonaceous shales and chert w carbonaceous shaly partings yellow weathering siliceous shale and thin chert	o/c SW 1161/16 CW 1161/16	4		0.2 0.22		600 1 980 1	0.01 0.4		9 42 0.2 9 20 0.5		0.01 4	28 1	19 <u>60</u> 16 110	4	2 1	43	8 8	217	8 12
6 DH 32	Dc >	yellow grey weath thin platy siliceous shales	o/c SE 116//8 float 116//16 e of hwy, White Fox Ck	4		0.2 0.43		460 1 2000 1	0.08 0.4	4 0.5 6	3 0.5 0.2 0 3 0.64		0.04 4	10	18 10	4	1 0.5	78	8 8	197	8 2
	Dc? Dc?	earthy red weath, bleached grey sh red-marcon weath porcus sil nx	float 1161/16 e of hwy, White Fox Ck	4		0.1 0.06	2	1740 1	0.04 0.4	4 0.5 15	8 1.64	0.5 8	0 105	15	6 30	2	1 0.5	109	8 8	80	8 2
	Dc?	red weath dk blocky sil chert? w ox-filled poros fault breccia with clay balls	float 116I/16 e of hwy, White Fox Ck o/c 116I/16 e of hwy, White Fox Ck	4		0.1 0.1		810 1 100 1	0.03 0.5	5 0.5 22 7 4 21	9 11 0.68 9 34 1.43		0 15	13 62 21	8 40 14 5710	2	1 0.5	51 3240	8 150	1105	8 628
6 DH 44	Dc >	6 6cm grey sil shales+10cm rusty weath blocky chert	o/c SE 1161/8	4		1.4 0.54 0.1 0.18		540 1	0.04 0.4	4 0.5 10	2 33 0.43	0.5 8	0.04 5	16 2	23 250	12	6 2	64	8 8	262	8 12
	Dc or SDv? Dc? vein	dark rusty weethering vuggy chert breccia w cht clasts thinty rimmed by qtz (orange coating) 30 cm folded qtz-cc vein w slicks +angular sh Fx	float SE 116I/1 o/c 116I/16 e of hwy, White Fox Ck	4		0.1 0.18		2430 1 220 1	7.5 18.5		2 98 5.5		0.05 165	16 5	58 60	2	1 1	139	8 8	393	8 1395
6 DH 71A	Dc	sil shales w pods of light orange Rx, rimmed by banded limonite, clay and black gouge	o/c SE 1161/8 o/c SE 1161/8	4	+	0.1 2.3		240 1 30 1	3.56 7 8.6 4	7 10 16 4 15 4			1.81 305 0.07 300		87 1280 79 620	8	6 10 2 3	296 239	8 8	1085 210	8 342 8 196
6 DH 71C		rusty green and clayey grunge at top of limestone pod or bed (siliceous shale	o/c SE 116//8	4	1	0.2 0.47	8	190 1	0.03 0.4	4 0.5 4	1 0.24	0.5 8	0.02 4	9	6 20	8	1 0.5	9	8 8	55	8 2
6 DH 72A 6 DH 72B	Dc (/Di) Dc (/Di)	busted up shale above nodular horizon subhide-rich rim of nodule w host shale (4cm of each)	o/c SE 1161/8 o/c SE 1161/8	4		0.1 0.77	50	120 1 8 2		1 <u>3</u> 34 1 13 74		0.5 8	0.04 10 0.91 265	9 3 1 8	34 690 39 1410	16	2 12 6 16	42 37		310	8 334
6 DH 72C	Dc (/Di)	massive nodular supplide	o/c SE 1161/8	4 8 4		0.1 0.38	12	8 2 290 1	0.5 0.4		44 16.00	0.5 8	0.01 5		50 50 28 40	22	4 0.5	10	8 8	11	8 6
	Dc X Dc	grey+yellow weath med bedded chert, sample 20cm thick rusty weathering chert	SE 1161/8	4 4	1	0.1 0.28	4	260 1	0.01 0.4	1 14	9 0.5	0.5 8	0.01 15	24 6	50 160		1 0.5	37	8 8	164	8 8
		Fe gossan in stream. rusty nx chips	X 66 01.01, 136 07.24 66 11.98, 136 12.27	4		0.2 0.16		300 1 180 1		0.5 14			0 5		6 160 1 100	6	14 0.5	4	8 8	689	8 58
6 HR-46B	Dc? X	(black chert		4		0.1 0.15	12	220 1	0 0.4	1 152	17 0.99	0.5 8	0.01 15		21 50	2	1 0.5	4	8 8	67	8 6
		weil bedded rusty weathering black chert. 50 cm	1161/9	4		0.4 0.25		140 1 240 1	0.05 0.4	0.5 97	1 0.2	0.5 8	0.05 4	139 7	22 30 79 10		6 1	21	10 8	137	8 2
6-KP-2	Dc X	C black fissile siliceous shale. 15cm	1161/9	4		0.4 0.42		210 1 400 1		0.5 40			0.04 4	10 1	18 8 11 30	10	1 0.5	7		82 63	8 2
6-КР-9	Dc	qtz vein w minor diss py		4		0.01 0.10		400 1	0.02 0.4	0.0 11	4 0.00	0.0 0	0.00 10		1						
C/SDv contact	Limestone ball and b	all bearing unit: setting for Nick-type horizon		+ +			<u></u>			<u> </u>	<u> </u>				++						
6 DH 33B	Dc/SDv	custy, pyritic bedded limestone pod	o/c SE 1161/8	6 4		0.1 0.15	8	960 1	16.00 0.5		12 0.51		0.32 155		460		1 0.5	1150	8 8	51	8 76
6 DH 33C	Dc/SDv Dc/SDv	greenish weath busted up shale with grey pyritic baritic nodules greenish weath busted up shale with grey pyritic baritic nodules ?	o/c SE 1161/8 o/c SE 1161/8	12 15		0.2 0.96		60 1 30 1		0.5 39			0.08 20		4 480		8 3 1 0.5		20 8 8 8	264 51	8 16 8 16
6 DH 42A [Dc/SDv	ball-bearing unit: small barite nodules	SE 1161/8	4		0.5 0.21	8 1	16860 8	0.05 4	4 8	4 0.86	8	0.02 8	4	4 100	15	8 4	545	10 10	20	10 4
	Dc/SDv Dc/SDv ni-sulph	ball-bearing unit: sample of whole horizon: nodules and shales black weath, loc recessive, 1.5 to 4 cm thick bed of disrupted sulphide laminae. Wavy base	SE 1161/8 o/c SE 1161/8	6 4 64 155		0.2 0.77		50 1 8 1		0.5 31			0.07 4	24 7 1985 4700	0 110 0 350		6 1 06 0.5	95 83 2	8 8 40 10	137	8 716
6 DH 42E	Dc/SDv ni-sulph	black weath, loc recessive, 1.5 to 4 cm thick bed of disrupted sulphide laminae. Wavy base	o/c SE 1161/8	70 150	90	1.2 0.25	4010	8 1	0.09 0.5	127 47	165 16.00	14 8	0.01 4	1895 4830 1960 4680			92 0.5	77 2	00 10 90 8	86 99	8 660
	Dc/SDv ni-sulph Dc/SDv ni-sulph	black weath, loc recessive, 1.5 to 4 cm thick bed of disrupted sulphide laminae. Wavy base black weath, loc recessive, 1.5 to 4 cm thick bed of disrupted sulphide laminae. Wavy base	o/c SE 1161/8 o/c SE 1161/8	176 290 80 195	114	2 0.32	3150		0.03 0.4		143 14.8	14 8	0.03 4	2320 4220	0 270	32 1	00 0.5	49 1	50 10	155	8 220
6 DH 42H 10	Dc/SDv	rusty weathering grey pyritic limestone w start of baritic replacement nodules	o/c SE 116//8 o/c center 116//8	4 10	4	0.1 0.18	40	50 1 40 1		2 35			0.42 135	25 39 417 356			8 0.5 20 3	870 67	8 10 70 8	56 359	8 154 8 54
5 DH 167B (5 DH 167C (Dc	top of (busted up) siliceous shale- some green leached material. no vis sulph. 3-4cm whole of (busted up) shale horizon, includes few flat and disc-shaped barite nodules. 20 cm	o/c center 116l/8	22 30	22	1 0.88	80	60 1	0.14 0.5	1 62	11 1.44	0.5 8	0.08 5	223 43	9 110		10 1	60	30 8	382	8 42
6 DH 168A [at contact between shale and chert: thin limestone band 3-6cm top of (busted) shale horizon w barite nodules	o/c center 1161/8	32 25		0.1 0.46			11.65 10	5 49 0.5 24			1.38 410 0.05 4		6 540 7 260	16	8 8 26 1		40 8 10 8	146 272	8 10
8 DH 168C		top of (basie) shale horzon w barle houses top of shale horz: vuggy, very light earthy dull brown w wavy laminations. Sinter? algel lam? cold spring?	o/c center 116//8			3.4 0.51		220 1		0.5 55			0.05 4		460		70 1	41	10 8	264	8 20
											-										

Page 1

D Canol- all samples

Dc- all samples

.

= →@/,=···· · · · 1 - - :::··· · _

'. − ~ ~ wa÷

Sheet1

			average 43.67 112.31 0.49 313.60 0.41 12.35 11.35 0.49 11.55 0.10 11.65 0.10 0.40 10.00 22.00 22.00 12.35 11.55 0.10 0.11 10.00 0.24 12.00 12.0	AE																													
96 DH 169A	Dc/	/Sdv	blue siliceous shale w barite nodules: 20 cm	y lam and blebs o/c center 118i/s 42 60 26 0.1 0.2 370 10 1 12.85 4 18 16 65 7.46 0.5 10 0.25 150 186 3340 2400 6 12 7.75 20 10 10 19 8 18 18 18 16 65 7.45 10 0.25 150 185 3340 2400 16 12 7.75 10 10 10 19 8 18 16 65 10 0.25 150 185 3340 2400 16 12 7.75 10 10 10 19 8 18 16 65 10 0.25 150 185 3450 2810 16 13 3450 2810 15 10 10 10 10 19 8 16 0.25 150 160 0.62 160 0.62 160 0.62 160 0.62 160 0.62 160 0.68 213 54 170 <																													
96 DH 169B	De	Sdv	comp sample of alt, fract+veined lim w po/py finely diss along laminae, as wispy lam and blebs	o/c center 116l/8	42	60	26	0.1	0.2	370	10	1	12.85	4	18	18	65	7.46	0.5	10	0.25	150	186	1 384	0 240	0 0	5 12	·····	/80	20	10		0 300
	Dc/		limestone w some po mineralization, approx 2/3 of total bed	o/c center 116l/8	15			0.1	0.3	260	20	2	14.2	4.5	15	23	54	5.65	0.5	10	0.71	190	163	345	0 281	0 10	5 16	7	757	10	10	119	8 436
	Dc			o/c center 116l/8	34	60	20	0.1	0.23	312	10	1	10.4	5	17	37	66	7.24	1	10	0.22	150	163	310	0 216	0 (3 12	5	609	10	8	79	8 308
																				1				1									
				average	43.87	112.31	58.80	0.81	0.49	319.38	717.91	2.29	1.43	5.94	17.50	107.06	37.76	1.78	6.10	11.67	0.49	81.80	138.57	1 2137.7	7 1069.7	9 11.8	3 15.38	5.82	295.13	66.88	19.40		157.42
					15.00	60.00	26.00	0.60	0.34	22.00	290.00	2.00	0.07	2.50	3.50	75.50	16.00	0.68	2.50	10.00	0.04	10.00	24.00	22.0	0 255.0			3.00	64.00	25.00	10.00	149.00	28.00
				min	4.00	10.00	2.00	0.20	.0.01	2.00	10.00	2.00	0.01	0.50	1.00	5.00	1.00	0.11	1.00	10.00	0.01	5.00						1.00	3.00	10.00	8.00	5.00	2.00
				max	188.00 2	290.00	192.00	3.40	3.68 4	430.00	16860.00	4.00	14.20	52.50	127.00	348.00	301.00	14.80	14.00	20.00	8.94	825.00	2320.00	48300.0	0 28300.0	0 156.0	0 106.00	37.00					2460.00
				standard dev	55.51	92.28	60.04	0.78	0.57	921.08	1919.68	0.76	3.50	9.53	32.95	84.22	52.00	2.64	6.03	4.08	1.60	154.89											338.53
	-			95th percentile	173.40 2	251.00	157.00	2.38	1.40 2	166.00	2125.00	3.40	11.46	18.50	95.95	302.25	148.70	6.60	14.00	17.50	1.77	377.50											656.70
					136.00 2	219.00	130.80	1.80	0.87	652.00	980.00	2.80	6.64	10.50	63.90	217.50	115.60	4.59	14.00	15.00	0.70	286.00	182.40	422.6	0 2190.0	0 22.6	0 32.00	16.50	882.40	195.00	22.00	810.60	341.40

Page 1

D Canoi- all samples

DCanol reps

Sheet2

1

																									_									
detection limit					5			0.2	0.01	2	10	2	15	0.5	1	1	1	15	0.5	10			1	_1	8		2 2	'	1	10	10	1	10	
		sample			Au ppt	<u> </u>	Pd	Âg	AI	As	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	Hg	La	Mg	Mn	Мо	NI	P	Pt	b Sb	Sc			U	V	W	Zn
sample number Fm	rep	description		sample location	FA+AA	ppb	ppb	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ррп	m ppm	ррп	n ppm	ppm	ppm	ppm	ppm	ppm
											·													Ļ										
95DH-017 Dc	X	1m rep of fin. bedded chert/loc shale, loc yellow and rusty weath		RRC trib 116I/16	4			0.4		4	600	1	0.11	0.4	0.5	41	5	0.38			0.03	5	24	14	20		2 1	0.5	5 22		8	95	0.50	8
95DH-080 Dc	X	rep of carbonaceous shales some yellow staining. sulphur smell. chip 1.3m		km 440.9 116l/16	4			0.8		8	1050	1	0.02	1	0.5	52	47	0.24			0.03	4	19	24	80	· ·	4 2	. 7	2 36		8		0.50	20
95DH-082 Dc	X	rep of grey weath + yellow stained platy shales		km 439 1161/16	4			1.6		12	590	1	0.15	1.5	0.5	42	103	0.7			0.02	5	38	40	230	1	4 1	1	3 94		8	230	0.50	102
95DH-084 Dc?	X	rep of grey and black banded chert		km 419 1161/9	4			0.2		4	210	1	0	0.5	0.5	238	14	0.34			0	5	11	19	30	í.	1 1	0./	5 15		8	81	0.50	14
95DH-126 Dc?	X	grey brown weathering platy limestone? w i/bedded dk grey-black chert. float	t	from km 440.9 116l/16	4			0.6		14	760	1	0.32	7	0.5	168	66	0.43			0.04	10	31	59	1340	1	4 4	1	3 106		8		0.50	278
95DH-141 Dc?	X	platy shales w yellow weathering. chip 0.5m		ck W of 453.3 116l/16	4			0.2		-14	490	1	0.44	1	1	78	48	0.81			0.32	5	70	95	1150	· /	4 1	1	66		8	993	0.50	126
95DH-161 Dc	X	rep sample of yellow and rusty weathering chert.		White Fox Ck E of hway	4			0.2		6	520	1	0.08	0.4	0.5	174	8	0.62			0.04	10	22	21	60		2 1	ŕ	1 26		8	111		10
95DH-163 Dc	X	rep sample of yellow and rusty weath sil sh (+chert). chip 0.4m		White Fox Ck E of hway	4			0.6		4	. 860	1	0.16	0.4	0.5	57	19	0.41			0.04	5	25	31	90	1	2 1	, í	1 20		8	328	0.50	10
96 DH 166 Dc	X	dk grey blue w loc yellow weath thin to med bedded chert w sil shale interber	ds o/c	center 116I/8	4			0.1	0.16	2	300	1	0.07	0.4	0.5	125	2	0.27	0.5	8	0.01	5	11	8	10	1	4 1	0.5	5 8	8	8	31	8	2
96 DH 17 Dc	X	platy siliceous shales		116I/16 e of hwy, ck behind camp	4			0.8	0.54	6	720	1	0.04	0.4	0.5	60	2	0.19	0.5	8	0.04	4	14	14	40	1	ô 2		1 24	8	8	212	8	4
96 DH 175 Dc?	X	rx chips of grey (some yellow) weath platy and blocky siliceous shales	s/c	NE 116I/1	4			0.4	0.49	6	580	1	0.05	0.4	0.5	58	23	0.46	0.5	8	0.04	10	6	14	30	1	2 2		1 9	8	8	181	8	6
96 DH 187A Dc?/SDv	/? X	bluish to dk grey, loc rusty and yellow weath platy shales	o/c	NW 116I/16	4			0.6	1.41	26	750	1	0.71	0.5	2	138	75	1.84	0.5	10	0.68	30	54	70	2910	1	ô 8		7 161	8	8	1640	8	232
96 DH 2 Dc	X	yellow weath platy sil sh	o/c	116I/16 e of hwy, White Fox Ck	4			1.2	0.58	12	200	1	0.07	0.4	0.5	39	3	0.59	0.5	8	0.04	15	26	9	40	ſ	8 1	· ·	1 15	8	8	69	8	2
96 DH 204 Dc	X	yellow weathering bluish fractured chert	o/c	NW 1161/9	4			0.1	0.49	26	270	1	0.1	0.4	0.5	157	16	0.39	0.5	8	0.01	5	24	14	1030		2 2		5 195	8	8	197	8	10
96 DH 205B Dc	X	siliceous shale and yellow weathering chert		SW 116I/16	4			0.1	0.24	6	700	1	0.12	0.4	0.5	106	19	0.64	0.5	8	0.03	5	13	27	60	1	4 2	0.5	5 52	8	8	83	8	38
96 DH 205D Dc/Sdv?	X	carbonaceous shales and chert w carbonaceous shaly partings	o/c	SW 116I/16	4			0.2	0.22	2	600	1	0.01	0.4	0.5	109	42	0.21	0.5	8	0.01	4	17	19	80	1	2 1	0.5	5 25	8	8	169	8	2
96 DH 206B Dc	X	yellow weathering siliceous shale and thin chert		CW 116I/16	4			0.1	0.33	8	980	1	0.02	0.5	0.5	49	20	0.56	0.5	8	0.02	4	28	16	110		4 2		1 43	8	8	217	8	12
96 DH 32 Dc	X	yellow grey weath thin platy siliceous shales	o/c	SE 116I/8	4			0.2	0.43	- 6	460	1	0.08	0.4	0.5	68	0.5	0.2	0.5	8	0.04	4	14	18	10	1	4 1	0.5	5 8	8	8	197	8	2
96 DH 44 Dc	X	6cm grey sil shales+10cm rusty weath blocky chert	o/c	SE 1161/8	4			1.4	0.54	8	540	1	0.04	0.4	0.5	102	33	0.43	0.5	8	0.04	5	16	23	250	17	2 6	1	2 64	8	8	262	8	12
96 DH 71C Dc	X	siliceous shale		SE 116I/8	4			0.2	0.47	.8	190	1	0.03	0.4	0.5	41	1	0.24	0.5	8	0.02	4	9	Ģ	20	1	3 1	0.8	5 9	8	8	55	8	2
96 DH-33A Dc	X	grey+yellow weath med bedded chert. sample 20cm thick	o/c	SE 116I/8	8	4	1	0.2	0.23	2	290	1	0.01	0.4	0.5	152	2	0.24	0.5	8	0.01	5	16	28	40	1	2 1	0.9	5 10	8	8	145	8	2
96 HR-11 Dc	X	fractured chert, loc banded	X	66 01.01, 136 07.24	4			0.2	0.16	24	300	1	0	0.4	0.5	147	20	1.66	0.5	8	0	5	117	6	160		δ 14	0.8	5 4	8	8	689	8	8
96 HR-46B Dc?	X	black chert			4			0.1	0.15	12	220	1	0	0.4	1	152	17	0.99	0.5	8	0.01	15	17	21	50	-	2 1	0.9		8	8	67	8	6
96-KP-1A Dc	X	well bedded rusty weathering black chert. 50 cm		1161/9	4			0.4	0.25	1	140	1	0.03	0.4	0.5	97	4	0.31	0.5	8	0.03	5	19	22	30	5	8 1	0.9	5 11	8	8	90	8	4
96-KP-1B Dc	Х	shale. 20 cm		1161/9	4			1.8	0.47	12	240	1	0.05	0.4	0.5	23	1	0.2	0.5	8	0.05	4	139	79	10	22	2 6	^	1 21	10	8	137	8	2
96-KP-2 Dc	X	black fissile siliceous shale. 15cm		1161/9	4			0.4	0.42	-6	210	1	0.07	0.4	0.5	40	1	0.16	1	8	0.04	4	10	18	8	10	0 1	0.6	5 7	8	8	82	8	2
																								1										
				average	8.00			0.60	0.42		491.15			1.71	1.00	96.65	23.64	0.52	1.00		0.07	8.33							6 40.58			307.23		35.23
				median	8.00			0.40	0.43		505.00		0.07			87.50	17.00	0.40		10.00	0.04	5.00		20.00	60.00		_		21.50			175.00		8.00
				min	8.00			0.20	0.15		140.00		0.01			23.00	1.00	0.16	1.00		0.01	5.00	6.00	6.00	10.00		-	-				31.00		2.00
				max	8.00			1.80	1.41	26.00	1050.00		0.71	7.00	2.00	238.00	103.00	1.84	1.00	10.00	0.68	30.00	139.00	2			0 14.00		0 195.00			1640.00		278.00
				standard dev				0.50	0.29	6.96	262.61						26.54					6.42		22.94	656.87				5 48.89			394.02		71.56
				95th percentile	8.00			1.60	0.70	25.60	950.00		0.43	5.35	1.90	172.50	73.20	1.49	1.00	10.00	0.28	17.25	105.25	76.75	1302.00	11.6	0 11.00	6.3	5 147.25	10.00	İ	1148.25		205.50

Page 1

D Canol- reps

Dimperial- all samples

1

Sheet1

																			<u> </u>								
detection limit				5	·	0.2 0.0	01 2	10	2	15 0	.5	1 1	1	15 0.5	10			1	1 1	8	2	2	1	10	10	1	10
		sample		Au ppb P	Pt Pd	Ag Al	As	Ba	Bi	Ca C	d C	o Cr	Cu	Fe Hg	La M	lg N	In	Mo Ni	P		Pb S	b i	Sc Sr	TI	υv		W Zn
sample number	Fm	rep description	sample location	FA+AA p	opb ppb	ppm %	ppm	ppm	ppm	% pp	m ppr	n ppm	ppm	% ppm	ppm %	6 p	pm	ppm pp	n ppm		ppm ppi	n pp	om ppm	ppm	ppm p		ppm ppm
95DH-7	Di	slicked qtz(also drusy) on coarse brown sandstone	km 403.7 116I/9	4		0.1	6	130	1	0.09 0.		8 185	14	3.39		0.24	180	1		10	4	1	2 12		8		0.50 88
95DH-14	Di	20-30cm wide limonitic fault breccia in shale, gtz-carb (-gyps?) veinlets	Real Rx Ck 116l/16	4		0.1	12	110	1	6.66 2	.5 13	9 54	70	5.55		1.36	4330	2	413 2	60	10	1	9 338	8	8	62	0.50 916
95DH-043	Di	X composite chip of crumbly grey (waxy) shale. 0.53m	km 403.7 116I/9 S of AC	4		0.1	6	400	1	0.23 0.	.4 1	8 49	68	3.7		0.84	235	2	58 5	80	16	1	7 62		8	89	0.50 160
95DH-044	Di	X composite chip of rusty weath grey siltstone. 0.63m	km 403.7 116I/9 S of AC	4		0.1	8	400	1	0.23	1 1	8 94	37	4.39		0.72	175	2	69 6	650	18	1	5 42		8	92	0.50 292
95DH-045	Di	X composite chip of grey green rusty shale (some thin sstone).1.5m	116I/9 N of AC	4		0.1	20	450	1	0.25 0	.4	8 46	38	3.67		0.51	100	2	38 4	10	30	1	6 53		8	77	0.50 110
95DH-046	Di	X composite chip of rusty weath grey siltstone . 0.27m	116I/9 N of AC	4		. 0.1	6	160	1	0.24 0	.5 1	4 43	43	3.85		0.68	155	1	93 6	620	6	1	5 17	1	8	53	0.50 228
95DH-047	Di	X composite chip of rusty weath grey green shale. 0.81m	116I/9 N of AC	4		0.1	24		1	0.1 0		3 41	37	3.9		0.59	150	1	46 4	130	34	1	6 27	'	8		0.50 92
95DH-048	Di	X composite chip of rusty weathering of grey siltstone. 0.52m	116I/9 N of AC	4		-0,1	4	160	1	0.18 0	.5 1	3 55	38			0.86	220	0.5	47 5	570	2	1	5 16	5	8	56	0.50 180
95DH-077	Di	Friable rusty weath shale and siltstone chip 2m	YTG campground 116I/16	4		0.2	16	330	1	0.04 0	.4	7 55	42	4.63		0.64	140	3	32 4	80	18	1	8 23	3	8		0.50 88
95DH-196	Di	rusty weathering sand/siltstone	Heli-recce	4		0.1	1	40	1	0.04 0	.4 0.	5 324		0.32		0	10	0.5	4	20		1 0).5 2	2	8		0.50 2
95DH-198	Di?	slightly brown -oxidized clean sandstone	Heli-recce	4		0.1	4	350	1	0.18 0.	.4	9 117	20	1.82		0.22	420	0.5	26 8	320	8	2	3 23	3	8		0.50 98
96 DH 89	Di	X light grey,orange weathering siltstone w muscovite on fracture planes i/b w friable grey shale	sluff CE 1161/1 Canyon Ck	4		0.1 2.	15 10	310	1	0.15 0.	.5 1	3 85	15	3.77 0.5	8	0.64	125	0.5	48 4	60	16	2	4 15	8 8	8	49	8 118
96 DH 150A	Di	X brown and rusty weath sandstone + grey weath shale, carb mat on So	sl/c NE 1181/8	4		0.1 1.1	88 12	390	2	0.38 0	.4 1	4 57	42	5.77 0.5	8	0.51	545	2	58 4	80	12	2	8 48	8 8	8	47	8 178
96 DH 164	Di	X grey brown weathering fractured shales w rusty podiform siltstone beds. 35cm	o/c center 116i/8	4		0.2 1.		450	1	1.88 0	.5 1	8 29	55	4.57 0.5	8	0.62	400	10	89 4	100	16	2	10 78	8 8	8 8	55	8 270
96 DH 186	Di	X disc shaped siltstone nodules in friable shale i//w rusty weath siltstone	o/c SW 116I/16	4		0.1 2.	77 8	240	2	0.72 5	.5 1	1 27	17	16.00 0.5	8	2.15	3920	0.5	49 7	50	14	8	18 37	8	8	61	8 156
96 KP-3A	Di	pyritic nodules	1161/9	4		0.1 3.	15 1	160	1	1.45	2	8 34	21	16.00 0.5	8	3.19	1745	1	113 5	60	1	1	23 88	8 8	8	124	8 268
96 KP-3B	Di	X broken up shales	1161/9	4		0.2 1.	14. 1	390	1	0.29 1	.5 1	0 18	62	2.61 0.5	8	0.22	30	3	61 6	650	14	1	6 86	<u> </u>	8	25	8 306
96 KP-4	Di	very rusty weath fissile shale, small scale faults	1161/9	4		0.1 3.	03 4	280	1	0.12 0.	.4 2	0 46	94	11.2 0.5	8	1.12	1015	2	129 5	60	12	2	12 27	8	8	. 61	8 414
96 KP-5	Di/Dc	fault contact, py in pods and as wisps	1161/9	20		5.6 0.	11 134	8	1	5.01 1	.5	6 45	149	16.00 1	8	0.07	50	4	73 34	40	156 2	0	1 169	8	8	14	8 242
96 KP-8A	Di	X black shale , 20cm, near contact w Dc	o/c 1161/8	4		0.2 1.	69 26	860	1	0.12 0	.4	5 30	37	2.83 0.5	8	0.49	50	2	35 4	60	34	1	6 119	8	8	34	8 120
96 KP-8B	Di	pyritic siltstone nodules. near contact w Dc	o/c 1161/8	4		0.2 1.	01 1	590	1	1.33 3.	.5 1	3 25	22	16.00 0.5	8	2.59	2520	0.5	56 17	40	4	2	14 91	8	8 8	49	8 562
96 HR-4	Di	X i/bedded orange weathering black shale and fg sandstone		4		0.1 0.1	88 12	2020	1	0.14 0	.5	8 163	22	2.3 0.5	8	0.25	75	4	93 3	350	8	1	3 53	8 8	8	31	8 180
96 HR-5	Di	X rusty siltstone	float 116 l/1, 66 08.61, 136 12.49	4		0.1 1.3	31 2	920	1	0.1 0	.4	5 59	52	2.62 0.5	8	0.25	60	5	21 2	280	6	1	3 22		8 8	37	8 80
96 HR-33A	Di?	X folded thick bedded sandstone/shale		4		0.1 1.	19 2	400	1	0.72 0	.4 1	0 98	29	1.72 0.5	8	0.71	90	1	44 4	00	8	1	4 26	i 8	8 8	31	8 146
96 HR-33B	Di?	X folded thick bedded sandstone/shale		4		0.1 0	.7 8	150	1	0.18 0	.4	4 209	10	2.64 0.5	8	0.22	35	1	22 3	380	6	1	1 11	8	8	24	8 52
96 HR-36	Di?	X white weathering limestone?	66 36.53, 136 28.29	4		0.1 1.	18 2	130	1	0.74 0	.4	8 111	19	2.18 0.5	8	0.65	95	0.5	37 3	370	8	1	3 20) 8	8	48	8 130
96 HR-37	Di	X		4		0.1 1.0	03 4	430	1	0.4 0.	.5	8 152	31	2.06 0.5	8	0.43	100	1	42 5	540	8	1	2 20) 8	8	51	8 166
96 HR-38	Di	X some rusty	66 41.84, 136 33.11	4		0.1 0.1	19 6	70	1	0.03 0	.4	5 159	6	1.74 0.5	8	0.04	70	0.5	15 1	150	4	1 (0.5 10) 8	8 8	14	8 58
96 HR-41	Di	X	66 36.96, 136 24.97	4		0.1 1.	16 6	460	1	0.07 0	.5	6 62	43	2.2 0.5	8	0.27	40	1	27 4	180	10	1	5 19	8	8 8	32	8 138
96 HR-51A	Di	X thick bedded siltstone/sandstone/shale	6628.42, 136 22.78	4		0.1 0.1	99 4	340	1	0.49 0	.5	9 126	27	5.34 0.5	8	0.51	310	1	38 6	640	10	1	4 29	8	8 8	31	8 172
96 HR-51B	Di	X		4		0.1 1.	B6 6	440	1	0.61 0	.5 2	4. 47	72	5.71 0.5	8	0.69	560	1	59 6	690	16	1	7 39	8 8	8 8	48	8 216
96 DH 150B	Di?	clean sandstone w wisps of dk org mat. carbon parting due to fault? loc slicked	o/c NE 118I/8	4		0.2 0.	13 1	80	1	0.84 0	.4	1 287	6	0.35 0.5	8	0.04	20	0.5	7	80	2	1 (0.5 26	6 8	8 8	7	8 14
	1																		1								
			average			0.97 1.3	38 13.70	382.90	2.00	0.75 1.3	38 14.6	1 91.63	38.75	3.55 1.00		0.72	561.56	2.30	597 597	.19 1	17.00 5.0	0 6.	55 51.50)		46.09	195.00
	-		median			0.20 1.	18 6.00	340.00	2.00	0.24 0.5	50 9.0	0 56.00	37.00	3.53 1.00		0.59	145.00	2.00	6.50 480	.00 1	0.00 2.0	0 5.	00 27.00			48.00	158.00
			min			0.20 0.	11 2.00	40.00	2.00	0.03 0.5	50 1.0	0 18.00	2.00	0.32 1.00		0.04	10.00	1.00	4.00 20	.00	2.00 2.0	0 1.	00 2.00			3.00	2.00
			max			5.60 3.	15 134.00	2020.00	2.00	6.66 5.5	50 139.0	0 324.00	149.00	11.20 1.00		3.19 4	330.00	10.00 41	3.00 3440	.00 15	56.00 20.0	0 23.	00 338.00)		124.00	916.00
	-		standard dev			2.04 0.0	86 24.92	366.92	0.00	1.42 1.4	12 23.6	6 75.70	29.55	2.11		0.72	074.66	2.03	0.32 593	.34 2	27.55 6.4	1 4.	98 63.63	3		25.20	173.93
	1		95th percentile			3.98 3.0				3.29 4.0				5.75 1.00		2.37 3	3150.00	4.90 12	0.20 1234	.00 3	34.00 15.8	0 16.	40 141.50	0		90.35	480.60

D Imperial - all samples

Dimperial- rep samples

Sheet2

i.

						į.																		
detection limit		5		0	0.2 0.01	1 2	10	2 1	5 0.	5 1	1	1	15	0.5 10)	i	1	1	8 2	2 2	1!	10	10	1 10
sample		Au ppb Pt	Pd	Ag	AI	As	Ba	Bi C	a C	d Co	Cr	Cu		Ha La	Ma	Mn	MolN	P	Pb	Sb	Sc Sr	TI	UV	WZn
sample number Fm rep description	sample location	FA+AA ppl	b ppb	ppm	%	ppm	ppm	ppm 9	% ppr	n ppm	mqq	ppm		naa maa		DOM	ppmipp	m pon	n ppm	mag	ppm pp	m ppm	ppm ppm	ppm ppm
95DH-043 DI X composite chip of crumbly grey (waxy) shate. 0.53m	km 403.7 1161/9 S of AC	4		0).1	6	400	1 0.2	3 0.4	4 18	49	68	3.7	<u> </u>	0.84	235	2	58 58	30 16	5 1	7	62	8	89 0.50 160
95DH-044 Di X composite chip of rusty weath grey siltstone. 0.63m	km 403.7 116I/9 S of AC	4		0).1	8	400	1 0.2	3	1 18	94	37	4.39		0.72	175	2	69 65	50 18	1	5	42	8	92 0.50 292
95DH-045 Di X composite chip of grey green rusty shale (some thin sstone).1.5m	116I/9 N of AC	4		0	0.1	20	450	1 0.2	5 0.4	4 8	46	38	3.67		0.51	100	2	38 41	0 30	1	6	53	8	77 0.50 110
95DH-046 Di X composite chip of rusty weath grey siltstone . 0.27m	116I/9 N of AC	4		0).1	6	160	1 0.2	4 0.	5 14	43	43	3.85		0.68	155	1	93 62	20 6	6 1	5	17	8	53 0.50 228
95DH-047 Di X composite chip of rusty weath grey green shale. 0.81m	116I/9 N of AC	4).1	24	230	1 0.	1 0.4	4 13	41	37	3.9		0.59	150	1	46 43	30 34	1 1	6	27	8	50 0.50 92
95DH-048 Di X composite chip of rusty weathering of grey silfstone. 0.52m	116I/9 N of AC	4		0).1	4	160	1 0.1	8 0.	5 13	55	38	4.51	1	0.86	220	0.5	47 57	0 2	2 1	5	16	8	56 0.50 180
96 DH 89 Di X light grey,orange weathering siltstone w muscovite on fracture planes i/b w friable grey shale		4			0.1 2.15	5 ; 10	310	1 0.1	5 0.	5 13	85	15	3.77	0.5 8	0.64	125	0.5	48 48	0 16	2	4	15 8	8	49 8 118
96 DH 150A Di X brown and rusty weath sandstone + grey weath shale, carb mat on So	sl/c NE 1181/8	4		0	0.1 1.88	3 12	390	2 0.3	8 0.4	4 14	57	42	5.77	0.5 8	0.51	545	2	58 48	0 12	2	8	48 8	8	47 8 178
96 DH 164 Di X grey brown weathering fractured shales w rusty podiform siltstone beds. 35cm	o/c center 116l/8	4		0	0.2 1.38	3 18	450	1 1.8	8 0.	5 18	29	55	4.57	0.5 8	0.62	400	10	89 40	0 16	2	10	78 8	8	55 8 270
96 DH 186 Di X disc shaped siltstone nodules in friable shale i//w rusty weath siltstone	o/c SW 1161/16	4		0).1 2.77	8	240	2 0.7	2 5.	5 11	27	17 1	6.00	0.5 8	2.15	3920	0.5	49 75	0 14	8	18	37 8	8	61 8 156
96 KP-3B Di X broken up shales	1161/9	4		_).2 1.14	1	390	1 0.2	9 1.5	5 10	18	62	2.61	0.5 8	0.22	30	3	61 65	0 14	1	6	86 8	8	25 8 306
	o/c 1161/8	4			0.2 1.69		860	1 0.13	2 0.4	4 5	30	37	2.83	0.5 8	0.49	50	2	35 46	0 34	1	6 1	19 8	8	34 8 120
96 HR-4 Di X i/bedded orange weathering black shale and fg sandstone		4			0.88	12	2020	1 0.14	4 0.5	5 8	163	22	2.3	0.5 8	0.25	75	4	93 35	0 8	1	3	53 8	8	31 8 180
96 HR-5 Di X rusty siltstone	float 116 1/1, 66 08.61, 136 12.49			0).1 1.31		920	1 0.	1 0.4	4 5	59	52	2.62	0.5 8	0.25	60	5	21 28	0 6	1	3	22 8	8	37 8 80
96 HR-33A Di? X folded thick bedded sandstone/shale		4		-	1.19	2	400	1 0.72	2 0.4	4 10	98	29	1.72	0.5 8	0.71	901	1	44 40	8 0	1	4	26 8	8	31 8 146
96 HR-33B Di? X folded thick bedded sandstone/shale		4			0.7		150	1 0.18	8 0.4	4 4	209	10	2.64	0.5 8	0.22	35	1	22 38	06	1	1	11 8	8	24 8 52
96 HR-36 Di? X white weathering limestone?	66 36.53, 136 28.29	4			1 1.18		130	1 0.74	4 0.4	4 8	111	19	2.18	0.5 8	0.65	95	0.5	37 37	0 8	1	3	20 8	8	48 8 130
96 HR-37 Di X		4			.1 1.03		430	1 0.4		5 8	152	31 3	2.06	0.5 8	0.43	100	1	42 54	0 8	1	2	20 8	8	51 8 166
96 HR-38 Di X some rusty	66 41.84, 136 33.11	4			.1 0.19	- · · · · ·	70	1 0.03	-	4 5	159	6	1.74	0.5 8	0.04	70	0.5	15 15	0 4	1	0.5	10 8	8	14 8 58
96 HR-41 Di X	66 36.96, 136 24.97	4	_		.1 1.16	-	460	1 0.07			62	43	2.2	0.5 8	0.27	40	1	27 48	-	1	5	19 8	8	32 8 138
96 HR-51A Di X thick bedded siltstone/sandstone/shale	6628.42, 136 22.78	4			.1 0.99		340	1 0.49	-	5 9	126	27 !	5.34	0.5 8	0.51	310	1	38 64	-	1	4	29 8	8	31 8 172
96 HR-51B Di X		4		0.	.1 1.86	6	440	1 0.61	1 0.5	5 24	47	72 5	5.71	0.5 8	0.69	560	1	59 69	0 16	1	7	39 8	8	18 8 216
				_													1							
	average				.2 1.344		445.5	2 0.375		7 11	80	36.36 3.				342.73	2.3529	49.5 48	8 13.45	3.5	5.62 3	3.6	47.	
	median		_		.2 1.185	-	395	2 0.235	5 0.5	5 10	58	37 3			0.55	112.5	2	46.5 47	0 11	2	5			158
	min		1		.2 0.19		70	2 0.03	3 0.5	5 4	18	6			0.04	30	1	15 15	0 2	2		10		4 52
	max				.2 1.344		445.5	2 0.375		7 11		36.36 3.				342.73			8 13.45		5.62 3		47.	
	standard dev		_			7.085		0 0.402			52.71	17.96 1.					2.2897 2				3.51 2		20.	
	95th percentile		1	0.	2 2.305	24.1	920	2 0.74	4 3.3	3 18	163	62 5.	713		0.86	560	6.25	93 69	0 34	7.1	10.4	86		7 292

Page 1

C Tuttle- all samples

Sheet1

data eti e e li celt						1	0.01 0.0										0.01	10					0				0 10		- 10
detection limit		sample			-5 Au anh D A	Pd A	0.2 0.0			la E	2 15 N Ca	0.0				15	0.5	10	Mn	Mo	1	8	Pb	2	1	Sr TI		v	10 W Zn
<u> </u>	_							As			·			Cr	Cu	Fe	Hg	La Mg	Mn			P							
sample number	Fm	rep description		sample location	FA+AA ppb	ppb p	pm %	ppm	ppr	m ppr	n %	6 ppm	ppm	ppm	ppm	%	ppm	ppm %	ppm	ppm	ppm	ppm	ppm	ppm	ppm p	pm ppm	ppm	ppm	ppm ppm
95DH-038	~			005.0.440940																				<u> </u>					
	Ct	X rep of conglomerate w limonitic coating on fractures		km 395.6 116i/10	4		0.1		1 36		1 0.01				7	0.5			0 5	1 1	3	140	-		0.5		8	37	8 1
	Ct	pervasively limonitic Tuttle cgl		km 395.6 116l/10	4		0.1	34			10	0.4		330	21	5.55		0.			37			1	4	57	8	128	8 13/
		X clean sandstone w sl. weath surfaces, some chert Fx-rich laminae s/c		km 393.3 116l/10	4		0.1	1			10	0.4			1	0.28		0.		0.5	· · · · · · · · · · · · · · · · · · ·	120		1	0.5	22	8	16	8 4
95DH-041	Ct	pervasively altered med to c.g. sandstone w altern rigs of hem/lim (nod?) float		km 393.3 116l/10	4		0.1	18			10	0.4		91	197	16.00				0.5		620		1	9	13	8	235	8 484
		X clean c.g. clast to matr (sand to fg cgl) supp cgl w elongate chert pebbles s/c		km 393.3 116l/10-	4		0.1		4 24	10	1 0.0				1	0.46		0.		0.5		340	_	1	0.5	35	8	19	8
		X orange coated chert cgl and sandstone. float		Heli-recce	4		0.1	8	· · · ·	0	1 0.13		1	29	29	2.27		0.				140		1	5	33	8	52	8 4
	Ct	orange clay-stained sandstone		Heli-recce	4		0.1	10			2 0.66	_		33	51	10.75		1.				900		2	7	40	8	8 69	8 120
		X slightly oxidized sandstone+cgl. float		Heli-recce	4		0.1	4			1 0.01				7	2.26		0.				120		1	1	17	8	32	8 1,
	Ct	oxidized fg cgl.float		Heli-recce	4		0.1	230			1 0.4				27			0.			97	950		2	5	58	8	3 122	8 15
96 DH 92	Ct	f+c.g. sandstone w rusty seams, clay Fx and tr shiny black ox?		C+SE 1161/7 Wolverine ck down Corbett Hill	4		0.1 1.5	6 4			1 0.13		1	197	13	3.36	0.5	8 0.		; 0.5		810	-	1	3	13	8 8	8 64	8 7
96 DH 93B		X greenish f to c.g. sandstone to cgl		C+SE 116I/7 Wolverine ck down Corbett Hill	4		0.1 0.2	2 6			1 0.04		3	275	6	0.89	0.5	8 0.	3 25	0.5	11	170	i	1	0.5	22	8 8	12	8 5/
96 DH 93C	Ct	yellow rusty weath greenish m.g. sandstone w liesegang bands w tr py clots and gp blebs		C+SE 116I/7 Wolverine ck down Corbett Hill	4		0.2 0.	-	3 31	0	1 0.02		4	135	19	3.01	0.5	8 0.	3 25		19	70	10	1	2	27	8 8	33	8 9
	Ct-Cf	X i/b grey maroon shale and it green maroon weath clean sandstone w small dk specs	o/c	C+SE 116I/7 Wolverine ck down Corbett Hill	4		0.1 0.6		4 39	90	1 0.05	5 0.4	4	211	13	0.96	0.5	8 0.	9 20			260	6	1	2	14	8 8	25	8 11/
96 DH 95	Ct-Cf	dk grey, maroon weath sh i/b w siliceous siltstonen nodular and pyritic	o/c	C+SE 116I/7 Wolverine ck down Corbett Hill	4		0.1 0.	6 36	3 38	30	1 1.13	3 0.4	5	51	27	16.00	0.5	8 0.	505 505	0.5	16	2190	28	1. 1	4	81	8 8	69	8 7
96 DH 98	Ct?	coarse sandstone w pod of f to cg py on So	float	C+SE 116I/7 Wolverine ck down Corbett Hill	4		0.1 1.0	4 24	ŧ 3	80	1 0.04	4 0.4	4	109	11	5.69	0.5	8 0.	7 5	3	23	340	16	1	1	5	8 8	46	8 4
96 DH 99	Ct	X Tuttle cgl	sl/c	CE 116I/7 E of highway, S of Eagle River	4		0.1 0.1	7 6	3 45	50	1 1.42	2 0.5	5	9	4	16.00	0.5	8 1.	6 290	0.5	11	1640	12	. 1	0.5	88	8 10	24	8 6
96 HR-18	Ct	red soil sample below Ct		66 29.79, 136 36.83	4		0.1 1.1	3 18	3 108	30	1 (0 0.4	0.5	21	26	3.36	0.5	8 0.)6 5	4	3	140	16	1	3	27	8 8	42	8 1'
96 HR-22	Ct	X f.g. sandstone		66 30.44	4		0.1 0.2	5 6	5 70	0	1 0.0	1 0.4	0.5	169	9	0.94	0.5	8 0.)1 5	0.5	6	180	2	. 1	1	27	8 8	14	8 4
96 HR-24	Ct	X orange weathering		66 33.56, 136 55.02	4		0.1 0.5	8 2	2 95	50	1 (0 0.4	0.5	84	9	0.53	0.5	8 0.	5 5	0.5	7	60	6	1	1	25	8 8	18	8 2
96 HR-25	Ct	X orange weathering		66 34.69, 136 53.71	4		0.1 0.2	9 4	46	50	1 (0 0.4	0.5	186	6	0.99	0.5	8 0.	1 10	0.5	3	230	6	1	0.5	39	8 8	17	8 1/
96 HR-26	Ct	X		66 32.80, 136 52.16	4		0.1 0.5	5 2	2 98	30	1 0.02	2 0.5	1	144	16	0.63	0.5	8 0.	9 15	0.5	11	200	6	1	1	18	8 8	8 21	8 5'
		X			4		0.1 0.2	1 8	3 79	90	1 (0 0.4	0.5	159	10	1.43	0.5	8 0.	01 5	0.5	3	170	6	1	0.5	27	8 8	17	8 1/
		X		66 33.51, 136 46.16	4		0.1 0.6	1 1	1 32	20	1 (0 0.4	0.5	105	10	0.41	0.5	8 0.)5 5	0.5	8	100	6	1	1	29	8 8	17	8 1/
96 HR-30	Ct?	rusty slump?		66 34.55, 136 40.05	4		0.1 0.2	9 6	5 126	50	1 0.04	4 0.4	1	127	6	1.46	0.5	8 0.	3 25	1	10	200	6	1	0.5	36	8 8	8 16	8 4'
96 HR-40A	Ct	X very coarse grained rusty cgl		66 43.09, 136 42.16	4		0.1 0.	2 6	6 47	0	1 (0 0.4	0.5	233	14	0.8	0.5	8 0.	01 10	1	4	110	4	1	0.5	26	8 8	3 27	8 /
		X non rusty Ct		66 42.87, 136 41.99	4		0.1 0.1	2 1	1 18	30	1 (0 0.4	0.5	201	1	0.25	0.5	8	0 10	0.5	3	70	2	. 1	0.5	12	8 8	10	8
		X		66 28.85, 136 28.66	4		0.1 0.1	6 1	1 21	0	1 (0 0.4	0.5	177	2	0.85	0.5	8	0 15	0.5	3	80	4	1	0.5	13	8 8	11	8
96 HR-43	Ct	X		66 23.10, 136 35.18	4		0.1 0.1	8 1	1 10	00	1 (0 0.4	0.5	162	2	0.31	0.5			0.5	3	60	2	. 1	0.5	7	8 8	17	8
96 HR-53	Ct/Cf	X rusty Di at contact		66 26.63, 136 29.18	4		0.1 0.6	7 1	1 10	00	1 0.05	5 0.4	1	163	4	0.95	0.5	8 0.	1 15	0.5	18	280	2	. 1	1	18	8 8	17	8 6'
		X		66 19.46, 136 25.04	4		0.1 0.3	1 12	2 64	10	1 0.01	1 0.4	0.5	184	6	1.44	0.5	8 0.	01 20	0.5	3	1460	6	1	0.5	96	8 8	44	8 /
96 HR-59	Ct in Cf	X rusty cgl		66 19.39, 136 26.99	4		0.1 0.2	7 1	48	30	1 (0 0.4	0.5	198	7	0.74	0.5	8 0.	02 5	0.5	4	90	4	1	0.5	20	8 8	13	8 1/
96 HR-60	Ct in Cf	X rusty cgl			4		0.1 0.4	4 12	2 61	0	1 (0.4	0.5	139	10	0.71	0.5	8 0.	3 5	2	4	70	8	1	0.5	17	8 8	18	8. /
				average			0.20 0.4	9 20.50	444.3	88 2.0	0 0.23	3 0.50	4.40	146.78	17.88	2.05		0.	7 82.34	2.64	15.44	475.63	7.74	2.00	3.00 3	30.81	10.00	40.69	58.26
				median			0.20 0.3	1 7.00	385.0	0 2.0	0 0.04	4 0.50	4.00	151.50	9.50	0.95		0.	3 12.50	2.00	7.50	175.00	6.00	2.00	2.00 2	25.50	10.00	22.50	40.00
				min			0.00 0.1	2 2.00	30.0	0.0	0 0.01	1 0.50	1.00	9.00	1.00	0.25		0.	5.00	1.00	3.00	60.00	2.00	0.00	1.00	5.00	10.00	10.00	2.00
				max			0.20 1.5	6 230.00	1260.0	0 2.0	0 1.42	2 0.50	17.00	330.00	197.00	10.75		1.	6 1405.00	7.00	97.00	2910.00	32.00	2.00	9.00 9	96.00	10.00	235.00	484.00
				standard dev			0.3	7 45.71	356.2	7	0.42	-	1	76.18	34.39	2.49		0.3	260.73	1.86	21.01	680.27	7.35	0.00	2.40	22.46		45.86	89.64
				95th percentile			0.20 1.1	_			-	-							8 386.75								10.00	124.70	143.00

Page 1

C Tuttle- all samples

CFord Lake- rep samples

Sheet2

detection limit					! 5	i		0.2	0.01	2	10	2	15	0.5	1	1!	1:	15 0	0.5	10	1	1	11	1	8 i	2	2	1	10	10	1	10	
			sample		Au ppb	Pt	Pd	Ag		As	Ba	BI	Ca	Cd	Co	Cr	Cu	Fe I	Ha	La	Ma	Mn	Mo	Ni	P	Pb	Sb	Sc S	r Tl	U	V	W	Zn
sample number	Fm	re	p description	sample location	FA+AA	ppb	ppb	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	% pp	om p	pm	%	ppm	ppm	ppm	ppm	ppm p	pm p	om pp	n ppm	ppm	ppm p	ppm	ppm
00110.00	000			66 35.42, 136 36.27				0.4	0.40		0.10																						
96 HR-32	CT		slump rx		4				0.19	8	940	1	0	0.4	0.5	150	9	1 C).5	8 0	.01	15	1	8	150	4	1 (D.5 1	8 8	8	14	8	30
96 HR-44	Cf	X	black shale i/bedded w sandstone	66 22.96, 136 35.11	4				1.58	20	410	1	0.06	0.4	7	52	37 3	.73 0).5	8 0	.16	45	0.5	28	660	18	1	4 3	3 8	8	80	8	142
96 HR-52A	Cf	X			4			0.1	1.17	1	1340	1	0.62	0.5	7	89	19	2.1 0).5	8 0	.53	115	0.5	34	420	8	1	4 4	1 8	8	34	8	126
96 HR-52B	Cf	X			4			0.1	1.7	8	400	1	0.13	0.4	12	63	45 2	.76 0	0.5	8 0	.48	105	2	51	360	16	1	5 2	2 8	8	44	8	198
96 HR-54A	Cf	X	black shale w rusty nodules	66 26.57, 136.29.89	4		1	0.2	2.65	14	480	1	0.04	0.4	6	50	33 4	.18 0).5	8 0	.39	30	0.5	39	140	20	1	5 2	6 8	8	89	8	126
96 HR-54B	Cf	X			4			0.1	0.65	20	100	1	0.03	0.4	1	140	6 1	.63 0).5	8 0	.11	10	0.5	10	60	2	1	1	7 8	8	34	8	- 44
96 HR-55	Cf	X		66 25.87, 136 31.21	4			0.1	1.28	32	130	1	1.34	0.4	7	54	18 9	.86 0).5	8 0	.65	160	1	27 :	3520	18	1	4 9	0 8	8	87	8	124
96 HR-56	Cf	X	unconsolidated material	66 20.56, 136 22.14	4			0.1	0.7	48	330	1	0	0.4	1	14	23	5.8 0	.5	8 0	.05	4	31	6	380	20	1	3 2	3 8	8	41	8	38
96 HR-57	Cf	X		66 18.04, 136 18.88	4			0.1	0.9	16	220	1	0.22	0.4	1	21	60 5.	.98 0	.5	8 0	.27	130	6	12	220	12	1	6 3	7 8	8	43	8	26
96 HR-6A	Cf	X		66 08.09, 136 15.09	4		-	0.1	1	16	360	1	0.06	0.4	3	23	34 1.	.14 0	.5	8 0	.12	15	6	34	150	14	1	4 4	7 8	8	26	8	80
96 HR-8	Cf	X	maroon weath dk grey flimsy shale w pinch and swell beds of f.g. sandstone	o/c 66 06.74, 136 16.23	4			0.4	1.92	18	430	1	0.03	0.4	4	72	23 4.	.47 0	.5	8 0	.24	25	0.5	37	260	14	1	3 2	2 8	8	109	8	172
96 HR-9	Cf	X	rusty sandstone, folded	66 06.23, 136 17.65	4			0.1	0.38	4	110	1	0.28	0.4	7	90	14 5.	.77 0	.5	8 0	.19	310	0.5	23	370	8	1	5 2	8 10	8	46	8	104
					<u> </u>											1								1			1						
				average						18.55	437.5		0.281	0.5 5			26.8 4.	.04		-		37.3 7	.833 2	25.8 5	57.5	12.8		4 32.1	7		53.9	1	00.8
				median					1.09	16	380		0.095	0.5	6	58.5	23 3.	.96		0	.22	45	4 2	27.5	310	14		4 24.	5		43.5		114
				min					0.19	4	100		0.03	0.5	1	14	6	1		0		10	1	6	60	2		1	7		14		26
				max					2.65	48	1340		1.34	0.5	12	150	60 9.	86		0.	.65	310	31	51 3	3520	20		6 9	0		109		198
		1		standard dev	1			0.115	0.7		363.3		0.414 #	DIV/0! 3	3.448 4	43.5	15.7 2.	57			0.2 9	1.2 1	1.58 1	4.2 9	47.1	6.12	1.	34 21.2	7		29.6		57.4
				95th percentile				0.4	2.25	40	1120		1.016	0.5	9.5	145	51.8 7.	73		0.	.58	235 2	4.75 4	4.4 1	1947	20	5	5 66.3	51		98	1	83.7

Page 1

CFord Lake- rep samples

Dus- all samples

Sheet1

detection limit					· · · · · · · · · · · · · · · · · · ·	51.	· · ·	0.2 0	101			45	0.51									<u> </u>							
			sample			Au ppb Pt	-	Ag Al		2 10			0.5	1 1			0.5	10		1	1	8	2	2	1	10	10	1	10
sample number	Fm	rep	description		sample location					Ba			Cd Co				· · · · · · · · · · · · · · · · · · ·	La Mg	Mn	Mo N)	Pb	Sb	Sc Sr	TI	UN	/	W Zn
					Sample location	FA+AA ppb	ppb	ppm %	ppm	ppm	ppm	% F	opm ppn	1 ppm	ppm	% p	ppm pp	m %	ppm	ppm p	pm p	pm	ppm	ppm	ppm ppm	ppm	ppm p	pm	ppm ppm
95DH-061	Dss		fin band friable yel to grey weath grey shale w ox band cut by disc Vcarb?2m		3.5 km N of lodge1161/7			0.2	24																				
95DH-187	Dus?		yellow weathering crumbly grey shale w white and blue clay gouge		Heli-recce	4			16			0.41	1 1	30	44 1			0.0		6	23	250	14	1	3 4	14	8	132	0.50 9
95DH-188	Dus	X	rusty brown loc yellow weath grey shale		Heli-recce	4		0.1	- 10		· · · · ·		0.4 19		59 3.4			0.3	-		80	260	16	1	6 4	\$1	8	63	0.50 28
95DH-191	Dus		soft grey shale, nodular siltstone		Heli-recce	4		0.1	4	1110			0.4 0.5		9 0.6	-		0.0		1	4	60	6	1	1 1	19	8	26	0.50
96 DH 100	Dus or Dss	X	unconsolidated blue grey, yellow weathering flaky shale	sl/c	CE 116I/7 E of highway, S of Eagle River	4).59 46	4 690			0.4 0.5		6 1.0			0.0		[1	4	290	4	2	1 3	36	8	27	0.50
96 DH 103A	Dus or Dss		grey, loc yellow eath fractured shale		CE 1161/7 E of highway, S of Eagle River	4				80			0.5 0.5		12 4.9		0.5	8 0.0		8	4	640	12	1	2 8	85 8	8	49	8 2
96 DH 103B	Dus		composite sample of rusty-orange weathering shale/siltstone chips		CE 116I/7 E of highway, S of Eagle River	4		0.1	0.8 16	3 750			0.4 0.5		37 1.2		0.5	8 0.0	-	5	8	90	12	1	2 3	84 8	8	19	8 3
96 DH 104	Dss or Ct	?	blocky orange-red weath siltstone		CE 116I/7 E of highway, S of Eagle River	4				5 1350			0.4 0.5		6 0.6	-	0.5	8 0.0		2	3	60	6	1	1 2	29 8	8	14	8
96 DH 105	Dus		clay altered, fractured grey-black greasy shales, loc yellow weath, one rusty fract siltst bed		NE 116//7, w of highway, S of Eagle River	4		0.1 0		540	· · · · ·		0.4 7	14	19 16.0		0.5	8 1.9		0.5	99	240	8	1	8 3	88 8	8	31	8 13
96 DH 207	Dus	X	chips of grey weathering shale		NE 116//7, w of highway, S of bhoge	4	_	0.1 1		3 250			0.4 3	22	24 3.6	_	0.5	8 0.3			22	210	14	1	3 5	52 8	8	42	8 5
96 DH 93A	Dus?		rusty weath greenish f.g. sandstn 2-5cm i/b w grey weath blocky shale		C+SE 116I/7 Wolverine ck down Corbett Hill	4		0.1 0		2 390			0.4 2	2 73	12 1.2		0.5	8 0.1	1 20	5	11	70	8	1	2 2	24 8	8	26	8 4
96 DH 96A	Dus		thin platy grey-blue, yellow weath sh/sandstone. some graded beds, sulph smell. 25cm		C+SE 116//7 Wolverine ck down Corbett Hill C+SE 116//7 Wolverine ck down Corbett Hill	4		0.1 2		650		0.03	0.4 4	57	30 3.7		0.5	8 0.2	8 30	0.5	24	100	12	1	5 3	82 8	8	69	8 9
96 DH 96B	Dus		layer of nodular light grey pyritic siltstone w masss and diss sulph bands and core. bedded		C+SE 116/7 Wolverine ck down Corbett Hill C+SE 116/7 Wolverine ck down Corbett Hill	4		0.1 0.		/ 000			0.4 0.5		8 0.6		0.5	8 0.0	7 4	8	23	180	16	2	1 4	7 8	8	87	8 1
96 DH 96C	Dus		composite sample of sulph-rich siltstone- banded (bedded) and podiform		C+SE 1161/7 Wolverine ck down Corbett Hill C+SE 1161/7 Wolverine ck down Corbett Hill	4		0.1		3 50	1		11 11		162 12.8	_	0.5	8 0.8	4 715	34	97	340	12	1	8 6	67 8	10	55	8 71
96 DH-102	Dus or Dss		trail of rusty desintegrated rock		CE 116//7 E of highway, S of Eagle River	4		0.1 0.		8	1		0.4 4	59	25 10.8	<u> </u>	0.5	8 0.0	5 5	11	23	50	8	1	1	6 8	8	33	8 2
96 HR-16	Dus?	X			66 27.24, 136 43.20	4		0.1 8.		3 30		-	0.4 2	119	21 4.5		0.5	8 0.0		4	5	200	12	4	87 1	3 8	8	216	8 3
96 HR-17	Dus?	X			66 28.14, 136 42.36	4		0.1 0.		380		0.00	0.4 6	69	26 13.1	-	1	8 1.1		0.5	21	440	8	1	4 3	8 0	8	25	8 8
96 HR-19	Dus	X			66 30.39, 136 44.93	4		0.1 0.		400			0.5 5	40	27 1.4		0.5	8 0.2	_	1	64	160	8	1	3 2	7 8	8	31	8 12
96 HR-20	Dus	X			66 29.38, 136 52.88	4			.66 8	660			0.4 0.5		21 0.9		0.5	8 0.0		3	8	110	10	1	1 1	5 8	8	33	8 3
96 HR-21	Dus	-	orange gossany chips		66 30.43, 136 53.88	4			.68 12	220			0.5 19		55 2.6	4	0.5	8 0.7	5 130	1	77	410	18	1	5 2	4 8	8	44	8 25
96 HR-23A	Dus?	X			66 30.19, 136 51.92	4			0.2 4	520			0.4 4		12 2.1		0.5	8 0.2	3 145	1	25	80	4	1	1 5	2 8	8	12	8 8
96 HR-23B	Dus?	X	rusty		66 30.19, 136 51.92	4	1	0.1 0.					0.4 0.5	+	5 0.5	-	0.5	8 0.0	3.5	4	5	40	6	1	0.5 2	8 0	8	15	8 1
96 HR-29	Dus	X	yellow weath, greasy grey friable shale w thin orangy resistant bands. slump, sulphur smell		66 33.51, 136 44.12	4		-	0.5 8	840	· · · · · ·		0.4 2		10 1.0		0.5	8 0.0	3 5	3	8	90	6	1	1 1	7 8	8	21	8 3
96 HR-31A	Dus	X	y and a start of the second of		66 33.32, 136 40.05	4		0.1 1.		100			0.5 13	29	71 2.3		0.5	8 0.5	7 85	12	105	280	14	1	5 6	4 8	8	59	8 23
96 HR-31B	Dus		slime in creek bed, coating boulders		66 33.32, 136 40.05	4		0.1 1.		120			0.4 7	37	37 2.5		0.5	8 0.2	-	10	43	120	14	1	4 5	3 8	8	48	8 8
96 HR-39	Dus	X	yellow weathering shale, folded, some thicker siltstn beds		66 41.00, 136 35.42	4			0.8 16	100			0.4 2	16	20 6.6		0.5	8 0.12		5	11	220	18	1	3 3	7 8	8	29	8 4
96 HR-45	Dus		rusty weathering black shale		66 21.32, 136 36.84	4			0.2 6	160			0.4 1	234	16 0.8	-	0.5	8 0.02	2 15	0.5	6	320	6	1	0.5 1	6 8	8	22	8 1
96 HR-61	Dus	X	shale, yellow coating		66 20.62, 136 39.62	4		0.1 1.		560			0.4 4	37	26 3.9		0.5	8 0.2	2 20	0.5	38	1210	20	1	6 3	7 8	8	82	8 10
96 HR-62	Dus		shale, no sulph smell		66 22.61, 136 37.74	4		0.1 0.		310			0.4 0.5	29	10 1.5		0.5	8 0.08	3 4	11	26	150	14	1	2 4	2 8	8	67	8 3
					00 22.01, 130 31.14	4		0.2 2.	.31 18	280	1	0.07	0.4 8	41	35 3.2	8 (0.5	8 0.42	2 30	0.5	39	130	18	1	5 3	9 8	8	94	8 17
																				i									
		· · · · ·			average					461.07					29.14 3.3			0.29	182.80						6.33 35.8		10.00	50.72	99.8
					median		-		.80 14.00					42.00		1 1.		_	30.00			180.00	12.00	2.00	3.00 36.0	0	10.00	33.00	99.8 46.0
					min				.20 4.00					13.00		2 1.		0.02							1.00 6.0		10.00	12.00	6.0
					max		-		.57 46.00						62.00 13.1	5 1.	.00	1.98	1555.00	34.00	105.00	1210.00	20.00	4.00 8	7.00 85.0	0	10.00	216.00	718.0
• • • • • • • • • • • • • • • • • • • •					standard dev	1			.63 11.31					58.26					413.87									42.35	140.7
	-i	·			95th percentile			0.2 2.3	33 42.80	1220.50		0.99 8.	50 19.00	196.80	66.20 12.1	5 1.	.00		1255.00								10.00		271.2

.

.

. .

.

1

.

Page 1

D Unnamed shale- all samples

Dunnamed shale- rep samples

Sheet2

detection limit						5		0.2	0.01	2	10	2	15	0.51		41		0.5	10											
····			sample			Au ppb P	t Pd	Ag		4	Ba		Ca	0.5	Co	Cr		0.5	10		- 1	1	8	2	2	1		10 10	1	10
sample number	Fm	rep	description	1	sample location	FA+AA p				opm	ppm	DI							La Mg			Ni	Р	Pb	Sb	Sc Sr		U	v	W Zn
							po ppo	ppin	/0 P	Jpn:	ppin	ppin	70	ppm	ppm i	ppm p	pm %	ppm	ppm %	ppm	ppm	ppm	ppm	ppm	ppm	ppm pp	om ppm	ppm	ppm r	ppm ppm
95DH-188	Dus	Х	rusty brown loc yellow weath grey shale		Heli-recce	4		0.1			1110		-	0.4	0.5	450		<u> </u>												
95DH-191	Dus	X	soft grey shale, nodular siltstone		Heli-recce	4		0.1		4	690		0.02	0.4	-0.5	153 222	9 0.66			.04	5 1	4	60	6	1	1	19	8		0.50 6
96 DH 100	Dus or Ds	ss X	unconsolidated blue grey, yellow weathering flaky shale	sl/c	CE 116I/7 E of highway, S of Eagle River	4				46	80		0.02	0.4	0.5	222	6 1.05 12 4.96			4 4	5 1	4	290	4	2		36	8	27 (0.50 12
96 DH 103A	Dus or Ds	ss X	grey, loc yellow eath fractured shale		CE 116I/7 E of highway, S of Eagle River	4			0.35	16	750		0.01	0.5	0.5	54	37 1 21			.03	4 18	4	640	12	1	2	85	8 8	49	8 24
96 DH 207	Dus	X	chips of grey weathering shale		NE 116//7	4	· · · ·		0.55	10	390		0.01	0.4	0.5	70		0.5		.05	4 5	8	90	12	1	2	34	8 8	19	830
96 DH 93A	Dus?	X	rusty weath greenish f.g. sandstn 2-5cm i/b w grey weath blocky shale		C+SE 116I/7 Wolverine ck down Corbett Hill	4			2.34	10	650		0.03	0.4	2	73	12 1.27	0.5		.11 2	0 5	11	70	8	1	2	24	8 8	26	8 44
96 DH 96A	Dus		thin platy grey-blue, yellow weath sh/sandstone. some graded beds, sulph smell. 25cm		C+SE 116I/7 Wolverine ck down Corbett Hill	4			0.89	18	800		0.03	0.4	4	00	30 3.79			.28 3	0 0.5	24	100	12	1	5	32	8 8	69	8 94
96 HR-16	Dus?	X			66 27.24, 136 43.20	4		_	0.55	6	380		0.99	0.4	0.5	69	8 0.66			.07	4 8	23	180	16	2	1	47	8 8	87	8 12
96 HR-17	Dus?	X		·	66 28.14, 136 42.36	4	_		0.93		400		0.99	0.4		69	26 13.15	1		.11 139	0 0.5	21	440	8	1	4	30	8 8	25	8 82
96 HR-19	Dus	X			66 30.39, 136 44.93	4			0.66	0	660	-	0.01	0.5	0.5	40	21 0.98	0.5		.21 3	5 1	64	160	8	1	3	27	8 8	31	8 128
96 HR-20	Dus	X			66 29.38, 136 52.88	4		_	1.68	12	220		0.48	0.4	0.5	02	21 0.98	0.5		.09 1	5 3	8	110	10	1	1	15	8 8	33	8 38
96 HR-23A	Dus?	X			66 30.19, 136 51.92	4		_	0.46	6	1280		0.48	0.5	0.5	30	5 0.52	0.5		.76 13	0 1	/	410	18	1	5	24	8 8	44	8 258
96 HR-23B	Dus?	X	rusty	·	66 30.19, 136 51.92	4			0.40	8	840	- 1	0.01	0.4		101	0 0.52	0.5		.03	5 14	5	40	6	1	0.5	20	8 8	15	8 16
96 HR-29	Dus	X	yellow weath, greasy grey friable shale w thin orangy resistant bands, slump, sulphur smell		66 33.51, 136 44.12	4			1.73	16	100	1	0.49	0.4		29	10 1.02	0.5		.03	5 3	8	90	6	1	1	17	8 8	21	8 30
96 HR-31A	Dus	X			66 33.32, 136 40.05	4		-	1.37	16	120	1	0.49	0.5	7	29	71 2.31			.57 8	5 12	105	280	14	1	5	64	8 8	59	8 234
96 HR-39	Dus	X	yellow weathering shale, folded, some thicker siltstn beds		66 41.00, 136 35.42	4		0.1		6	160	1	0.08	0.4	-1	234	16 0.83	0.0		.25 5	0 110	43	120	14	1	4	53	8 8	48	8 84
96 HR-61	Dus	X	shale, yellow coating		66 20.62, 136 39.62	4			0.98	18	310	1	0.00	0.4	0.5	234	10 0.83	0.0		.02 1	5 0.5	6	320	6	1	0.5	16	8 8	22	8 18
96 HR-62	Dus	X	shale, no sulph smell		66 22.61, 136 37.74	4			2.31	18	280	- 1	0.23	0.4	0.5	29	10 1.00	0.5		.08	4 11	26	150	14	1	2	42	8 8	67	8 38
								0.2	2.31	10	200		0.07	0.4	-0	41	35 3.28	0.5	8 0	.42 3	0 0.5	39	130	18	1	5	39	8 8	94	8 178
					average	-		0.20	1.03	12.89	512 22		0.18	0.50	6.70 75	22 22	72 2.44	1.00		00 400 0			00444	10.07						
					median				0.85	11.00			0.08			5.50 18		1.00		.23 132.8			204.44			2.75			42.33	73.67
					min				0.20		80.00		0.00				00 0.52			.09 30.0	0 4.50	10.00	140.00			2.00			32.00	38.00
					max					46.00 1			0.99	0.00			00 13.15			.02 5.0	1.00	4.00		4.00	2.00		15.00		15.00	6.00
					standard dev			0.20	0.66	9.66			0.99				14 2.94			.11 1390.0				18.00	2.00		85.00		94.00	258.00
					95th percentile			0.20		22.20 1			0.64				40 6.19	less.		.30 363.4			161.62	4.39	0.00		18.44		23.99	77.62
						·		0.201	2.32	22.20	100.00		0.04	0.50	0.301 223	5.00 57.	401 0.19	1.00	0	.81 571.0	0 11.35	81.20	470.00	18.00	2.00	5.00	67.15		88.05	237,60

D Unnamed shale -rep samples

CHart River - all samples

.

Sheet1

detection limit		1			5	5		0.2 0	0.01	2	10	2	15	0.5	1	1	1	15	0.5	10	1	1		8	3 2	2	1		10 1	0 1	10
			sample		Au ppb	Pt	Pd /	Ag Al	A	s	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	Hg	La Mg	Mn	Mo	Ni	Р	Pb	Sb	Sc S	Sr TI		JV	W Zn
sample numb	er Fm	rep	description	sample location	FA+AA	ppb	ppb ş	ppm %	p	pm p	pm p	pm	%	ppm	ppm	ppm p	pm	%	ppm pj	om %	ppm	ppm	ppm	ppm	ppm	ppm	ppm	opm ppn	n ppr	n ppm	ppm ppm
95DH-123	CHr	x	rep sample of beige weath It grey, finely bedded (50-30cm) fg limestone	km 350		4		0.1		2	20	1	16.00	0.4	0.5	11	1	0.08		0.	19	5 0.5	;	3 100) 1	1	0.5	699		8 6	8 32
96 HR-12	CHr	X	· · · · · · · · · · · · · · · · · · ·	66 09.67, 136 26.10,1161/1	4	1		1 0	0.23	1	80		16.00	1	0.5	53	12	0.41	0.5	8 0	25 4	5 0.5	1:	2 1040	0 1	1	0.5	484	8	8 46	8 64
96 HR-13A	CHr?	X		66 09.63, 136 27.24, 1161/1	4	1		4 0	0.35	6	100	1	16.00	21	1	120	38	0.46	0.5	10 0.	18 30	16	49	1330) 4	1	2	536	8	8 113	8 710
96 HR-13B	CHr?	X		66 09.63, 136 27.24, 1161/1	4	4		1.6	2.7	10 2	280	1	3.41	0.5	1	159	19	1.11	0.5	20 0.	17 2	5 3	43	3 1120) 4	1	5	310	8	8 94	8 86
96 HR-14A	CHr?	·X	friable grey shale w rusty beds and nodules.	1161/2	4	4		1.2 2	2.02	20	90	1	5.51	0.4	4	87	16	2.1	0.5	20 0.	13 20	0 6	50	24900	18	1	17	380	8	8 119	8 124
96 HR-14B	CHr?	-	large nodules overlain by small nod and clayey pods in busted up shales. HS smell	1161/2	4	1		6.6 1	1.88	50	90	1	6.12	5	3	253	62	2.75	0.5	30 0.	16 20	43	; 13	59000	6	1	7	306	8 3	0 157	8 362
96 HR-14C	CHr?		clay altered and red-ochre altered limestone?	1161/2	4	4		5.2 0	0.78	32	70	1	11.95	17	1	112	42	0.48	0.5	20 0.	41 2	5 20	79	2560	2	1	4	515	8	8 369	8 284
96 HR-15	CHr	X	clean limestone	66 09.29, 136 42.77	4	4		0.1	0.1	1	30	1	14.3	0.4	0.5	35	1	0.22	0.5	8 0.	61 1	5 0.5	1 8	3 700) 1	1	0.5	728	8	8 8	8 28
96 HR-65	CHr?	Х	limestone	66 15.63, 137 00.97	4	1		0.1 0	0.12	1	70	1	16.00	0.4	0.5	24	0.5	0.11	0.5	8 0	68 1	5 0.5		3 270) 1	1	0.5	1100	8	8 7	8 20
				average		1		2.81 1	1.02	20 9	2.2	1	8.258	7.483	2 9	94.889 2	3.9 (0.858		20 0.3	09 22.2	2 17.6	42.66	7 10113.3	6.8		7	562	3	0 102.1	190
				median	4	4		1.6 0			80	1	6.12	3	1	87 1		0.46			19 20	0 16	4:	3 1120			5	515	3	0 94	86
				min	4	1		0.1	0.1	2	20	1	3.41	0.4	1	11	1	0.08	0	10 0.	13	5 3		3 100	2	0	2	306	0 3	0 6	0 20
		1		max	4	4		6.6	2.7	50 2	280	1	14.3	21	4	253	62	2.75	0	30 0	68 4	5 43	13	59000) 18	0	17	1100	0 3	0 369	0 710
				standard dev		-		2.46 - 1	1.02 1	18.2 7	5.5	4	1.6304	9.17	1.414 7	77.054 2	1.6 0	0.953	7.	.07 0.2	08 11.2	2 15.82	44.16	2 19974.1	6.419		5.87	252		114.6	229
				95th percentile	4	4		6.18 2	2.46	45.5 2	208	1	13.83	20	3.8	215.4	55	2.49		28 0.6	52 39	38.4	113.	45360	15.6		15	951	3	0 284.2	571

Page 1

.

C Hart River- all samples

>

CHart River- rep samples

Sheet2

detection limit					5	5	Γ	0.2 0.01	1	2 10) 2	2 15	0.5	1	1	1	15	0.5	10	1		1	1	. 8	2	2	1		10	10	1	10
		ĺ	sample		Au ppb	Pt	Pd	Ag Al	As	Ba	B	i Ca	Cd	Co	Cr	Cu	Fe	Hg	La N	/g N	Vin	Mol	Ni F	Þ	Pb	Sb	Sc	Sr	TI	UV		WZn
sample numb	er Fm	rep	description	sample location	FA+AA	ppb	ppb	ppm %	ppm	ppm	n ppm	n %	ppm	ppm	ppm	ppm	%	ppm	ppm %	6 F	opm	ppm	opm I	ppm	ppm	ppm	ppm	ppm	ppm	ppm pj	pm p	ppm ppm
95DH-123	CHr	x	rep sample of beige weath It grey, finely bedded (50-30cm) fg limestone	km 350		1		0.1		2 20) 1	1 16.00	0.4	0.5	11	1	0.08			0.19	5	0.5	3	100	1	1	0.5	699		8	- 6	8 3
96 HR-12	CHr	X		66 09.67, 136 26.10,1161/1	4	1		1 0.23	3	1 80) 1	1 16.00	1	0.5	53	12	0.41	0.5		0.25	45	0.5	12	1040	1	1	0.5		8	8	46	8 6
96 HR-13B	CHr?	X		66 09.63, 136 27.24, 1161/1	4	1		1.6 2.7	/ 1	0 280	1	1 3.41	0.5	1	159	19	1.11	0.5	20	0.17	25	3	43	1120	4	1	5	310	8	8	94	8 8
96 HR-15	CHr	X	clean limestone	66 09.29, 136 42.77	4	1		0.1 0.1	1	1 30) 1	1 14.3	0.4	0.5	35	1	0.22	0.5	8	0.61	15	0.5	8	700	1	1	0.5	728	8	8	8	8 2
96 HR-65	CHr?	X	limestone	66 15.63, 137 00.97		1		0.1 0.12	2	1 70	1	1 16.00	0.4	0.5	24	0.5	0.11	0.5		0.68	15	0.5	3	270	1	1	0.5		8	8	7	8 20
				average		1		0.9 0.79)	6 96	i 1	1 8.855	0.633	1	56.4	8.25	0.386		20	0.38	21	3	13.8	646	4		5	664.2			32.2	
				median	4	1	<u> </u>	1 0.18	3	6 70) 1	1 8.855	0.5	1	35	6.5	0.22		20	0.25	15	3	8	700	4		- 5	699			8	3
				min	4	\$		0.1 0.1	1	2 20) 1	1 3.41	0.4	1	11	1	0.08		20	0.17	5	3	3	100	4		5	310			6	21
				max	4	ł		1.6 2.7	1	0 280	1	1 14.3	1	1	159	19	1.11		20	0.68	45	3	43	1120	4		5	1100			94	8
				standard dev				0.755 1.28	5.65	7 106	;	7.7	0.321		59.4	8.846	0.4249			0.24	15.2		16.75	453				297.1			38.46	27.93
				95th percentile	4	1		1.54 2.33	3 9.	6 240	1	1 13.76	0.95	1	138	17.95	0.97		20	0.67	41	3	36.8	1104	4		5	1026			84.4	81.6

CHart River- rep samples

Jk - all samples

Sheet1

detection limit						5			0.2	0.01	2	10	2	15	0.5	1	1	1	15	0.5	10				1 1	8	2	2	1		10	10 1	10
			sample			Au ppb	Pt	Pd	Ag	AI	As	Ba	Bi	Ca	Ċd	Co	Cr	Cu	Fe	Hg	La	Mg	Mn	Mo	o Ni	Р	Pb	Sb	Sc S	r Ti		UV	W Zn
sample number	Fm	rep	description		sample location	FA+AA	ppb	ppb	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	n ppm	ppm	ppm	ppm	ppm p	pm ppm	pr	m ppm	ppm ppm
95DH-197	JKnb?	x	clean white sandstone, slightly oxidized		Heli-recce	4			0.1		1	20	1	0.01	0.4	0.5	335	2	0.59			0) 10	0.5	5 3	40	2	1	0.5	3		8 4	0.50
96 DH 193	Jk	X	super clean sandstone, vitreous grey weath, rusty fracture planes	float	NE 1161/16	4			0.1	0.07	1	310	1	0.04	0.4	0.5	464	2	0.43	0.5	8	0.02	2 20		1 5	5 10	1	1	0.5	5	8	8 5	8
96 DH 194	Jk	X	rusty brown weath cgl, includes chert Fx	float	NE 1161/16	4			0.1	0.22	20	140	1	1.12	0.4	2	273	3	2.05	0.5	8	0.04	4 30		1 8	1220	6	1	1	31	8	8 32	8 1
96 DH 195	Jk		trail of rusty punky weathering sandstone	float	NE 116I/16	4			0.1	0.2	14	590	1	8.93	0.5	. 1	129	2	2.26	0.5	8	1.51	1 25	· · ·	17	1690	8	2	1	155	8	8 18	8 2
			average							0.16	17.00	265.00	-	· 2.53	0.50	1.50	300.25	2.25	1.33			0.52	2 21.25	1.00	0 5.75	740.00	5.33	2.00	1.00	48.50		14.75	10.5
			median							0.20	17.00	225.00		0.58	0.50	1.50	304.00	2.00	1.32			0.04	22.50	1.00	0 6.00	630.00	6.00	2.00	1.00	18.00		11.50	9.0
	1		min							0.07	14.00	20.00		0.01	0.50	1.00	129.00	2.00	0.43			0.02	2 10.00	1.00	0 3.00	10.00	2.00	2.00	1.00	3.00		4.00	2.0
			max	-						0.22	20.00	590.00		8.93	0.50	2.00	464.00	3.00	2.26			1.51	1 30.00	1.00	8.00	1690.00	8.00	2.00	1.00	155.00		32.00	22.0
			standard dev							0.08	4.24	247.18		4.30		0.71	139.15	0.50	0.96			0.85	5 8.54	0.00	0 2.22	847.70	3.06	il	0.00	72.14		13.15	10.1
			95th percentile							0.22	19.70	548.00		7.76	0.50	1.95	444.65	2.85	2.23			1.36	5 29.25	1.00	0 7.85	1619.50	7.80	2.00	1.00	136.40		29.90	21.1

Page 1

Jk- ali samples

KCC- all samples

Sheet1

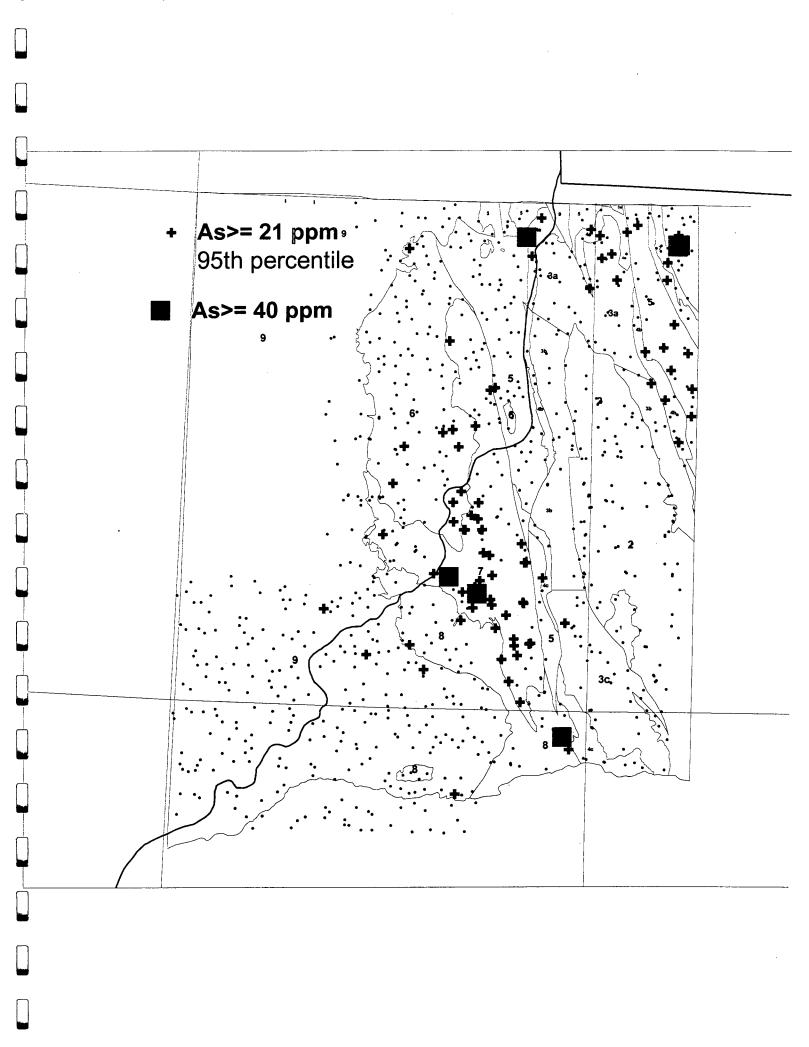
detection limit						. 5	5		0.2	0.01	2	10	2	2 15	0.5	1	1	1	15	0.5	10			1	(1	8	2	2	1	10	J 10	ノ 1	10	
			sample		1.00 t - 00	Au ppl	b Pt	Pd	Ag	Al	As	Ba	Bi	i Ca	Cđ	Co	Cr	Cu	Fe	Hg	La M	g M	n	Mo N	li I	P	Pb	Sb	Sc Sr	TI	L L	J V	w	Zn
sample number	Fm	rep	description	sample locatio	on	FA+AA	A ppb	ppb	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm %	pt pt	om 🔤	ppm p	pm I	opm	ppm j	ppm p	opm ppn	m ppm	ppm	n ppm	ppm	ppm
95DH-062	Kmg?	x	large limestone nodule (10 cm in diam) in dark grey-brown brown shale. float	app km 462 1	16P/1	4	1		0.1		16	120	1	13.75	0.4	6	13	8	3.28			0.38	435	0.5	15	2380	22	1	3	395	1	3 17	0.50	4;
95DH-124	Kcc	X	dirty coarse sandstone w clay nodules, poorly consolidated	km 345	116?/??	4	1		0.2		14	340	1	0.22	0.5	5	123	17	1.23			0.19	125	1	22	770	6	1	2	33	F	3 40	0.50	60
95DH-125	Kcc	X	dirty coarse sandstone	km 292.3 1	16?/??	4	1		0.4		8	410	1	0.23	0.5	16	131	32	2.58			0.35	830	0.5	58	1210	16	2	3	27	٤	3 69	0.50	138
96 HR-63	Ксс	X	sandstone	Chance #8		4	4		0.2	1.07	2	630	1	1.4	1	8	88	33	2.06	0.5	8	0.54	495	4	34	1020	8	1	4	68 1	8 F	3 42	8	134
96 HR-64	Kcc	X	sandstone	airport		4	1		0.2	0.95	24	1280	1	0.29	0.5	6	134	22	1.78	0.5	8	0.34	140	5	33	1280	8	1	3	39 8	3 6	46	8	84
					average	•			0.25	1.01	12.80	556.00		3.18	0.63	8.20	97.80	22.40	2.19			0.36 4	105.00	3.33	32.40	1332.00 1	12.00	2.00 3	3.00 11	12.40		42:80		91.60
					mediar	1			0.20	1.01	14.00	410.00		0.29	0.50	6.00	123.00	22.00	2.06			0.35 4	135.00	4.00	33.00	1210.00	8.00	2.00 3	3.00 3	39.00		42.00		84.00
					mir	1	-		0.20	0.95	2.00	120.00		0.22	0.50	5.00	13.00	8.00	1.23			0.19 1	125.00	1.00	15.00	770.00	6.00	2.00 2	2.00 2	27.00		17.00		42.00
					max	¢	-		0.40	1.07	24.00	1280.00		13.75	1.00	16.00	134.00	33.00	3.28			0.54 8	330.00	5.00	58.00	2380.00 2	22.00	2.00 4	4.00 39	95.00		69.00		138.00
				5	standard dev	/			0.10	0.08	8.32	443.77		5.93	0.25	4.49	50.83	10.50	0.78			0.12 2	290.80	2.08	16.35	618.28	6.78	0	0.71 15	8.76ز		18.51	1	43.21
				95	5th percentile				0.37	1.06	22.40	1150.00		11.28	0.93	14.40	133.40	32.80	3.14			0.51 7	763.00	4.90	53.20	2160.00 2	20.80	2.00 3	3.80 37	29.60		64.40		137.20

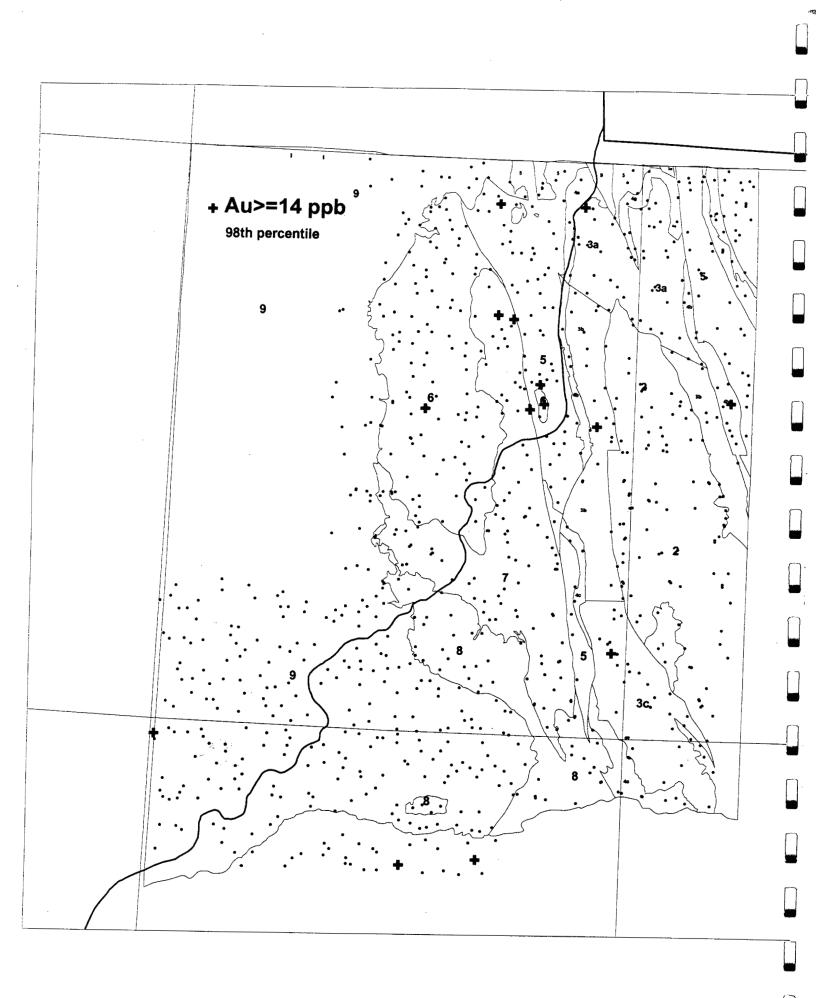
. • <u>-</u> .

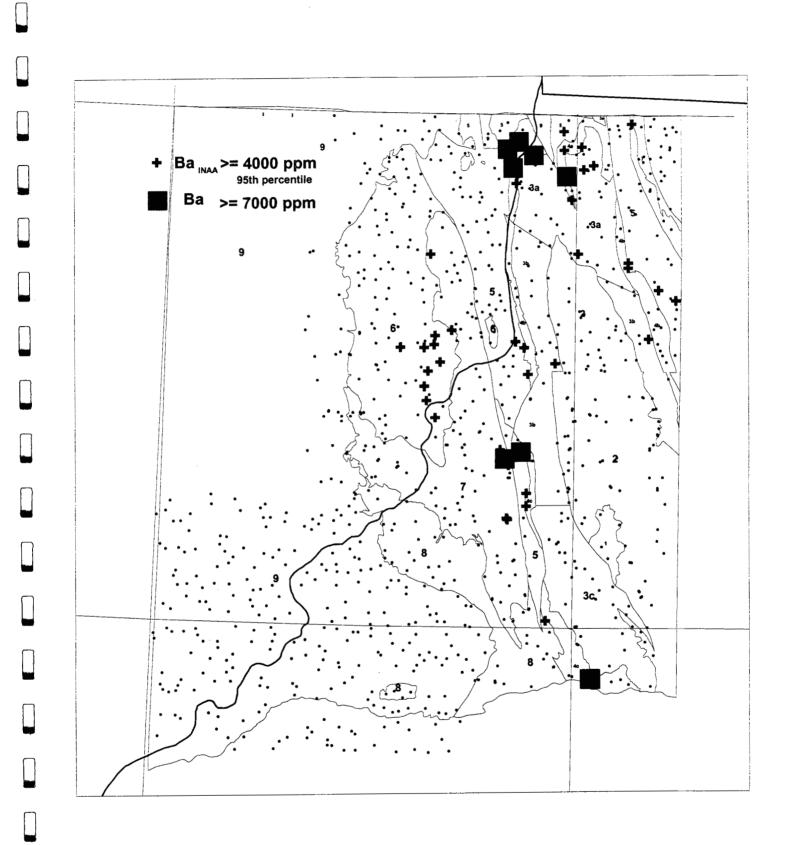
.

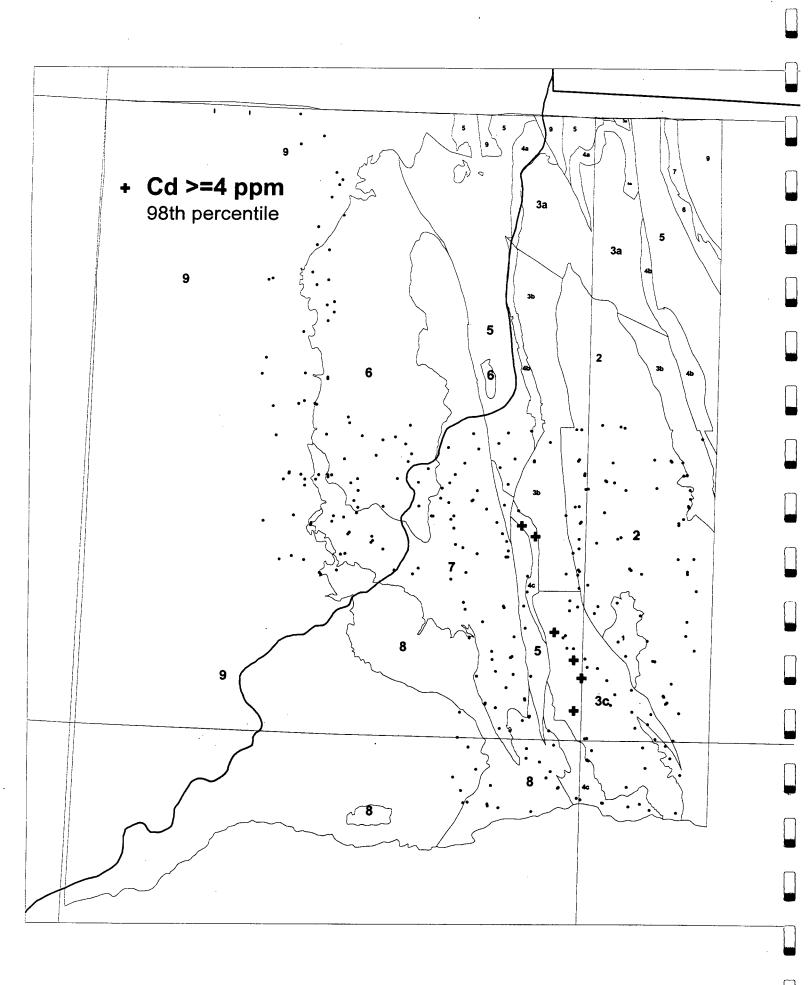
.

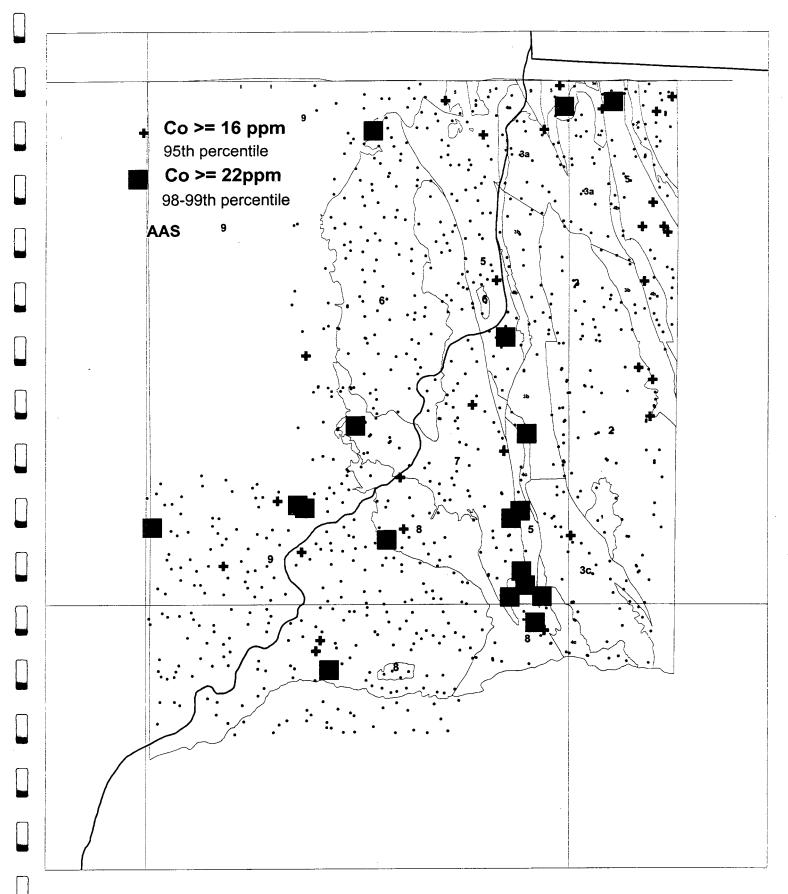
Page 1

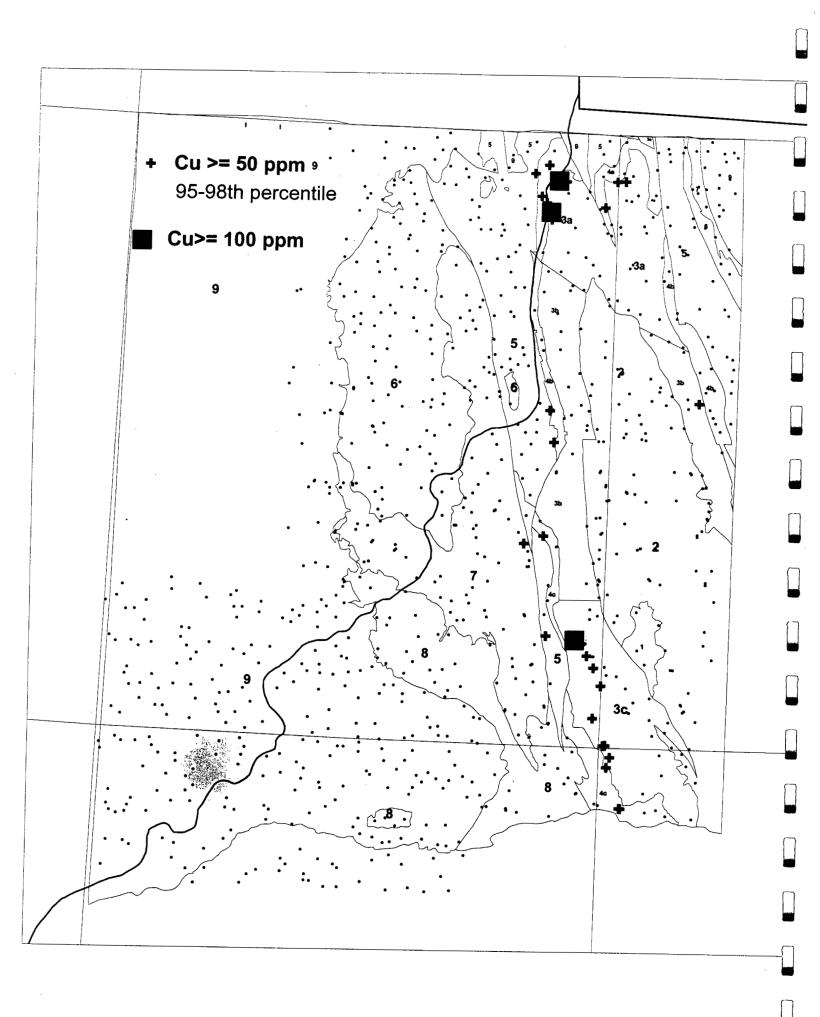


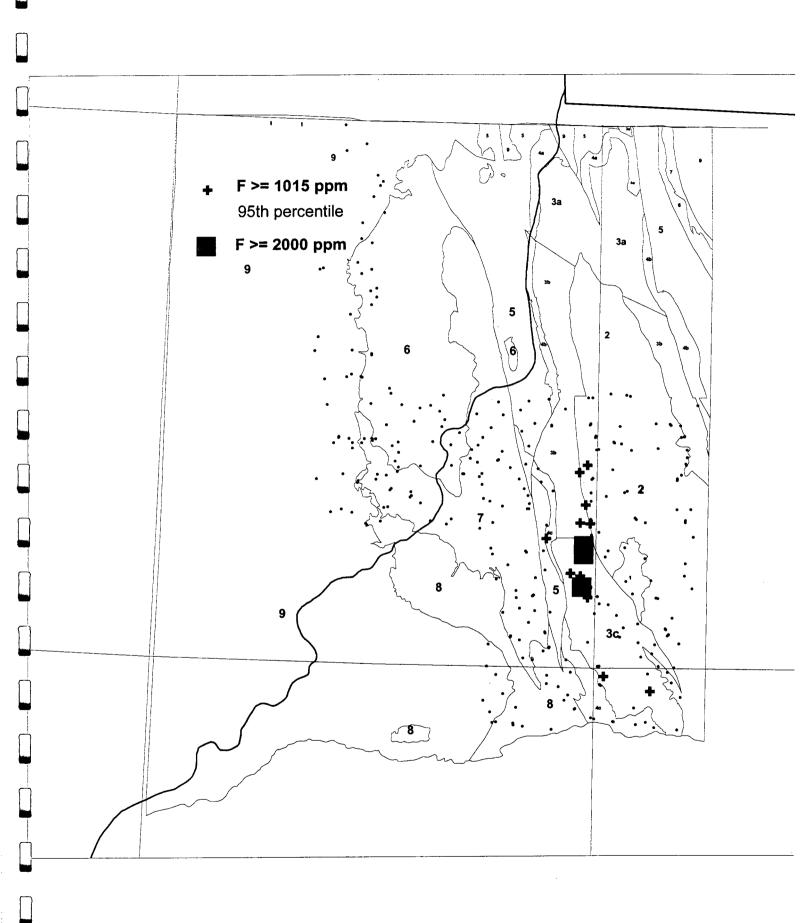

Kcc- all samples

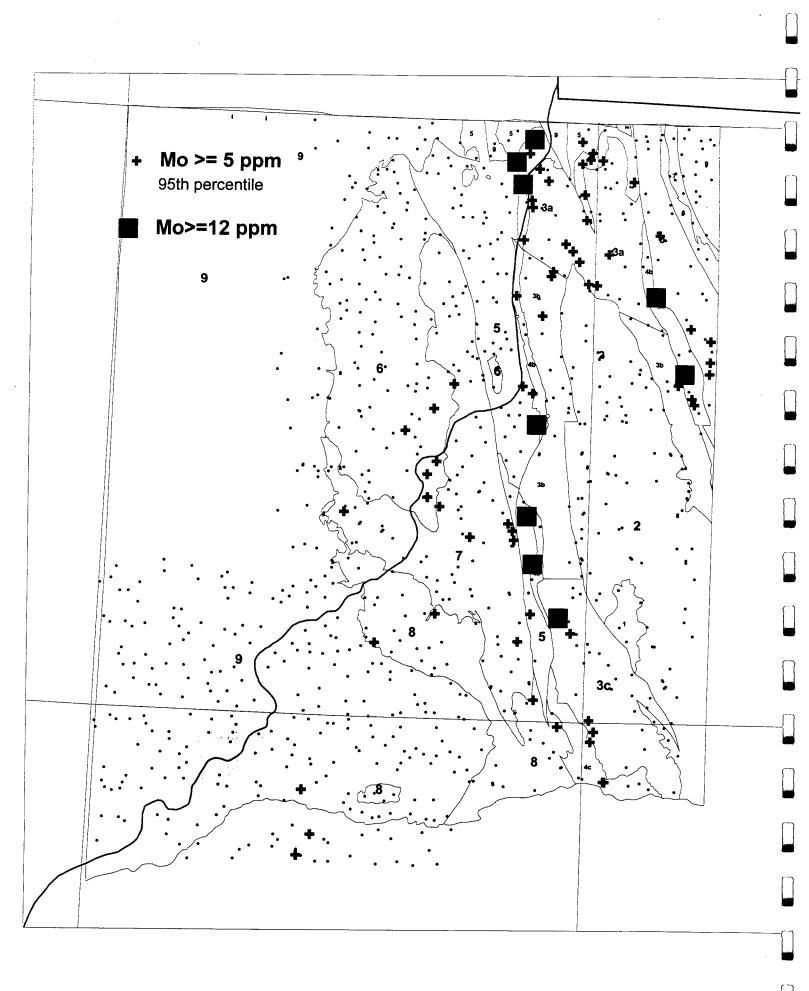

AL LABORATORIES	12-F	eb-97	REPORT		WORKOR	DER 13202		PAGE 1	
SAMPLE	NA2O % XRF-F 0.01	MGO % XRF-F 0.01	AL2O3 % XRF-F 0.01	SIO2 % XRF-F 0.01	P2O5 % XRF-F [.] 0.01	K2O % XRF-F 0.01	CAO % XRF-F 0.01	TIO2 % XRF-F 0.001	CR2O3 % XRF-F 0.01
96DH-3B 96DH-3C 96DH-13A 96DH-13B 96DH-13C 96DH-14 96DH-3B	0.66 0.57 0.49 1.74 0.51 3.07 0.64	<.01 <.01 <.01 <.01 <.01 0.17 <.01	1.29 1.88 1.49 3.32 1.21 5.60 1.27	95.5 96.2 96.1 91.7 97.1 87.4 95.5	<.01 0.02 0.12 0.05 0.02 0.06 <.01	0.03 0.13 0.09 0.13 <.01 0.11 0.02	0.04 0.07 0.12 0.05 0.01 0.35 0.03	0.089 0.064 0.074 0.142 0.041 0.142 0.142 0.091	0.04 0.03 0.03 0.01 0.03 0.01 0.02
SAMPLE	MNO % XRF-F 0.01	FE2O3 % XRF-F 0.01	RB PPM XRF-F 2	SR PPM XRF-F 2	Y PPM XRF-F 2	ZR PPM XRF-F 2	NB PPM XRF-F 2	BA PPM XRF-F 20	LOI % XRF-F 0.01
96DH-3B 96DH-3C 96DH-13A 96DH-13B 96DH-13C 96DH-13C 96DH-14 96DH-3B	<.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01	1.94 0.60 0.78 1.02 0.68 1.42 1.92	2 9 2 14 3 2 2 2 2	143 104 217 109 69 174 143	<2 15 6 9 6 <2 <2 <2	174 182 180 192 177 143 174	5 5 10 12 12 5 4	1950 1520 557 1690 229 1290 1970	0.35 0.40 0.70 1.95 0.50 1.75 0.40
SAMPLE	SUM % XRF-F 0.1								
96DH-3B 96DH-3C 96DH-13A 96DH-13B 96DH-13C 96DH-14 96DH-3B	100.2 100.2 100.1 100.3 100.2 100.3 100.2								

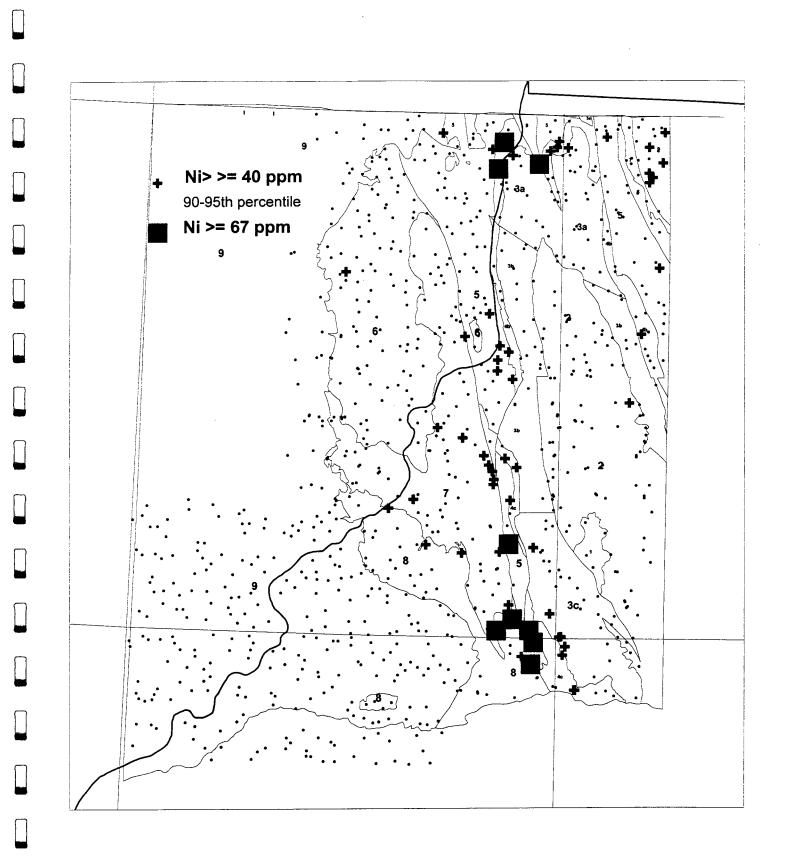

Appendix 3

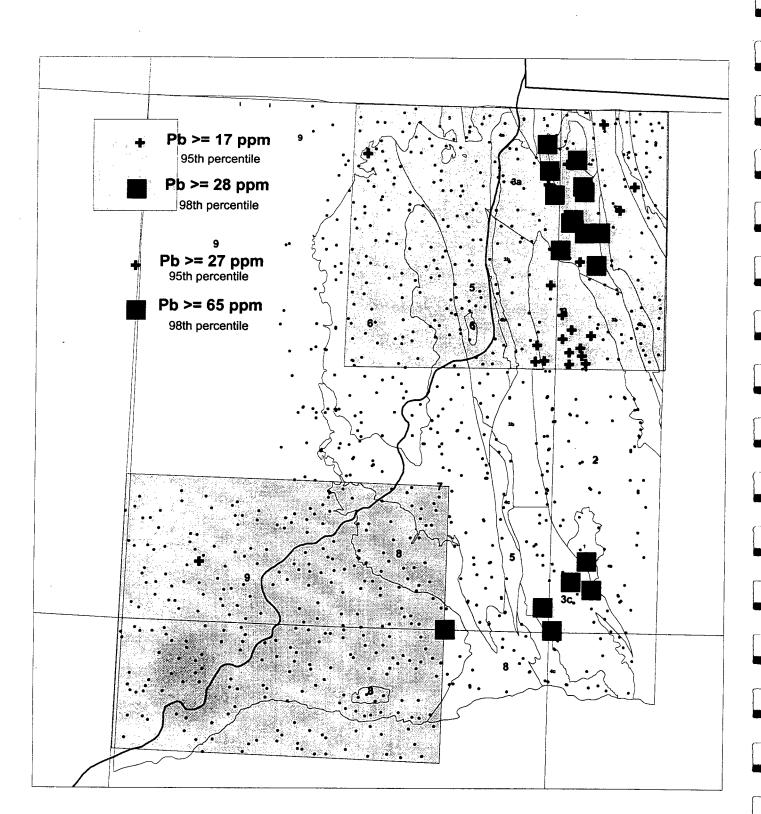

Stream sediment geochemistry

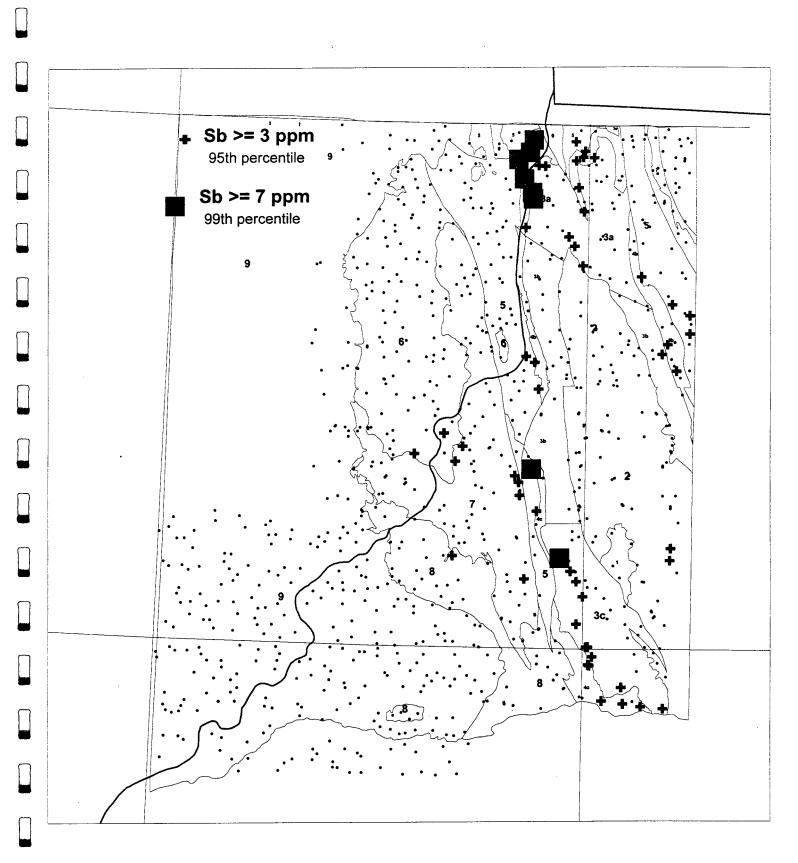


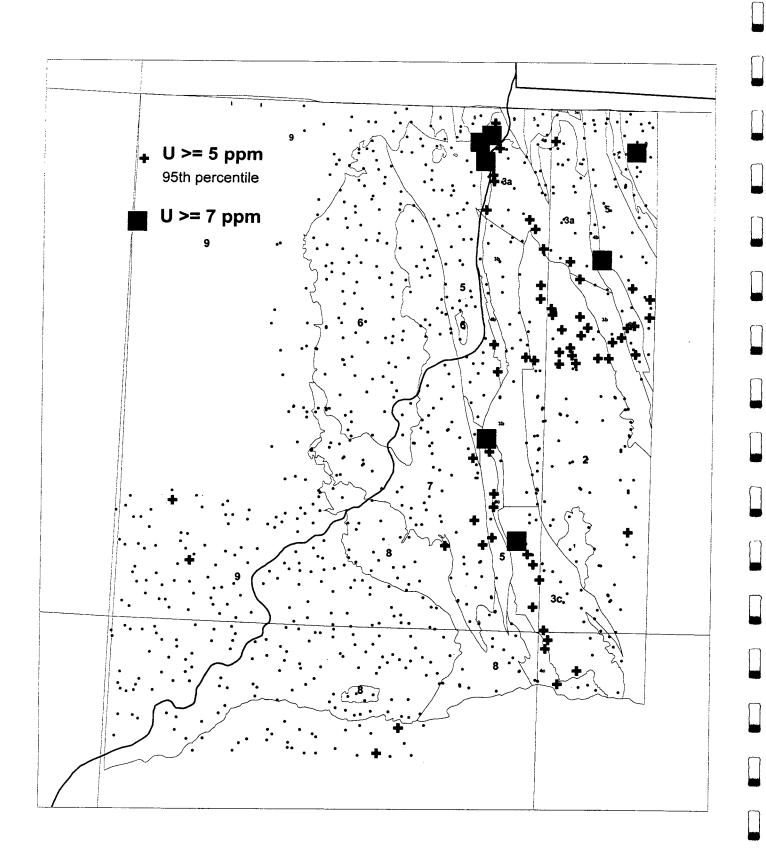


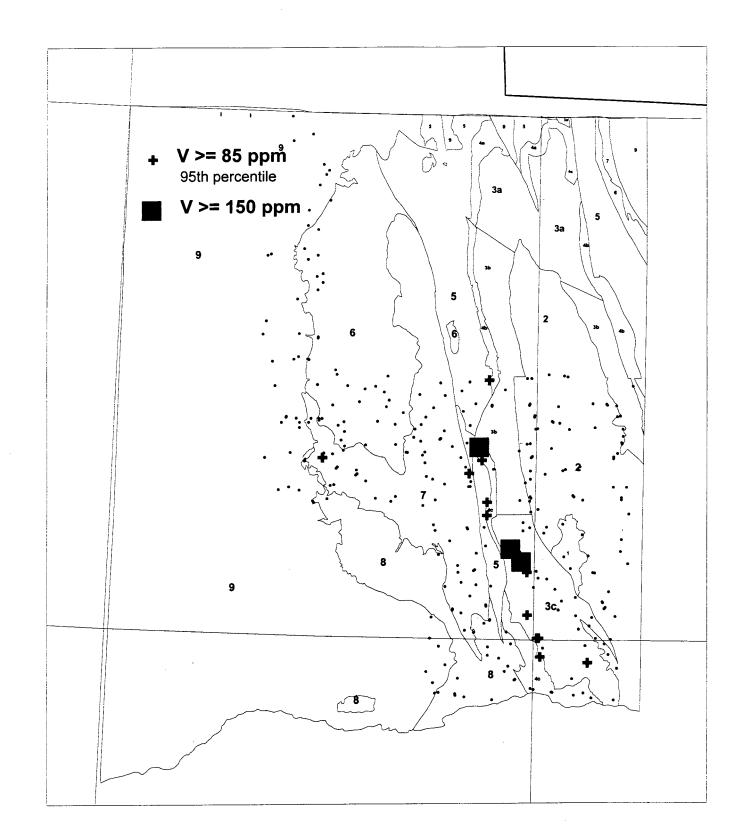


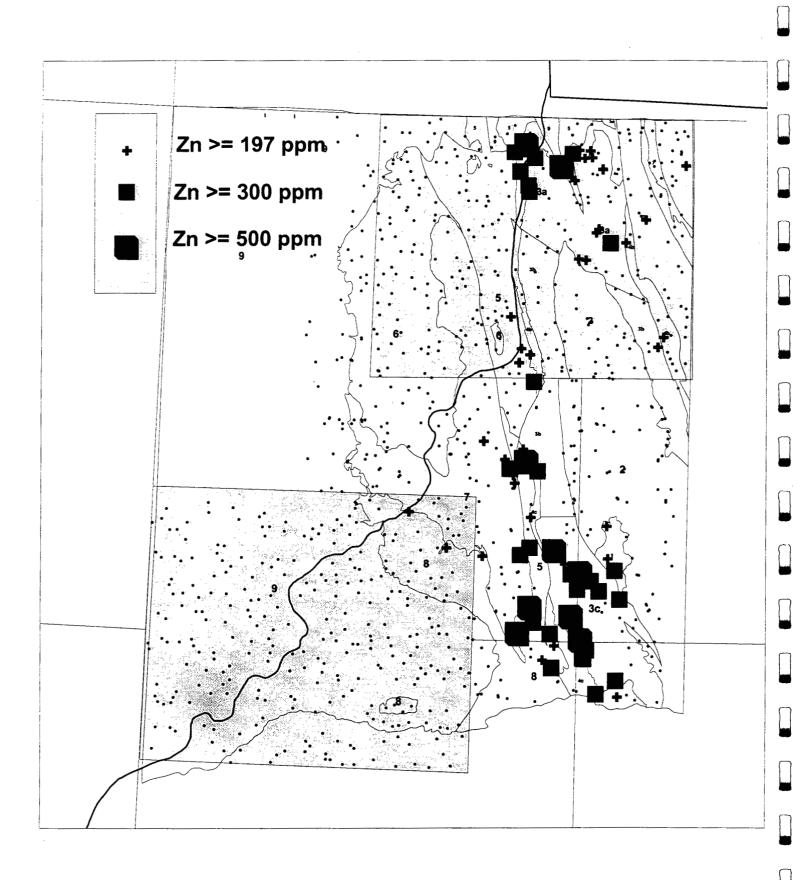


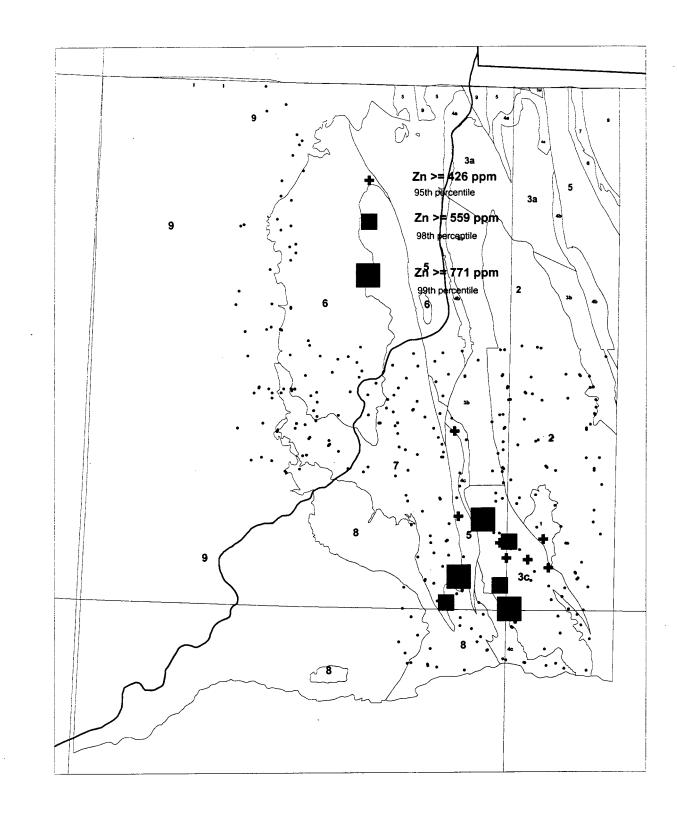












ſ

 \int

Γ

Appendix 4

 $\left[\right]$

 \int

 \int

 $\left[\right]$

 \int

Methodology

MINERAL RESOURCE ASSESSMENTS FOR PROPOSED TERRITORIAL PARKS:

METHODOLOGY

by

Mineral Assessment Steering Committee Rod Hill - YTG Energy & Mines Branch John Meikle - YTG Parks & Outdoor Recreation Branch Rob McIntyre - Yukon Chamber of Mines Steve Morison - DIAND Exploration & Geological Services

Revised April 28, 1995

1.0 INTRODUCTION AND BACKGROUND

Section 6(1) of the Parks Act (1979) states that "the Commissioner in Executive Council may establish a system of parks to protect unique natural and historic features and provide for comprehensive outdoor recreation opportunities".

In September 1991 the Yukon government approved a Parks and Outdoor Recreation Policy. This policy provided for a shift in focus from "protecting unique natural and historic features" to protecting portions of the land that are representative of the ecological diversity of the Yukon". The policy also provided that industrial activity such as mining would not be permitted in territorial parks. The Parks policy has since been revised, and each candidate park will be evaluated on a case-by-case basis with a view to considering multiple use.

In June 1992 the Yukon government approved a Parks System Plan. The objective set out in this plan is "to complete the establishment of a Yukon Parks System by the year 2000. At a minimum the system will include one Natural Environment Park in each of the eight Park Landscapes and one representative designation in each ecoregion". The plan also makes a commitment that mineral resource assessments will be carried out prior to any land being set aside for territorial parks.

In the Coast Ranges and North Yukon, Kluane National Park Reserve, Ivvavik National Park and Herschel Island Territorial Park have been chosen by the Parks and Outdoor Recreation Branch as being representative of their respective ecoregions. The Porcupine/Peel Landscape was chosen in 1992 as the first of the remaining six park landscapes for inventory using Park System Plan criteria. A report completed in March 1993 summarizes park values in the area and recommends seven areas of interest for further consideration. Assessment work is currently underway in the Eagle Plains Ecoregion portion of Landscape 7. The three areas of interest recommended for this ecoregion will be evaluated from the perspectives of ecological representation, traditional use, tourism and recreation potential and mineral potential.

建品料品料 Late in 1992, the Parks branch began discussions with the Yukon Chamber of Mines and with the Energy & Mines Branch regarding a methodology for conducting mineral assessments of candidate parks. These discussions centred around how mineral assessments should best be conducted, who should conduct them, and how the results of such assessments should be used in the park selection and planning process.

In January 1994 a three-member mineral assessment steering committee (comprising representatives from Parks, Energy & Mines and the Chamber of Mines) was set up to develop a process for conducting mineral assessments. A representative of DIAND was subsequently added to the steering committee.

Representatives of Parks, Energy & Mines, the Chamber and DIAND attended a workshop hosted by the B.C. Ministry of Energy, Mines & Petroleum Resources in Victoria, March 15-18, 1994. The purpose of the workshop was to bring together interested parties from the federal, provincial and territorial governments to discuss methods for conducting mineral resource assessments.

In August 1994, representatives from the Yukon Chamber of Mines, Yukon Prospectors' Association, Yukon Conservation Society, Canadian Parks and Wilderness Society, Yukon Economic Development, Yukon Renewable Resources and DIAND attended a workshop hosted by the Mineral Assessment Steering Committee in Whitehorse. A representative from the Council for Yukon Indians was also invited. The purpose of the workshop was to discuss the methodology of assessing mineral potential for park planning in Yukon. The focus of the proceedings was the first draft of a Discussion Paper on Mineral Resource Assessments for Proposed Territorial Parks produced by the Steering Committee.

The issue of mineral resources and their potential for mining development is an aspect of park planning which requires rigorous and complete technical review. The mineral assessment steering committee has developed the following outline of a proposed methodology for conducting mineral resource assessments. This outline incorporates the input received from the stakeholders who attended the Whitehorse workshop. estrictor? ;

2.0 PROPOSED METHODOLOGY		e di manta dipeter 1951 - Pat
2.1 Overview of Park Selection Process		

The park selection process being developed by Yukon Renewable Resources is comprised of two phases to provide the latitude for the assessment process being discussed in this paper. The objective of the first phase is to identify alternative areas of park interest that adequately represent each ecoregion and provide for benefits to sectors such as tourism without unnecessarily conflicting with areas of high mineral potential, and hence select a preferred park candidate. The purpose of the second phase is to finalize the boundary of the chosen candidate and commence park management planning.

The proposed methodology for mineral assessments is also divided into two phases and will be facilitated by one full time employee, the mineral assessment geologist, with assistance from a Mineral Assessment Panel consisting of professional geoscientists from industry with Yukon experience in grassroots mineral exploration. STATES AND A STATE

It is assumed that the Phase 1 and 2 methodology outlined below would be used for metallic minerals, industrial minerals, placer deposits and coal. Assessment of oil and gas deposits would be done separately. Minage K. S. 1. 2003 - 2003 - 2003 - 2003 - 2003 - 2003 - 2003 - 2003 - 2003 - 2003 - 2003 - 2003 - 2003 - 2003 - 2003 - 200 an order to say

2.2 Phase 1 - Data Compilation, Fieldwork, Ranking of Areas for Mineral Potential

BINDLE

. . . .

Phase 1 would be initiated when Yukon Renewable Resources present areas of park interest for a particular ecoregion to the Department of Economic Development. Ideally this would occur during the fall or winter preceding the summer field season. The Phase 1 assessment of each region would require a budget of about \$150,000 and about 12-15 months to complete, and would proceed using owing steps: STEP 1 - LITERATURE SEARCH AND DATA COMPILATION the following steps:

ŝ

Į. s

2

ц.

19 $\mathbf{\hat{O}}$

The mineral assessment geologist will review all of the available geoscience information for the region containing the areas of park interest, including: Geological Survey of Canada and DIAND geology maps; regional stream sediment geochemistry surveys; regional geophysical surveys; exploration industry assessment reports; Yukon MINFILE mineral deposits database; articles in scientific journals; university theses. Utilizing all of the above sources of information, a new 1:250,000 geological map of the region with overlays showing geochemical, geophysical and mineral deposits data, together with a summary report, will be prepared. Estimated time-frame for this step is about three months during artalata Society, Canadian . late winter or early spring.

Room min De contra a vices i teners able Resources and

STEP 2 - FIELD AND LABORATORY STUDIES mach galante in the state of the • out to saconto st

After consultation with other geogists familiar with the region under study, the mineral assessment geologist will identify critical data gaps which need to be filled in order to conduct a mineral assessment of the region, and develop a program and budget for field and laboratory studies aimed at collecting the necessary data. Proposed studies would be

The issue of mineral resources and their potential for mining development is an aspect of park planning which requires rigorous and complete technical review. The mineral assessment steering committee has developed the following outline of a proposed methodology for conducting mineral resource assessments. This outline incorporates the input received from the stakeholders who attended the Whitehorse workshop. Settings. 7

2.0 PROPOSED METHODOLOGY

2.1 Overview of Park Selection Process

The park selection process being developed by Yukon Renewable Resources is comprised of two phases to provide the latitude for the assessment process being discussed in this paper. The objective of the first phase is to identify alternative areas of park interest that adequately represent each ecoregion and provide for benefits to sectors such as tourism without unnecessarily conflicting with areas of high mineral potential, and hence select a preferred park candidate. The purpose of the second phase is to finalize the boundary of the chosen candidate and commence park management planning.

The proposed methodology for mineral assessments is also divided into two phases and will be facilitated by one full time employee, the mineral assessment geologist, with assistance from a Mineral Assessment Panel consisting of professional geoscientists from industry with Yukon experience in grassroots mineral exploration. 2.

It is assumed that the Phase 1 and 2 methodology outlined below would be used for metallic minerals, industrial minerals, placer deposits and coal. Assessment of oil and gas deposits would be done separately. transis in a second to the se

2.2 Phase 1 - Data Compilation, Fieldwork, Ranking of Areas for Mineral Potential

Phase 1 would be initiated when Yukon Renewable Resources present areas of park interest for a particular ecoregion to the Department of Economic Development. Ideally this would occur during the fall or winter preceding the summer field season. The Phase 1 assessment of each region would require a budget of about \$150,000 and about 12-15 months to complete, and would proceed using the following steps: STEP 1 - LITERATURE SEARCH AND DATA COMPILATION

۰.

The mineral assessment geologist will review all of the available geoscience information for the region containing the areas of park interest, including: Geological Survey of Canada and DIAND geology maps; regional stream sediment geochemistry surveys; regional geophysical surveys; exploration industry assessment reports; Yukon MINFILE mineral deposits database; articles in scientific journals; university theses. Utilizing all of the above sources of information, a new 1:250,000 geological map of the region with overlays showing geochemical, geophysical and mineral deposits data, together with a summary report, will be prepared. Estimated time-frame for this step is about three months during late winter or early spring.

£ Ŀ

-1 10 sacture of

After consultation with other geogists familiar with the region under study, the mineral assessment geologist will identify critical data gaps which need to be filled in order to conduct a mineral assessment of the region, and develop a program and budget for field and laboratory studies aimed at collecting the necessary data. Proposed studies would be tailored to the region under study, and would likely include some or all of the following work: selected geological mapping of critical areas in order to fill data gaps, clarify uncertainties and provide ground-truthing of interpretations made in the office; collection of representative rock, soil and silt samples for geochemical analysis; selected geophysical surveys; age-dating studies. After approval of the proposed program and budget by the park planning committee, the mineral assessment geologist will carry out the necessary field and laboratory studies, and compile all the results into a revised 1:250,000 geological compilation with accompanying report.

It is estimated that each project would require a two-person mapping crew working for one three-month field season, followed by approximately three months of data compilation and interpretation in the office on the part of the project geologist.

. 4

STEP 3 - MINERAL ASSESSMENT

The Mineral Assessment Panel is convened. The Panel reviews the revised geological compilation, and then conducts an assessment of the mineral potential of each of the areas of park interest. The assessments will be based upon the consideration of those mineral deposit models occurring in (or which are potentially feasible within) each area. (It is expected that the mineral deposit models and criteria for mineral potential assessment used by British Columbia would be available for modification and use). The Panel then provides a ranking of each area of park interest in terms of highest to lowest mineral potential.

In order to provide a ranking of different areas, a scheme for rating the areas would be developed, possibly using the "circle method" used by British Columbia as a starting point. Further work is required to adopt a ranking methodology which would be suitable for Yukon's planning needs.

gana shin

~ 5 C. M. C.

i, iii

The specifics of how the Panel would operate also still have to be worked out. For example, in British Columbia the Geological Services branch provides the data and training for volunteer experts to carry out mineral potential assessments. The volunteers are paid an honorarium, and are expected to devote a significant effort in the assessment process. The USGS has used consulting panels of experts to conduct mineral assessments. The panels are made up of 4-6 consultants who represent a range of pertinent expertise or experience

Della Selected for the requirements of each specific assessment.

Phase 1 concludes when the mineral assessment geologist prepares a final report with the state of the park planning committee in selecting one that the state of interest.

2.3 Phase 2 - Additional Assessment to Refine Park Candidate Boundaries

In areas of potential resource use conflict, or where there are disagreements among the stakeholders concerning the boundaries of the candidate park, further study may be required. Such Phase 2 studies may necessitate more detailed (1:50,000-scale) work. Depending upon the geological complexity of the area, this would likely require a second field season of geological mapping, sampling and analytical work, followed by a further period of report writing and mineral assessment.

3.0 PROCESS MANAGEMENT There are several issues related to the process of managing mineral assessments in the larger context of parks selection that have not been dealt with in this discussion paper. Many such issues of were identified during the Whitehorse workshop, including for example, the level and scope of public involvement in the overall selection process, the weighting of mineral versus aesthetic values, the possibility (and desirability) of land withdrawal from staking during assessment, and, the level of federal government involvement in the assessment. The probable economic viability of mineral potential and other potential resource values is also an issue to be examined.

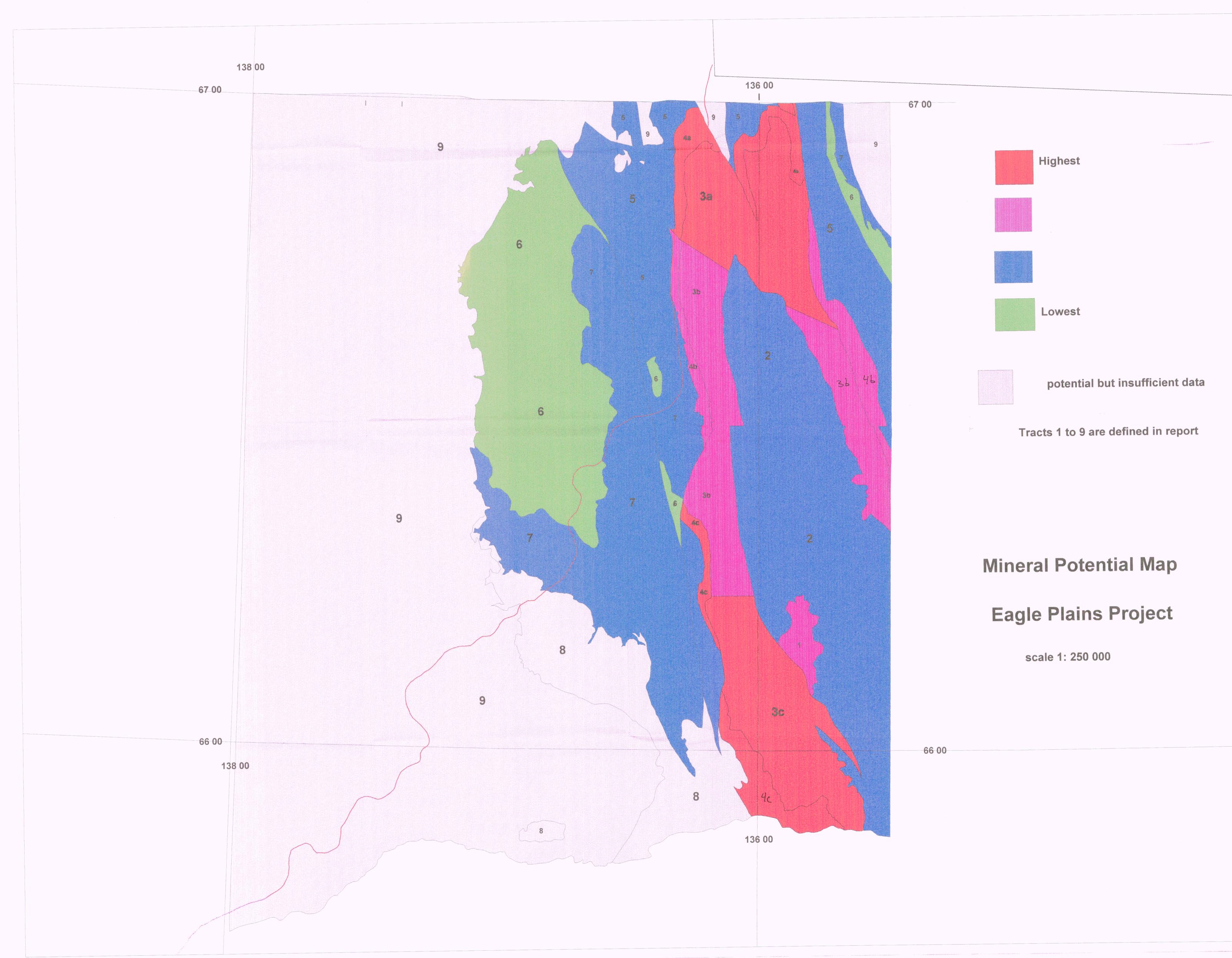
28 It would not appear feasible to apply to DIAND for an order withdrawing all the areas of park interest from disposition. The work done by the assessment geologist may well identify areas of significant mineral potential, but the integrity of the proposed park areas might be compromised if this information is published and claims are staked in the area as a result. Consequently, it is proposed that the initial 1:250,000-scale geological compilation which is prepared as the basis for the mineral potential assessment would be kept confidential. However the final Phase 1 mineral potential map and report which form the basis of the selection of one candidate park from among the areas of interest will be published once an order withdrawing the candidate park from disposition is granted. Similar compilations prepared for a more detailed Phase 2 assessment would also be published prior to the finalization of park boundaries.

4.0 BIBLIOGRAPHY/REFERENCES

The following reports and papers are available for review at the Energy and Mines Branch, Department of Economic Development:

McLaren, Graeme, 1990. A Mineral Resource Assessment of the Chilko Lake Planning Area, Ministry of Energy, Mines and Petroleum Resources, Bulletin 81.

Mineral Resource Evaluation Workshop, March 13-17, 1994, Victoria	B.C.
a) Participants Notes to Accompany Resource Science Inc. presentati b) Participants Notes to Accompany BCMEMPR presentations.	ns


Mineral Potential Workshop Report of Proceedings, April 22-23, 1992, Victoria, B.C. Information Circular 1992-22.

Bremner, T.J., 1994. Proposed Tombstone Area Park, A Preliminary Review of Mineral Potential, Exploration and Geological Services Division, Indian and Northern Affairs Canada, Open File 1994-2(T).

MacKay, Falkiner & Associates. Mineral Resource Assessments for Proposed Territorial Parks -Proceedings of Workshop held August 30, 1994 in Whitehorse.

In result of the second sec

Energ	y and	Mines
	i.	
		1999 A. C. P.

Eagle Plains- Mineral Assessment Update Internal Report

Danièle Héon YTG- Department of Economic Development Mineral Resources Branch

> Fieldwork July 2000 Report January 2001

Background and summary

A total of seven days of fieldwork were spent in the Eagle Plains area during July 2000. This was an occasion to follow-up on results obtained from the last field season, which took place in the summer of 1996. A helicopter contracted out by Yukon Territorial Government (YTG) Renewable Resources was based out of the Eagle Plains Hotel. Aside from two days of fly-camping, the hotel was used as a base.

Fieldwork had been done in 1995 and 1996, and a mineral assessment map was produced in the spring of 1997. Please refer to the 1997 report "Mineral Potential of the Eagle Plains Study Area" (Héon, 1997) for the description, results and conclusions of this work.

The 2000 fieldwork was designed to refine the previous analysis. Helicopter support based in Eagle Plains Hotel permitted the author to visit new sites within the original study area, as well as to return to previously visited sites where further study could assist in refining the original conclusions on mineral potential. It was not the goal of this additional fieldwork to expand the study area and include a larger area into the analysis. To do so would require more time and helicopter support than was available.

This additional fieldwork confirmed the conclusions derived from the earlier study. No changes were made to the mineral potential map. The areas ranking the highest in the 1997 exercise were confirmed to be high. Additional investigations in the Canyon Creek area and in rocks of the Canol/ Road River Formations further supported the high potential ranking given in 1997. In response to the strong anomalous response in the stream sediments of the Canyon Creek area, the Geological Survey of Canada (GSC) conducted additional heavy mineral sampling in the area. These results are still pending.

The location of the sampling area of the 2000 field season was integrated with previous sampling; all samples are shown on the sample location map accompanying this and the original report (see Appendix 6).

Maps and Appendices

Maps accompanying the 1997 report (1:250 000) were finalized or re-drawn and are included with this report. They were referred to, and still are, as: Appendix 5: Geology Map, appendix 6: Sample Location Map, and Appendix 7: Mineral Potential Map. Assay results from the 2000 field season are addended here in Appendix 8. Note that Appendices 1, 2 and 3 are included in the original 1997 report.

<u>NOTE</u>: Integrating the new results with the former work has required updating the database using different mapping software and different sources of geological data than was used in 1997.

- The sample location map includes all the samples collected during the 1995, 1996 and 2000 field programs.
- The digital geology base was obtained from S.P. Gordey and A.J. Makepeace, 1999. The Yukon digital geology and has been brought into ArcInfo and projected onto a topographic base using UTM NAD 83 projection. The tracts have been clipped to the digital geology.
- The original work was done using D.K. Norris' (1981) geology maps (1:250 000), and the tract boundaries used during the assessment were drawn based on the paper version of these maps.

- The registration between the digital geology, the outline of the Dempster Highway and the topographic base is not perfect. For example, the Dempster Highway should be closer to the Imperial/Canol contact on the western flank of the Richardson anticline, which corresponds to the boundary between tracts 4 and 5. The sample locations, however, were re-digitized using the UTM NAD 83 base, and therefore are registered properly with respect to the topographic base. The tract map should be used with caution when used to assist boundary definition of the protected area. The actual boundary of the tract should be defined by recent sample locations. A geologist should therefore be involved to assist in the proper use of the map.
- Tract definition, as outlined in the 1997 report, differs slightly due to the differences in the geological base, and the greater level of detail in the tract definition. Gordey and Makepeace include the Devonian Unnamed Shale (Dus) Formation in their Devonian Imperial assemblage (Di), while Norris separates these two units. Tract 6 is defined as Devonian Unnamed Shale, according to Norris' nomenclature, and also includes some of the Tuttle Formation.
- The 1997 study area extended to the west of the current maps until 138° Longitude. The current map outline clips the westernmost part of that outline; the area clipped out was all within tract 9.

Results

Tetlit Creek /Tract 4b. Samples 00DH-25 to-27,-38 and 00DH- 00RZ-8 to -10.

This location was chosen to investigate part of the Road River/ Canol stratigraphy on the eastern side of the Richardson anticline. Regional geochemical survey samples indicated anomalous geochemistry. Cecile (1982) had noted metre-long sections that were reactive to zinc zap (a solution which reacts with zinc to produce a bright red colour on the surface of the rock and denotes the presence of zinc); and the contact between the two formations needed testing for potential for shale-hosted nickel-sulphide deposits (Nick-type).

The contact itself was not exposed, which is typical for much of the area due to its recessive nature. The dark carbonaceous shales of the Road River Group, (CDr4 of Norris (1981b), SDv of Cecile (1982), CDr5 of Gordey and Makepeace (1999)), are interbedded with several beds and lenses of massive, fine-grained pyrite. Locally, the pyrite is framboidal and is within a carbonate matrix; beds may be planar to nodular. Observed thickness of pyrite beds varies from 2 to 6 cm. The pyritic intervals are slightly elevated in vanadium. Sample 00DH-25c was a rough chip sample measuring 6 m, did not include any mineralized pods, and returned anomalous values of 48.5 ppm Mo and 478 ppm V.

Systematic chip samples of the stratigraphy were taken further down section, where Cecile had noted high zinc content in the shales (from Zinc Zap). Access was hindered by very high water in the creek and was limited to two sites where a section could be sampled. The zinc-rich areas were not located, eight samples were taken and none were anomalous. The presence of granitic boulders in the creek bed (00DH-38) indicates that the limit of the Laurentide Glaciation was further west than what was previously mapped on this creek.

The anomalous results for this area were not explained, therefore a re-examination of the area must be considered. Further investigations could yield results that may increase the ranking of this tract.

• Vittrekwa MINFILE Occurrence (106L 55)/ Tract 3a Samples 00DH-28 to -34. This MINFILE occurrence is described as breccia and veins with minor galena and sphalerite. Several types of veins and breccia were documented. A coarse calcite vein marks the trace of a strand of Richardson Fault Array; sample 000DH-34, a dark grey carbonate vein cut by thin ankerite veinlets and en echelon tension gashes, returned values of 4433 ppm Pb and 8535 ppm Zn.

Border MINFILE Occurrence (106L 017)/ Tract 3a. Samples 00DH-35.

This gypsum occurrence was interpreted to be 'intruded' in a splay of the Richardson Fault array. The main body of the outcrop consists of heterolithic breccia in a matrix of anhydrite and/or gypsum. Fragments are angular to rounded, are roughly aligned along a rough fabric and include: thinly bedded argillite, carbonaceous argillite, chalky to punky gypsum, shiny anhydrite, massive calcite and pinkish, locally greenish, fine-grained sandstone/quartzite which is locally pyritic. Slick planes are locally coated with specular hematite breccia. A greyish clay mineral is also observed, possibly an alteration of the hematite. North of the main outcrop, a zone of sluffed float is characterized by red weathering rocks. Idocrase crystals are found in light coloured, clay-altered rock, and in seams in red-ochre breccia.

Limestone, chert and shale of the Road River Formation outcrop west of the main outcrop.

Tuttle east, outside the study area. Samples 00DH-36 to -38.

A short traverse in a creek bed was conducted through the Devonian Unnamed Shale, Carboniferous Tuttle and Ford Lake formations, on the eastern flank of the Richardson Anticline. The purpose of the traverse was to investigate the Cretaceous section to the east, however the traverse was not completed. The area is characterized by landslides in the Ford Lake shales. The Tuttle conglomerates are rusty, and contain bright green chert pebbles. No significant mineralization was found

• Kp-12, Tract 4c. Samples 00DH-39.

An outcrop showing the favourable geological environment for Nick-type mineralization, along strike from known occurrences, of was observed during the 1996 field season but was not sampled. The 1996 work was following up on occurrences discovered by Wayne Goodfellow (pers. com.) (GSC) in 1994. The 2000 fieldwork confirmed the setting for Nick-type mineralization at station 96KP-12. The rock exposure consists of a steep and crumbly rock face lining a creek. The favourable horizon, between the limestone ball horizon of the Road River Formation and the siliceous shales and thin-bedded cherts of the Canol Fm.Formation (see 1997 report), was either inaccessible, was sluffed in, or appeared to be faulted off. Assays show, however, that the horizon is present, even if it was not recognized megascopically. A sample of a vuggy, limonitic limestone pod or bed (**00DH-39a**) with annabergite and clusters of pyrite cubes, assayed **1.3% Ni**, 721 ppm Mo and was anomalous in gold and platinum group elements (PGEs), as well as other elements (see below and Appendix 8). This setting would be similar to that documented in sample 96DH-169, where mineralization is hosted in a limestone bed instead of in carbonaceous material.

The only other locations where the contact was accessible occurred in an area intersected by local faults. Chip samples were taken nonetheless, and sample 00DH-39e returned values of **1038.8 ppm Mo** and 1412 ppm Ni (see other anomalous values below). No barite nodules were found on the outcrop.

These two samples confirm that the shale-hosted nickel-sulphide horizon, or its geological setting, which was documented in 1996 at three other locations (96 DH-33, -42 and -169), has a strike length of at least 9 km. When considering the two other occurrences found by W. Goodfellow near the Peel River (samples WDG94-1 and WDG94-2), the whole flank of the Richardson Antiform becomes prospective for this type of mineralization.

sample	Ni	Мо	Cu	Zn	As	Sb	V	Au	Pt	Pd
	ppm	ppm	ррт	ppm	ppm	ррт	ppm	ppb	ppb	ppb
00DH-39a	13,242	721.6	148	3184	1575	61.5	107	64	98	60
00DH-39e	1412	1038.8		462	1028	37.2	194	5	4	<2

• Phosphate Tract X Samples 00DH-40, 96HR-14.

Previous sampling (96HR-14) of a nodular shale horizon (?) of the Hart River Formation assayed 5.9% P; a gas odour was present. The Hart River Formation contains the Chance Sandstone Member, a recognized oil and gas reservoir rock.

Systematic chip sampling of stratigraphy was completed during the 2000 field season (samples 00DH-40a to f). At that time, oil seeps were observed in the rock face, and the area smelled of oil. A goniatite fossil was observed in outcrop.

The cliffy exposure consisted of nodular shales interbedded with nodular limestone and calcareous siltstone. The best assays were 2.1 and 2.4% P (00DH-40a and c), in nodular shales. The Hart River Formation contains spiculitic limestone, which probably accounts for the high phosphorus values, however the shales at this locality are also phosphatic.

A localized pinkish-red, earthy-altered section occurs at the western edge of the exposure. The alteration appears to be localized at this outcrop and does not extend along strike. Alteration is observed as rough horizontal banding of earthy white alteration alternating with earthy red coloured rocks, which contain clots of bright yellow secondary minerals (not native sulphur since assays for sulphur were low). Sampling of the red altered rocks yielded results of 99 ppm Mo, 12.7 ppm Ag, 121.7 ppm Cd, 1099 ppm V, 204 Cr (up to 288); some samples contained up to 120 ppm B. The station is located near a thrust fault mapped by Norris (1981). X-Ray Fluorescence (XRF) and thin section analyses are recommended on these rocks to characterize the nature of the alteration, which may be fault controlled.

• Side Canyon Creek Tract 3c. Samples 00DH-41 to -44, 00RZ-10 to -17. This area is characterized by interbedded shale and limestone of the Road River Group (CDr1,Norris; COr, Cecile; CDr2 Gordey). Pyrite is present as interbeds or as fine disseminations in limestone and in shale. Regional geochemistry is highly anomalous; one 1996 sample assayed 7020 ppm Zn and was anomalous in Sb, Ni, Cd, and As (96DH-132, fine disseminated pyrite in limestone).

The 2000 sampling included grab samples as well as systematic chip sampling (2 m) of the stratigraphy. A float sample of platy shale reacting to Zinc Zap assayed 4825 ppm Zn (00DH-41e). Sample 00DH-44 isolated the pyritic cross-bedded base of chip sample 00DH-42f; it assayed 6580 ppm Zn. Chip sampling of alternating shale/limestone/shaly limestone, in the lower part of the exposure (00DH-42), outlined a section anomalous in Zn, Mo, Sb and Bi.

Only a short section of the creek was accessible due to a steep waterfall blocking access to the upper reaches of the creek. Access above the waterfall would necessitate more time than was available.

This area has a metal signature which indicates potential for sedimentary exhalative (SEDEX)-type mineralization. The anomalous silts of surrounding creeks, as well as the high barium content of sample 96HR-2 (32.2%), which was not revisited in 2000, are very favourable indicators for SEDEX-type mineralization. Although no significant showings have been found to date, further investigation of these results is necessary.

The GSC collected additional heavy mineral samples in the area and results are pending.

• Ray's Cave Tract X, Samples 00DH-45 to -46.

These samples were taken from the Cambrian Iltyd Formation, above a cave located by an archeological team. Sample 00DH-45 consists of a porous limonitic breccia with limonite/goethite both as fragments and cement; this sample assayed 2295 ppm Cu and 63.4 ppm Bi. Similar breccia had been sampled in 1995 and 1996 on the RAS-TUS claims.

• Pothole Lake- PJC, Samples 00DH-50 to -51, 00RZ-18 to -19.

Located south of the Peel River and outside the original Study Area, these outcrops were visited in order to investigate the source of a regional geochemical gold anomaly. Mapped as the Permian Jungle Creek Formation, the rocks consisted of bleached, white-weathering, light brown siltstone with local wispy laminations. No anomalous metal values were obtained.

 NOR occurrence (MINFILE 106L 061), outside of Study Area. Samples 00DH-47 to -49. This drilled Wernecke Breccia occurrence was visited and the core was sampled. Mineralization consisted of chalcopyrite, specular hematite, magnetite?, pitchblende? in veinlets and as disseminations in brecciated and altered dolostone? Alteration is characterized by variable degrees of hematization, chloritization, and carbonatization.

Previous regional mapping indicated that the breccia was hosted in a fault-bounded block of Proterozoic Quartet shales. The main outcrop (informally called Hematite Hill) near the abandoned camp consists of massive hematite-specularite mineralization that grades into disseminated mineralization in carbonate rocks. This is interpreted to occur as replacement in Proterozoic Gillespie dolostones. South of the hematized zone, thinly bedded limey rocks appear slightly hornfelsed, this may be due to a buried dioritic intrusion such as those that are usually associate to Wernecke-Breccia-type occurrences.

Previous exploration results documented uranium, copper and gold mineralization, similar to the breccia occurrences found in the Wernecke Mountains.

 A gossanous cliffy outcrop was located from the air at UTM coordinates 427652 E, 7347521N (NAD 27). The appearance of the outcrop and the type of alteration resembled the outcrops at station 00DH-40.

Acknowledgements

Rick Zuran is thanked for excellent field and office work. Fireweed Helicopters from Dawson City provided helicopter support. The staff at Eagle Plains Hotel, as always, was helpful and supportive. Panya Lipovsky did superb work updating, finalizing and creating the different maps accompanying this report.

References

Cecile, M.P, Hutcheon, I.E. and Gardiner, D., 1982. Geology of the Richardson anticlinorium, Geological Survey of Canada, Open File 875, 1:125 000.

Geological Survey of Canada, 1996, Regional stream geochemistry for the Eagle Plains Area. Internal report, unpublished results.

Gordey, S.P. and Makepeace, A.J. 1999. Yukon Digital Geology. S.P. Gordey and A.J. Makepeace (comp.), Geological Survey of Canada, Open File D3826, Exploration and Geological Services Division, Yukon, Indian and Northern Affairs Canada, Open File 1999-1(D).

Norris, D. K. ed., 1997. The Geology, Mineral and Hydrocarbon Potential or Northern Yukon Territory and Northwest District of Mackenzie report, Geological Survey of Canada Bulletin 422.

Norris, D. K, 1981b. Geology: Eagle River, Yukon Territory. Geological Survey of Canada, Map 1523A.

Héon, D.1997. Mineral Potential of the Eagle Plains Study Area, YTG Economic Development. Internal report, unpublished results.

Yukon MINFILE, 1997. Exploration and Geological Services Division, Yukon, Indian and Northern Affairs Canada.

Appendix 8

Assay Results (2000)

											-																				*
ELEMENT	<u> </u>	Ag Al	As	Au**	B	Ba	Bi Ca	Cd C	o Cr	Cu	Fe	Ga Hg	K	La	Mg Mi	n	Mo Na	ı Ni	P	Pb	S	Sb Sc	: Sr	Th	Ti	TI	U	V	W	Zn Au	Pt Pd
SAMPLES		ppm %	ppm	ppb	ppm pp	om pp	m %	ppm ppr	m ppm	ppm	% p	opm ppm	%	ppm	% ppn	n j	ppm %	ppm	%	ppm	% p	om ppm	ı ppm	ppm	%	ppm	ppm	ppm p	ppm p	pm	
00511.05			400	07			5 4 30				00.70		0.00		00 7		0.7 0.00		0.000						0.004			45			
00DH-25a 00DH-25c	Tetlit Ck	1.3 0.11 0.8 0.72		-	8	5 < 18 2		< .2 <	1 14 7 30	382		<1 <1 <1 <1	0.03		.09 7 .86 18		6.7 0.002 48.5 0.01			628 39		5.9 < .1 3.5 5.2	-		0.001	4	2 6	45 ' 478		322 786 3	5 6
00DH-25C	Tetlit Ck Tetlit Ck	0.8 0.72	100		23 1 10	5 <			2 14	105		<1 <1			0.7 8		46.5 0.0 12.4 0.004			105		5.5 5.2 5.6 1	51			3	2	21		66 S	
00DH-25e	Tetlit Ck	0.5 1.71	14			45 1		0.6 <		23		4 < 1					23 0.012			27	6.02 1					1				44	
00DH-26	Tetlit Ck	1.8 0.41	7			23 <		<.2 <		22		< 1 1	0.13		.04 1		56.2 0.003			104		7.4 0.8			0.001	< 1	2	60		45	
00DH-27	Tetlit Ck	0.5 1.99	21	< 2			.7 18.19	67.6	9 21	61	2.83	1 1	0.02	< 1 7	.54 118		20.9 0.018			14			2 1346		0.002	< 1		140	1 1'	161	
RE 00DH-27	Tetlit Ck	0.5 2.01	21	9	5 1	29 1	.8 18.35	66.9	9 21	62	2.86	1 1	0.02	1 7	.62 118	9. 2	21.2 0.02	2 245	0.14	16	0.81	9.1. 9.3	3 1361	1	0.002	< 1	43	142	2 11	158	
00DH-29	Vittrekwa	0.6 0.12	11	2	6	73 0	.6 21.07	0.8	1 4	12	0.73	2 1	0.08	58	.57 56	6	1.3 0.010	6 4	0.039	27	< .01	7.7 2.4	1 191	2	0.001	< 1	1	- 13	< 1 2	273	
00DH-30	Vittrekwa	0.6 0.02	22	6	5 1	39	1 36.77	0.8	6 1	25	2.06	1 1	< .01	1 0	.28 60	8	4.3 0.00	7 7	0.016	_ 14	< .01 1	1.7 1.3	3 357	< 1	< .001	< 1	1	7	< 1	78	
00DH-32	Vittrekwa	2.2 0.31	27	3		75 <		3.7	2 3	88	·	3 < 1			.19 23		11.7 0.004		0.019			5.7 1.6				3	8	21		534	<u> </u>
00DH-34	Vittrekwa	0.5 0.04	10			26 <		0.2 <		4		<1 1	0.00		.18 43		0.9 0.012		0.008			3.8 1.3	-			1	< 1			50	
00DH-35a	Border (gyps)	0.3 0.12	6				.4 11.79		7 6	55		1 < 1			3.5 101		6.3 0.024			_		3.2 2.4				< 1	1			53	
00DH-35b	Border (gyps)	0.3 0.09	8				.2 3.76		0 17	31	3.55	1 < 1			.64 178		2.9 0.01			}		1.5 4	169 3 47		0.013	< 1	2	33	·····	32	
00DH-35c 00DH-35d	Border (gyps)	0.1 0.07	3			12 < 24 0	.5 8.49 .5 4.74		6 9 2 10	3 14	1.27 0.95	1 <1 1 <1			.31 173 .49 95		1 0.054 1.8 0.08		0.093	19 14		3.3 9.8 9.4 2.8			0.003	< 1	< 1			31 15	
00DH-350 00DH-35e	Border (gyps) Border (gyps)	0.3 0.08	4			24 U 75 <			2 10	7	0.95	2 < 1			.49 95		1.4 0.00			8	0.42	2 2.1			< .000	< 1	< 1			92	
00DH-36	Tuttle East	0.1 0.47				04 <			6 21	53		2 < 1			.61 24		2.3 0.01	1 59		20		3.7 4.8	_		0.001	< 1	2	32		154	
00DH-37b	Tuttle East	0.2 0.71	7	8		62 <			2 29	16		2 < 1	-		.27 24		2.9 0.01					2.5 2.2		-		< 1	1	37		96	
00DH-38a	Tuttle East	0.3 0.7	7	9	15 1	95 0	.5 17.08	< .2	5 27	11	1.48	4 < 1	0.48	10 6	.15 19	1	0.7 0.009	9 14	0.023	13	1.13	4.8 • 6	333	3	0.015	< 1	< 1	24	< 1	9	
00DH-38b	Tuttle East	0.4 0.11	8	9	11	94 0	.6 20.07	< .2	1 7	5	0.55	1 < 1	0.1	58	.99 34	1	1 0.02	2 5	0.046	17	0.23	5.3 2.6	6 70	2	0.001	< 1	1	11	< 1	4	
00DH-39a	KP-12	1.1 0.18	1575	64	7	65 1	.2 24.48	6.5 5	9 11	148	10.51	8 4	0.07	24 0	.54 24	4 73	21.6 0.01	13242	0.317	22	8.4 6	1.5 2.9	823	2	0.002	38	24	107	< 1 31	184 51	98 60
00DH-39b	KP-12	0.5 0.16	20	4	10 2	91 <	.5 35.59	0.7	1 5	12	0.44	< 1 1	0.09	3 1			8.5 0.0			7		9.7 2.2		-	0.001	1	2			61	
00DH-39c	KP-12	0.4 0.51	25			86 <			3 13	62		1 < 1		-			19.4 0.00			15		7.5 7.2			0.001	_ <1	10			332	
00DH-39d	KP-12	0.3 0.49	36			53 <			6 13	47	3.56	1 < 1			0.1 4		42.4 0.01			14		3.9 2.9			0.001	< 1	3			200	
00DH-39e	KP-12	0.8 0.38		- 			.8 15.3		9 16	53	·	3 1	0.86	-			38.8 0.05	-		17 16		7.2 5.9 4.3 9.6	-		0.001	25	7 15	194		462 8 208	4 <2
00DH-40a 00DH-40b	phosphate	4.3 2.64 0.8 0.22	41 19			63 < 81 <		1.2 0.8	2 288 1 26	51 18	2.84	6 < 1 1 < 1	0.58		.46 4 .41 5	_	21.7 0.03 4.4 0.010	-		13		4.3 9.6 9.7 3.9				′ < 1 < 1	10			97	<u> </u>
00DH-400	phosphate phosphate	3.6 2.6	49			63 <			2 298	45		6 < 1					28.8 0.04			17		4.3 7.6		-		< 1	11			152	
00DH-40d	phosphate	3.7 1.72	30			11 <			2 217	40		5 < 1					18.7 0.024					2.4 9.6	_	-	0.002	< 1	29			105	
00DH-40e	phosphate	5.5 1.52	21			73 <			5 219	65		4 < 1			.59 4		13.9 0.02		- <u> </u>	14		3.2 7.7				< 1	11	150		334	
00DH-40f	phosphate	0.8 0.54	15	4	35 1	52 <	.5 8.07	0.4	4 61	38	1.61	4 < 1	0.19	8 3	.89 16	5	4 0.03	7 68	0.052	12	1.28	2.9 4.7	7 180) 4	0.001	< 1	2	65	< 1 1	198	
00DH-40g	phosphate	7.4 2.35	45	12	120 1	48 <	.5 17.37	1.2	2 178	47	1.1	4 < 1	0.32	35 0	.35 4	5	29.5 0.10	3 82	0.594	12	3.04 1	1.2 7.7	7 513	3 · 4	0.036	1	9	386	< 1 2	223	
00DH-40h	phosphate	12.7 0.89	88	9	28	45 <	.5 9.89	121.7	2 204	96	0.52	<1 <1	0.13	46 0	.05 2	1 :	99.3 0.02	2 89	0.879	16	7.14	3,5 12.8	370	6 (0.017	1	23	1099	< 1 1	160	
00DH-40i	phosphate	11.6 1.38	51			41 <			1 271	53		< 1 < 1			.33 2		61.2 0.10				iiiii	1.9 7.6		3	0.028	1				266	
00DH-40j	phosphaté	7 0.54	37			79 <			2 160	41	0.76	1 < 1					17.3 0.02				·	3.2 8.5		-	0.002	< 1	12			386	
00DH-41a	side canyon ck	0.9 0.39	85				.6 9		1 23	46		2 < 1		· · · · · · · · · · · · · · · · · · ·			24.9 0.00			36		0.6 1.8			0.003	< 1	5	59		365 122	
00DH-41b 00DH-41d	side canyon ck	0.7 0.07	15 40			14 < 21 <		1.7 <	2 5		0.13	<1 1 1 1				3	4.6 0.00 5.2 0.00		0.014 0.011	/		2.6 1.4 19 1.8			< .001 0.001	1 < 1	< 1 2	12 31		24	
00DH-410	side canyon ck	1.3 0.28 2.6 0.54					.6 19.78	83.7	1 9	93		1 1			.98 5	•	9.1 0.00		0.035		0.33	14 2.6			0.003	< 1				825 2	2 3 2
00DH-41f	side canyon ck	0.3 0.05					.5 19.11		1 12	4		<1 <1					2.1 0.00		0.079			2.1 0.9				< 1	3	1 9		18	
00DH-42a	side canyon ck	2.8 1.52			·		.8 7.04		4 48	120	<u> ·</u>	2 < 1	1				26.2 0.01		0.352		0.15 2					< 1	7	649	< 1 7	755	1
00DH-42b	side canyon ck	2.2 1.21	30	7			.6 8.63	7.3	5 30	56	1.96	3 < 1	0.3			7	43.5 0.01	2 50	0.201	26	0.38 3	0.6 3.8	3 214	4	0.01	< 1	7	288	< 1 7	715	
00DH-42c	side canyon ck	1.5 1.22			15 5	-	.5 11.05		3 30	75	1.08	2 < 1	0.33	10 2	.42 10	7.	18.7 0.01	4 42	0.082	17	0.09 1	7.4 3.8	3 258	3 3	0.008	1	5	552	< 1 6	679	
00DH-42d	side canyon ck	2.4 1.58		< 2	21 7	03 0	.5 5.23	6.9	8 41	99		3 < 1	0.4			9	41.2 0.01	1 75			0.22 3		_		0.012	< 1		479		857	
00DH-42e	side canyon ck	2.5 1.34			19 4		.6 7.97		4 39	108	i	2 < 1					23 0.01				0.37 1					1				835	_
00DH-42f	side canyon ck	1.9 1.15			19 3		.6 11.49		5 32	81		2 < 1	-i				23.5 0.01					22 3.				1			< 1 27		
00DH-42g	side canyon ck	4.1 1.55					.5 11.12		4 52	179	1.22	2 < 1					29.9 0.01					4.2 4.5		-{		< 1		716	2 12		<u> </u>
00DH-42h	side canyon ck	4.9 1.2					.6 12.32		3 42	163		2 < 1			2.5 12		31.9 0.01			· · · · · · · · · · · · · · · · · · ·	5.78 5					1		533	1 1({	
00DH-43	Illtyd cave	0.6 0.18					.5 18.81	0.3 <		11			0.05				5.5 0.00		-			6.7 1.6 37 1.7			0.001	<1	3	132		99 580	
00DH-44 00DH-45	liltyd cave	2.2 0.31 1.3 0.22	135 97			54 0 69 63	.6 8.98 .4 0.92	89.4	5 11 1 7	40 2295		1 1 <1 <1	0.04				11.8 0.00		0.156	91 26		4.2 1.7			0.002	5	1			44	·
00DH-45 00DH-46	Illtyd cave	0.6 0.02	97				.4 0.92 .6 38	<.2 <		13		<1 1					0.6 0.00		0.001	·		2.2 1.1			< .001	< 1	< 1			13	
00DH-40 00DH-47a	NOR	0.8 0.38		50		42 4		·	2 14	10928		3 < 1			.08 356		1.5 0.00					0.9 2.2		- f	0.007	1	6	20		10	
00DH-48	NOR	0.3 0.72	12				.7 22.25		3 3	383		4 < 1			.95 139		0.6 0.00					2.1 8.		-l	0.011	< 1	1	87	2	3	
00DH-50a	PJc	0.1 0.23	5			26 <			2 27	19		1 < 1	·				3.6 0.00			arr =		2.8 1.8			0.001	< 1	2	12	3	88	
RE 00DH-50a	PJc	0.1 0.22	4			23 <			2 26	17		1 < 1					3.6 0.00					2.6 1.3	· · · · · · · · · · · · · · · · · · ·			< 1	2	11	3	88	
	L			-		- 1												,	4	· · · · ·									<u> </u>	<u> </u>	

Eagle Plains 2000- Assays. 1

																						,				
																						÷				
																						1				
ELEMENT	Ag Al As Au** B Ba Bi Ca Cd Co Cr Cu	Fe Ga	a Hg	κι	La	Mg Mr	Mo	Na	Ni		P	Pb	S	S	b S	ic	Sr	Th	Ti	TI	U	· V	W	Zn	Au Pt	Pd
SAMPLES	ppm % ppm ppb ppm ppm ppm % ppm ppm ppm		n ppm	% pp		% ppm					%	ppm	%	ppr	n ppi	m f	pm p	pm	%	ppm	ppm	ppm	ppm	ppm		
00DH-50b	PJc 0.1 0.24 4 6 15 65 < 5 2.02 0.2 2 32 12	1.58	1 < 1	0.07	12	0.1 133	4.9	0.007	23	0.1	24	9	0.02	1.	.3 1.	.8	39	2	0.001	< 1	2	12	4	79		
00DH-51	PJC < .1 0.47 7 4 14 140 < .5 0.18 < .2 3 49 106	1.49	1 < 1	0.14	12 0	0.05 67	1.9	0.011	21	0.1	67	9	0.05	0.	5 2	.1	25	4	0.001	< 1	1	<u> </u>	< 1	82		
00RZ-7	tuttle East 2.4 0.22 69 28 18 53 0.5 5.15 < .2 6 6 190	32.1 <	1 1	0.04 <	:1 2	2.17 1264	< .2	0.022	39	0.2	03	90	1.05	44.	8 3	.8	109	1	0.001	3	1	18	< 1			_
00RZ-8	Tetlit ck chip 2.7 0.13 6 6 4 40 0.9 1.68 3.7 1 36 113	0.33 <	1 < 1	0.07	9 0).44 63	10.3	0.001	12	0.3	11	407	0.12		8 1				0.001	< 1			7			_
00RZ-9	Tetlit ck chip 1.1 0.47 13 6 18 148 2.9 9.99 1.2 4 19 71	1.42	2 < 1			.13 147						23	0.91				150		0.003	< 1			< 1			
00RZ-10	Tetlit ck chip 2.2 0.93 20 6 11 352 < .5 11.44 21.2 2 35 84		1 < 1			.45 72				-1		53	0.14				286		0.006	< 1						
00RZ-11a			2 < 1			3.03 210				_		40			·		231		0.002	< 1			< 1			
00RZ-11b	side canyon ck 1.2 0.38 12 4 5 403 < .5 17.08 8.9 1 13 28		1 < 1	0.11		0.91 69						29	0.12				467		0.002	< 1	-		<pre> 1 < 1 </pre>	437		
00RZ-12	side canyon ck 1.7 0.4 37 8 6 115 1 19.39 4.9 1 14 44		1 < 1	0.11		.25 72						27 20	0.83				487 510 ·		0.002					145		
00RZ-13	side canyon ck 0.8 0.26 7 < 2 5 469 < .5 19.59 3.1 1 9 20 side canyon ck 1.1 0.42 10 7 5 275 0.7 19.98 2 1 11 43		1 < 1 1 1	0.08).78 65).74 55						17	0.07				471		0.002	< 1	-					
00RZ-14			1 < 1	0.09		0.74 - 50		-		0.0		25	0.08						0.001	< 1				189		
00RZ-15				0.03		1.12 5				0.0		15	0.17	-			581		0.001	1	1			647	·····-	
00RZ-16 00RZ-17		0.37	<u> </u>	0.06).99 5		-		0.0		14	0.12						0.001	< 1	1 1	·				
00RZ-17	side canyon ck 0.7 0.16 7 2 7 303 <.5 29.96 1.1 1 5 29 Pothole Lake 0.2 0.27 15 <2	3.27 <		0.06		0.03 7		-					< .01			.3	8		0.001	< 1	1 2	46	1	126		
00RZ-18	Pothole Lake 0.1 0.3 3 2 13 76 <.5	0.64	1 < 1	0.08		0.04 3				-			< .01			.9	9		< .001		1	18	2	38		
00102-10		.				İ		1		1		1		1									1			
Sample de	scriptions																									
Cumpie de									-								·									
00011.05-		000)H-40j	inely lam	shales	s with whit	limv asv	metric ler	nses, s/c					İ		00	RZ-15	tr	n-md be	eddec	listwi	n sh int	ervais	Chip.		
00DH-25a	py band in black shale					ed concord					Floa	t		1			RZ-16		n-md be					-	ŀ	
00DH-25c	shale, rough chip, 6m.					w thin py s								-			RZ-17		n-md be							
00DH-25d	pyrite pod 8X30 cm									-							RZ-18								lifereous	
00DH-25e	recessive desintegrated horizon in Dc.			· · · · · · · · · · · · · · · · · · ·		hin py sea					node	and n	odulo	_	_		RZ-19		-buff gr							
00DH-26	in Dc, rotten py nodule					e w thin py					pous			.			102-10	<u> </u>	bun gi							+
00DH-27	limestone nodule in Dc near contact with RR		i			cia w 1-29		cubes.					<u> </u>		_											
00DH-29	finely fractured and clay altered fault breccia					imstone/sl															_					
00DH-30	rusty red limonite (pyrite pseudomorphs?) in thin beded limestone. Float.	00D				imstone/sl		yritic, 2m																		
00DH-32	limonitic vuggy earthy fault breccia w cc xtals. Float.	00D				imstone/sl		_						_												
00DH-34	dark grey calcite vein cut by thin ankerite veinlets.	000	DH-42d	chip samp	ole of	mostlysha	e, 2m	_						_	_											
00DH-35a	gypsum breccia with bluish grey alteration .	000	DH-42e	chip samp	ole of	mostlysha	e, 2m		_												_					
00DH-35b	f.g. pinkish quartzite w specular hematite in veinlets and as coating on slick planes.	000	DH-42f	chip samp	pie of li	imstone/sl	ale, 2m		_																	
00DH-35c	pinkinsh fault breccia with idocrase?	000	DH-42g	chip samp	ole of li	imstone/sl	ale, 2m		_					_												
00DH-35d	" but darker ocher red	000	0H-42h	chip samp	ble of li	imstone/sl	ale, 2m																ļ			
00DH-35e	fine grained gypsum breccia, locally pyritic	00C	DH-43	1.5 cm py	bed a	t base of	mestone	bed in sa	mple 42	b													_			
00DH-36	2m chip in Dus, finely bedded shale/sandstone	000	DH-44	pyritic cro	ssbed	s bed at b	ase of lime	estone be	ed in sam	ple 42	21												_			
00DH-37b	ferricrete in Tuttle	000				reccia w c						rk tex	ture. I	Flt.												
00DH-38a	chip sample RR limestone/chert/shales	000	DH-46	grey weat	hering	y vugy lime	stone wi d	diss orang	ge spots	(py? A	Ank?)															
00DH-38b	chip sample Rrthin-med bedded shales - slightly calcareous	000	DH-47	various co	ore sar	mples																				
00DH-39a	vuggy limestone pod w limonitic seams, clusters of py cubes and annabergite	000				in breccia	ted dolosi	one																		
00DH-39b	grey limestone pod w knobby internal texture. No vis. sulph.	000				ite, massiv				-																,
				- p		g wispy la		1	_	_					_						-	- <u> </u>				
00DH-39c	in fault at RR/Dc contact, 40 cm chip					I rusty wea			siltstone					-	-1								-			
00DH-39d	in fault at RR/Dc contact, rusty, 25 cm chip	i				rusty wea								-				-+		1			-			
00DH-39e	chip sample through RR/Dc contact, probably in fault						liering w	opy iditi.	Situtione	·					-						-		1	1		
00DH-40a	0.8m chip, grey brown fissile shale, loc nodular			tuttle, nod				od abat		anhita				_					-		_					
00DH-40b	0.2m chip, rusty weath., grey nodular limestone, locally pyritic, oil stained					actured. s								_						<u> </u>			+			
00DH-40c	1.25m chip, rusty weath, black shale, includes 15% nodules			<u> </u>		white coa																				_
00DH-40d	0.5mm chip, yellow weath, black shale w cm-sized nodules					white coa		on sulpha	ite, carbo	naceo	us sh			_										-		_
00DH-40e	1.5m chip, chalky calcareous siltstone, I/beddd w fissile shale, loc nodular. Loc. pink weath.			· · · · · · ·		ale/limesto								_						·			-			_
00DH-40f	1.5m chip, chalky beige weath brown calcareous siltstone, oil smell.			tn-md bec	dded Is	st w tn sh	ntervals. (Chip	_												-				-	
00DH-40g	brick red fissile shales w lenses & fine layers of white material (gypsum?). s/c.	00F	RZ-12	tn-md bec	dded Is	st w tn sh	ntervals.	Chip		_				_							_					
00DH-40h	maroonish alt. (re-xtal?) siltstone w small nodular white material rimmed by bright yellow xtals. Float.	00F				st w tn sh				_				_				· 			_		_			
00DH-40i	clay atered punky fractured "light" rock. White lenses w yellow rims, some greyish coating. o/c.	00F	RZ-14	tn-md bec	dded is	st w tn sh	ntervals. (Chip																		
L																-										

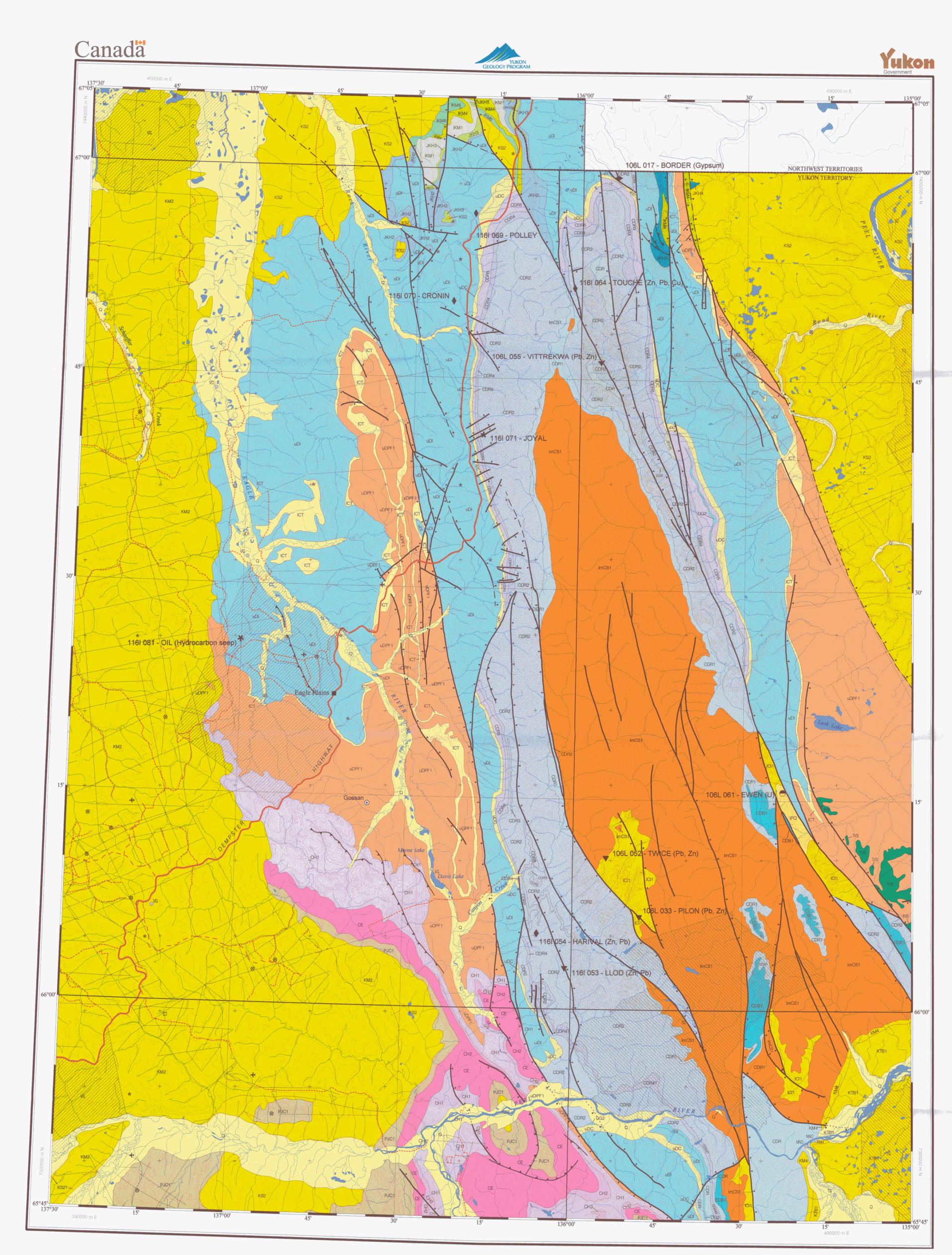
Eagle Plains 2000- Assays. 2

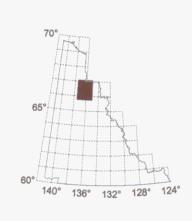
Station no.		V83 LONG83 deg/mn/s.	LAT83 deg/m/s	LONG_83 dec.deg.	LAT_83 dec.deg.	Station no.	UTM_E83	UTM_N83	LONG83 deg/mn/s.	LAT83 deg/m/s	LONG_83 dec.deg.	LAT_83 dec.deg.
			deg/iii/s	dec.deg.	dec.deg.						dec.deg.	dec.deg.
00DH025	466550.3 73992	285.8 -135 45 29	66 42 36	-135.7582	66.7103	95DH054	442130.5	7395721.3	2 -136 18 35	66 40 28	-136.3098	66.674
00DH026	466550.3 73992	285.8 -135 45 29	66 42 36	-135.7582	66.7103	95DH055	441827.1	7395081.	6 -136 18 58	66 40 7	-136.3164	66.668
00DH027	466550.3 73992	285.8 -135 45 29	66 42 36	-135.7582	66.7103	95DH056	441718.5	7425308.	1 -136 20 00	66 56 23	-136.3335	66.939
00DH028		75.4 -135 55 58	66 45 53	-135.9329		95DH057	441718.5	7425308.	1 -136 20 00	66 56 23	-136.3335	66.939
00DH029	458701.3 74051	53.1 -135 56 16	66 45 42	-135.9380	66.7619	95DH058	441984.6	7426056.	0 -136 19 39	66 56 48	-136.3277	66.946
00DH030	457997.7 74052	260.6 -135 57 14	66 45 46	-135.9540	66.7628	95DH059	441984.6	7426056.	0 -136 19 39	66 56 48	-136.3277	66.94
00DH031	456828.6 74051	11.2 -135 58 49	66 45 40	-135.9805	66.7613	95DH060	441984.6	7426056.	0 -136 19 39	66 56 48	-136.3277	66.94
00DH032		11.2 -135 58 49	66 45 40	-135.9805		95DH061	441984.6		0 -136 19 39	66 56 48	-136.3277	
00DH033		11.2 -135 58 49		-135.9805		95DH062	441984.6		0 -136 19 39	66 56 48	-136.3277	
00DH034		159.6 -135 59 20	66 45 19	-135.9891	66.7554	95DH070	441984.6		0 -136 19 39	66 56 48	-136.3277	
00DH035		289.0 -135 53 53	66 59 15	-135.8982		95DH071	441984.6		0 -136 19 39	66 56 48	-136.3277	
00DH036		347.0 -135 29 47		-135.4966		95DH072	441984.6		0 -136 19 39	66 56 48 66 56 48	-136.3277	
00DH037 00DH038		719.4 -135 29 21 554.3 -135 48 18		-135.4894 -135.8051	66.7870 66.7044	95DH073 95DH074	441984.6 441984.6		0 -136 19 39 0 -136 19 39	66 56 48	-136.3277	
00DH038		167.9 -136 17 40		-136.2946	<u> </u>	95DH074	441904.0		2 -136 21 6	66 54 58	-136.3519	
00DH039		394.6 -136 37 44	66 10 46	-136.6289		95DH076	443687.5		6 -136 17 17	66 56 5	-136.2881	66.93
00DH040		248.5 -136 6 30	66 10 10	-136.1086		95DH077	443687.5		6 -136 17 17	66 56 5	-136.2881	
00DH042		753.3 -136 6 57	66 10 26	-136.1159		95DH080	441875.6		8 -136 19 34	66 52 25	-136.3263	
00DH043		753.3 -136 6 57	66 10 26	-136.1159		95DH081	441327.3		2 -136 20 13	66 50 32	-136.3371	
00DH044		753.3 -136 6 57	66 10 26	-136.1159		95DH082	441327.3		2 -136 20 13	66 50 32	-136.3371	
00DH045		310.5 -135 50 57	66 7 52	-135.8494		95DH083	441327.3		2 -136 20 13	66 50 32	-136.3371	
00DH046		310.5 -135 50 57	66 7 52	-135.8494		95DH084	442068.1		6 -136 18 55	66 45 16	-136.3155	
00DH047		232.0 -135 22 26	66 15 45	-135.3740		95DH085	442894.6		9 -136 17 48	66 45 22	-136.2968	
00DH048		541.0 -135 23 5	66 15 55	-135.3847	66.2654	95DH086	442894.6	7404804.	9 -136 17 48	66 45 22	-136.2968	66.75
00DH049		309.3 -135 22 28	66 15 25	-135.3746	66.2570	95DH087	443968.5	7404166.	9 -136 16 19	66 45 2	-136.2721	66.75
00DH050		367.0 -136 31 31	65 47 24	-136.5253		95DH090	443968.5		9 -136 16 19	66 45 2	-136.2721	66.75
00DH051		247.7 -136 36 49	65 45 40	-136.6137	65.7612	95DH091	443968.5		9 -136 16 19	66 45 2	-136.2721	66.75
00DH068		641.4 -136 6 34	66 2 50	-136.1096		95DH092	443968.5	7404166.	9 -136 16 19	66 45 2	-136.2721	
00RZ007		241.9 -135 30 18	66 46 57	-135.5050		95DH093	442894.6	7404804.	9 -136 17 48	66 45 22	-136.2968	
00RZ008		771.4 -135 46 37	66 42 20	-135.7771	66.7056	95DH094	442894.6		9 -136 17 48	66 45 22	-136.2968	
00RZ009		771.4 -135 46 37	66 42 20	-135.7771	66.7056	95DH095	461035.0	7336279.	5 -135 51 48	66 8 40	-135.8634	
00RZ010	465708.4 73987	771.4 -135 46 37	66 42 20	-135.7771	66.7056	95DH096	461035.0	7336279.	5 -135 51 48	66 8 40	-135.8634	66.14
00RZ011	449701.6 73397	753.3 -136 6 57	66 10 26	-136.1159	66.1740	95DH097	461035.0	7336279.	5 -135 51 48	66 8 40	-135.8634	66.14
00RZ011a	449701.6 73397	753.3 -136 6 57	66 10 26	-136.1159	66.1740	95DH098	461035.0	7336279.	5 -135 51 48	66 8 40	-135.8634	66.14
00RZ012	449701.6 73397	753.3 -136 6 57	66 10 26	-136.1159	66.1740	95DH099	461035.0	7336279.	5 -135 51 48	66 8 40	-135.8634	66.14
00RZ013	449701.6 73397	'53.3 -136 6 57	66 10 26	-136.1159	66.1740	95DH100	461035.0	7336279.	5 -135 51 48	66 8 40	-135.8634	66.14
00RZ014	449701.6 73397	753.3 -136 6 57	66 10 26	-136.1159		95DH101	461035.0	7336279.	5 -135 51 48	66 8 40	-135.8634	66.14
00RZ015		753.3 -136 6 57	66 10 26	-136.1159	66.1740	95DH102	461035.0	7336279.	5 -135 51 48	66 8 40	-135.8634	
00RZ016		753.3 -136 6 57	66 10 26	-136.1159		95DH103	460870.7	7334767.	9 -135 51 59	66 7 51	-135.8666	
00RZ017	449701.6 73397	753.3 -136 6.57	66 10 26	-136.1159		95DH104	461076.5	7335103.	2 -135 51 43	66 8 2	-135.8621	
00RZ018		11.5 -136 32 53	65 47 57	-136.5483		95DH105	461076.5		2 -135 51 43	66 8 2	-135.8621	
00RZ019		335.6 -136 32 36	65 47 22	-136.5434		95DH106	461468.0		9 -135 51 13	66 8 45	-135.8539	
95DH002		076.4 -136 51 21	66 14 29	-136.8559		95DH107	461468.0		9 -135 51 13	66 8 45	-135.8539	
95DH007		178.7 -136 19 50		-136.3307		95DH108	461468.0		9 -135 51 13	66 8 45	-135.8539	
95DH008		128.3 -136 17 44	66 37 38	-136.2956		95DH109	461468.0		9 -135 51 13	66 8 45	-135.8539	
95DH009	-		66 59 45	-136.2054		95DH110	461468.0		9 -135 51 13	66 8 45	-135.8539	
95DH010		191.6 -136 13 4	66 57 37	-136.2180		95DH111	461668.0		5 -135 50 58	66 8 59 66 8 59	-135.8496	
95DH011 95DH012	443687.5 74246 442439.6 73843			-136.2881		95DH112 95DH113	461668.0 461668.0		5 -135 50 58 5 -135 50 58	66 8 59	-135.8496	
95DH012	441875.6 74179			-136.3263		95DH115	454399.0		4 -136 2 22	66 51 19	· · · · · · · · · · · · · · · · · · ·	
95DH014		664.8 -136 20 39		-136.3443		95DH116	453462.3		9 -136 3 40	66 51 29		
95DH015	441939.8 74092		66 47 45	-136.3206		95DH117	452982.7		7 -136 4 18	66 51 14		
95DH016		243.2 -136 19 14		-136.3206		95DH118	452347.8		1 -136 5 11	66 51 13	-136.0864	
95DH017		243.2 -136 19 14		-136.3206	1	95DH119	451680.7		3 -136 6 4	66 50 45	-136.1013	
95DH018				-136.3259		95DH120	449759.6		7 -136 8 44	66 51 43	-136.1458	
95DH019		242.7 -136 18 27		-136.3076		95DH121	448382.0	7417225.	6 -136 10 39	66 52 7	-136.1775	66.86
95DH020	442531.6 74102			-136.3076		95DH122	418095.5		8 -136 49 22	66 15 19	-136.8230	
95DH021	443687.5 74246			-136.2881	66.9348	95DH122	431277.2	7377362.	5 -136 32 42	66 30 28	-136.5451	
95DH022		694.6 -136 17 17		-136.2881	66.9348	95DH123	415298.6		8 -136 52 59	66 13 41	-136.8833	
95DH023		694.6 -136 17 17		-136.2881	66.9348	95DH124	413275.8		5 -136 55 38	66 12 56	-136.9273	
95DH024		694.6 -136 17 17		-136.2881	66.9348	95DH126	442283.6	7417357.	8 -136 19 00	66 52 7	-136.3167	
95DH025	443687.5 74246	694.6 -136 17 17	66 56 5	-136.2881	66.9348	95DH127	443118.7	7417020.	5 -136 17 50	66 51 57	-136.2975	66.86
95DH026	443687.5 74246	694.6 -136 17 17	66 56 5	-136.2881	66.9348	95DH128	443118.7	7417020.	5 -136 17 50	66 51 57	-136.2975	
95DH027		694.6 -136 17 17		-136.2881		95DH129	443118.7		5 -136 17 50	66 51 57	-136.2975	
95DH028		594.6 -136 17 17		-136.2881	66.9348	95DH130	443118.7		5 -136 17 50	66 51 57	-136.2975	
95DH029		694.6 -136 17 17		-136.2881	66.9348	95DH131	443118.7		5 -136 17 50	66 51 57	-136.2975	
95DH030		694.6 -136 17 17		-136.2881	66.9348	95DH132	443118.7		5 -136 17 50	66 51 57	-136.2975	
95DH031		694.6 -136 17 17		-136.2881		95DH133	443118.7		5 -136 17 50	66 51 57	-136.2975	
95DH032		594.6 -136 17 17		-136.2881		95DH135	445588.1		7 -136 14 44	66 57 9	-136.2456	
95DH033		694.6 -136 17 17		-136.2881	66.9348	95DH136	445588.1		7 -136 14 44	66 57 9	-136.2456	
95DH034		594.6 -136 17 17		-136.2881	66.9348	95DH137	445588.1		7 -136 14 44	66 57 9	-136.2456	
95DH035		694.6 -136 17 17		-136.2881	66.9348	95DH138	445588.1		7 -136 14 44	66 57 9	-136.2456	
95DH036		694.6 -136 17 17		-136.2881	66.9348	95DH139	445588.1		7 -136 14 44	66 57 9	-136.2456	
95DH037	443687.5 74246			-136.2881		95DH140	445588.1		7 -136 14 44	66 57 9	-136.2456	
95DH038	440918.4 7382					95DH141	445588.1		7 -136 14 44	66 57 9	-136.2456	
95DH039		178.7 -136 19 50		-136.3307	· · · · · · · · · · · · · · · · · · ·	95DH142	446026.4		1 -136 14 5	66 56 19		
95DH040		308.5 -136 17 50				95DH143	446026.4		1 -136 14 5	66 56 19		
95DH041		308.5 -136 17 50				95DH144	446253.2		3 -136 13 45	66 55 47		
95DH042		308.5 -136 17 50		-136.2974		95DH145	446253.2		3 -136 13 45	66 55 47		
95DH043		308.5 -136 17 50		-136.2974		95DH146	446253.2		3 -136 13 45	66 55 47		
95DH044	-	569.8 -136 16 57		-136.2828		95DH147	446253.2		3 -136 13 45	66 55 47		
95DH045		569.8 -136 16 57		-136.2828		95DH148	446253.2		3 -136 13 45	66 55 47		
95DH046		169.1 -136 16 12		-136.2702	•	95DH149	446253.2		3 -136 13 45	66 55 47		
95DH047		428.3 -136 17 44		-136.2956		95DH150	445806.8		7 -136 14 20	66 55 12		
95DH048	_	552.2 -136 17 16		-136.2879		95DH151	445806.8		7 -136 14 20	66 55 12		
95DH049		552.2 -136 17 16		-136.2879	÷	95DH152	445806.8		7 -136 14 20	66 55 12		
	444117.8 73974	402.2 -136 15 56	66 41 24	-136.2656		95DH154	442479.5		9 -136 18 47	66 53 21	-136.3133	
95DH050		>				95DH155	442785.1	7420563	01 126 10 24	100 E0 E4		
95DH051	445379.9 73972	277.5 -136 14 13		-136.2370					8 -136 18 24	66 53 51	-136.3068	
	445379.9 73972 444117.8 73974	277.5 -136 14 13 402.2 -136 15 56 113.6 -136 17 15	66 41 24	-136.2656	66.6901	95DH156 95DH157	442785.1	7420563.	8 -136 18 24 8 -136 18 24 8 -136 18 24	66 53 51 66 53 51 66 53 51	-136.3068	66.89

Station Location/coordinates. 1

·• ·

. . . .


tation no.	UTM_E83	UTM_N83	LONG83	LAT83	LONG_83		Station no.	UTM_E83	UTM_N83	LONG83	LAT83		LAT_83	
			deg/mn/s.	deg/m/s	dec.deg.	dec.deg.				deg/mn/s. 	deg/m/s	dec.deg.	dec.deg.	
5DH158	443789.1	7420714.5	-136 17 2	66 53 56	-136.2839	66.8991	96DH053	450998.7	7329673.9	-136 4 59	66 5 1	-136.0832	66.0838	
5DH159	443789.1	7420714.5	-136 17 2	66 53 56	-136.2839	66.8991	96DH054	451094.0	7328891.3	-136 4 51	66 4 36	-136.0808	66.0768	l
5DH160	443789.1	7420714.5	-136 17 2	66 53 56	-136.2839	66.8991	96DH055	451094.0	7328891.3		66 4 36	-136.0808		l
5DH161	442479.5		-136 18 47	66 53 21	-136.3133	66.8893	96DH056	450567.5	7328921.0		66 4 37	-136.0925		
5DH162	442479.5		-136 18 47	66 53 21	-136.3133	66.8893	96DH057	450567.5	7328921.0		66 4 37	-136.0925		
5DH163	442036.2		-136 19 23	66 52 59	-136.3231	66.8831	96DH058 96DH059	450849.2 449377.4	7331620.2		66 6 4 66 00 57	-136.0873		
5DH164	443114.9		-136 17 53	66 52 33 66 52 33	-136.2981	66.8758 66.8758	96DH060	450662.1	7322468.3		66 1 8	-136.0879		
5DH165 5DH166	443114.9 443946.6		-136 16 43	66 52 8	-136.2788	66.8692	96DH061	451350.8			66 1 21	-136.0729		
5DH167			-136 16 32	66 51 49	-136.2757	66.8638	96DH062	451984.2			66 1 43	-136.0592		
5DH168	444068.8		-136 16 32	66 51 49	-136.2757	66.8638	96DH063	451984.2			66 1 43	-136.0592	· · · · · · · · · · · · · · · · · · ·	
5DH169	444221.4		-136 16 18	66 51 25	-136.2719	66.8570	96DH064	452156.5		-136 3 21	66 2 38	-136.0560	66.0440	
5DH170	442714.8	7415720.6	-136 18 21	66 51 14	-136.3061	66.8541	96DH065	452156.5	7325214.9	-136 3 21	66 2 38	-136.0560	66.0440	
5DH174	442444.4	7408050.4	-136 18 30	66 47 7	-136.3086	66.7853	96DH066	451331.5	7326022.5	-136 4 28	66 3 3	-136.0745		
5DH175	443186.4	7407173.5	5 -136 17 28	66 46 39	-136.2913	66.7776	96DH067	450595.2	7326816.7		66 3 29	-136.0911		
5DH176	444807.1		6 -136 15 13	66 45 58	-136.2539	66.7661	96DH068	454337.5		-136 00 26	66 2 4	-136.0075		
5DH177	443186.4		-136 17 28	66 46 39	-136.2913	66.7776	96DH070	445837.8		-136 12 20	66 15 39	-136.2057		
5DH178	442444.4		-136 18 30	66 47 7 .	-136.3086	66.7853	96DH071	445837.8		-136 12 20	66 15 39	-136.2057		
5DH179	442444.4		-136 18 30	66 47 7	-136.3086	66.7853	96DH072	445837.8		-136 12 20	66 15 39 66 15 41	-136.2057		
5DH180	442444.4		-136 18 30	66 47 7	-136.3086	66.7853	96DH073	447723.0		-136 9 49 -136 10 30	66 15 39	-136.1038		
5DH182	446871.1		-136 11 52	66 34 54	-136.1980	66.5818	96DH074 96DH075	447214.8		-136 10 30	66 15 39	-136.1885		i i
5DH183	446871.1		-136 11 52	66 34 54 66 34 54	-136.1980 -136.1980	66.5818 66.5818	96DH075	446611.7		-136 11 18	66 15 37	-136.1885		
5DH184	446871.1		5 -136 11 52 3 -136 13 49	66 33 33	-136.2304	66.5593	96DH077	446611.7	· · · · · · · · · · · · · · · · · · ·	-136 11 18	66 15 37	-136.1885	· · · · · · · · · · · · · · · · · · ·	
5DH185 5DH186	445385.2 430155.6		2 -136 34 24	66 33 34	-136.2304		96DH078	445444.4		-136 12 50	66 15 13	-136.2142		1
5DH180	430155.0		5 -136 37 11		-136.6200		96DH079	445837.8		-136 12 20	66 15 39	-136.2057	66.2609	1
5DH188	444416.7		-136 16 19	66 56 54	-136.2722		96DH080	446533.1		-136 11 25	66 15 53	-136.1905		1
5DH188	425612.0		-136 40 35	66 34 00	-136.6764		96DH081	447348.5		-136 10 20	66 16 6	-136.1725	66.2685	1
5DH189	444416.7		-136 16 19	66 56 54	-136.2722		96DH082	447348.5		-136 10 20	66 16 6	-136.1725		1
5DH190	444416.7		-136 16 19	66 56 54	-136.2722		96DH083	448618.7		-136 8 39	66 16 10	-136.1442		1
5DH191	444416.7		-136 16 19	66 56 54	-136.2722		96DH084	447653.7		-136 9 38	66 9 42	-136.1608		1
5DH191	423562.4		2 -136 43 14		-136.7207	66.5382	96DH085	447653.7		-136 9 38	66 9 42	-136.1608	· · · · · · · · · · · · · · · · · · ·	
5DH192	417156.8		9 -136 51 54		-136.8652		96DH086	447653.7		-136 9 38	66 9 42	-136.1608		ł
5DH193	418907.6		9 -136 49 26	66 31 11	-136.8241	66.5199	96DH087	447653.7		-136 9 38	66 9 42	-136.1608		4
5DH194	429540.4		-136 33 58		-136.5663		96DH088	447118.9		-136 10 21	66 9 35	-136.1725		
5DH195	426815.5		-136 37 39	66 14 6	-136.6276		96DH089	447118.9		-136 10 21	66 9 35	-136.1725		
5DH196	433708.4		136 30 29		-136.5082		96DH090	447118.9		-136 10 21 -135 57 7	66 9 35 66 7 12	-135.9520		
5DH197	435459.8		6 -136 28 27		-136.4744		96DH106 96DH107	457269.0		-135 57 7	66 7 37	-135.9462		· ·
5DH198 6DH001	434790.3 442200.2		6 -136 29 23 5 -136 19 16		-136.4899 -136.3212		96DH108	457269.0		-135 56 46	66 7 37	-135.9462		
6DH002	442200.2		5 -136 19 16		-136.3212		96DH109	457444.5		-135 56 33	66 7 54	-135.9425		
6DH002	442200.2		5 -136 19 16		-136.3212		96DH110	457769.9		-135 56 7	66 8 1	-135.9354		
6DH004	442828.6		5 -136 18 24		-136.3069		96DH111	457769.9		-135 56 7	66 8 1	-135.9354		
6DH005	442828.6		5 -136 18 24		-136.3069		96DH112	458669.1		-135 54 57	66 8 44	-135.9159	66.1458	
6DH005	436305.0		4 -136 26 00		-136.4334		96DH113	458669.1	7336464.0	-135 54 57	66 8 44	-135.9159	66.1458	í
6DH006	442828.6	7422845.5	5 -136 18 24	66 55 5	-136.3069	66.9181	96DH114	458669.1	7336464.0) -135 54 57	66 8 44	-135.9159		
6DH006	438103.0	7380116.7	7 -136 23 34	66 32 2	-136.3931	66.5339	96DH115	459378.5	7337074.8	3 -135 54 1	66 9 4	-135.9004		
6DH007	443737.8	7423035.1	1 -136 17 10	66 55 11	-136.2862		96DH116	459378.5		3 -135 54 1	66 9 4	-135.9004		
6DH008	443737.8		1 -136 17 10		-136.2862		96DH117	459478.3		3 -135 53 54	66 9 23	-135.8984		
6DH009	443737.8		I -136 17 10		-136.2862		96DH118	460166.7		2 -135 52 59	66 9 36	-135.8832		-
6DH010	441718.5		1 -136 20 00		-136.3335		96DH119	461715.6		135 50 55	66 9 37	-135.8489		
6DH011	441984.6		0 -136 19 39		-136.3277		96DH120	462145.7		-135 50 22 -135 50 22	66 9 57 66 9 57	-135.8395		
6DH012	441984.6 441984.6		0 -136 19 39 0 -136 19 39		-136.3277		96DH121 96DH122	462145.7		-135 50 22	66 9 57	-135.8395		-
6DH013 6DH014	441226.4		3 -136 20 44		-136.3457		96DH123	462145.7		-135 50 22	66 9 57	-135.8395		
6DH016	441864.9		5 -136 19 40		-136.3278		96DH124	462761.1		0 -135 49 33	66 10 22			
6DH017	442785.1		B -136 18 24		-136.3068		96DH125	462761.1) -135 49 33	66 10 22	-135.8261		
6DH018	442785.1		3 -136 18 24		-136.3068		96DH126	462145.7		-135 50 22	66 9 57	-135.8395		
6DH019	442785.1		8 -136 18 24		-136.3068		96DH130	449701.6		3 -136 6 57	66 10 26	-136.1159		ļ
6DH020	443789.1		5 -136 17 2	66 53 56	-136.2839		96DH131	449701.6		3 -136 6 57	66 10 26	-136.1159		
6DH020	441057.8		9 -136 20 17	66 45 10	-136.3383		96DH132	449701.6	5 7339753 .3	3 -136 6 57	66 10 26	-136.1159		-
6DH021	443789.1	7420714.	5 -136 17 2	66 53 56	-136.2839		96DH133	449701.6		3 -136 6 57	66 10 26			
6DH022	443789.1		5 -136 17 2	66 53 56	-136.2839		96DH134	449701.6		3 -136 6 57	66 10 26			
6DH023	453055.9		5 -136 2 49	66 18 24	-136.0470		96DH135	449701.6		3 -136 6 57	66 10 26	-136.1159		-
6DH024	_	7355153.		66 18 44	-136.0816		96DH136	449701.6		3 -136 6 57	66 10 26			-
6DH025		7355153.		66 18 44	-136.0816		96DH137	450021.3		5 -136 6 30	66 10 10 66 10 2			- 2
6DH026		7355579.0		66 18 58	-136.0986		96DH139	449181.7		5 -136 7 37	66 10 2 66 10 2	-136.1271		-
6DH027	449779.6		4 -136 7 12	66 18 43 66 18 43	-136.1203		96DH140 96DH150	449181.7		5 -136 7 37 0 -136 12 6	66 29 32			-
6DH028 6DH029	449779.6 448778.6		4 -136 7 12 5 -136 8 31	66 17 58	-136.1203		96DH150	446506.3		0 -136 12 6	66 29 32			-
6DH029	448778.8		5 -136 15 8	66 19 43	-136.2523		96DH152	440300.		3 -136 11 9	66 29 16			-
6DH032	444462.4		3 -136 14 22		-136.2396		96DH153	447206.8		B -136 11 9	66 29 16			
6DH033	444462.4		3 -136 14 22		-136.2396		96DH154	447206.8		3 -136 11 9	66 29 16			-
6DH034			7 -136 12 58		-136.2164		96DH155	447206.8		8 -136 11 9	66 29 16			
6DH035		<u>.</u>	7 -136 12 58		-136.2164		96DH156	447206.8	3 7374804.	8 -136 11 9	66 29 16	-136.1860	66.4880	4
6DH036			7 -136 12 58		-136.2164		96DH157	448615.1		4 -136 9 15	66 29 14	-136.1543		-
6DH037	445502.2	7356797.	7 -136 12 58	66 19 34	-136.2164	66.3262	96DH158	448615.1		4 -136 9 15	66 29 14			
6DH038	447226.4	7354133.	0 -136 10 36	66 18 9	-136.1768		96DH159	448615.1		4 -136 9 15	66 29 14			
6DH039	446393.9	7354006.	3 -136 11 42	66 18 4	-136.1953		96DH160	449526.0		9 -136 8 1	66 29 5	-136.133		_
6DH040	446871.4		2 -136 11 3	66 17 45	-136.1844		96DH161	449526.0		9 -136 8 1	66 29 5	-136.1337	_	-
6DH041	446414.1		4 -136 11 40		-136.1945		96DH162	449526.		9 -136 8 1	66 29 5	-136.133		
6DH042	446414.1		4 -136 11 40		-136.1945		96DH163	449752.4		1 -136 7 43	66 29 20			
6DH043	445926.4		5 -136 12 19		-136.2055		96DH164	443483.		2 -136 15 43	66 20 24			-
6DH044	451962.1		3 -136 3 50	66 7 57	-136.0640		96DH165	443823.2		2 -136 15 16	66 20 36			-
6DH045	451357.0		7 -136 4 36	66 6 56	-136.0767			443823.		2 -136 15 16	66 20 36			
6DH046	451357.0		7 -136 4 36	66 6 56	-136.0767			443823.		2 -136 15 16	66 20 36			
6DH047	451357.0		7 -136 4 36	66 6 56	-136.0767			443823.		2 -136 15 16	66 20 36 66 20 36			-
6DH050 6DH051	450963.5 450420.7		6 -136 5 6 9 -136 5 47	66 6 30	-136.0851		96DH169 96DH170	443823.		2 -136 15 16 2 -136 15 16	66 20 36			
	■ 4504707	1 1331210.	9 -136 5 47	66 5 51	-136.0966	66.0975 66.0838	96DH170 96DH171	443823.			66 20 36			-


Station Location/coordinates. 2

.

	Station no.	UTM E83	UTM_N83	LONG83	LAT83	LONG_83	LAT_83	Station no.	UTM_E83	UTM_N83	LONG83	LAT83	LONG_83	LAT_83
				deg/mn/s.	deg/m/s	dec.deg.	dec.deg.				deg/mn/s.	deg/m/s	dec.deg.	dec.deg.
				100 15 10	00.00.00	400.0547	00.0400	00110047	400504.0	7070500 0	126 42 50	66 27 47	-136.7164	66.4632
	96DH172	443823.2			66 20 36	-136.2547		96HR017 96HR018	423521.3		2 -136 42 59 -136 38 9	66 29 16	-136.6359	
	96DH173	444239.7		-136 14 44	66 20 53 66 20 53	-136.2456 -136.2456		96HR018	427179.2		-136 45 8	66 29 49	-136.7523	· · · · · · · · · · · · · · · · · · ·
	96DH174	444239.7		-136 14 44		-136.2450		96HR019	416477.9		-136 43 8 -136 52 36	66 29 31	-136.8767	
	96DH175	445498.5			66 14 10 66 14 10	-136.2121	66.2362	96HR020	416477.9		-136 52 36	66 29 31	-136.8767	
	96DH176 96DH177	445498.5 445996.8		-136 12 43	66 14 10 66 13 57	-136.2009		96HR022	416479.2		-136 52 34	66 29 10	-136.8762	· · · · ·
		445996.8			66 13 57 66 13 57	-136.2009		96HR023	416831.6		3 -136 52 10	66 30 15	-136.8697	
	96DH178 96DH179	445990.8		-136 12 3 -136 10 10	66 14 4	-136.1696		96HR024	414833.3		-136 55 6	66 33 18	-136.9185	
	96DH180	447920.5			66 14 1	-136.1581		96HR025	416817.0		9 -136 52 32	66 34 51	-136.8758	
	96DH180 96DH181	447920.5			66 13 46	-136.1515		96HR026	415003.2		136 54 48	66 32 20	-136.9134	
	96DH181	448208.7			66 13 46	-136.1515		96HR027	418104.7		2 -136 50 38	66 32 40	-136.8440	
	96DH183	448208.7			66 13 46	-136.1515		96HR028	421158.1		5 -136 46 36	66 34 2	-136.7769	1
	96DH183	442531.6		-136 18 27	66 48 17	-136.3076		96HR029	422932.6	1	5 -136 44 6	66 32 36	-136.7352	
	96DH185	441723.2		2 -136 19 33	66 48 7	-136.3259		96HR030	426120.1		0 -136 39 55	66 34 27	-136.6655	
	96DH185	441/23.2		5 -136 19 59	66 48 29	-136.3333		96HR031	429559.9		6 -136 35 16	66 34 29	-136.5880	
	96DH192	447211.7		-136 12 28	66 56 39	-136.2080		96HR032	437405.5	· · · · · · · · · · · · · · · · · · ·	7 -136 24 47	66 36 47	-136.4133	
	96DH193	448880.6		3 -136 10 12	66 57 5	-136.1701		96HR033	433696.3		7 -136 29 46	66 36 8	-136.4964	
	96DH194	449130.9		-136 9 49	66 56 25	-136.1639		96HR034	436210.9		-136 26 24	66 36 41	-136.4401	66.6114
	96DH195	449130.9		7 -136 9 49	66 56 25	-136.1639		96HR035	435703.6		3 -136 27 25	66 42 17	-136.4571	
	96DH196	449304.6		-136 9 33	66 55 43	-136.1593		96HR036	434223.1		9 -136 29 27	66 42 35	-136.4909	
	96DH197	447635.3		-136 11 50	66 55 41	-136.1975		96HR037	429276.0		5 -136 36 5	66 41 2	-136.6014	
	96DH198	447635.3		-136 11 50	66 55 41	-136.1975		96HR040A	425105.0		5 -136 41 53	66 43 3	-136.6982	
	96DH199	447635.3		I -136 11 50	66 55 41	-136.1975		96HR040A	425081.8		7 -136 41 54	66 42 46	-136.6984	
	96DH200	443962.2		-136 15 17	66 24 26	-136.2548		96HR040A	440032.3		3 -136 21 21	66 38 54	-136.3559	66.6485
	96DH200 96DH201	445715.0		3 -136 12 54	66 24 5	-136.2153		96HR040A	434331.2		9 -136 28 30	66 29 17	-136.4752	
	96DH201 96DH202	446298.7) -136 12 54	66 23 39	-136.2018		96HR040A	428807.2		4 -136 35 33	66 23 4	-136.5927	
	96DH202 96DH203	440298.7		2 -136 19 46	66 42 50	-136.3295		96HR040A	428700.0		0 -136 35 41	66 22 40	-136.5947	
	96DH203 96DH204	441353.2		3 -136 20 18	66 43 4	-136.3384		96HR040A	427348.1		0 -136 37 29	66 22 40	-136.6250	
	96DH204	441408.9		2 -136 20 5	66 50 2	-136.3348		96HR040A	445893.1		3 -136 12 1	66 10 22	-136.2003	
	96GM001	452376.5) -136 3 14	66 6 47	-136.0540		96HR040A	465364.8		9 -135 45 59	66 7 3	-135.7667	
	96GM001	452376.5		0 -136 3 14	66 6 47	-136.0540		96HR040A	463724.2		0 -135 48 7	66 5 33	-135.8022	
	96GM003	452376.5		0 -136 3 14	66 6 47	-136.0540		96HR050	465941.1		2 -135 45 11	66 5 40	-135.7532	
	96GM004	452376.5		0 -136 3 14	66 6 47	-136.0540		96HR051	438738.3		2 -136 22 30	66 28 13	-136.3752	
	96GM005	452376.5		0 -136 3 14	66 6 47	-136.0540		96HR052	437198.8		7 -136 24 32	66 27 31	-136.4092	
	96GM006		7332930.0		66 6 47	-136.0540		96HR053	433660.9		0 -136 29 14	66 26 26	-136.4875	66.4408
	96GM007		7333248.6		66 6 58	-136.0390		96HR054	432873.0	7369728.0	0 -136 30 18	66 26 22	-136.5051	66.4397
	96GM008		7332075.9		66 6 20	-136.030		96HR055	432293.1		0 -136 31 2	66 25 47	-136.5175	66.4297
	96GM009		7332075.9		66 6 20	-136.0301		96HR056	· 439488.7	7357234.	3 -136 21 2	66 19 44	-136.3507	66.3290
	96GM010	453442.4			66 6 20	-136.0301		96HR057	441130.8	7353813.	9 -136 18 45	66 17 55	-136.3125	66.2986
	96GM011	453442.4		9 -136 1 48	66 6 20	-136.0301		96HR058	436758.0		8 -136 24 40	66 19 10	-136.4112	66.3196
	96GM012	453380.0			66 5 33	-136.0310		96HR059	434659.0	7356472.	7 -136 27 29	66 19 16	-136.4581	66.3212
	96GM013		7330614.4		66 5 33	-136.0310		96HR060	434288.7	7357791.	5 -136 28 1	66 19 58	-136.4671	66.3329
	96GM014	453380.0		4 -136 1 51	66 5 33	-136.0310	66.0926	96HR061	425678.9	7358973.	9 -136 39 35	66 20 29	-136.6599	66.3416
	96GM015	453380.0	· · · · · · · · · · · · · · · · · · ·	4 -136 1 51	66 5 33	-136.0310	66.0926	96HR062	426264.4	7362363.	6 -136 38 55	66 22 19	-136.6488	66.3721
	96GM016	451723.6		2 -136 3 58	66 3 50	-136.0664	4 66.0639	96HR063	396474.0	7347489.	7 -137 18 7	66 13 49	-137.3022	66.2304
,	96GM017	451723.6		2 -136 3 58	66 3 50	-136.0664	4 66.0639	96HR064	408570.3	7349756.	1 -137 2 6	66 15 15	-137.0350	66.2544
	96GM020	451723.6		2 -136 3 58	66 3 50	-136.0664		96KP001	444737.2	7381111.	6 -136 14 39	66 32 38	-136.2442	66.5441
	96GM021	451723.6	7327443.2	2 -136 3 58	66 3 50	-136.0664		96KP002	444737.2	7381111.	6 -136 14 39	66 32 38	-136.2442	66.5441
	96GM022	451723.6		2 -136 3 58	66 3 50	-136.0664	4 66.0639	96KP003	444737.2	7381111.	6 -136 14 39	66 32 38	-136.2442	66.5441
	96GM023	446443.2	7349022.3	3 -136 11 31	66 15 23	-136.192	1 66.2566	96KP004	444914.0	7381796.	6 -136 14 26	66 33 1	-136.2406	66.5503
	96GM024	446602.9	7348359.9	9 -136 11 17	66 15 2	-136.188	66.2507	96KP005	444914.0	7381796.	6 -136 14 26	66 33 1	-136.2406	
	96GM025	447258.2	7348558.0	0 -136 10 25	66 15 9	-136.173	66.2526	96KP006	446725.5	7382131.	5 -136 11 59	66 33 13	-136.1999	
	96GM026	447258.2	7348558.0	0 -136 10 25	66 15 9	-136.173	66.2526	96KP007	446725.5	7382131.	5 -136 11 59	66 33 13	-136.1999	
	96GM027	461896.7	7338478.2	2 -135 50 41	66 9 51	-135.845	66.1643	96KP008	441638.1	7360147.	3 -136 18 14	66 21 19	-136.3041	
	96GM028	461896.7	7338478.2	2 -135 50 41	66 9 51	-135.845	0 66.1643	96KP009	441638.1	7360147.	3 -136 18 14	66 21 19	-136.3041	
	96GM029	461896.7	7338478.2	2 -135 50 41	66 9 51	-135.845	0 66.1643	96KP010	442072.3	7360467.	9 -136 17 40	66 21 30	-136.2946	
	96GM030	460887.9	7338530.9	9 -135 52 2	66 9 52	-135.867	4 66.1646	96KP011	442072.3	7360467.	9 -136 17 40	66 21 30	-136.2946	
	96GM031	442996.4	7423981.9	9 -136 18 12	66 55 41	-136.303	66.9283	96KP012	442072.3	7360467.	9 -136 17 40	66 21 30	-136.2946	
	96GM032	442996.4	7423981.9	9 -136 18 12	66 55 41	-136.303		96KP013	442404.3		5 -136 17 14	66 21 38	-136.2873	
	96GM033	442996.4	7423981.9	9 -136 18 12	66 55 41	-136.303		96KP014	442895.6		0 -136 16 35	66 21 49	-136.2765	
	96GM034	442996.4		9 -136 18 12		-136.303		96KP015	442895.6		0 -136 16 35	66 21 49	-136.2765	
	96GM035			9 -136 18 12		-136.303		96KP016	442895.6		0 -136 16 35	66 21 49	-136.2765	
	96GM036					-136.182		96KP017	443411.5	-	7 -136 15 54	66 21 57	-136.2650	
	96GM037				66 56 24	-136.182		96KP018	443411.5		7 -136 15 54	66 21 57	-136.2650	
	96GM038			7 -136 10 57	66 56 24	-136.182		96KP019	452253.2		2 -136 3 39	66 13 2	-136.061	
	96GM040			7 -136 10 57	66 56 24	-136.182			451861.0		7 -136 4 11	66 13 8	-136.0699	
	96GM041		7325628.		66 2 54	-135.918			451861.0		7 -136 4 11	66 13 8	-136.0699	
	96GM042	458375.0		8 -135 55 7	66 2 35	-135.918			451466.0		2 -136 4 42	66 13 1	-136.0786	
	96GM043			2 -135 54 43	66 2 24	-135.912		96KP023	450956.2		4 -136 5 23	66 12 53	-136.0898	
	96GM044	458871.7		3 -135 54 27	66 2 16	-135.907			450956.2		4 -136 5 23	66 12 53	-136.0898	
-	96GM045			4 -135 53 57	66 2 6	-135.899			448695.2		9 -136 8 24	66 13 11	-136:140	
	96GM046	459925.7		8 -135 53 1	66 1 27	-135.883		96KP026	448752.7		9 -136 8 21	66 13 38		
	96GM047	459925.7	4	8 -135 53 1	66 1 27	-135.883			457697.9		2 -135 55 41	65 53 42 65 52 9	-135.928	
	96GM048	459852.5		1 -135 53 7	66 1 13	-135.885			462917.2	/ 305593.	6 -135 48 46	00 02 9	-133.012	00.0094
	96HR001	449036.2		8 -136 7 47	66 9 13	-136.129								
	96HR002	448689.5		5 -136 8 2	66 4 38	-136.134								
	96HR003	448896.1		5 -136 7 55	66 8 19	-136.132								
	96HR004	446982.4		0 -136 10 30		-136.175								
	96HR005	445439.9	_!	4 -136 12 28		-136.207								
	96HR006			8 -136 15 20		-136.255								
	96HR007	439434.0		2 -136 20 15		-136.337								
	96HR008			8 -136 18 38		-136.310								
	96HR009	441499.3		8 -136 17 39		-136.294								
	96HR010	449769.1		9 -136 6 33	66 3 24	-136.109								
	96HR011	449178.2		9 -136 7 13	66 00 47	-136.120		-						
	96HR012	435606.4		5 -136 25 41	66 9 57	-136.428								
	96HR013	434255.8		1 -136 27 29		-136.458								
		426595.0) 7340894.	6 -136 37 44	66 10 46	-136.628	9 66.1797							
	96HR014				00.0-	400	0 00							
	96HR014 96HR015 96HR016	422484.3	3 7337972.	2 -136 43 6 4 -136 43 25	66 9 9	-136.718		-						

Station Location/coordinates. 3

EAGLE PLAINS GEOLOGICAL MAP PORTIONS OF NTS SHEETS 116 H, I, & P AND 106 E, L, & M, YUKON TERRITORY (to accompany report "Mineral Potential of Eagle Plains Study Area" by D. Héon, 1997) Scale 1: 250 000

CONTOUR INTERVAL 100 METRES (116I, II6H, 106E); 20 METRES (106L); 500 FEET (116P) Elevations in Metres above Mean Sea Level North American Datum 1983 Transverse Mercator Projection Universal Transverse Mercator Grid

15

116 P 106 M 116 I 106 L 116 H 106 E

INDEX TO NTS SHEETS FOR THIS MAP

Q	Q: QUATERNARY unconsolidated glacial, glaciofluvial and glaciolacustrine deposits; fluviatile silt, sand, and gravel, and le volcanic ash, in part with cover of soil and organic deposits
KTB1	 KTB: BONNET PLUME sandstone, shale and coal, marine and non-marine (1) and (2) deposited in foredeep of Cordilleran Ord 1: medium to coarse grained sandstone with minor thin lenses and layers of fine pebble conglomerate separated by layers of grey fissile shale; lignite; fluviatile and lacustrine (Bonnet
LOWER	Plume (upper)) CRETACEOUS AND (MOSTLY) UPPER CRETACEOUS
KM2 KM4	KM: MONSTER diverse assemblage of fine to coarse clastics, marine and non-marine deposited in foredeep of Cordille
	 orogen 2: medium to dark grey shale and mudstone; rare bentonite; very fine to medium grained sandstone with hummocky cross-stratification, horizontal lamination and thin interbeds of mudstone; bioturbation; marine to locally fluvial at top (Eagle Plain)
	 dominantly resistant massive pebble to cobble, and locally boulder conglomerate with lesser sandstone and shale; alluvial (Bonnet Plume (lower member))
KS2	CRETACEOUS KS: SHARP MOUNTAIN
KS2?	fine and coarse clastic assemblage, mostly marine deposited in foredeep of Cordilleran orogen 2: thin bedded dark grey to brown or black shale and interbeds of siltstone; concretions and clay (bentonite?) beds; locally basal beds are silty or sandy to conglomeratic; marine (Arctic Red)
IKM1 IKM4 IKM6	 IKM: MOUNT GOODENOUGH shale, siltstone, and sandstone comprising alternating fine and coarse clastic units 1: dominated by fine grained quartz arenite with hummocky cross-straitification, swaley bedding, plane lamination, ripple lamination and bioturbation; members and interbeds of shale; marine inner shelf to upper shoreface (Martin Creek; may include McGuire)
	4: basal interbedded sandstone, siltstone, shale and locally conglomerate, with bioturbation, lamination and cross-stratification; upper beds are bioturbated dark grey shale, interbedded with thin siltstone and silty sandstone; marine (Mount Goodenough)
	 6: interbedded units of sandstone and shale; hummocky cross stratification and plane lamination marine (Rat River)
JURASS	JKH: HUSKY
JKH3 JKH4	shale and siltstone (3) and laterally equivalent coarser grained siltstone and sandstone (2) and (4) and undivided clastic strata (5) deposited on a marine shelf
ЈКН5	 2: siltstone and light grey fine to very fine grained sandstone; marine and nonmarine (Porcupine River) 2: datk grey shale, siltstone and isopatency marine (Uppla)
	 dark grey shale, siltstone and ironstone; marine (Husky) light grey glauconitic conglomeratic sandstone, shale and siltstone; marine (North Branch)
TRIASSI	 5: shale, siltstone, sandstone; minor conglomerate; limonitic nodules; marine and nonmarine (undivided Jurassic and Lower Cretaceous clastics)
TrS	TrS: SHUBLIK commonly bioturbated calcareous shale, siltstone and sandstone; silty bioclastic limestone; local
OWER	hummocky cross stratification (Shublik) AND MIDDLE PERMIAN
PJC1	PJC: JUNGLE CREEK clastic assemblage with some carbonate (1) but including undifferentiated clastics and carbonates of
	mostly(?) equivalent age and a separately mappable partly equivalent carbonate and conglomerate 1: consists upward of chert pebble conglomerate, sandstone and shale overlain by mixed calcareous or cherty mudstone, silty limestone and prominent resistant lentils of sandstone in turr overlain by yellow orange weathering, fine grained, grey sandstone (Jungle Creek, Longstick)
	UDPF: FORD LAKE
	 generally fine to coarse grained clastic succession equivalent to Canol, Imperial and(?) Tuttle assembla (1) or including these and younger formations undivided 1: dark grey to black, silty pyritic shale and siltstone with subordinate sandstone, conglomerate and silty limestone (Ford Lake Shale)
JPPER (CARBONIFEROUS
CE	CE: ETTRAIN cherty, echinoderm-bryozoan and ooid lime grainstone and mixed-skeletal lime packstone; glauconitic sandy carbonate; local quartz-chert siltstone and sandstone; marine (Ettrain)
CH1 CH2	 CH: HART RIVER dominantly carbonate assemblage (1) with equivalent local clastics (2) (Hart River) 1: thinly laminated, cherty spiculite and spicule lime packstone with subordinate sandstone, siltstone and calcareous shale; local lime grainstone; local members of lenticular to shoe-string sandstone grading into chert rich conglomerate (Hart River)
	 brown weathering sandstone, conglomerate and skeletal limestone; equivalent to upper part of Hart River (Hart River)
OWER	CARBONIFEROUS
ICT	ICT: TUTTLE chert granule to pebble conglomerate and conglomeratic sandstone with subordinate siltstone and shal minor coal; includes unnamed partly correlative light grey medium grained sandstone and dark grey sha pro-deltaic, deltaic and fluvial (Tuttle)
uDI	UDI: IMPERIAL rusty-weathering dark grey and brown shale and siltstone generally in lower part of succession overlain grey fine grained lithic sandstone and siltstone; siltstone and sandstone commonly as sharp-based grad beds (Imperial)
uDC	uDC: CANOL dark grey to black non-calcareous, soft to very hard shale with scattered, orange-weathering, carbonate nodules and thinly bedded chert (Canol and minor Hare Indian)
DG2	DG: GOSSAGE
	assemblage consists of limestone and dolostone and partly equivalent black limestone (2) and shale 2: dark grey and black, fine grained limestone; recessive light grey, thick bedded argillaceous limestone, limestone, black, argillaceous; shale, calcareous; marine (Ogilvie)
CDB1	CDB: BOUVETTE
	 lower Paleozoic undivided carbonate (1) with locally named tongues(?) 1: grey-and buff-weathering dolomite and limestone, medium to thick bedded; white to light grey weathering, massive dolomite; minor platy black argillaceous limestone, limestone conglomerate, and black shale; massive bluish-grey weathering dolostone (Bouvette, unit CDb)
CAMBRI	AN TO DEVONIAN CDR: ROAD RIVER - RICHARDSON
CDR4 CDR3	 black graptolitic shale, limestone and minor chert with mappable subdivisions (1) through (5) in Richardson Mountains; correlations with Selwyn Mountains include: lower (2) with COR, upper (2) with OSR1, (4) with OSR2 and (5) with lower DME2 (Road River) 5: graptolitic, black shale and shaly limestone; minor limestone, intraclast conglomerates and
CDR2 CDR1	 4: interstratified, yellowish to orange weathering argillite and yellowish to grey weathering shaly
CDR	 A: Interstratined, yenowish to orange weathering arginite and yenowish to grey weathering sharp limestone and dolomite; minor black, calcareous shale, intraclast conglomerate and breccia (Steel Fm equivalent) (CDR3of Norris) 3: sharpstone breccia, heterogeneous, commonly with limestone and chert clasts; turbiditic (CDR of Norris)
	 2: Upper: black chert, graptolitic shale, silicified limestone and minor intraclast conglomerate (upper CDR1 of Norris; OSI of Cecile). Lower: pale yellow to grey weathering, thin- to medium-bedded, shaly limestone with minor shale interbeds; minor chert and intraclast conglomerate (Rabbitkettle equivalent) (lower CDR1 of Norris; COR of Cecile) 1: calcareous black shale and limestone (CDR0 of Norris)
OWER	AND MIDDLE CAMBRIAN
ImCS1	ImCS: SLATS CREEK siltstone, sandstone and shale (1) and partly(?) correlative clastic rocks
	1: rusty brown weathering, turbiditic, quartz sandstone with minor shale and siltstone; pale red weathering siltstone, sandstone, quartzite pebble and cobble conglomerate and limestone; maroon with green argillite with minor quartzite and limestone (Slats Creek)
	ICI: ILTYD
	limestone assemblage (1); also includes carbonate strata of uncertain Proterozoic to Cambrian age 1: fine crystalline, dark grey limestone; light grey, medium crystalline biohermal dolomite (Iltyd) PROTEROZOIC
A STATE OF	

IPQ IPQ: QUARTET black weathering shale, finely laminated dark grey weathering siltstone, and thin to thickly interbedded planar to cross laminated light grey weathering siltstone and fine grained sandstone; minor interbeds of orange weathering dolostone in upper part (Quartet Group)

deposits; fluviatile silt, sand, and gravel, and local

and (2) deposited in foredeep of Cordilleran Orogen or thin lenses and layers of fine pebble shale; lignite; fluviatile and lacustrine (Bonnet

and non-marine deposited in foredeep of Cordilleran

ivalent to Canol, Imperial and(?) Tuttle assemblages ne with subordinate sandstone, conglomerate

ne generally in lower part of succession overlain by dark e and sandstone commonly as sharp-based graded

- **BASEMAP FEATURES:** + Airstrip (Status Unknown)
- * Heritage Sites Building Built-Up Area A Campground
- UTM Grid Marks (10 km Spacing)
- MINFILE OCCURRENCES:
- DEPOSIT TYPE: Sedimentary Mississippi Valley Type
- 🔶 Vein Wernecke Breccia
- ★ Unknown Other

LABELLING KEY:

MINFILE No. - NAME (Major Commodities)

FIRST NATIONS SETTLEMENT LANDS:

Category A Lands (First Nation has ownership of suface and subsurface)

- Category B Lands or Fee Simple (First Nation has ownership of surface only)
- Site Specific Settlement Lands area too small to be shown at this scale. (For category designation, see individual First Nation Final Agreement)
- TRADITIONAL TERRITORIES:
- TG Tetlit Gwich'in Primary & Secondary Use
- TH Trondek Hwech'in First Nation VG Vuntut Gwichin First Nation
- NND First Nation of Nacho Nyak Dun

FAULTS:

	defined, unclassified
	defined, normal/reverse
	defined, upright thrust
anatisian initialization	approximate, unclassified
<u> </u>	approximate, normal/reverse
	extrapolated, normal/reverse

RECOMMENDED CITATION:

Eagle Plains Geological Map, Portions of NTS Sheets 116H, I & P and 106 E, L & M, Yukon Territory (1: 250 000 scale), 2000. Exploration and Geological Services Division, Yukon, Indian and Northern Affairs Canada. Digital cartography and drafting by P.S. Lipovsky, Yukon Geology Program.

Any revisions or additional information known to the user would be welcomed by the Yukon Geology Program. Copies of this map may be purchased from Geoscience Information and Sales, c/o the Whitehorse Mining Recorder, Indian and Northern Affairs Canada, Room 102 - 300 Main St., Whitehorse, Yukon, Y1A 2B5, Ph: (867) 667-3266; Fax: (867) 667-3267.

ACKNOWLEDGEMENTS AND DATA SOURCES: MINFILE: Yukon Minfile Database, 2000. Exploration and Geological Services Division, Yukon, Indian and

Northern Affairs Canada. OIL AND GAS WELLS: Oil and Gas Resources Branch, Yukon Government.

GEOLOGY: Gordey, S.P. and Makepeace, A.J. (comp.), 1999. Yukon digital geology, Geological Survey of Canada Open File D3826 and Exploration and Geological Services Division, Yukon Region, Indian and Northern Affairs Canada, Open File 1999-1(D)

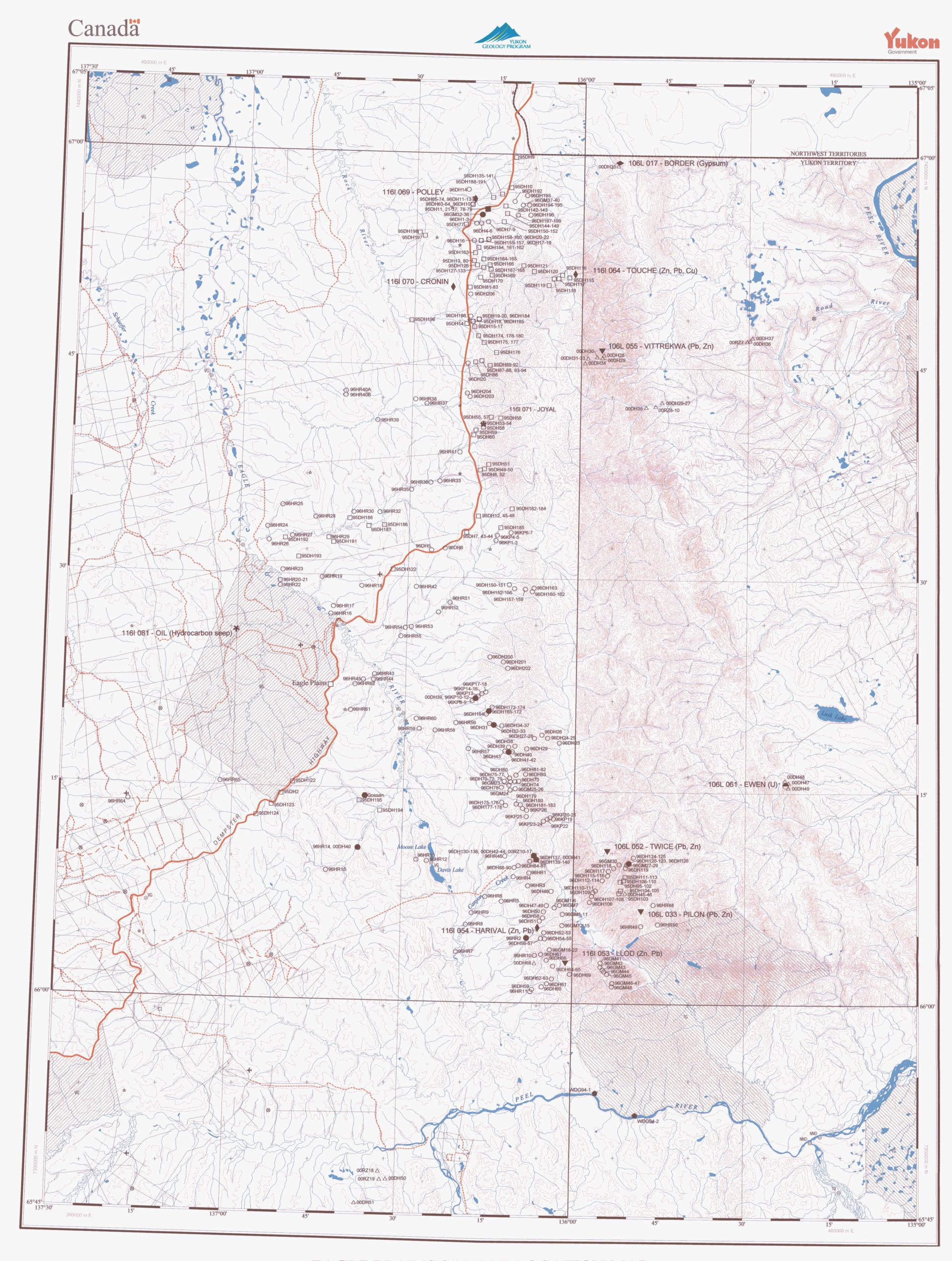
FIRST NATIONS SETTLEMENT LANDS: Land Status Implementation, Land Resources, Yukon, Indian and Northern Affairs Canada; and Renewable Resources, Yukon Government.

HERITAGE SITES: Heritage Branch, Yukon Government; and Forest Resources, Yukon, Indian and Northern Affairs Canada. TOPOGRAPHIC BASE: Surveys and Mapping Branch, Department of Energy, Mines and Resources;

Renewable Resources, Yukon Government; and Land Information Management System.

Indian and Northern Affairs Canada Exporation and Geological Services Division Yukon Region

EAGLE PLAINS GEOLOGICAL MAP


PORTIONS OF NTS SHEETS 116 H, I, & P AND 106 E, L, & M, YUKON TERRITORY by Danièle Héon

Yukon Geology Program Geoscience Office

January, 2000

- Highway --- 4 Wheel Drive ----- Trail ----- Other ----- Cutline ----- Territorial Boundary
- OIL AND GAS WELLS:
- Abandoned Well
 X Suspended Gas Well

Print Job Sent January 23, 2001

SAMPLE LOCATIONS:

1995 Station Location

O 1996 Station Location

△ 2000 Station Location

1994 GSC Station Location (pers. comm., W. Goodfellow)

1995 Significant Result

1996 Significant Result

▲ 2000 Significant Result

MINFILE OCCURRENCES:

DEPOSIT TYPE:

Abandoned Well X Suspended Gas Well

OIL AND GAS WELLS:

- Sedimentary Mississippi Valley Type
 - Vein
- Wernecke Breccia 0 Unknown

* ✤ Other

V

LABELLING KEY:

MINFILE NO. - NAME (Major Commodities)

BASEMAP FEATURES:

+	Airstrip (Status Unknown)		Highway
*	Heritage Sites		4 Wheel Drive
۵	Building	sile die sie sit we des ser we	Trail
	Built-Up Area	and said and the day off	Other
А.	Campground		Cutline
+	LITM Crid Marka (10 km Spaging)		Territorial Day

UTM Grid Marks (10 km Spacing) ----- Territorial Boundary

FIRST NATIONS SETTLEMENT LANDS:

Category A Lands (First Nation has ownership of suface and subsurface)

Category B Lands or Fee Simple (First Nation has ownership of surface only)

Site Specific Settlement Lands - area too small to be shown at this scale. (For category designation, see individual First Nation Final Agreement)

TRADITIONAL TERRITORIES:

- TG Tetlit Gwich'in Primary & Secondary Use TH Trondek Hwech'in First Nation
- VG Vuntut Gwichin First Nation
- NND First Nation of Nacho Nyak Dun

RECOMMENDED CITATION:

Eagle Plains Sample Location Map, Portions of NTS Sheets 116H, I & P and 106 E, L & M, Yukon Territory (1: 250 000 scale), 2000. Exploration and Geological Services Division, Yukon, Indian and Northern Affairs Canada.

Digital cartography and drafting by P.S. Lipovsky, Yukon Geology Program.

Any revisions or additional information known to the user would be welcomed by the Yukon Geology Program.

Copies of this map may be purchased from Geoscience Information and Sales, c/o the Whitehorse Mining Recorder, Indian and Northern Affairs Canada, Room 102 - 300 Main St., Whitehorse, Yukon, Y1A 2B5, Ph: (867) 667-3266; Fax: (867) 667-3267.

ACKNOWLEDGEMENTS AND DATA SOURCES:

MINFILE: Yukon Minfile Database, 2000. Exploration and Geological Services Division, Yukon, Indian and Northern Affairs Canada.

OIL AND GAS WELLS: Oil and Gas Resources Branch, Yukon Government.

GEOLOGY: Gordey, S.P. and Makepeace, A.J. (comp.), 1999. Yukon digital geology, Geological Survey of

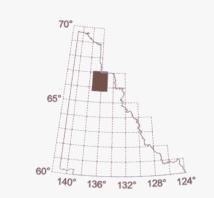
Canada Open File D3826 and Exploration and Geological Services Division, Yukon Region, Indian and Northern Affairs Canada, Open File 1999-1(D)

FIRST NATIONS SETTLEMENT LANDS: Land Status Implementation, Land Resources, Yukon, Indian and Northern Affairs Canada; and Renewable Resources, Yukon Government.

HERITAGE SITES: Heritage Branch, Yukon Government; and Forest Resources, Yukon, Indian and Northern Affairs Canada.

TOPOGRAPHIC BASE: Surveys and Mapping Branch, Department of Energy, Mines and Resources; Renewable Resources, Yukon Government; and Land Information Management System.

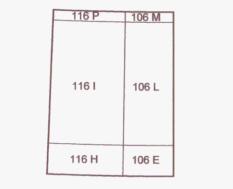
> Indian and Northern Affairs Canada Exporation and Geological Services Division Yukon Region


EAGLE PLAINS SAMPLE LOCATION MAP

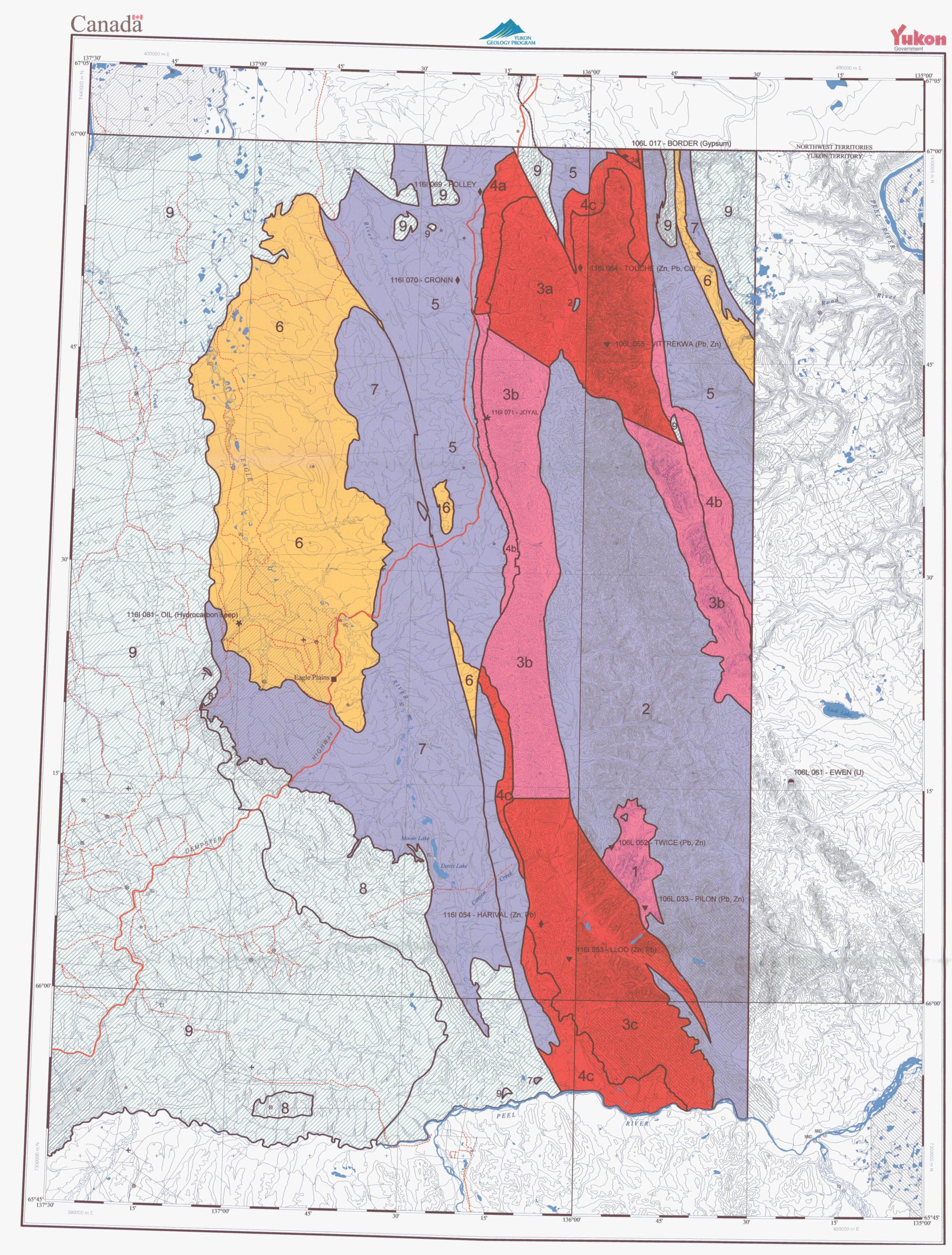
PORTIONS OF NTS SHEETS 116 H, I, & P AND 106 E, L, & M, YUKON TERRITORY

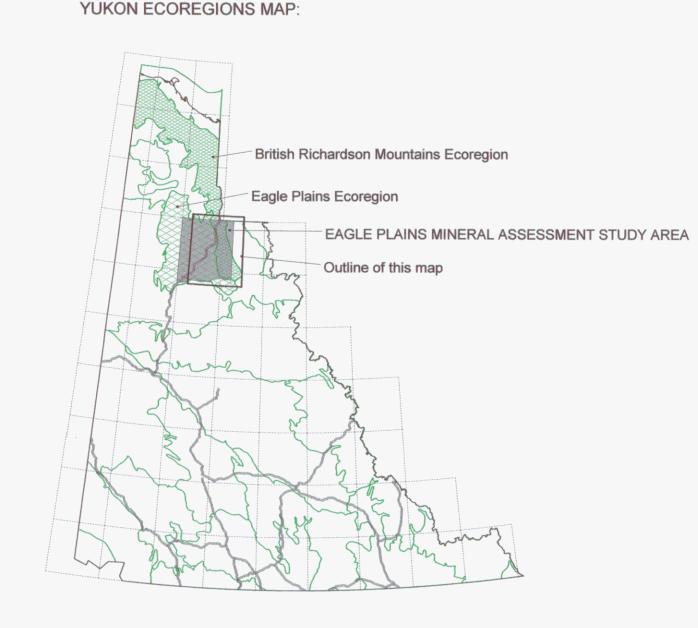
January, 2000

Print Job Sent January 31, 2001



EAGLE PLAINS SAMPLE LOCATION MAP


PORTIONS OF NTS SHEETS 116 H, I, & P AND 106 E, L, & M, YUKON TERRITORY (to accompany report "Mineral Potential of Eagle Plains Study Area" by D. Héon, 1997) Scale 1: 250 000 20 Miles 10 15


CONTOUR INTERVAL 100 METRES (116I, II6H, 106E); 20 METRES (106L); 500 FEET (116P) Elevations in Metres above Mean Sea Level North American Datum 1983 Transverse Mercator Projection Universal Transverse Mercator Grid

INDEX TO NTS SHEETS FOR THIS MAP

MINERAL POTENTIAL: (Refer to report for tract definitions)	
	sufficient data for mineral potential assessment racts 8, 9) - (Could host large deposits)
LOWEST (Tracts 2, 5, 7)	
BASEMAP FEATURES:	
★ Heritage Sites 4 □ Building ■ Built-Up Area △ Campground C	lighway Wheel Drive Trail Other Cutline Ferritorial Boundary
MINFILE OCCURRENCES: OIL AND	GAS WELLS:
	andoned Well spended Gas Well
MINFILE NO NAME (Major Commodities)	
FIRST NATIONS SETTLEMENT LANDS:	
Category A Lands (First Nation has ownership of suface and subsurface)	
Category B Lands or Fee Simple (First Nation has ownership of surface only)	
Site Specific Settlement Lands - area too small to be s (For category designation, see individual First Nation F	
TRADITIONAL TERRITORIES:	
 TG Tetlit Gwich'in Primary & Secondary Use TH Trondek Hwech'in First Nation VG Vuntut Gwichin First Nation NND Fiirst Nation of Nacho Nyak Dun 	
 (First Nation has ownership of surface only) Site Specific Settlement Lands - area too small to be s (For category designation, see individual First Nation F TRADITIONAL TERRITORIES: TG Tetlit Gwich'in Primary & Secondary Use TH Trondek Hwech'in First Nation VG Vuntut Gwichin First Nation 	

RECOMMENDED CITATION:

Eagle Plains Mineral Potential Map, Portions of NTS Sheets 116H, I & P and 106 E, L & M, Yukon Territory (1: 250 000 scale), 2000. Exploration and Geological Services Division, Yukon, Indian and Northern Affairs Canada.

Digital cartography and drafting by P.S. Lipovsky, Yukon Geology Program.

Any revisions or additional information known to the user would be welcomed by the Yukon Geology Program.

Copies of this map may be purchased from Geoscience Information and Sales, c/o the Whitehorse Mining Recorder, Indian and Northern Affairs Canada, Room 102 - 300 Main St., Whitehorse, Yukon, Y'1A 2B5, Ph: (867) 667-3266; Fax: (867) 667-3267.

ACKNOWLEDGEMENTS AND DATA SOURCES:

MINFILE: Yukon Minfile Database, 2000. Exploration and Geological Services Division, Yukon, Indian and Northern Affairs Canada.

OIL AND GAS WELLS: Oil and Gas Resources Branch, Yukon Government.

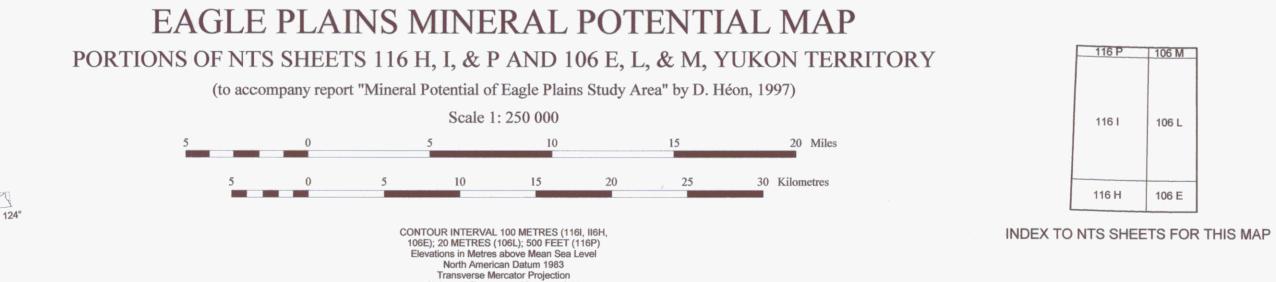
GEOLOGY: Gordey, S.P. and Makepeace, A.J. (comp.), 1999. Yukon digital geology, Geological Survey of

Canada Open File D3826 and Exploration and Geological Services Division, Yukon Region, Indian and Northern Affairs Canada, Open File 1999-1(D)

FIRST NATIONS SETTLEMENT LANDS: Land Status Implementation, Land Resources, Yukon, Indian and Northern Affairs Canada; and Renewable Resources, Yukon Government.

HERITAGE SITES: Heritage Branch, Yukon Government; and Forest Resources, Yukon, Indian and Northern Affairs Canada.

TOPOGRAPHIC BASE: Surveys and Mapping Branch, Department of Energy, Mines and Resources; Renewable Resources, Yukon Government; and Land Information Management System.



EAGLE PLAINS MINERAL POTENTIAL MAP PORTIONS OF NTS SHEETS 116 H, I, & P AND 106 E, L, & M, YUKON TERRITORY

by Danièle Héon Yukon Geology Program Geoscience Office

January, 200

Print Job Sent January 31, 2001

Universal Transverse Mercator Grid ZONE 8

65°

140°

132°

116 P

116 I

106 M

106 L

116 H 106 E