YGS Open File 2015-23

Provenance and depositional framework of braided and meandering gravel-bed river deposits and associated coal deposits in active intermontane piggyback basins: The Upper Jurassic to Lower Cretaceous Tantalus Formation, Yukon

Darrel G.F. Long

Open File 2015-23

Provenance and depositional framework of braided and meandering gravel-bed river deposits and associated coal deposits in active intermontane piggyback basins: The Upper Jurassic to Lower Cretaceous Tantalus Formation, Yukon

D.F.G. Long

Department of Earth Sciences, Laurentian University, Sudbury, Ontario, Canada. P3E 2C6 dlong@laurentian.ca

Published under the authority of the Department of Energy, Mines and Resources, Government of Yukon http://www.emr.gov.yk.ca.

Printed in Whitehorse, Yukon, 2015.

Publié avec l'autorisation du Ministères de l'Énergie, des Mines et des Ressources du gouvernement du Yukon, http://www.emr.gov.yk.ca.

Imprimé à Whitehorse (Yukon) en 2015.

© Department of Energy, Mines and Resources, Government of Yukon

A copy of this report can be obtained by download from www.geology.gov.yk.ca or by emailing geology@gov.yk.ca.

In referring to this publication, please use the following citation:

Long, D.G.F., 2015. Provenance and depositional framework of braided and meandering gravel-bed river deposits and associated coal deposits in active intermontane piggyback basins: The Upper Jurassic to Lower Cretaceous Tantalus Formation, Yukon. Yukon Geological Survey, Open File Report 2015-23., 80 p. plus appendices.

Cover photo: View of Tantalus Butte (1979), due north of the Trans-North Helicopter base. The Tantalus Formation starts at the conglomerate unit above the adit.

ABSTRACT

The Tantalus Formation developed within confined intermontane river valleys during the late stages of collision and amalgamation of Stikinia and associated arc systems with the North American plate in Upper Jurassic and early Lower Cretaceous times. While most of the extensive chert pebble conglomerate in the Tantalus Formation can be interpreted as shallow braided gravel-bed river deposits, some may represent the products of deposition from deeper, braided and meandering gravel-bed rivers. Floodplain and lake deposits are restricted to poorly exposed slope forming intervals. Coal deposits developed locally on abandoned segments of floodplains in confined river valleys, in places associated with high constructive river deposits. The age profiles of detrital zircons indicate major contributions from reworking of older strata, combined with continued unroofing of the Stikine terrane. In addition more distal sources were tapped in the Yukon-Tanana and adjacent terranes to the north and west of the Whitehorse trough. Much of the chert in the Tantalus Formation appears petrographically similar to chert in the Cache Creek terrane, now preserved only to the south of the Whitehorse trough. As both decrease in maximum grain size, and paleocurrents, are generally south to southwesterly trending, this source is considered unlikely. Chert may have been derived from now eroded supracrustal rocks that once formed the top of the Yukon-Tanana terrane, or more likely from an obducted block of Cache Creek terrane once present to the north and west of the Whitehorse trough. The latter may have been thrust over metamorphosed rocks of the Yukon-Tanana terrane beginning in the early Bajocian, and has subsequently been removed by erosion. A proximal North American cratonic source is excluded, as there are no Archean zircon grains in the Tantalus Formation. The possibility that strata of the Tantalus Formation may host significant conventional reserves of oil or gas is very low, due to lack of trapping mechanisms. There may be some undiscovered coal reserves, and limited potential for coal-bed methane production.

TABLE OF CONTENTS

ABSTRACT	i
INTRODUCTION	1
GEOLOGICAL SETTING	
Stratigraphy of Stikinia and the Whitehorse trough	
Late Upper Jurassic to early Lower Cretaceous Tantalus Formation	
NEW OBSERVATIONS, METHODS	6
LITHOLOGY AND PETROLOGY	8
Conglomerate	9
Lithology	
Petrography	
Sandstone	
Lithology	
Petrography	
Mudstone	
Coal	
STRATIGRAPHY	
DETRITAL ZIRCONS	
INTERPRETATION	30
Sedimentology	30
Braided gravel-bed river deposits	
Meandering gravel-bed river deposits	
Gilbert-type deltas	40
Floodplain, levee, splay, lake, pond, marsh and swamp facies	
Sandy meandering and anastomosed stream deposits	
Paleocurrents	
Provenance	
Quartz	
Feldspar	
Lithic fragments (non-chert)	
Chert	50
Zircons	56
Climate	58
Paleogeography/tectonics	58
CONCLUSIONS	61
ACKNOWLEDGEMENTS	
REFERENCES	
APPENDICES	
Appendix 1: Stratigraphic sections	
Appendix 2: Petrology	151
Appendix 3: Chert types	
Appendix 4: Zircon geochronology	

INTRODUCTION

The primary objectives of this paper are to document the lithology, petrology and stratigraphy of chert-pebble conglomerate and associated minor sandstone, mudstone, and coal in the Upper Jurassic to Lower Cretaceous Tantalus Formation, and to use this information to evaluate fluvial style and basin development in terms of tectonic and paleogeographic framework. Clast petrography and age profiles of detrital zircon populations are used to evaluate the character and location of the provenance (catchment) area.

Preliminary results of this study have been presented by Long (1980, 1982a,b, 1983a,b, 1984, 1986; Long and Lowey, 2006). Location of new measured sections is indicated on Figure 1. Stratigraphy and hydrocarbon potential of the Yukon segment of the Whitehorse trough has been discussed by Beaton *et al.* (1992), National Energy Board (2001), Lowey (2004a,b, 2005, 2007a,b, 2008, 2011), Lowey and Long (2006), Lowey *et al.* (2009), Hayes (2012), Hayes and Archibald (2012) and White *et al.* (2006, 2012). Hannigan *et al.* (1995) and English *et al.* (2005) provide comparable data on the hydrocarbon potential from the southern part of the trough in British Columbia.

Figure 1. Distribution of strata and major faults within the Whitehorse trough of southern Yukon. Tantalus Formation subbasins (named) shown in black, with location of measured sections mentioned in text. The type section of the formation is located at T-17. Geology based on maps by Templeman-Kluit 1974, 1984; Gordey and Irwin 1987; Gordey and Stevens 1994b; Colpron et al. 2002, 2007a; Israel 2004; Gordey 2008 and Colpron²⁰¹¹. Major roads are shown in light grey.

GEOLOGICAL SETTING

Rocks of the Whitehorse trough, as originally delimited by Wheeler (1956, 1961), lie within the Intermontane belt of the Canadian Cordillera (Monger and Price, 1979; Tipper and Woodsworth, 1981; Monger et al., 1982) and included strata of the Tantalus Formation along with underlying strata of the Laberge and Lewes River groups (Fig. 2). More recently White et al. (2012) have restricted the definition of the Whitehorse trough to the area underlain by strata of the Laberge Group. They suggest that the Laberge Group represents an overlap assemblage that straddles the Stikinia, Cache Creek and Quesnellia terranes (Fig. 3) that developed in a collapsing forearc basin that subsequently evolved into a piggyback basin (cf., Mihalynuk et al., 1994). The Whitehorse trough overlies, and is flanked to the west by rocks of the Lewes River-Stuhini arc (Stikinia), and is bound to the east by rocks of the Takla-Nicola arc (Quesnellia). These are bounded to the east, west and north by pericratonic rocks of the Yukon-Tanana terrane, which appear to wrap around the Whitehorse trough and the Cache Creek terrane (Fig. 3). Current models of the Cordillera suggest that it includes a large number of amalgamated peri-continental and exotic terranes, many of which accreted to the margin of western North America during the Mesozoic and Cenozoic (Monger and Price, 1979; Tempelman-Kluit, 1979; Monger et al., 1982; Gehrels and Kapp 1997; English and Johnston 2005; Colpron et al., 2006a, 2007a,b; Nelson and Colpron 2007; Colpron and Nelson 2009; Nelson et al., 2013). The apparently anomalous position of the Cache Creek terrane, between terranes with North American pericontinental affinity is best explained by oroclinal enclosure. In this model (Mihalynuk et al., 1994, 2004), the Lewes River-Stuhini and Takla-Nicola arcs were part of a single, continuous arc system that originally faced south, towards the Panthallasic ocean. Counterclockwise rotation of Stikinia in the Upper Triassic and Lower Jurassic around a flexural hinge a short distance north of the Whitehorse trough led to subduction and obduction (Gordey and Stevens, 1994b; Bickerton et al., 2013) of

Figure 2. Stratigraphy of Mississippian to Lower Cretaceous strata of Stikinia. Ages based on Cohen et al. (2013). Strata of the Whitehorse trough are restricted to rocks of the Laberge Group. If strata in the Ibex River area, dated as Kimmeridgian -Oxfordian by Hart and Radloff (1990), belong to the Tanglefoot formation as suggested in the text, then the break between the Laberge Group and Tantalus Formation may be short, at least along the central western margin of the basin.

parts of the Cache Creek terrane, with subsequent enclosure of remnants of the Cache Creek accretionary complex. Rotational collision, with some northward translation, continued until closure with Quesnellia in the Middle Jurassic (Mihalynuk *et al.*, 2004). This allowed strata of the Laberge Group to accumulate in a piggyback basin (Whitehorse trough) at the north end of the embayment (White *et al.*, 2012) at the same time that arc related rocks of the Hazelton Group accumulated in northern British Columbia.

Stratigraphy of Stikinia and the Whitehorse trough

Stikinia contains a sequence of polydeformed Mississippian and older mafic volcanic rocks of the Takhini Assemblage (Hart, 1997), succeeded by (>2.5 km) Middle Triassic (Ladinian) mafic volcanic rocks of the Joe Mountain Formation, and (>3 km) of Upper Triassic strata of the Lewes River Group (Lees, 1934; Bostock, 1936; Bostock and Lees, 1938; Tozer, 1958; Wheeler, 1961; Fig. 2). The lower part of the Lewes River Group consists of fine-grained augite-phyric andesite to basaltic-andesite, with minor associated volcaniclastic and epiclastic rocks, assigned to the Povoas Formation (Tempelman-Kluit, 1984, 2009; Hart, 1997). The upper part of the group is represented by >1.5 km of strata belonging to the Aksala formation (Tempelman-Kluit, 1984; Reid, 1988; Hart,

1997; Long, 2005; Lowey, 2011). This includes a thick succession of turbiditic volcaniclastic and epiclastic sandstone and deep-water mudstone (Casca member), that are interbedded with shallow water carbonate (Hancock member), and shallow water (red) sandstone and mudstone (Mandana member).

The Lewes River Group is unconformably overlain by at least 2.9 km of sandstone, mudstone and conglomerate (with minor intrusive rocks) of the Jurassic (Sinemurian to ?Oxfordian) Laberge Group (Wheeler, 1961; Tozer, 1958; Lees, 1934; Bostock and Lees, 1938; Tempelman-Kluit, 1978; Reid, 1981; Reid and Ginsburg, 1986; Hart, 1997; Tempelman-Kluit, 2009; Lowey, 2007a,b, 2011) that collectively forms the fill of the Whitehorse trough (White et al., 2012). Deeper water mudstone and minor sandstone are represented by the Richthofen formation (informal; Lowey, 2004b, 2005) and are predominantly volcaniclastic in nature, indicating incorporation of both contemporary arcderived material and older strata of the Lewes River Group. Shallow water (marine and prodeltaic) and terrestrial strata are represented by predominantly arkosic and subarkosic sandstone and conglomerate of the Tanglefoot formation (informal). Minor facies include interbedded mudstone, minor volcaniclastic units, limestone and coal (Cairnes, 1910; Long, 1986; Allen, 2000; Cameron and Beaton, 2000; Lowey, 2004b, 2005). Upper Jurassic strata are more quartzo-feldspathic, reflecting unroofing of adjacent arc terranes. Units of massive dacite tuff at several horizons within the Tanglefoot (Lowey, 2004a) and Richthofen formations (Colpron et al., 2007a) have been included in the Nordenskiöld formation (informal). Colpron and Friedman (2008) demonstrated that the formation represents multiple extrusive events when they obtained U-Pb zircon ages of 188.1±0.4 Ma, 187.2±0.4 Ma and 186.5±0.3 Ma from a series of units ascribed to the Nordenskiöld formation, and an age of 187.1±0.7 Ma for a tuff in the Tanglefoot formation. Fillmore (2006) used trace element geochemistry to link these to the Aishihik batholith (186.0±1.0 Ma: Johnston et al., 1996) west of the Whitehorse trough.

Late Upper Jurassic to early Lower Cretaceous Tantalus Formation

Up to 1.3 km of medium to large pebble conglomerate of the late Upper Jurassic to early Lower Cretaceous Tantalus Formation stratigraphically overlap strata of the Whitehorse trough, Stikinia, Quesnellia, and locally the Yukon-Tanana terrane (Fig. 3). The unit was originally named the "Tantalus Conglomerates" by Cairnes (1910), with a type area at Tantalus Butte, immediately north of the Yukon River at Carmacks (Fig. 1). This usage was continued by Lees (1934), but was later modified by Bostock (1936) who renamed it the Tantalus Formation. Minor rock types in the Tantalus Formation include feldspathic chert litharenite, mudstone and coal. Coal seams are confined to finer grained intervals within the Tantalus Formation, and are less well developed than those in underlying strata of the Tanglefoot formation.

Strata of the Tantalus Formation were deposited in a series of isolated terrestrial intermontane successor basins during collision-induced uplift and deformation of underlying strata (Wheeler, 1961; Long, 1986; Lowey and Hills, 1988; Lowey, 1984, 2007a,b). As such, they represent piggyback basins (Mihalynuk *et al.*, 1994, 2004; White *et al.*, 2012; Bickerton *et al.*, 2013). Paralellism of the preserved basins with major northwest oriented faults may imply limited strike slip activity within, and along, the basin margins (Tempelman-Kluit, 2009). Erosional remnants of the Tantalus Formation are confined to small, elongate basins, predominantly along the west side of the northern Whitehorse trough (Fig. 3). There is no evidence that these were ever part of a single, laterally extensive sheet that blanketed the Whitehorse trough. Basins on the eastern side of the trough straddle rocks of the Boswell terrane (Quesnellia) and those on the west straddle Stikinia and (at Carbon Hill, and Mt Bell, Localities T-2 and T-3 on Fig. 1) lie directly on strata of the Yukon-Tanana terrane, while strata at Malamute Mountain (61°17′N, 136°20′W) rest on quartz monzanite

belonging to plutons of the ~183 Ma Long Lake plutonic suite, that stitch together Stikinia and Yukon-Tanana (Tempelman-Kluit, 1974, 2009; Johnston *et al.*, 1996). Strata in the Big Salmon area, east of the Whitehorse trough, originally correlated with the Tantalus Formation (Tempelman-Kluit, 1984), are now placed in the (Pliocene?) Walsh Creek formation of Tempelman-Kluit (2009).

In northern British Columbia, Bultman (1979) identified strata that he considered to be equivalent to the Tantalus Formation in a fault bounded interval exposed along the northwest margin of Tutshi Lake (~59°55′17″N, 134°48′22″W), about 35 km southeast of section T-3 on Mount Bell (Fig. 1). These were later identified as questionable parts of the Laberge Group by Mihalynuk (1999). Petrographically similar strata in the Indian River area (200-235 km northwest of Carmacks), were assigned to the Tantalus Formation by Lowey and Hills (1988). As strata in the Indian River area contain terrestrial palynomorphs indicative of a late Lower Cretaceous (Albian) age (Lowey, 1984), these post-date volcanic strata in the Mount Nansen Group, and should be considered as a separate unit (Indian River Formation of Lowey, 1984, and Bond and Chapman, 2006), rather than part of the Tantalus Formation *sensu stricto*. Ash horizons in immature clastic sedimentary rocks, located along the Salmon River, adjacent to the Robert Campbell Highway, 46 km east of Carmacks, have been dated at ~92 Ma (Colpron, 2011). These strata, previously correlated with the Tantalus Formation, also post-date the Mount Nansen volcanic suite (Fig. 2), and hence may be equivalent to parts of the Indian River Formation.

Wheeler (1961) suggested that the Tantalus Formation was Upper Jurassic? to Lower Cretaceous, based on identification of plant remains from Mount Bush by Bell (1956), as of probable Neocomian $(145.5 \pm 4 \text{ to } 130 \pm 1.5 \text{ Ma})$ or Portlandian (146 to 142 Ma) age (*i.e.*, Tithonian to Hauterivian on Fig. 2). Lowey (1984) recovered a number of long ranging palynomorphs from drill core in the Tantalus Formation at Tantalus Butte, including some of probable middle to late Albian age. He suggested that the maximum age could have been late Upper Jurassic. A similar conclusion was made by Tempelman-Kluit (1974, 2009) based on plant remains from strata collected from roadside exposures 20 km south of Carmacks. Sandstone in this area contains abundant feldspar and minimal chert, hence these strata are now considered to be part of the Tanglefoot formation. Hart and Radloff (1990) recovered palynomorphs and dinocysts from the Ibex River area in strata here considered to be part of the Tanglefoot formation. These indicated the top of the Laberge Group to be as young as Kimmeridgian to Oxfordian (early to mid-Upper Jurassic), hence the maximum age of the Tantalus Formation may be Kimmeridgian. The minimum age of the formation is constrained by the (Albian) 109 ± 0.7 Ma age of quartz-feldspar porphyries of the Mount Nansen Group (Appel, 1998). Andesitic strata of the Carbon Hill volcanic complex, considered to be part of the Mount Nansen Group by Hart and Radloff (1990) cut and cap the Tantalus Formation on the southwestern margin of the basin.

Previous authors have suggested that the bulk of the Tantalus Formation was deposited in a terrestrial fluvial setting (Tempelman-Kluit, 1974; Bultman, 1979; Bremner, 1988; Long, 1982a,b, 1983a,b, 1984, 1986, 2005; Lowey *et al.*, 2009). A beach origin was suggested by McConnell (1909): this was later supported by Hart and Pelletier (1989), and Hart and Radloff (1990), who suggested a beach or barrier island origin for the massive conglomerate, and a fluvial, or lagoonal setting for finer grained strata and coal deposits within the formation. Hart and Radloff (1990) supported their argument for a marine component using the presence of a diverse assemblage of dinoflagellate cysts in two samples of mudstone from the lbex River area. As these strata (Section T-21, Appendix 1) are now considered as part of the Laberge Group (possibly part of the Tanglefoot formation, *see* Stratigraphy section), these dinocysts cannot be used to infer a marine or marginal marine origin for any part of the Tantalus Formation.

NEW OBSERVATIONS, METHODS

Fieldwork for this project took place in 1978, 1979, 1983, 2004 and 2005. New stratigraphic observations were made at several locations (Fig. 1 and Table 1). At each section observations on sedimentary structures, grain size (maximum and mean), and composition were made on a bedby-bed basis. Samples were collected for petrographic analysis and detrital zircon analysis. Plots of measured stratigraphic sections are provided in Appendix 1. Terminology for bed thickness, stratification and cross-stratification follows McKee and Weir (1953). Petrographic terminology follows Folk (1974).

SECTION	LOCATION	NTS	LATITUDE	LONGITUDE
T-1	Corduroy Mountain		61°19′31″N	125°55′42″W/ (base)
		105 E	61°19′45″N	125°55′58″W (top)
T-2	Carbon Hill	105 D	60°11′21″N	135°14′12″W
T-3	Mount Bell	105 D	60°10′22″N	135°11′06″W
T-4	Walsh Creek	105 E	61°55′29″N	134°40′57″W
T-5	Big Salmon	105 E	61°58′30″N	134°48′25″W
T-6a	Hootalingua	105 E	61°43′22″N	134°56′34″W
T-6b	Hootalingua	105 E	61°43′28″N	134°57′07″W
T-7	Nordenskiöld River	115 H	61°15′38″N	136°16′11″W (base)
			61°16′00″N	136°15′40″W (top)
T-8	Cub Mountain	115H/105E	61°23′07″N	135°59′26″W
T-9	Vowel Mountain	115 H	61°21′00″N	136°08′00″W
T-10	Tantalus Mine (old)	1151	62°05′41″N	136°15′48″W
T-11	Claire Creek	105 E	61°56′53″N	135°22′23″W
T-12a	South of Carmacks	1151	62°05′04″N	136°15′27″W
T-12b	South of Carmacks	1151	62°04′59″N	136°15′21″W
T-12c	South of Carmacks	1151	62°04′55″N	136°15′09″W
T-12d	South of Carmacks	1151	62°04′51″N	136°15′12″W
T-12e	South of Carmacks	1151	62°04′39″N	136°14′46″W
T-12f	South of Carmacks	1151	62°04′36″N	136°14′37″W
T-13b	Tantalus Butte, Open Pit	1151	62°08′14″N	136°15′51″W
T-13a	Tantalus Butte, Pit-east	1151	62°08′23″N	136°15′50″W
T-14	Tantalus Butte, trench	1151	62°08′20″N	136°15′33″W
T-15	Mason Landing	105 E	61°27′34″N	134°43′44″W
T-16	Hootalinqua, South	105 E	61°35′06″N	134°50′45″W
T-17	Tantalus Butte, Mine	1151	62°07′34″N	136°15′44″W
T-18	Carmacks, Town Dump	115 I	62°04′42″N	136°15′57″W
T-19	Mount Granger	105 D	60°29′54″N	135°16′42″W
T-20	Mount Granger	105 D	60°29′29″N	135°15′33″W
T-21	Ibex River	105 D	60°37′13″N	135°26′34″W
T-22	Bush Mountain	105 D	60°18′55″N	135°04′34″W
тээ	Mount Granger	105 0	60°29′56″N	135°17′56″W (base)
1-23		105 D	60°29′42″N	135°17′16″W (top)
L-3	Division Mountain	115 H	61°20′36″N	136°04′49″W

An attempt was made to document the sedimentary architecture of two laterally extensive exposures near Mount Granger, where outcrops were relatively well exposed, moderately accessible, and not obscured by lichen or soil cover. The methodology used to develop this type of architectural model is described in detail in papers by Miall (1996) and Long (2006, 2011). The hierarchy of surfaces in fluvial settings is explained in Table 2.

Maximum observed thicknesses of the formation are shown on Figure 4. In the type area, at Tantalus Butte, immediately north of Carmacks (Figs. 1 and 4), the formation is at least 370 m thick (section T-17). The maximum preserved thickness is in the Braeburn-Kynocks area, at Vowel Mountain (section T-9 on Fig. 4) where the formation is at least 1273 m thick. The minimum preserved thickness is in the south, at Carbon Hill (T-2) and Mount Bell (T-3), where less than 100 m of strata are preserved. Outcrop patterns, combined with isolated dip measurements, indicate that as much as 850 m of the formation may be present in the subsurface between Hootalinqua south (T-16) and Mason Landing (T-15), but is very poorly exposed, and may include fault repetition. Exposure of the formation range from 100% at Claire Creek (T-11), to less than 10% between Hootalinqua and Mason Landing (T-15, T-16). Most measured sections had 50 to 70% exposure (Appendix 1).

ORDER	TIME (YEARS)	PROCESS	EXAMPLE	MORE INFORMATION ON BOUNDING SURFACES
0	10-6	Burst-sweep cycle	Lamina	
1	10 ⁻⁵ to 10 ⁻⁴ 10 ⁻² to 10 ⁻¹	Bedform migration Bedform migration	Ripple-microform Diurnal dune increment, reactivation surface	Set boundary
2	10 ⁻² to 10 ⁻¹	Bedform migration	Dune mesoform	Co-set boundary
3	10º to 101	Seasonal events, 10a flood	Macroform growth increment, unit bars	Dips at 5-20°
4	10 ² to 10 ³	100 a flood, channel and bar migration	Macroform migration (point bar, levee, splay)	Convex up, macro-form top, minor channel scours
5	10 ³ to 10 ⁴	Avulsion, long-term processes	Channel, delta lobe, mature paleosoils	Flat to concave up, channel base
6	10 ⁴ to 10 ⁵	5 th order Milankovich cycles and tectonic pulses	Channel belts, alluvial fan, minor sequence	Flat, regionally extensive
7	10 ⁵ to 10 ⁶	106 4th order Milankovich cycles and tectonic pulses	Major deposystems, fan tract, sequence	Flat, regionally extensive or base of incised valley
8	10 ⁶ to 10 ⁷	3 rd order cycles, tectonic and eustatic	Basin-fill complex	Regional disconformity

Table 2. Bedform Hierarchy (after Miall 1996).

Figure 4. Distribution and thickness of the Tantalus Formation. For location names see Figure 1. Measured and estimated thicknesses are indicated in brackets. Logs of individual sections are provided in Appendix 1.

LITHOLOGY AND PETROLOGY

Conglomerate forms the bulk of exposed strata in the Tantalus Formation (86% of exposed strata in all measured sections), with sandstone forming about 10%, and mudstone about 4% (Fig. 5). Coal forms less than half a percent of the exposed parts of measured sections. The relative abundance of mudstone and coal may be slightly underestimated, as these are more readily obscured by slope debris in some sections.

Conglomerate

Lithology

Conglomerate units form 86% of all the exposed strata in the Tantalus Formation. They are dominated by well sorted to moderately well sorted, medium and large pebble conglomerate, with well-rounded sub-equant (*i.e.*, compact; Folk, 1974) clasts. Elongate and platy clasts are very rare. Individual units (beds and amalgamated bed-sets) are from 3 cm to 22.5 m thick (average 0.79 m; mode 0.5 m), and typically have moderate to high lateral continuity, at least at the outcrop scale (10-100 m). Composite storeys (packages of conglomerate bounded by erosion surfaces) can be traced laterally for several kilometres, and give rise to the characteristically striped appearance of outcrops at sites such as Vowel (T-9) and Corduroy (T-1) mountains (Figs. 1, 6 and 7).

The maximum grain size (measured as the intermediate clast diameter of the largest clast present) in conglomerate of the Tantalus Formation is 260 mm (large cobble grade) from section T-11, at Claire Creek (Fig. 8). Elsewhere maximum grain size is from 23-130 mm (medium pebble to small cobble grade). Most of the conglomerate is well sorted to moderately well sorted, and so plots close to the C=M line axis on logarithmic plots (Passega, 1964) of maximum (C), versus medium (M) grain size (Fig. 8).

Figure 5. Distribution of rock types in measured sections through the Tantalus Formation as volume percent (based on thickness and modal size observations of 2768 beds or bedsets).

Most conglomerate in the Tantalus Formation is clast supported, and appears massive or weakly horizontally bedded (Fig. 9). Planar and trough cross-stratification is developed on a scale of 20 cm to >4 m (Fig. 10). Large-scale cross-stratification (4-17 m) is present locally. Corraision furrows (Massari, 1983; Long and Lowey, 2011) were found at the base one conglomerate unit, resting on finer grained strata in the Tantalus Open Pit (Fig. 10e).

Figure 6. Thick, multi-storey conglomerate units at Vowel Mountain at ~61°21′00″N, 136°07′27″W (Section T-9 in Appendix 1), a tight isoclinal syncline (chevron fold) with a gentle plunge to the south. View from south. Conglomerate storeys are separated by thin units of sandstone or granule to small pebble conglomerate.

Figure 7. Striped appearance of conglomeratic exposures in the Tantalus Formation at Corduroy Mountain (61°18′45″N, 135°54′52″W), as seen from the south. Field of view is about 1.6 km. Recessive intervals include sandstones and finer grained conglomerate. Contact with the Tanglefoot formation is close to the lake.

Figure 8. Logarithmic plots of coarsest one percentile intermediate clast diameter (C) against median grain size (M) in millimetres for measured sections through the Tantalus Formation (CM plot method based on Passega, 1964). Lower histogram shows distribution of modal classes in one Phi intervals. Larger versions of CM plots are provided in Appendix 1.

Figure 9. Planar bedded conglomerates, Mount Granger. a) section T-20 and b) section T-19.

Petrography

Conglomerate is dominated by well sorted to moderately well sorted, medium and large pebble grade clasts, with well-rounded clasts consisting predominantly of vari-coloured black, grey, white, and rare red and light green chert, with minor sandstone, igneous, and metamorphic clasts (Fig. 11). Point counts of cut slabs of 52 samples of conglomerate indicate that all samples are chert-lith-rudites (Fig. 12 and Appendix 2, table 1), with pebbles (>2 mm) consisting of 52-97% chert (average 83%), 1-29% quartz (average 12%), and 0-11 % felsic rock fragments and sandstone (average 3%). The maximum abundance of labile pebbles (felsic rock fragments and sandstone) is in the samples from Hootalinqua and Claire Creek on the northeastern side of the basin, with the minimum abundance in the Mount Granger area on the southwestern side of the basin. Chert clasts in the conglomerate are predominantly well rounded. Based on analysis of slabs, black chert forms between 7 and 67% (average 38%) of the total chert population, with grey chert forming 12-60% (average 34%), and grey-brown chert forming 4-71% (average 28%). Red and green varieties typically form less than 2% of the total chert population (Appendix 2, table 1). Based on the analysis of slabs, there are no major differences in abundance of the three main chert types across the basin (Fig. 12).

Figure 10. Conglomerates of the Tantalus Formation. a) Medium to large-scale trough crossstratification in medium pebble conglomerate, old coal mine, south of the Yukon River at Carmacks (Section T-10, 62°05′39″N, 136°16′00″W). b) Large-scale planar-curved cross-stratification, Tantalus Butte Section (T-17, 62°07′34″N, 136°15′44″W). Photograph rotated to paleohorizontal. c) Fourmetre thick planar cross-stratified medium pebble conglomerate, from Hootalinqua North (Section T-6, 61°43′22″N, 134°56′34″W). Dashed line represents upper contact with planar stratified conglomerate. d) Medium-scale planar cross-stratification, from ~10 m above the Whitehorse Coal pit (60°29′50″N, 135°17′13″W). e) Detail of base of conglomeratic strata above the main coal seam in the open-pit mine at Tantalus Butte. Arrows mark linear scours (corraision furrows of Massari, 1983) at base of conglomerate.

Figure 11. Typical medium to large pebble conglomerate (chert-lithrudite) from the Tantalus Formation at Tantalus Butte (Section T-17), containing pebbles of black (B), white (W), and grey (G) chert, minor vein quartz (Q) and plutonic rocks (I). a) Large pebble conglomerate (chert-lithrudite) from Vowel Mountain (Section T-9: R=red chert). Minor igneous clasts (I) are a pink quartz monzonite. b) Cut slab of medium pebble conglomerate (chert-lithrudite) from Tantalus Butte (Section T-17). Minor igneous clasts are granodiorite (top right) and porphyritic quartz monzonite (bottom left). c) Detail of very large pebble of quartz monzonite in a large pebble conglomerate from Vowel Mountain.

Petrographic analysis of 79 thin sections from across the basin show similar trends, with an average composition of 13.4% quartz, 2.4% feldspar and 84.2% lithic fragments (Fig. 13 and Appendix 2, tables 6 and 7). The quartz is predominantly strained (72.7%), with almost equal abundance of monocrystalline (13.3%) and polycrystalline (12.7%) varieties. The lithic component is dominated by chert (91.3%), with minor igneous (4.6%), sedimentary (3.4%) and metamorphic rock fragments (<1%). In thin section 48.5% (average) of the chert is white (range 10-100%), 35.5% is yellow (grey-brown: range 0-79%), 10.4% is black (range 0-61%) and 5.6% is grey (range 0-39%; Fig. 13). Differences between proportions of each type between the slabs and thin sections reflect the translucent nature of many of the chert grains. In terms of textural varieties, the thin sections average 37% of chert with spheres (range 0-87%), 35.7% with massive textures (range 5-88%) and 28.1% with brecciated textures (range 2-95%). Some of the varieties of chert encountered

are illustrated in Appendix 3. Regional variations will be discussed below. Unfilled pore-space (voids) forms an average of 1.1% of the 80 samples examined. Cement filled pore-space forms an average of 3.6% of the samples examined. Of this 2.7% is ferrugenous cement (hematite and iron-sesquioxide), 0.7% calcite, and 0.2% quartz. Clay cement was observed in only one sample (average=0.01%). Comparative data from the underlying Tanglefoot formation are shown in Figure 14 (data in Appendix 2, table 2).

Figure 12. Petrographic analysis of the >2 mm fraction of cut slabs of conglomerate from the Tantalus Formation from the NE (Hootalinqua/Claire Creek), N (Carmacks), W (Vowel Mountain) and SW (Mount Granger) parts of the basin. The left-hand triangles show the relative proportions of quartz pebbles (Q), chert pebbles (Cht), and sandstone and felsic igneous rock fragments (Sst+Irf). The daughter triangles on the right show the relative abundance of the three main chert types (see Appendix 2, table 1 for further details). Small symbols indicate individual samples, large symbols indicate modes.

The conglomerate in the Tanglefoot formation contains, on average, a significantly higher abundance of quartz (average 44.0%, range 7-73%) and feldspar (average 25.1%, range 0-63%), and a lower abundance of lithic fragments than the Tantalus Formation (average 30.9%, range 0-88%). Chert constitutes only 52% of the lithic component of the conglomerate in the Tangefoot formation, and is absent in 66% of the conglomerate samples examined. The ratio of monocrystalline to strained quartz is similar to that in the Tantalus Formation, although the abundance of polycrystalline quartz grains is more restricted (Figs. 13 and 14). The range of textural varieties of chert is similar to the Tantalus Formation, although white chert appears to be more abundant.

Figure 13. Petrography of framework grains in thin sections of 80 conglomerate samples from the Tantalus Formation. Primary diagram shows abundance of quartz (Q), feldspar (F) and lithic fragments (L). Daughter triangle at top right shows abundance of quartz types (Qm=monocrystalline; Qp=polycrystalline; Qs=strained). Daughter triangles at bottom indicate relative abundance of the chert component of the lithic fraction, based on colour (left) and texture (right). Small symbols indicate individual samples, large symbols indicate modes. Coloured field indicates range.

Figure 14. Petrography of framework grains in 12 conglomerate samples from the Tanglefoot formation. Legend as in Figure 13. Five of the samples contain clay as detrital matrix or cement (Average = 2.7% of the whole rock). Voids typically form about 0.1%, ferruginous cements average 7.8%, and carbonate cements average 3.2% of the whole rock.

Sandstone

Lithology

Sandstone forms less than 10% of exposed strata in the Tantalus Formation, and is dominated by medium to very coarse sand grade material (Fig. 5). Most of the sandstone is moderately well sorted, although pebbly sandstone (*i.e.*, with less than 30% gravel) is common (Fig. 15a,c). Units are from 2 cm to 6.2 m thick (average 0.57 m; mode 0.15 m). They occur as thin beds and cosets in conglomerate dominated sequences (Fig. 15a,b,c), and in sets 0.01 to 1.2 m thick, interbedded with thin mudstone and siltstone units non-conglomeratic intervals (Fig. 15d,e,f,g). Medium to very

coarse sandstone is typically massive or planar cross-stratified, and occurs in beds 10 to 60 cm thick (Fig. 15a,c). Low-angle cross-stratification and planar lamination (with current lineation) are present locally (Fig. 15b). Finer grained sandstone is typically planar laminated or asymmetric ripple cross-stratified (1 to 5 cm; Fig. 15f), with local disruption of sedimentary structures produced by physical displacement of sediment during growth of plant roots (rhizoturbation). Thin laminated examples in places have well-preserved plant material on bedding planes (Fig. 15g).

Figure 15. Sandstones in the Tantalus Formation. a) Planar cross-stratified, and b) plane bedded, coarse to very coarse grained sandstone from between thick conglomerate units, Corduroy Mountain. c) Planar cross-stratified medium to coarse grained sandstone, Tantalus Butte. d, e, f) Inter-bedded medium to fine grained sandstone and mudstone, Tantalus Butte, open pit. g) Well-preserved plant material (ferns) on plane bedded sandstone, Tantalus Butte, open pit.

Petrography

All the sandstone units in the Tantalus Formation have a speckled "salt and pepper" appearance due to the abundance of chert grains. Petrographic analysis of thin sections of 26 sandstone samples from the Tantalus Formation indicate an average composition of 31% quartz (range 16-55%), 9.7% feldspar (range 0-42%), and 58.9% lithic fragments (range 24-82%), of which 95.4% are chert, with minor igneous (2.9%), sedimentary (1.0%) and metamorphic (0.7%) rock fragments (Fig. 16 and Appendix 2, table 2). As in the associated conglomerate, the quartz is predominantly strained (average 71.3%). Monocrystalline grains appear to be slightly more abundant (average 17.8%) and polycrystalline quartz slightly less abundant (average 10.9%) although the overall range is similar (Fig. 16). In thin section 53.5% of the chert is white (range 33-54%), 26.4% is yellow (range 13-44%), 10.3% is black (range 3-21%) and 9.4% is grey (range 3-27%). The overall distribution of chert colours is more tightly clustered than in the conglomerate (Fig. 13). Chert textures are likewise more tightly clustered, with 75.3% massive textures (range 42-75%), 16.8% containing spheres (range 2-47%) and 7.8% with brecciated textures (range 1-22%). Voids (empty pores) form an average of 4% of the samples examined. Filled pores form a further 7.2% (average) of the thin sections, including 4.6% ferruginous cement, 1.7% carbonate and 0.9% quartz. Chlorite cement was detected in trace amounts in only one sample.

Figure 16. Petrographic composition of framework grains in 26 samples of sandstone from the Tantalus Formation. Primary diagram shows abundance of quartz (Q), feldspar (F) and lithic fragments (L). Daughter triangle at top right shows abundance of quartz types (Qm=monocrystalline; Qp = polycrystalline;*Qs*=*strained*). *Daughter* triangles at bottom indicate relative abundance of the chert component of the lithic fraction, based on colour (left) and texture (right). Small symbols indicate individual samples, large symbols indicate modes. Coloured field indicates range. Black dashed line indicates limit of data fields of conglomerate in the Tantalus Formation (Fig. 13).

Sandstone in the underlying Tanglefoot formation can readily be distinguished from that in the Tantalus Formation by its higher quartz (average 51.4%, range 16-87%) and feldspar content (average 33.4%, range 13-52%). Lithic fragments make up only 15.2% (range 0-56%) of the 23 sandstone samples examined from the Tanglefoot formation. Igneous rock fragments are more abundant (average 24.3%) than chert (average 2.1%), which appears in only half the samples examined (Appendix 2, table 2). Sedimentary rock fragments (other than chert) make up an average of 7.6% of the lithic component, and metamorphic rock fragments make up a further 2.1%. Most sandstone plots as arkose, with lesser abundances of lithic arkose, subarkose and feldspathic litharenite, with only one sample plotting as a litharenite (Fig. 17). Polycrystalline quartz is less abundant than in the Tantalus Formation (average 4.5%, range 2-8%), with similar abundances of monocrystalline and strained varieties. Chert varieties are similar to the Tantalus Formation, although the overall distribution is more variable. Clay is present as a matrix component (detrital) or cement in half the samples examined (average 2.2%), with minor voids (average 0.3%), ferruginous cements (average 5.1%), carbonate (average 5.1%) and traces of quartz cement (average 0.5%).

Figure 17. Petrographic analysis of 23 samples of sandstone from the Tanglefoot formation. Legend as Figure 16. Black dashed line indicates range of composition of sandstone from the Tantalus Formation.

Mudstone

Mudstone forms only 4.2% of the exposed parts of the Tantalus Formation (Fig. 15d,e,f). It is dominated by siltstone (54%), with lesser amounts of claystone (39%) and mudstone (10%). Most samples are massive, with abundant slickensides (soil crumb texture), or are thin (0-2 mm) to thick (2-10 mm) laminated. Grey mudstone tends to have low organic content, while black samples are organic rich and in places contain plant roots and well preserved leaf and stem material.

Coal

Coal forms only 0.42% of the exposed parts of the Tantalus Formation, although this may be a slight under estimation, as seams typically occur in recessive intervals separating thick conglomerate units, and tend to have high ash (detrital clay) content. Rank is typically high volatile A to B in the north, increasing to sub-anthracite in the southwest (Goodarzi and Jerzykiewicz, 1989; Beaton *et al.*, 1992; Cameron and Beaton, 2000). Thin (1-5 cm) beds of coal (>50% organics) and coaly-mudstone (<50% organics) typically occur in intimate association with ripple laminated sandstone and massive

to weakly planar to wavy laminated organic rich mudstone, with traces of root casts or soil crumbs (Figs. 15d,e and 18). Thick seams, exposed in the open pit at Tantalus Butte (Fig. 18b,c,d), are intimately associated with mudstone and sandstone and have high ash (mud) content. Within the open pit, the coal is tectonically thickened along the axis of drag folds. Both at Carmacks and at Mount Granger, thicker coal seams are found only within fine-grained intervals.

Figure 18. Carmacks area coal: a) adit to main underground workings at Tantalus Butte (1978), this structure has since been destroyed; b, c) highly deformed coal seams (drag folds) in the open pit at Tantalus Butte; d) thick seam exposed in centre of open pit.

STRATIGRAPHY

The base of the Tantalus Formation is marked by a significant increase in the chert content of the sandstone and conglomerate, when compared to underlying strata of the Tanglefoot formation. South of the Yukon River at Carmacks, the base of the Tantalus Formation is clearly erosional. This can be demonstrated by truncation of coal seams and sandy channel fill deposits in the underlying Tanglefoot formation (Fig. 19). At other locations, such as Vowel Mountain (T-09), Corduroy Mountain (T-1) and Mount Granger (T-19 and 20), the contact appears to be sharp and conformable, but may still be erosional. At Division Mountain (between Vowel and Corduroy Mountains, at ~61°20'N, 136°08'W) Allen (2000) indicates a sharp lower contact. Drilling by Cash Resources Ltd. in this area indicates that coal seams in the underlying Tanglefoot formation have been truncated at the base of the Tantalus Formation (Fig. 3 in Carne and Gish, 1996).

As strata of the Tantalus Formation are predominantly chert pebble conglomerate, it is difficult to correlate between isolated areas of outcrop, as the (recessive) finer grained units do not appear to be continuous across the basin. On a local scale, it is possible to make correlations based on the first occurrence of exotic pebble types. For example, in the north end of the Whitehorse trough

Figure 19. Detailed correlation of coal-bearing strata in the Tanglefoot formation, south of Carmacks (after Long 2005). Top at true scale. Bottom with vertical exaggeration x6. Base of the Tantalus Formation (Pink/Red – at top of diagram) is estimated at 14 m higher in the southerly exposures, over a distance of 1066 m (for details see Appendix 1). Base map for locations based on Google Earth image.

at Carmacks (Fig. 20), Long (1986, 2005) suggested that the first occurrence of felsic (plutonic) pebbles, which coincides with a marked increase in clast size (horizon B in Fig. 20), indicated that there is a minimum of 155 m of local relief at the base of the formation. Maximum pebble size may also be used for local correlation, as sediment flux in valley fill settings is often driven by climate shifts (possibly driven by 100 Ka Milankovich cycle: Van der Zwan, 2002; Thamó-Bozsó *et al.*, 2002; Hinderer, 2012; Pepin *et al.*, 2013; Wu *et al.*, 2013), and/or by tectonic events (Miall, 1996; Leeder, 1997; Frostick and Jones, 2002). Surfaces C and D (Fig. 20) indicate how this can be used to confirm local correlations.

Figure 20. Correlation of sections in the Carmacks area, based on location of unconformity (*A*); first occurrence of felsic clasts (*B*); and initiation of fluctuations in maximum grain size (*C*, *D*). North to right. Base of lower conglomerate in section T-10 may correlate with surface *B*. Bars to right of column indicate bed thickness and sedimentary structures. Arrows to right of these columns indicate paleoflow observations. Dots, and pink envelope indicates maximum grain size in 1 cm divisions. See Appendix 1 for further details of individual sections.

Cairnes (1910) recorded coal seams associated with conglomeratic strata south of the Carmacks area, south of Montague House, at Lone Pine Mountain (61°56'N, 136°07'W), Andesite Mountain (61°54'N, 136°05"W) and Montague Mountain (61°53'N, 136°05'W: Fig 20, inset). These have been mapped as part of the Tantalus Formation by Colpron (2011), but may include some strata of the Tanglefoot formation (Laberge Group), in road-side exposures west of Lone Pine Mountain where they tend to be finer grained and feldspathic, with lower chert content than samples from the Tantalus Formation.

The basal contact of the Tantalus Formation is not exposed along the northeast side of the Whitehorse trough (Fig. 21). Exposures between Claire Creek (T-11) and Mason Landing (T-15) may be affected by faults. Correlation based on coal or fine grained intervals is not practical, due to the paucity of exposures south of Claire Creek. All sections contain some felsic plutonic pebbles, so this is of little use for correlation. Using peaks in maximum grain size it is possible to correlate over an along strike distance of 50 km (Fig. 21; horizons C, D, E). These may or may not be equivalent to peaks seen in the Carmacks sections (Fig. 20) an additional 50 km to the northwest. Strata at Mason Landing (T-15) are too poorly exposed to allow correlation. Faults in section T-11 have minimal off set. Faults in sections T-6, T-15 and T-16 are difficult to locate in the absence of outcrop, but are probably strike parallel with minimum off set of the stratigraphy.

Correlation of strata in the Braeburn-Kynocks area, along the central western margin of the Whitehorse trough, is more difficult as no significant coal seams have been recognized in the formation in this area (Long, 1986; Carne and Gish, 1996; Allen, 2000), and there are few proven intervals with fines. The basal unconformity is exposed along the western margin of the Whitehorse trough, in the Nordenskiöld River section (T-7) at 61°15′43″N, 136°16′05″W (Fig. 22). At this locality the Tantalus Formation rests directly on a coarse-grained quartz monzonite that Tempelman-Kluit (1974) considered to be of possible Triassic age. Mapping to the west indicates that this pluton is probably of Toarcian age (late Lower Jurassic), corresponding to the Long Lake plutonic suite of Johnston and Timmerman (1994). This has been dated at 179.1±1 by Johnston *et al.* (1996), indicating emplacement during deposition of the lower to middle part of the Laberge Group (Fig. 1). Along the eastern margin of NTS 115H/8 the formation overlies a thick sequence of strata belonging to the Tanglefoot formation (Fig. 22). The contact appears conformable, but as it truncates several coal seams in the underlying strata (Carne and Gish, 1996; Allen, 2000) near Division Mountain, it must have an erosional base.

Fyles (1950), Wheeler (1961), Hart and Radloff (1990), and Hart (1997) show a thin sliver of Tantalus strata preserved between high-angle faults on the east side of the Ibex River (NTS 105D). A 300 m section through these strata, measured in a gully at 60°37′13″N, 135°26′34″ (section T-21 in Appendix 1), consists of minor small to medium pebble and granule conglomerate units, associated with massive units of medium and coarse sand, and thick intervals of non-carbonaceous mudstone. The conglomerate contains minor concentrations of black chert and superficially resembles strata of the Tantalus Formation (except that they lack cross-stratification). The average composition of three conglomerate samples examined contained 34.4% quartz (predominantly strained), 11.5% feldspar, and 54.1% lithic fragments, of which 69% were chert (Fig. 23). Associated sandstone is typically quartzo-feldspathic. The three samples examined included both lithic arkose and feldspathic litharenite (Fig. 23), with 27.3% quartz (predominantly strained), 30.3 % feldspar, and 42.5% lithic fragments, of which only 17.9% were chert. In both the conglomerate and sandstone samples concentrations of chert are significantly lower in both absolute and relative abundance than in comparable samples from the Tantalus Formation, hence this strata is more properly assigned to the

Figure 21. Correlation of strata in the NE Whitehorse trough. C, D, E are correlations based on fluctuation of maximum grain size. Bars to right of column indicate bed thickness and sedimentary structures. Arrows to right of these columns indicate paleoflow observations. Dots, and pink envelope indicates maximum grain size in 1 cm divisions. The pink envelope projects to the right of the box where maximum grain size exceeds 10 cm: see Appendix 1 for further details of individual sections. Faults exposed in section T-11 are bedding parallel, and have minimal offset. Faults may be present in T-6 and T-16, but could not be identified due to poor outcrop.

Tanglefoot formation of the Laberge Group. The presence of Kimmeridgian – Oxfordian (lower to mid-Upper Jurassic) palynomorphs in the Ibex River section (Rouse, cited in Hart and Radloff, 1990) indicates that deposition of the Tanglefoot formation may have continued into the Oxfordian, hence the unconformity between the Laberge Group and Tantalus Formation may represent a relatively short period (Fig. 2).

Allen (2000), working in the vicinity of Division Mountain suggested that at least locally, the Tantalus Formation can be divided into upper and lower members, due to an abundance of sandstone intervals in the lower part of the formation. In this study, sections measured at Vowel

Figure 22. Correlation of strata in the Braeburn-Kynocks area. A=Unconformity; C, D=possible correlations based on changes in grain size. Bars to right of column indicate bed thickness and sedimentary structures. Dots, and pink envelope indicates maximum grain size in 1 cm divisions. See Appendix 1 for further details of individual sections.

Mountain (T-9) and alongside the Nordenskiöld River (T-7) appear to have a lower unit with abundant sandstone (Fig. 22). Based on the location of the basal contact with the Tanglefoot formation in the Vowel Mountain section (T-9), this lower unit is estimated to be as much as 260 m thick, thinning to about 42 m to the west (section T-7), and to the east where only 20 m is exposed at the base of the Corduroy Mountain section (T-1). Sills of porphyritic andesite, possibly belonging to the Carmacks Group tend to be concentrated in this unit. Allen (2000) noted the presence of pebbly sandstone of possible debris flow origin in the lower member at Division Mountain. No massive pebbly sandstone was encountered in any of the sections measured during the current study. Felsic plutonic pebbles are not conspicuous in any of the four sections measured, hence cannot be used for local or inter-regional correlation. Plots of maximum clast size may support local correlations in the area (lines C and D in Fig. 22), but cannot be correlated to the Carmacks area or beyond with any confidence.

In the Whitehorse Coal area, to the west of Mount Granger (sections T-19 and 20), the base of the formation is not exposed, but appears, based on local geomorphology, to lie near-conformably on underlying strata of the Laberge Group (Fig. 24). In this area, exploration in the 1980s has indicated up to eight coal seams (some of which may be in the Tanglefoot formation), with a maximum seam thickness of 13.1 m (Bremner, 1988; Cameron and Beaton, 2000). Some of the thicker seams can be traced along strike for distances of 2-11 km (Latour, 1968; Hunt and Hart, 1994; Bremner, 1988; Ricketts, 1984), and may correlate with exposures on Double Mountain (Cairnes, 1910). The abundance of finer grained units (sandstone, mudstone and coal), along with sills of aphanitic volcanic material indicates that much of the section in this area is equivalent to the lower member of the formation in the Braeburn-Kynocks area.

At Bush Mountain (section T-22 in Fig.1), some 23 km SSE of the Whitehorse coal occurrence, Cairnes (1912) reported three coal seams in ~600 m of strata at Idaho Hill (4 km west of Annie Lake) that he initially considered to be part of the Tantalus Formation, but later correlated with the Laberge Group (Cairnes, 1916). Hart and Radloff (1990) described these strata as a "chert/ quartz poor" facies of the Tantalus Formation, and noted that they contain both abundant feldspar and lithic fragments, which are not evident in this formation elsewhere (see above). Petrographic analysis of three samples of conglomerate from Bush Mountain (Appendix 2, table 2, samples T22-7, 20, 25), indicate average QLF (quartz, lithic, feldspar), quartz-type, and chert-type, distributions

Figure 24. Correlation of strata near Mount Granger (Whitehorse Coal deposits). Insert shows location of sections measured along with local geology (based on my observations, combined with those of Colpron 2011). Numerous cross-faults may be present (Hart and Radloff 1990) but were not recognised during this study. The pink units in the upper right of the insert map are part of the late-Lower Cretaceous (108-113 Ma: Hart 1997) Whitehorse igneous suite. The thin dike of felsic porphyry near section 19 may be part of the 70 Ma Carmacks Group, or the 54 Ma (Hart 1997) Skukum Group, but has not been dated.

that are almost identical to those of samples of the Tantalus Formation from the Whitehorse Coal area, although the relative abundance of white (clear) chert clasts is higher. On average both (nonchert) sedimentary rock fragments (6.3% vs. 2.1%) and igneous rock fragments (7.3% vs. 3.0%) are two to three times more abundant than in the conglomerate of the Tantalus Formation from the Whitehorse Coal area (for further discussion on regional petrographic variations see below). The strata at Bush Mountain have been extensively deformed (Fig. 25), and are intruded by andesite sills and dikes that may be part of the Albian (late-Lower Cretaceous) Mount Nansen Group (Hart and Radloff, 1990) or Ypreian (lower Eocene) Skukum Group (Gordey, 2008), that have upgraded the coals to semi-anthracite with a high ash content (Speelman, 1971). Many of the recessive areas along Idaho Ridge may be underlain by sandstone and mudstone, in which case the area may correlate with the lower part of the succession in the Braeburn-Kynocks area. Plant fossils (Fig. 25b), collected from finer grained intervals, included *Cladophlebis virginiensis* (Fontaine). Bell (1956, p. 27 and 173) used examples of this species and associated plant material to indicate a Lower Cretaceous age. Unfortunately this species has a broad age range, spanning the Tithonian (late Upper Jurassic: 152.1-145 Ma) to Aptian (late Lower Cretaceous: 125-113 Ma), so is not age diagnostic (Bell, 1956; Lapasha and Miller, 1985; MacLeod and Hills, 1991).

Mountain (Section 1-22). Minor coal debris is present on Vertical fabric is a result of shearing. b) Impression of Cladophlebis virginiensis (Fontaine) in very fine grained sandstone from this section.

Small areas of Tantalus Formation have been mapped on Carbon Hill (T-2) and Mount Bell (T-3), but are poorly exposed. Highly weathered, frost shattered samples of conglomerate collected from Carbon Hill (60°11′21″N, 135°14′21″W) were highly sheared medium pebble conglomerate. Samples on Mount Bell (60°10'22"N, 135°11'06"N) were of small to medium pebble grade. Samples from both sections were exceptionally chert-rich (94-96% of framework grains: Appendix 2, table 2, samples T2-3 and T3-1a), and contained no other sedimentary, metamorphic or igneous clasts. No coal was found in float at either locality. Thirty-five kilometres southeast of Mount Bell (T-3), Bultman (1979) recorded a fault-bounded area with approximately 300 m of interbedded sandstone and conglomerate (but no coal), in sets 10-30 cm thick. The small pebble conglomerate at this location contains about 65% chert, 23% quartz, 11% sedimentary rock fragments and only 1% volcanic material (Bultman, 1979, p. 113) which plots within the range of composition for Tantalus Formation conglomerate in this study (Fig. 13).

On a regional scale, a lower member of the Tantalus Formation, tentatively equivalent to the lower member of Allen (2000), can be identified along the western margin of the Whitehorse trough, at least between Mount Bush and Tantalus Butte (Fig. 1), and possibly 35 km to the southwest, at Tutshi Lake, British Columbia (Bultman, 1979). The lower member is characterized by a greater abundance of fines, while the upper member is predominantly conglomerate (Fig. 22). In sections near the Whitehorse Coal pit the lower member is represented by about 100 m of poorly exposed strata below the first thick stacks of conglomerate (Fig. 24). It is more difficult to establish the existence of this member with any certainty in the vicinity of Carmacks (Fig. 20; possibly below surface B), and was not detected between Claire Creek (T-11) and Mason Landing (T-15; Fig. 21). Correlations can be made between widely spaced outcrops, based on maximum grain size, but should be used with extreme caution.

DETRITAL ZIRCONS

Zircons from three samples of the Tantalus Formation were examined by Dr. George Gehrels at the University of Arizona LaserChron Centre. Samples TB1 and TB2 are both from the open pit mine at Tantalus Butte (62°08′32″N, 136°15′59″W). Sample TB3 is from Tantalus Butte, from a conglomerate below the mine adit (~60 m level of T-17). Sample TB1 is from a conglomerate, 6 m above the base of the hanging wall conglomerate on the west side of the pit (Fig. 10), and sample TB2 is from sandstone about 20 m below this contact, on the east side of the pit. Sample C1 is from the upper half of the exposed section at the north end of Corduroy Mountain (61°20′33″N, 135°58′45″W). It is from a level roughly equivalent to the 310 m level of section T-1.

The analytical methods and data are reported in Appendix 4. Interpreted ages are based on ²⁰⁶Pb/²³⁸U for <800 Ma grains and on ²⁰⁶Pb/²⁰⁷Pb for >800 Ma grains. Analyses that are >30% discordant (by comparison of ²⁰⁶Pb/²³⁸U and ²⁰⁶Pb/²⁰⁷Pb ages) or >5% reverse discordant (in italics in Appendix 4b) are not considered further. Concordia diagrams for the four samples are shown as Figure 26. The resulting interpreted ages are shown on relative age-probability diagrams (Fig. 27; following Ludwig, 2001). These diagrams show each age and its uncertainty (for measurement error only) as a normal distribution, and sum all ages from a sample into a single curve. Interpretation of the data is provided below (Provenance; Zircons section).

INTERPRETATION

Sedimentology

In this study almost all of the extensive chert pebble conglomerate in the Tantalus Formation is interpreted as a deposit of gravel-bed rivers: this includes deposits of shallow (<3 m) and deep (>3 m) braided gravel-bed rivers, and locally deep meandering gravel-bed rivers (comparable to models B, C, and F of Miall, 1996, p. 203). Overbank (*i.e.*, levee, splay, marsh, swamp and pond) deposits are largely restricted to recessive slope forming intervals. Coal deposits developed locally

Figure 26. Concordia plots of zircon data from four samples of the Tantalus Formation. Sample TB1 is from strata 6 m above the coal seams on the western side of the open pit at Tantalus Butte (Fig. 10). Sample TB2 is from strata structurally 20m below this coal seam, with dips to the east rather than west (Fig. 15e). Due to folding and faulting in the pit, TB2 appears to be from a higher stratigraphic level than TB1. Sample TB3 is from a conglomerate at Tantalus Butte in the lower part of the Formation, below the mine entrance (~60 m level of T-17). Sample C1 is from the upper half of the formation at Corduroy Mountain. Data point error ellipses are plotted at the 68.3% confidence limits.

on abandoned segments of floodplains within confined river valleys, in places associated with high-constructive single or multi-channel (anastomosed) fluvial systems, with sand-filled channels (analogous to model J of Miall, 1996). Minor deltaic facies are preserved where rivers debouched into local floodplain ponds or lakes, to produce Gilbert-type deltas.

Braided gravel-bed river deposits

Most conglomeratic units in the Tantalus Formation are characterized by massive and sub-horizontal bedding, with minor planar and trough cross-bedding (Conglomerate section above). Massive and sub-horizontal bedding is a characteristic of deposition on in-channel macroforms in braided gravelbed rivers (Miall, 1996; Long, 2011). Absence of marked imbrication reflects paucity of relatively flat clasts (*i.e.*, platy and very platy clast forms of Folk, 1974), rather than inability of subsequent flood

Figure 27. Relative age probability plots of zircon data from four samples of the Tantalus Formation. Sample TB1 is from 6 m above, and sample TB2 is from 20 m below the hanging wall conglomerate (Fig. 10) exposed in the open pit at Tantalus Butte (62°08'32"N, 136°15'59"W). Due to folding and faulting in the pit TB2 is from a higher stratigraphic level than TB1. Sample TB3 is from a conglomerate at Tantalus Butte in the lower part of the Formation, below the mine entrance (~60 m level of T-17). Sample C1 is from the upper half of the formation at Corduroy Mountain (61°20'33"N, 135°58'45"W).

events to rework and armour bar-tops. Depth of channels is difficult to estimate, as conglomeratic intervals tend to be stacked. The average bed thickness of massive and weakly planar stratified conglomerate units is 0.79 m, based on measurement of 2418 units (Fig. 28). On a volumetric basis, only 0.04% are very thin bedded (1-5 cm), 25% are thin bedded (5-60 cm), 39% are thick bedded (60-120 cm) and the remaining 38.85% are very thick bedded (>120 cm).

A beach origin for conglomerate units in the Tantalus Formation is rejected, as they typically have sheet-like geometry, rather than developing as linear prisms. In addition none of the conglomerate units is linked to coarsening upwards successions involving shore-face sand or lower shore-face deposits with hummocky cross-stratification or polymodal cross-stratification patterns (*cf.*, Fraser *et al.*, 2005; Castelle *et al.*, 2007; Alegria-Arzaburu and Masselink, 2010). In addition there is no evidence for draped shore-face accretionary architecture (Engels and Roberts, 2005; Bennett *et al.*, 2009; Clemmensen and Nielsen, 2010; Garrison *et al.*, 2010), or berm, runnel, ridge and swale development. In addition there is no evidence of bimodal-opposed cross-stratification (characteristic of tidal influence), or onshore plus along shore, tri-modal paleocurrent patterns characteristic of beaches (Potter and Pettijohn, 1977), nor are there any recognizable washover-fan deposits.

Analysis of a 17 m wide, strike parallel, interval of conglomerate, located 8-10 m above the Whitehorse Coal pit at Mount Granger was undertaken to determine the geometry of the conglomeratic units (Fig. 29). The face, as exposed is oriented nearly normal to local river flow, and shows a cross section of part of a channel with a number of minor scours and reactivation surfaces indicative of repetitive deposition and erosion of in-channel compound bars in a shallow braided gravel-bed river system. The predominant orientation of foresets (0th order surfaces; Table 2) with set and coset boundaries (2nd order surfaces) suggest that most deposition took place by downstream accretion (*cf.*, Miall, 1996), typical of deposition on composite in-channel macroforms (bars). Truncation of first and second-order set boundaries at the base of surface "B" (a 3rd order surface)

Figure 28. Thickness distribution (by bed) of 2418 conglomeratic beds or composite bedsets in the Tantalus Formation, shown as numerical percentage in 10 cm intervals (in black) and 1 m intervals (in yellow).

probably indicates a secondary or tertiary channel thalweg with a minimum depth of 1.2 m (based on exposed thickness). The primary bankfull relief of the braid channel (between surfaces A and F) may have been 2.5 m or more, based on lateral continuity of the exposures on either side of the panel shown. The thinner sub-horizontal elements (1st order surfaces between surfaces C, D, E and F) that cap the channel may reflect products of reworking the tops of a composite bar by repeated flood action. Surface F may represent a 5th or 6th order surface, and may represent the basal contact of the overlying braid channel.

A second small-scale architectural analysis was attempted on steeply dipping strata south of Mount Granger (Fig. 30). This outcrop trends at a high-angle to regional strike, providing a different perspective of the local braided gravel-bed river systems (oriented at about 45° to channel axis).

Figure 29. A 17 m wide panel of conglomerate, exposed at Mount Granger, about 8-10 m above the Whitehorse Coal Pit (strike of exposure is 220-080°). Top panel shows a photo mosaic of the exposure. Middle panel shows exposure, with 3rd and 4th order set boundaries in red, and 1st and 2nd order set boundaries in yellow. Orientation of set boundaries (2nd and 3rd order surfaces) is shown by blue pins. Orientation of 0th order surfaces (foresets) is shown by red arrows. In this, and the next panel, all vector data have been adjusted so that slopes away from the observer point up, and slopes towards the observer point down. In the third panel vector data have been grouped and plotted as rose diagrams with 30° bins oriented in the same way as the vector data. Red roses represent groups of 0th order surfaces (adjusted as above). Light blue roses represent groups of 1st and 2nd order surfaces (set boundaries) and dark blue roses represent groups of 3rd and 4th order coset boundaries. Surface F may be a 5th or 6th order surface. Statistical information is shown next to each rose: Ø = vector mean, n = number of observations, L = vector strength (as percentage). The two roses at the base show the grouped data for the outcrop, plotted with north to the top (V=variance).

The exposure is dominated by medium pebble conglomerate, with minor small and large pebble conglomerate. There is no evidence of systemic fining upwards, or overbank deposits, consistent with deposition in a braided river system. Foreset directions (0th order surfaces), on average indicate that current flow direction moved obliquely up set boundaries (Figs. 30 and 31). This implies that deposition may in some cases have occurred on the upstream sides of compound barforms as upstream lateral accretion elements (ULA elements of Long, 2011). Upstream accretion on barheads (UA elements), and on the upstream end of lateral accretion surfaces (ULA elements) has been recorded in modern gravel-bed wandering (Wooldridge and Hickin, 2005; Burge, 2006) and braided (Miall, 1996; Lunt and Bridge, 2004; Li *et al.*, 2014) river systems, as well as in sandy braided rivers (Skelley *et al.*, 2003; Best *et al.*, 2003; Mumpy *et al.*, 2007; Sambrook Smith *et al.*, 2009). Upstream accretion reflects abandonment of transverse bedforms (dunes) that were migrating over the back and sides of compound bars during high discharge events during falling flow stage (Skelley *et al.*, 2003). ULA elements may consequently indicate accretion of gravel unit bars to the upstream ends of LA surfaces (bar-head lobes of Lunt and Bridge, 2004).

Figure 30. Architectural analysis of a small panel, south of Mount Granger. Top image shows outcrop, adjusted for structural dip: maximum and / median grain size shown in white (gvcS=granular very coarse sandstone on foreset laminae). In the lower image foreset dip directions (tilt corrected) are shown as red arrows, oriented so that flow away from the observer is up, and flow towards the observer is down (as in Fig. 29). Panel strikes 209-029°. Blue pins indicate dip of selected bedding surfaces (labelled in order of deposition). Lower insert shows grouped orientation data for the face, with rose diagrams (north to top) for all set boundaries (blue) and cross-beds (red).

Figure 31. Relative orientation of crossbeds (red) to set-boundaries in Figure 30. Ø=vector mean, n=number of observations, L=vector magnitude. B, C, D, E, F=set boundaries. UA=upstream accretionary element; ULA=upstream lateral accretion element. North is to the top.

Miall (1996) divides braided gravel-bed rivers into shallow (less than 3 m water at bankfull flow) and deep (>3 m). In the absence of preserved cut-banks, terrace features, and point bars (LA surfaces), it is difficult to estimate the absolute bankfull depth of the braided rivers that formed the bulk of the Tantalus Formation. Preserved conglomerate units range in thickness from a few centimetres to 22.5 m (Fig. 28): 8.6% of the units are greater than 3 m in thickness. If unit thickness is taken as an approximate measure of bankfull stream depth (*cf.*, Bridge and Tye, 2000), then the average depth would be ~79 cm (*i.e.*, shallow gravel-bed braided). Fielding and Crane (1987) have suggested that bankfull stream depth (d) can be estimated from storey thickness (t) by the formula d=0.55 t. If unit thickness is taken as a proxy for storey thickness, then the average stream depth, based on the average unit thickness of 79 cm, would be in the order of 43 cm, and only ~3.4% of the rivers would be more than 3 m deep at bankfull.

An alternative method to estimate bankfull stream depth is to use preserved cross-bed thickness (Fig. 32). Allen (1970) suggested that modern dune height (H) is related to flow depth (d) by the formula $H=0.086 d^{1.19}$. This would give an average stream depth for formation of planar cross-stratified gravel units of 5.7 m, and 6.8 m for formation of trough cross-stratified gravel units. This would imply that more than 75% of the rivers would fall into the category of deep gravel-bed

braided rivers. If, as suggested by Leclair and Bridge (2001) that average preserved dune height is ~2.9 x preserved cross-bed thickness, even more of the rivers would be classified as deep (>3 m). As both Allen's (1970) and Leclaire and Bridge's (2001) analysis were based on sand-bed dunes, direct application to preserved thickness of gravel bedforms may not be directly applicable. When thickness data for cross-stratified sandstone is used, the average depth calculated using Allen (1970), is 3.4 m (deep) for planar cross-stratified sandstone and 2.1 m (shallow) for trough cross-stratified sandstone (Fig. 32).

In gravel-bed braided river systems, planar cross-stratified units are typically interpreted as being deposited by avalanches of grains at the downstream end of longitudinal bars (Miall, 1996), hence the maximum preserved thickness records a minimum stream depth. Trough cross-stratified gravel beds may form at the downstream end of chutes, or on sinuous transverse in-channel bedforms.

Figure 32. Thickness distributions (number %) of measured cross-stratified gravel and sandstone units from the Tantalus Formation.

As ~4.4% of the observed trough cross-stratified conglomerate units are more than 3 m thick, this confirms that at least some, and perhaps many, of the gravel-bed rivers which were active during deposition of the Tantalus Formation can be considered as deep.

Meandering gravel-bed river deposits

Positive evidence for the presence of meandering gravel-bed river systems, similar to those described by Bluck (1971), Gustavson (1978), Blacknell (1982), Arche (1983), Carson (1986), Smith (1986, 1989, 1990), Alonso and Garzón (1994) Gomez *et al.* (2007), Kostic and Aigner (2007), and Wolf *et al.* (2013) was found in exposures at Claire Creek (section T-11; Figs. 33 and 34; Long and Lowey 2006). Despite the difficult access, it is possible to delimit a series of large-scale channel elements based on observed contacts. These are apparent due to local grain size differences of conglomeratic elements and the presence of isolated packages of ripple and cross-stratified sandstone on the lateral accretion (LA) surfaces (Figs. 33 and 35).

Figure 33. Exposure of steeply dipping conglomerate units in the Tantalus Formation at Claire Creek (Section T-11) showing stacking of meandering gravel-bed river deposits. See Figure 34 for detailed view of unit A.

Figure 34. Detail of LA (thin white) and CH (thick white) surfaces in 12.8 m thick channel fill unit A in Figure 33, rotated to sub-horizontal orientation. Most of the cliff face was too steep and unstable to allow access and detailed paleoslope orientations.

2nd and 3rd order surfaces defining lateral accretion (LA) elements in a largescale gravel-dominated point-bar in the Tantalus Formation at Claire Creek (from Long and Lowey, 2006). This is part of a 5.9 m thick channel unit, starting at the 9.5 m level of section T-11 (Appendix 1). Note limited preservation of possible overbank elements between the 4th and 5th/6th order surfaces, and preservation of an isolated lense of gravel, oriented at right angles to the slope of the lateral accretion

surface (upper right) that represents a possible chute deposit.

Figure 35. Close up

of top of composite gravel and gravelly

sandstone unit, with

In the 5.9 m thick channel shown in figure 7.8 (beginning at the 9.5 m level of section T-11), the orientation of small-scale planar cross-stratification is at 75° (*i.e.*, towards 047°) to the restored dip of the LA surfaces, which had local primary dips of up to 22° towards 122°. This indicates that this developed on the downstream end of the point bar. The small gravel filled channel developed on the upper part of one of the LA surfaces in this channel (Fig. 35) may represent a small chute channel, or an erosive scour formed during rising flow stage. The thin layer of granule conglomerate between the 4th and 5th/6th order surfaces may represent local preservation of overbank deposits (? splay deposits) beneath the overlying channel system. Based on the geometry of the LA surfaces, and the preserved thickness of the channel, it would have been at least 6.5 m deep (assuming 10% compaction: Ito *et al.*, 2006), and about 24 m wide (Leeder, 1973). Given an observed maximum grain size of 9.0 cm, this would indicate flow velocities of 1.08 m/s (method of O'Connor, 1993), 1.13 m/s (method of Koster, 1978) or 1.55 m/s (method of Costa, 1983). Using the continuity equation of Schumm (1968) the calculated maximum bankfull discharge is estimated at 108-155 m³/s.

In comparison the 12.8 m thick channel complex at the 177-189.9 m level of the section (A in Figs. 33 and 35) has LA surfaces with lower primary dips in the order of 11°. This suggests deposition in a channel at least 14.2 m deep (assuming 10% compaction – Ito *et al.*, 2006), with a width of about 99 m (Leeder, 1973), based on projected extent of the LA surface. Given an observed maximum grain size of 3.2 cm, this would indicate flow velocities of 58 cm/s (method of O'Connor, 1993), 76 cm/s (method of Koster, 1978) or 97 cm/s (method of Costa, 1983). Using the continuity equation of Schumm (1968) the calculated bankfull discharge is estimated at 544-909 m³/s, well below the estimated discharge recorded for meandering gravel-bed rivers in warm-dry climatic settings by Gustavson (1978), but within that estimated for the temperate-humid Waipaoa River in New Zealand by Gomez *et al.* (2007) and meandering gravel-bed systems in general by Xu (2004). Using the formula provided by Xu (2004, p. 647), the predicted discharge would be achieved by a meandering gravel-bed river with a width of 74-95 m, suggesting that the upper discharge and velocity estimates are most realistic.

Gilbert-type deltas

Large-scale gravel foresets in the Tantalus Formation were not all produced in fluvial settings as downsteam accretion (DA) or lateral accretion (LA) elements. Long and Lowey (2006) demonstrated that local clino-stratified inclined sets of gravelly and sandy strata, lying above laminated mudstone and siltstone in the vicinity of the Whitehorse Coal pit (Fig. 36) are best interpreted as a product of a classic steep-sloped Gilbert-type delta (Gilbert, 1885, 1890; Postma *et al.*, 1988; Sohn *et al.*, 1997), that was fed by a fluvial distributary system with closely spaced, highly mobile bed-load channels (Type B – deeper water Gilbert-type model of Postma, 1990). Further details and discussion of this outcrop are provided by Long and Lowey (2006).

The delta appears to have prograded directly into a lake that was at least 6 m deep. This may represent a large floodplain pond, or a temporary lake formed when local uplift or local fan progradation temporarily blocked river flow (*cf.*, Smith and Smith, 1980). Progradation of the delta-front appears to have taken place over a number of flood seasons, each of which produced down-lapping packages of foreset strata, and are capped by finer material near the delta toe. There is no evidence for flash-flood induced progradation, such as marked inverse grading of foresets (Postma *et al.*, 1988), hence distributary channels were probably dominated by individual flood events with moderate discharge (Postma, 2001).

Figure 36. Architectural reconstruction of the Whitehorse Coal Pit exposure, near Mount Granger. The dashed line, at the top, represents a 5th or 6th order surface. In the deltaic facies the red lines represent 1st order surfaces, which bound foreset elements. Green lines between these are 0th order surfaces. Yellow lines at base represent 1st and 2nd order surfaces within bottom set and lacustrine units. Arrows (yellow and green) reflect the orientation of 0th and 1st order foreset surfaces. These have been rotated so that arrows directed above the horizontal reflect slopes away from the observer, and arrows below the horizontal represent slopes towards the observer (after correction for tectonic dip). Blue pins represent dips of 1st and 2nd order set boundaries, reoriented as above.

Floodplain, levee, splay, lake, pond, marsh and swamp facies

Most of the recessive (covered) intervals associated with the Tantalus Formation may be developed over floodplain facies. Poorly defined thick laminated to thin bedded, dark grey to grey, massive mudstone, with abundant slickensides, and occasional preserved plant root casts, are here interpreted as floodplain soils. The lighter grey colours, and the slickensides indicate a seasonally variable groundwater table. This would allow the organic content of the soils to oxidize, and develop crumb textures (Donahue *et al.*, 1958; Fitzpatrick, 1980). Organic rich mudstone (<50% organics) represents marsh deposits, that are typically found beneath and between coal deposits. Coal deposits, represent riverine-swamps that developed in valley bottom settings where the groundwater table was near surface all year. A riverine influence is indicated by the high ash (mud) content (11-47% according to Cameron and Beaton, 2000), which indicates introduction of suspended mud into the swamps during flood events (Stach *et al.*, 1982; Morozova and Smith, 2003). Thin sandstone units with ripples and root casts associated with floodplain deposits are here interpreted as splay deposits (Fig. 15d,e,f,g).

Thin cosets (<1 m) of well defined, laminated mudstone are here interpreted as floodplain pond deposits. They are typically associated with overbank fines and minor sandstone, as at the 1179 m level of section T-9 at Vowel Mountain (Appendix 1), where 50 cm of thin to thick planar laminated mudstone is exposed.

Thicker (>1 m) successions of planar laminated mudstone may represent larger floodplain ponds or lakes. They are conspicuous only in the Whitehorse Coal pit (Fig. 36) and at the 64-73 m levels of section T-11 at Claire Creek (Appendix 1). At Claire Creek the lacustrine interval is dominated by black (organic rich) thin to thick laminated silty-mudstone in bed sets 10-20 cm thick, separated by 2-5 cm thick bed sets of flat laminated very fine grained sandstone, with local concentration of siderite as a cement in very fine grained sandstone near the top of the interval, indicating passage of oxygenated meteoric groundwater through the sand during early diagenesis (Baker *et al.*, 1995). The laminated sandstone beds may represent suspension deposits associated with major overbank flooding events. In the Whitehorse Coal pit 2-6 m of uniform, poorly exposed, dark grey, thin to thick laminated, silty mudstone (with no siderite) is preserved above floodplain muds, and below deltaic conglomerate (Fig. 36).

Sandy meandering and anastomosed stream deposits

Minor meandering and possible stable channel anastomosed river channels are preserved within the floodplain facies. In the Tantalus Butte coal mine highly deformed small sand-filled channels (width to depth ratio ~3:1) are preserved in the nose of drag folds (Fig. 18b) The abundance of overbank splay deposits adjacent to this channel, and in other parts of the pit (Fig. 15d,e,f,g) indicates that these may be stable channel (possibly anastomosed) systems in which bank stability was maintained by plant roots (*cf.*, Smith and Smith, 1980; Long and Graham, 1993; Miall, 1996; Long, 2000, 2005; Long and Lowey, 2006). Overbank splay deposits may contain casts of plant roots as well as reworked woody material. In the Whitehorse Coal pit, amalgamated sets of small channels with lateral accretions elements consisting of interbedded sandstone and mudstone (Fig. 36, lower right) may represent stacked deposits of small sandy-muddy meandering streams (Miall, 1996; Ghosh *et al.*, 2006). The low lateral extent of the channels, combined with the abundance of associated splay sand sheets, suggest these too had high bank stability.

Paleocurrents

Plots of dip-corrected (grouped) paleocurrent distributions of cross-stratified units within the Tantalus Formation show a general tendency of northeasterly to westerly (? basin transverse) flow in the Carmacks and Claire Creek areas, and predominantly southeasterly (? axial) with minor local deviations in areas to the south (Fig. 37). In all cases the data dispersion (measured as variance – V in Figure 37) is high, due to some extent to grouping of data through the whole formation. A similar trend is obtained (blue dashed arrows on Figure 37) when weighted vector strengths are determined (method of Miall, 1976). A general south to southeasterly transport path is also supported by an overall decrease in maximum grain size to the south, from 26 cm intermediate diameter at Claire Creek, to 2 cm at Carbon Hill (Fig. 8).

Provenance

Provenance information can be inferred from pebble and cobble clast counts of slabbed material, point counts of thin sections, and dating of zircon populations. Both the pebble counts and point counts indicate contributions from local (feldspar, lithic fragments) and more exotic sources (chert). Framework grains in all samples are predominantly chert; this means that most sandstone samples plot as litharenite, and conglomerate samples plot as lithrudite, on standard petrographic plots (Folk, 1974; Figs. 13 and 16). This is in marked contrast to the underlying strata of the Laberge Group that typically have less lithic fragments and more feldspar (Figs. 14 and 17). Where lithic fragments are common in Laberge strata, clasts are predominantly plutonic and volcanic, with lesser

metamorphic and sedimentary varieties (Dickie, 1989; Dickie and Hein, 1995; Johannson *et al.*, 1997). Chert rarely exceeds 2% of the lithic component, and is most abundant in the upper parts of the Laberge Group (Dickie, 1989; Clapham *et al.*, 2002). Minor regional differences occur in the petrography of the Tantalus Formation between the north and south of the Whitehorse trough (Fig. 38). In the north and northeast (Carmacks, Hootalinqua and Claire Creek) all data plot in the field of lithic arenite or rudite. To the south and southwest (Vowel Mountain and Whitehorse Coal area)

Figure 37. Dip corrected paleocurrent data for the Tantalus Formation (with section numbers). Data are presented as a paleocurrent rose (in red) with the vector mean (\emptyset) in black (and green), and weighted vector mean (\emptyset w) in blue. n=number of cross-beds; L=Vector strength; V=Circular Variance.

feldspar, and to a lesser extent quartz, appears to be more abundant, such that some sandstone and conglomerate plot in the field of feldspathic (arkosic) litharenite or lithrudite. This may indicate a greater contribution of local detritus to the Tantalus rivers from plutonic sources in this part of the basin, perhaps from exposed parts of Stikinia.

Quartz

Quartz pebbles form an average of 11.8% of pebbles in the 54 slabs of Tantalus Formation conglomerate examined during this study (Appendix 2, table 1). Most are well rounded, translucent to white (Fig. 11a,b), with some evidence of fracturing (which may have in part been developed post lithification). In thin section, quartz is seen to make up 13.4% of framework grains in the conglomerate, and 31.4% in the sandstone. This is significantly less than conglomerate and sandstone in the Tanglefoot formation that contain an average of 44.0% and 51.4% of quartz respectively (Appendix 2, tables 6 to 9). The quartz in the Tantalus Formation is dominated by strained varieties (Figs. 13 and 16), indicating that it was derived predominantly from highly deformed (metamorphic sources), possibly within the Yukon-Tanana terrane (*cf.*, Colpron *et al.*, 2006b, 2007b). As conglomerate and sandstone in the underlying Tanglefoot formation also contain a similar ratio of strained quartz (Figs. 14 and 17) they may both alternatively be derived in part from deformed Permian and older plutonic sources within Stikinia, and/or Quesnellia, and/or

Figure 38. Framework lithology of sandstone and conglomerate of the Tantalus Formation by region (data in Appendix 2).

Yukon-Tanana (see paleocurrents above), or may have been deformed in situ during later tectonic events. Monocrystalline quartz grains are typically considered to be derived from undeformed igneous sources (Folk, 1974). They form 13.3% and 17.8% of the guartz content of the Tantalus Formation conglomerate and sandstone, compared with 18.7% and 25.3% of conglomerate and sandstone in the underlying Laberge Group. In both cases the most obvious primary source of igneous quartz would be Upper Triassic and early Lower Jurassic intrusions in the roots of the Stikine arc, and adjacent parts of the Yukon-Tanana and Quesnellia terranes. In the case of the Tantalus Formation some of this monocrystalline guartz was probably reworked from underlying strata of the Laberge and Lewes River groups. The relative abundance of polycrystalline quartz is more than twice as abundant in the Tantalus Formation (12.7% in conglomerate, and 10.9% in sandstone) than in the Tanglefoot formation (4.7% in conglomerate and 4.5% in sandstone). This is typically ascribed to annealing of metamorphic quartz during retrograde metamorphism: this could indicate an increased contribution from the Yukon-Tanana terrane, or metasedimentary rocks in the core of Stikinia or Quesnellia. The overall abundance of guartz appears to be partly dependent on grain size (Fig. 39). Regression analysis of all 112 Tantalus samples (Appendix 2) shows a moderate positive relationship (% quartz = 29.4 + 4.7Ø), that is significant at the p < 0.05 level (*i.e.*, overall finer grained samples contain more quartz). Plots of quartz vs grain size do not appear to differ significantly between sub-areas within the Whitehorse trough (Fig. 39).

Figure 39. Regional plots of quartz abundance vs modal grain size (as Phi units). AVE=Average; n=number of point counts; R=Pearson's R statistic (data in Appendix 2). Regression analysis indicates that the calculated correlation is significant at the p <0.05 level in the Vowel Mountain, Braeburn-Kynocks area, but not at the other locations.

Plots of quartz types from four different sub-areas show minor differences (Fig. 40). Strained quartz is dominant in all areas, with slightly reduced abundance in the Vowel Mountain area, presumably reflecting input from weathering of local non-deformed igneous sources within Stikinia, or from reworking of underlying strata of the Laberge Group. The greater abundance of polycrystalline quartz in this area may indicate greater contributions from the Yukon-Tanana terrane.

Figure 40. Regional differences in quartz types (data in Appendix 2).

Feldspar

Petrographic analysis indicates that 2.4% of framework grains in conglomerate and 9.7% of grains in the sandstone from the Tantalus Formation are, or were, feldspar (Appendix 2, tables 6 and 7). This is significantly lower than in the Tanglefoot formation where they form 25% of framework grains in the conglomerate samples, and 33.4% of the framework grains in the sandstone samples (Figs. 13 and 16). Microcline is present in only minor quantities, representing 0.5% of the conglomerate samples and 0.2% of the feldspar in the sandstone samples. Plagioclase forms 2.2% of the feldspar in the conglomerate samples and 4.1% in the sandstone samples. Non-twinned potassium feldspar are the most abundant recognizable feldspar in the conglomerate (30.4%) and sandstone samples (38.7%). It is notable that only 14% of the Tantalus Formation conglomerate and 62% of the sandstone samples contained recognizable feldspar: this is increased to 48% and 84% when epimatrix (patches of clay replacing feldspar; Dickinson, 1970) is included. In contrast, conglomerate and sandstone samples in the Tanglefoot formation almost all contain some feldspar and/or epimatrix (Fig. 41; Appendix 2).

Figure 41. Relative abundance of recognizable feldspar grains (excludes epimatrix) in strata of the Tantalus (top) and Tanglefoot formations (data in Appendix 2). Note similarity in feldspar types in both formations.

The overall abundance of feldspar (including epimatrix) is weakly dependent on grain size. Regression analysis of all 112 Tantalus samples (Appendix 2) shows a weak positive relationship (% feldspar = 8.6 + 1.8 Ø), that appears to be significant at the p <0.05 level (*i.e.*, overall finer grained samples contain more feldspar). Regional plots show a strong positive correlation between feldspar abundance and grain size for samples from the Mount Granger, Whitehorse Coal area, along the south eastern part of the Whitehorse trough, but only moderate to very weak positive relations elsewhere (Fig. 42).

The similarity of feldspar types in the Tantalus and Tanglefoot formations indicates that they were derived from a similar source (Upper Triassic and early Lower Jurassic plutons within Stikinia, Quesnellia or Yukon-Tanana), or that the feldspar preserved in strata of the Tantalus Formation was produced largely by reworking of the Tanglefoot formation. As microcline tends to be more resistant to weathering than orthoclase and plagioclase (Folk, 1974), the general paucity of

Figure 42. Regional plots of feldspar abundance (including epimatrix) vs modal grain size (as Phi units). AVE=Average; n=number of point counts; R=Pearson's R statistic (data in Appendix 2). Regression analysis indicates that the calculated correlation are significant at the p < 0.05 level in all areas, except around Carmacks.

microcline suggests that pegmatite was not especially abundant in the source area, even though it is locally significant within the Aishihik batholith and younger plutons of the Long Lake plutonic suite, to the west of the Whitehorse trough (Johnston *et al.*, 1996). Although orthoclase is currently far more abundant than plagioclase, this may not represent the primary detrital composition. In the Tantalus Formation conglomerate, 67% of the feldspar has been converted to clay to form patches of epimatrix (57% in the sandstone). This is much higher than in the underlying Tanglefoot formation, where only 16% of the feldspar in the conglomerate is represented by epimatrix (20% in the sandstone) indicating more intense in situ weathering by groundwater following deposition and shallow burial. Feldspar probably converted to clay in a humid temperate setting (*cf.*, Bauluz *et al.*, 2014). Folk (1974) and Nesbitt *et al.* (1997) suggest that microcline and orthoclase are more resistant to both weathering and *in situ* diagenetic alteration than plagioclase, consequently the relative abundance of plagioclase plus epimatrix in the Tantalus Formation tends to support a dominantly volcanic source area (Stikinia or Quesnellia) with more aggressive diagenetic alteration of feldspar *in situ*, than in the Tanglefoot formation.

Lithic fragments (non-chert)

The range of non-chert lithic fragments in the sandstone and conglomerate includes sandstone, silicified mudstone, felsic igneous (plutonic plus minor volcanic), and metamorphic rock fragments. Volcanic rock fragments are comparatively rare in the Tantalus Formation, reflecting a greater tendency to break down during weathering and transport, prior to burial and possibly deeper erosion of older arc systems.

Analysis of conglomeratic slabs indicates that non-chert fragments typically form about 3% of the total clast population (max=23%; Appendix 2, table 1). Petrographic analysis of 79 samples indicates that they make up 7.3% of framework grains, while analysis of 26 samples of sandstone indicate that they make up 2.7% of sand-grade framework grains (Appendix 2, tables 6 and 7). Sedimentary rock fragments are slightly more abundant in the Tantalus Formation conglomerate than the sandstone (Fig. 43), indicating that many of these were labile, and hence decomposed during transport. In contrast, both conglomerate and sandstone samples in the Tanglefoot formation are dominated by igneous rock fragments, including many of volcanic origin. This, and the greater contribution of metamorphic rock fragments in the Tantalus samples, may indicate a greater contribution of material from Yukon-Tanana and other metamorphic sources, and deeper weathering of the Stikine arc. Minor regional differences include a greater abundance of sedimentary and metamorphic rock fragments in the Vowel Mountain – Braeburn-Kynocks area (Table 3) supporting an increased contribution of material from the Yukon-Tanana terrane.

Figure 43. Relative abundance of nonchert lithotypes in conglomerate and sandstone of the Tantalus (top) and Tanglefoot (bottom) formations (data in Appendix 2). 26% of the conglomerate in the Tantalus Formation and 8% of conglomerate in the Tanglefoot formation contained no non-chert rock fragments. Only 4% of the sandstone in the Tantalus Formation, and 5% of the Tanglefoot formation sandstone had no nonchert rock fragments.

Area/Grain type	Sedin	nentary	Metamo	orphic	Igneous				
Tantalus Fm	Sst	Cong	Sst Cong		Sst	Cong			
Mt Granger- Whitehorse Coal	6.7	21.4	7.9	18.1	85.4	60.5			
	(0-19.4)	(0-79.4)	(0-15.7)	(0-97.4)	(80.4-92.3)	(0-100)			
Braeburn-Kynocks Vowel	0.3	0.1	1.3	1.0	1.3	98.9			
Mountain	(0-0.9)	(0-2.0)	(0-3.8)	(0-10.9)	(0-3.8)	(88.2-100)			
Carmacks	0.3	0.9	2.6	0.1	97.0	99.0			
	(0-0.6)	(0-6.4)	(0-14.0)	(0-2.0)	(85.2-100)	(97.3-100)			
Hootalinqua Claire Creek	potalinqua Claire Creek 0.4 0.6 (0-1.0) (0-4.9)		0 (0-0)	0 (0-0)	99.6 (99.4-100)	99.4 (95.1-100)			
Tanglefoot fm									
Mt Granger	1.9	2.4	1.9	2.4	96.3	95.2			
	(0-11.8)	(0-7.4)	(0-9.1)	(0-7.4)	(86.3-100)	(85.2-100)			
Braeburn-Kynocks Vowel	0.5	0.4	21.8	20.3	77.7	79.3			
Mountain	(0-1.9)	(0-0.9)	(10.2-27.3)	(0-25.5)	(72.0-89.8)	(73.6-85.6)			
Carmacks	0	0.6	17.4	18.5	82.6	81.0			
	(0-0)	(0-3.3)	(9.1-24.4)	(0-35.5)	(75.6-90.9)	(64.5-96.7)			
Hootalinqua Claire Creek	0	-	10.2	-	89.8	-			

Table 3. Relative abundance of minor grain types. Igneous includes volcanic plus plutonic grains (range indicated in brackets). For data see Appendix 2.

Chert

Chert is by far the most abundant lithic fragment preserved in the Tantalus Formation, making up 77% of the framework grains in the conglomerate, and 56% in the sandstone. In contrast, in the Tanglefoot formation, only 16% of the framework grains in the conglomerate and 5.5% in the sandstone consist of chert. This means that most of the chert must be extra-basinal. Although 110 varieties of chert were observed during this study (Appendices 2 and 3), it is difficult to locate specific sources. When chert types are grouped based on colour (white, black and grey, and yellow), there is little difference between sub areas of the basin (Fig. 44), although yellow chert seems to be slightly less abundant in the vicinity of Mount Granger. When chert types are grouped by texture (massive, brecciated, sphere bearing), sandstone has similar distributions in all areas of the Whitehorse trough (Fig. 45). In the conglomerate, brecciated and sphere bearing chert types are slightly more abundant (Fig. 45). In northern areas massive varieties are dominant, less so in the vicinity of the Mount Granger - Whitehorse Coal area.

Wheeler (1961) suggested that the Cache Creek terrane may have been the main source of chert in the Tantalus Formation, as did Hart and Radloff (1990), who specifically indicated the Kedahda Formation as a probable source (Fig. 46). Cordey (1992) reported Permian radiolaria in a pebble from the Whitehorse Coal area, but found only Middle to Upper Triassic radiolaria in pebbles from the Carmacks area. He suggested that these were most likely derived from the northeastern belt of the Cache Creek terrane, where Triassic and Jurassic chert is present (Cordey *et al.*, 1991), but Pennsylvanian and Permian radiolarian chert are more abundant (Monger, 1975; Table 4). This suggested provenance presents major problems, as none of the pebbles examined by Cordey (1992) from Tantalus Butte contained any Paleozoic radiolaria. In addition, both paleocurrent trends (Fig. 37), and a southerly decrease in maximum grain size of clasts within the Tantalus Formation (Fig. 8) indicate that potential sources should be located to the north or northwest of

the Whitehorse trough. Remnants of the Slide Mountain terrane located west of the Yukon-Tanana terrane, about 100 km west of the north end of the Whitehorse trough (Israel *et al.*, 2014), do contain vari-coloured Triassic chert in the Wellesley Lake Formation (Murphy *et al.*, 2008) and might be a viable source of some of the sphere bearing (? Radiolarian) chert grains (Table 4).

Figure 46. Tectonic framework of the Whitehorse trough, based on Colpron et al. (2007b), adjusted for ~430 km of Eocene displacement along the Tintina fault (Gabrielse et al., 2006). Red areas within Stikina indicate location of exposures of the Tantalus Formation in the Whitehorse trough (WHT). Red areas in the Selwyn basin indicate isolated basins of Cretaceous clastic strata of the Big Timber Creek Formation (Gordey, 2013), and Sekwi coal area (Martel et al., 2011). Cross-hatch indicates areas with known Lower Cretaceous metamorphism: AMD=Australian Mountain domain (Staples et al., 2013, 2014).

The exact source of individual chert varieties is difficult to identify based on petrography, using either colour or texture. Most populations include clasts with casts of spherical microfossils, presumably representing recrystallized radiolaria. Chert is most abundant in platformal and proximal slope facies of cratonic North America, especially in slope facies of the Middle Ordovician to Silurian Road River Group (Gordey, 2013; Table 4). Radiolaria have been identified in the Permian Fantasque Formation, as well as the Devonian Canol Formation, and the Upper Ordovician to Silurian Mount Kindle Formation (Bamber and Waterhouse, 1971; Beauchamp and Baud, 2002; Martel *et al.*, 2011). These sources appear to have contributed to isolated bodies of chert pebble conglomerate in the Big Timber Creek Formation (Gordey, 2008, 2013). They may not have been available to the Tantalus rivers during the late Upper Jurassic and early Lower Cretaceous as they would have been on the far side of the mountain ranges generated by thrusting of the Slide Mountain and Yukon-Tanana terranes onto North America (Fig. 46).

Vari-coloured radiolarian chert is a conspicuous component of the Slide Mountain terrane in Devonian to Lower Permian units, including the Mount Aho, Rose Mountain, Fortin Creek and Campbell Range formations (Table 4; Plint and Gordon, 1997; Pigage, 2004; Colpron et al., 2006b; Murphy et al., 2006). This would have been to the north of the Whitehorse trough at the time of deposition of the Tantalus Formation (Fig. 46), but does not contain any known Triassic chert. The Yukon-Tanana terrane, which surrounds the northern Whitehorse trough contains minor varicoloured chert of Devonian to Triassic age (Table 4). Unfortunately none of these has been shown to contain radiolaria. The Stikine terrane, which underlies the Whitehorse trough contains minor chert bearing units in the Devonian-Permian Stikine Assemblage (including the Permian Ambition Formation in northern British Columbia: Gunning et al., 1994; Evenchick and Thorkelson, 2005), as do the Pennsylvanian Boswell and Semenof formations, east of the trough, and Middle Triassic intervals within the Joe Mountain Formation, within and west of the trough (Hart and Orchard, 1996; Simard and Devine, 2003). Within the Whitehorse trough, Triassic strata of the Hancock member of the Aksala formation contain minor grey and white chert, but in insufficient quantities to have been a major supplier to the Tantalus Formation. Red (or pink) chert is present in 8% of the samples from the Tantalus Formation, and makes up less than 1% of the total chert population (Appendix 2). Pink manganiferous chert is present locally in the Yukon-Tanana terrane to the east of the Whitehorse trough, in the Little Salmon area (Colpron and Reinecke, 2000; Colpron et al., 2006b), and southeast of the trough in northern British Columbia (Big Salmon complex; Mihalynuk and Peter, 2001).

The Cache Creek terrane, located south of the northern Whitehorse trough contains abundant varicoloured chert of Pennsylvanian to Jurassic age (Monger, 1975; Cordey *et al.*, 1991; Jackson, 1992; Bickerton *et al.*, 2013). It is considered to be the main supplier of chert to the Bowser basin, which overlaps and lies above Stikinia in northern British Columbia, and developed following obduction of the Cache Creek terrane onto Stikinia in the late Lower, to early Middle Jurassic (Evenchick and Thorkelson, 2005). For the currently exposed remnants of the Cache Creek terrane (south of the Whitehorse trough) to have provided significant quantities of chert to the northern Whitehorse trough, major north flowing rivers would have to have developed east of Stikinia, within major intermontane valleys to link with rivers at the north end of the trough. This is considered unlikely, although the modern Columbia River in southern British Columbia, which follows the southern Rocky Mountain trench northwards for 375 km from Columbia Lake, before diverting to the southwest towards Revelstoke, has a similar pattern.

The Wellesely Lake Formation, located in the Slide Mountain terrane, northwest of the Whitehorse trough (Fig. 46), contains some vari-coloured Triassic chert (Murphy *et al.*, 2008), although radiolaria

Table 4. I Olemuai Cheri Sources	Table 4.	Potential	chert sources.
----------------------------------	----------	-----------	----------------

Terrane/Age	Unit	Red	Green	Grey	Black	White/Clear	Yellow-Brn.	Clay/ Mica	Radiolaria	References
North American Platfo	orm (Mackenzie Moun	tains)								
Permian	Fantasque Fm			x	x		x		x	MacNaughton 2002; Martel
Permian	Jungle Creek Fm					Х				Bamber and Waterhouse 1971
Late Mississippian	Hart River Fm						x			Bamber and Waterhouse 1971; Dixon 1992
Early Mississippian	Ford Lake Fm			Х	Х					Richards et al. 1997
Early Mississippian	Tischu Gp					Х				Martel et al. 2011
Devonian	Imperial Fm			x	х	x	x	x		Norris 1968; Pyle and Jones 2009
Devonian	Canol Fm			x	х		x	x	х	Mackenzie 1974; Martel et al. 2011
Mid-Early Devonian	Sombre Fm				Х					Martel et al. 2011
Late Silurian - Early Devonian	Tsetso Fm (Delorme Gp)					x				Martel et al. 2011
Late Ordovician - Silurian	Mt Kindle Fm			x	x	x	x		x	Pyle and Jones 2009; Martel et al. 2011
Ordovician-Silurian	Bouvette Fm			Х	Х	X	X	Х		Morrow 1999
Late Cambrian - Early Ordovician	Franklin Mountain Fm			x		x	x			Pyle and Jones 2009; Martel et al. 2011
Cambrian	Slats Creek Fm					X				Morrow 1999
Cambrian	Illtyd Fm			x	x			x		Gordey and Makepeace 2001
Neoproterozoic	Coates Lake Gp		Х	Х	Х					Martel et al. 2011
Mesoproterozoic	Mackenzie Mts SGp			X	Х	x				Martel <i>et al</i> . 2011
Paleoproterozoic	Wernecke SGp		Х	X	Х					Delaney 1981
North American Slope	(Selwyn basin)	,		·		r				1
Early Permian	Mount Christie Fm	tr	х	х	х					Martel <i>et al.</i> 2011; Gordey 2013
Mississippian	Tay Fm				Х					Gordey 2013
L.ate Devonian - Early Mississippian	Prevost Fm			х	х					Martel et al. 2011
Devonian	Portrait Lake Fm			x		Tr				Martel <i>et al.</i> 2011; Gordey 2013
Late Silurian	Steel Fm (Road River Gp)		х	x	Tr	Tr				Gordey 2013
Middle Ordovician - Early Silurian	Duo Lake Fm (Road River Gp)			x	x					Martel <i>et al.</i> 2011; Gordey 2013
Late Cambrian - Early Devonian	Rabbitkettle Fm		x	x	x					Gordey 2013
Neoproterozoic	Yusezyu Fm				Tr					Gordey 2013
Slide Mountain terrane										
Mississippian - Early Permian	Campbell Range Fm	х	x						х	Plint and Gordon 1997; Pigage 2004; Murphy <i>et al.</i> 2006
Late Pennsylvanian - Early Permian	Fortin Creek Fm		Х	Х					Х	Murphy et al. 2006

Terrane/Age	Unit	Red	Green	Grey	Black	White/Clear	Yellow-Brn.	Clay/Mica	Radiolaria	References
Mississippian - Early Permian	Rose Mountain Fm	х	х	X	х	х	х		х	Pigage 2004
Devonian - Early Mississippian	Mount Aho Fm	х	x		x	x	x			Pigage 2004
Southwest Yukon and A	Alaska					r				1
Triassic	Wellesley Lake Fm	Х	X		X		X			Murphy et al. 2008
Yukon-Tanana terrane										
Late Triassic?	Faro Peak Fm			Х	X					Pigage 2004
Early Permian	Gatehouse Fm	X	X	X		X				Murphy et al. 2006
Early Permian	Money Creek Fm	X	X	X			X			Murphy et al. 2006
Carboniferous	White Lake/King Arctic fms	x	x			x	x			Murphy et al. 2006
Early Mississippian	Tuchitua River Fm									Murphy et al. 2006
Late Devonian	Waters Creek Fm									Murphy et al. 2006
Late Devonian - Early Mississippian	Cleaver Lake Fm									Murphy et al. 2006
Southern Yukon (inclue	ding Klinkit Assemblage	•)								
Triassic	Teh and Logjam Fms				X					Roots et al. 2006
Late Mississippian – Middle Permian	Little Salmon Fm	x	x	x						Colpron <i>et al.</i> 2006
Late Mississippian	Screw Creek Lst -Klinkit Gp	x	x							Roots et al. 2006
Devonian-Mississippian?	Swift River Group		X	Х	Х					Roots et al. 2006
Late Mississippian	Big Salmon Complex	X								Mihalynuk and Peter 2001
Early Mississippian	Ram Creek Complex		X	Х		Х				Roots et al. 2006
Mississippian	Little Kalzas Fm (S. Yukon)	х	x	x						Colpron et al. 2006
Stikine terrane										
Late Triassic	Hancock mbr, Aksala Fm			x		x				This study
Middle Triassic	Joe Mountain Fm									Hart and Orchard 1996
Early-Mid Pennsylvanian	Boswell and Semminof Fms		x		x	x				Simard and Devine 2003
Early Permian	Ambition Fm (Astika Gp)			x	x					Gunning et al.1994
Devonian-Permian	Stikine Assemblage									Evenchick and Thorkelson 2005
Cache Creek terrane										
Middle Triassic - Early Jurassic	Teenah Lake Assemblage		x	x	x	x			х	Jackson 1992
Jurassic	unnamed									Cordey 1991
Triassic	Kedahda Fm	x	x		x	х	x		х	Cordey 1991; Mihalynuk 1999
Permian	Teslin Fm				Х				Х	Monger 1975
Pennsylvanian-Permian	Horsefeed Fm			X	Х				Х	Monger 1975
Pennsylvanian-Permian	Kedahda Fm		x	x		x	x		x	Monger 1975; Bickerton et al. 2013

have yet to be documented. Given that lithic fragments recovered from the Claire Creek exposures of the Tantalus Formation contain pebbles and cobbles of schistose Yukon-Tanana material, it is possible that the Wellesley Lake Formation, could have been a source of at least some of the chert within the formation.

Given the observed southerly decrease in maximum grain size (Fig. 8) and the overall southerly paleocurrent trends (Fig. 37) it is considered unlikely that any of the known sources discussed above contributed more than minor amounts of chert to the Tantalus basins. The most viable alternative is that much of the chert was derived from a segment of the Cache Creek terrane that had been emplaced onto the Yukon-Tanana terrane north of the Whitehorse trough that was uplifted during accretion of Stikinia and Quesnellia with the North American craton, and has since been completely eroded. Possible evidence for crustal stacking in the area north of the trough comes from the presence of high-grade metamorphic rocks in Yukon-Tanana both to the north, in the Stewart River area (Berman et al., 2007), and to the north-northeast on the other side of the Tintina trench, in the Finlayson Lake area (Staples et al., 2013, 2014; Fig. 46). The Finlayson Lake area is currently located to the east of the Whitehorse trough, but was originally located to the north, prior to ~430 km of dextral strike slip movement along the Tintina fault in the Eocene (Gabrielse et al., 2006). Most of the Yukon-Tanana west of the Tintina fault was metamorphosed in the Longpingian (Upper Permian) and Lower to Middle Triassic (260-239 Ma: Berman et al., 2007), with a further phase of burial between 195 and 187 Ma. To the west of the trough Johnston et al. (1996) suggested rapid following emplacement of the Aishihik batholiths during the Pleinsbachian at ~186 Ma and intrusion of the Long Lake plutonic suite at ~187 Ma. They also suggested that cooling ages of 160 to 165 Ma might indicate a second burial event associated with obduction of part of the Cache Creek terrane in this area. Staples et al. (2013, 2014) identified a broad area of Middle Jurassic to early Lower Cretaceous (Berrisian; 169-142 Ma) prograde metamorphism in the Yukon-Tanana terrane in the Finlayson Lake area east of the Tintina fault that indicate burial to ~25 km. West of the Tintina trench, Staples et al. (2013, 2014) identified a possible core complex in the Australian Mountain domain where prograde metamorphism occurred at ~30 km depth during the Lower Cretaceous (Berrisian to Aptian; 146-118 Ma). The presence of these high-grade metamorphic rocks in the area north of the Whitehorse trough may indicate that the Yukon Tanana terrane in this area could have been overridden by a plate of Cache Creek terrane during closure of the Whitehorse trough, and hence this may be the most viable source for the abundant chert in the Tantalus Formation.

Zircons

Zircon populations within the Tantalus Formation (Fig. 47) appear to be largely derived from older strata within Stikinia and/or Quesnellia. The main peaks (between 200 and 170 Ma) are apparent in underlying strata of the Laberge Group (Colpron *et al.*, 2007c) and indicate a common (direct or indirect) source in the Lewes River - Stuhini arcs (Fig. 46). The minor peak around 250 Ma coincides with ages from the Klondike schist, which occurs as remnants in the Yukon-Tanana terrane north of the trough (Colpron *et al.*, 2006a,b), or may indicate a contribution from strata in the Cache Creek terrane analogous to the Kutcho assemblage in northern British Columbia, which has yielded ages of 242 to 246 Ma (Childe and Thompson, 1997; Childe *et al.*, 1998; Schiarizza, 2012). Peaks between 300 and 280 Ma are present in two of the three Tantalus samples, but are absent in the underlying Laberge Group. These Upper Pennsylvanian and Permian zircons are rare in Yukon terranes (Breitsprecher and Mortensen, 2004), but could come from part of the Klinkit assemblage in the Yukon-Tanana terrane (Colpron *et al.*, 2006a; Beranek and Mortensen, 2011), or some as yet undated source in the Slide Mountain terrane to the northwest (Murphy *et al.*, 2008). Zircons with dates between 350 and 310 Ma may have been recycled from strata of the Laberge Group

or from the Yukon-Tanana terrane (Colpron *et al.*, 2006a). The absence of abundant Archean zircons suggests that cratonic strata from North America did not contribute significantly to the Tantalus Formation. Six Paleoproterozoic zircons (2292-1925 Ma) were recorded from the Tantalus Formation (Appendix 4). These Rhyacian and Orosirian grains may have been from distal parts of the North American craton within the Yukon-Tanana terrane (Beranek and Mortensen, 2011), or may be inherited cores from Paleozoic intrusions in the Yukon-Tanana terrane, or Upper Triassic to

Lower Jurassic plutons that intrude Stikinia, Quesnellia and the Yukon Tanana terranes (Mortensen, 1990; Colpron *et al.*, 2006a,b).

The youngest three grains in the Tantalus samples overlap with the suspected time of deposition of the unit (Fig. 2). The YukonAge database (Breitsprecher and Mortensen, 2004), includes no record of igneous crystallization ages within the time span of 156 ± 6 to 141 ± 5 Ma within the Yukon, although as yet undated rocks of this age may be present west of the Denali fault. These younger grains must have been contributed as wind-born ash from more westerly or more southerly terranes within the Coast Ranges, or farther to the south, in central British Columbia. Strata within the Bowser Basin typically contain zircons that are the same age as the host strata: for example, strata in the upper part of the Todagin Formation contain an ash horizon dated at 158 ± 1 Ma, and strata of the Devils Claw Formation contain an ash horizon dated at 141 ± 1 Ma (McNicoll, pers. comm. 2007), hence a common (airborne) source, in the Skeena arch, south of the Bowser basin, is possible (McNicoll *et al.*, 2005; Evenchick *et al.*, 2007, 2010).

Climate

The climate history of the Cordillera is not well documented in the Upper Jurassic and Lower Cretaceous (Haggart et al., 2006). Sellwood and Price (1993) indicate that the CO₂ content of the atmosphere was about four times greater than the current levels, so global climate would have been more equitable than the present. Global climate modeling by Hallam (1993) suggests that the Whitehorse trough was in a zone characterized by warm-wet conditions in the Upper Jurassic (Kimmeridgian). This is supported by the presence of coal accumulations, which indicate that humid conditions prevailed on a year-round basis (Sellwood and Price, 1993), with annual precipitation between 3 and 5 mm per day (Price et al., 1995) and no dry periods. Mean average temperatures would be between 4 and 12°C (Sellwood and Price, 1993; Sellwood et al., 2000). Similar conditions would have prevailed up to the early Valanginian, when a brief period of cooling is indicated by a shift to more positive carbon isotope content in terrestrial plants (Gröcke et al., 2005). This trend towards cooler and wetter climates is also indicated towards the craton, in the Svedrup basin, by changes in plant communities (Galloway et al., 2013). The climate model suggested above is based on a Tithonian paleolatitude of the Whitehorse trough of ~55-65°N, and assumes that Stikinia was firmly anchored to the North American craton by 140 Ma (prior to ~430 km northward dextral displacement in the Eocene: Gabrielse et al., 2006). This is a situation supported by Haggart et al. (2006), who notes that during the Lower Cretaceous most of the terrestrial basins west of the Cordilleran foreland basin (including the Bowser basin) have a similar paleoflora, indicative of a humid temperate climate. If the Whitehorse trough was significantly farther south as is implied in the models of Johnston (2001, 2008), and Kent and Irving (2010), then warmer, semi-arid to arid conditions should have prevailed, and pedogenic calcretes should be present (Haywood et al., 2004). In this more arid model accumulation of coal deposits would be minimal.

The high resistate (quartz, chert) content of the Tantalus Formation indicates intense weathering in the provenance area. This is supported by the paucity of feldspar and abundant evidence of *in situ* alteration of feldspar to epimatrix during deposition (*cf.*, Haywood *et al.*, 2004). Feldspar probably converted to clay in a humid temperate setting (Bauluz *et al.*, 2014), possibly equivalent to a modern Cf_b Koppen Climate zone, which Peel *et al.* (2007) suggest records a temperate climate, without a dry season, and with warm summers (temperature range between 4 and 22°C).

Paleogeography/tectonics

The Tantalus basins are superimposed on earlier piggyback basins, developed during the final stages of counterclockwise rotation of Stikinia against North America (Gordey and Stevens, 1994b; White *et al.*, 2012; Bickerton *et al.*, 2013). The elongate pattern of the basins, along with

generally southerly paleocurrents and decrease in maximum grain size, suggests deposition in elongate intermontane, valley-confined basins, possibly coeval with orogen parallel thrusting of the Intermontane terranes onto the North American craton during early stages of development of the Cordilleran mountain belt. As such the Tantalus basins represent a second phase of piggyback basin development in the area, as this model has also been applied to the late stages of deposition of the Laberge Group (Mihalynuk et al., 1994, 2004; White et al., 2012). Local deviations in paleocurrents may reflect deposition in orogen transverse segments of the river systems, or may reflect local tectonic uplift deflecting river patterns. Considerable local subsidence, either by load induced subsidence or local tectonic mechanisms, is required to provide the accommodation space to allow preservation of thick sequences, such as those preserved at Vowel Mountain. Some of this subsidence could have been associated with trans-tension related to dextral strike-slip faulting during deposition as suggested earlier by Tempelman-Kluit (2009). If the Tantalus Formation had been deposited as a uniform wedge of strata away from a rising mountain front (*i.e.*, a foreland or hinterland basin fill) it would have more uniform orogen normal paleocurrents, and not the more irregular orogen parallel patterns seen in the Tantalus Formation, which mimic the pattern of modern intermontane river systems, like the Fraser River in British Columbia.

Local sources can be used to explain much of the feldspar and igneous (volcanic plus plutonic) components in the Tantalus Formation, and were probably provided by valley normal tributaries. The large volumes of chert in the formation cannot be explained by local sources, and appear to have been derived from an extension of the Cache Creek terrane that once occupied highlands to the north of the Whitehorse trough, in an area now characterized by highly metamorphosed strata of the Yukon-Tanana terrane (see above). North of this area Gordey (2013) has recorded the presence of up to 120 m of Lower Cretaceous chert pebble conglomerate, with clasts up to 20 cm in diameter, in the Tay River area (NTS 105J), east of the Tintina fault. These strata of the Big Timber Creek Formation would have been due north of the Whitehorse trough in the Tithonian to Valanginian (Fig. 46), and probably derived most of their chert fragments from the Selwyn basin. Isolated Barremian to early Cenomanian (mid-Lower Cretaceous to early Upper Cretaceous) coal bearing strata in the Sekwi area on the margins of the Selwyn basin (Fig. 46) contain only local siliciclastic clasts and chert derived from the Devonian Landry Formation and Permian Fantasque Formation (Martel et al., 2011). Likewise mid-Albian to Cenomanian strata adjacent to the Tintina fault are dominated by locally derived siliciclastic material, with only minor chert, and were derived from local strata within the Yukon-Tanana terrane (Long et al., 2001; Long and Lowey, 2011). All that these basins, and the isolated outcrops of Upper Jurassic strata and the Tantalus Formation have in common is that they appear to have been deposited in narrow valley-confined systems during intervals of (? oblique) regional convergence of Stikinia, Quesnellia, and the Yukon-Tanana terranes with the North American craton. Deformation of the pre-Tantalus strata in the Whitehorse trough began by the Bajocian and continued during deposition of the Tantalus Formation, continuing into the Paleogene (Ricketts et al., 1992; Murphy et al., 1995). The en échelon pattern of folds in the Yukon segment of the Whitehorse trough suggests that some dextral strike-slip movement may have occurred during Upper Jurassic to Lower Cretaceous folding (Colpron, 2011; White et al., 2012), and that this may have directly influenced the geometry of the Tantalus basins. Strike-slip movement on the Teslin fault (Fig. 46) was concentrated between 115 and 95 Ma (Gabrielse et al., 2006), hence additional folding and burial of the Tantalus Formation may have occurred at this time (White et al., 2012). Lowey (2008) and Lowey et al. (2009) used homogenization temperatures of petroleum fluid inclusions to estimate that strata of the Tantalus and Tanglefoot formations in the northern part of the Whitehorse trough must have been buried by a about 3-4 km of strata, prior to Aptian to Albian uplift, erosion and deposition of volcanic strata of the (Albian) Mount Nansen and overlying (Maastrichtian) Carmacks groups.

The Tantalus Formation appears to have been deposited in elongate, structurally controlled, intermontane valley fills. These narrow piggyback basins developed at the same time as strata in the Bowser Lake Group were being deposited to the south in a broad, more extensive, successor basin (Fig. 48). The Bowser basin is interpreted as a broken retroforeland basin (in the sense of Ingersol, 2012), created by subsidence associated with westward obduction of the Cache Creek terrane onto Stikinia (Evenchick and Thorkelson, 2005; Evenchick *et al.*, 2007, 2010; Gagnon *et al.*, 2009). The Cache Creek terrane, south of the Whitehorse trough, provided chert to the Upper Jurassic Bowser Lake Group, that was subsequently reworked to form conglomeratic deposits in the Devils Claw Formation and the Sustut Group in elongate intermontane piggyback basins in Aptian to Maastrichtian times (Fig. 48). Deposition of the Sustut Group appears to be coeval with tensional and/or transtensional events in the Whitehorse trough in Yukon, which is marked by emplacement of volcanic rocks of the Mount Nansen and Carmacks groups during this time.

Figure 48. Correlation of strata in the northern Whitehorse trough, with strata in northern British Columbia, based on this publication and data presented by Evenchick and Thorkelson (2005), Evenchick et al. (2007, 2010) and Gagnon et al. (2009). Stars indicate dated volcanic and plutonic suites.

CONCLUSIONS

The Tantalus Formation represents high-energy fluvial deposition in an intermontane valley fill setting that may represent a series of piggyback basins developed during compression of underlying strata within the Whitehorse trough. Conglomerate reflects deposition in shallow to deep braided river systems, with local development of meandering gravel-bed rivers. Correlation between sub-basins may be possible due to fluctuation in the maximum grain size in individual sub-basins, which may have been driven by tectonically driven episodes of uplift (*cf.*, Leeder, 1997; Frostick and Jones, 2002; Kumar *et al.*, 2007), or by climatically induced fluctuation in rainfall or maximum storm intensity. The latter is indicated in part by strong evidence for Milankovitch cyclicity (~100 ka) in the Lower Cretaceous (Dean and Arthur, 1999; Mutterlose and Ruffell, 1999; Kujau *et al.*, 2013; Wu *et al.*, 2013) and studies of sediment flux in older basins (Cecil, 1990).

Overbank, marsh, swamp and pond deposits in the Tantalus Formation are restricted to recessive intervals. Coal deposits developed locally on abandoned segments of floodplains within confined river valleys, and in places are associated with high constructive river deposits. This might have occurred in response to local capture of headwaters by other rivers, or local reduction in stream gradients by downstream progradation of valley-transverse fan systems, although this would be difficult to prove given the predominance of chert clasts in the sands and gravels.

Based on the observed paleocurrents, distribution of potential chert sources, and observed zircon assemblages, it is probable that strata of the Tantalus Formation were derived in part from weathering of uplifted blocks of older Triassic and Jurassic strata within the Whitehorse trough and the adjacent arc terrains (Stikinia, Quesnellia), with contributions from Yukon-Tanana to the north. As clasts within the Tantalus Formation are predominantly chert, silicified mudstone and quartz, with only minor labile lithic fragments it is clear that much of the lithic material was derived from a source other than the underlying arc-derived strata. The source of chert clasts is enigmatic: early interpretations suggested that they may have come from strata within the Cache Creek terrane. As preserved parts of this currently lies to the south of the Whitehorse trough this (southern) source is highly unlikely. A minor peak of zircon ages around 250 Ma in the Tantalus samples indicates that at least some of the drainage basin that fed the Tantalus rivers was located in the Yukon-Tanana terrane, or alternatively could be derived from strata equivalent to the Kutcho assemblage in the Cache Creek of northern British Columbia. Some of the chert could have been derived from now eroded strata preserved within the upper parts of the Yukon-Tanana (as seen in southern Yukon and British Columbia: Table 4). A problem with this interpretation is that none of the chert from Yukon-Tanana in southern Yukon or British Columbia is known to contain radiolarians (*i.e.*, sphere bearing chert). In contrast radiolarians are abundant in most of the chert from the Cache Creek terrane (Table 4).

It is here suggested that most of the chert in the Tantalus Formation was derived from supracrustal rocks of Cache Creek affinity that were emplaced at the north end of the Whitehorse trough during rotational closure (*cf.*, Mihalynuk *et al.*, 1994, 2004), and were subsequently eroded from the top of the Yukon-Tanana terrane. The chert from the Cache Creek terrane have a similar range of colours (Table 4) to those seen in the Tantalus Formation, indicating that the main source may have been a now eroded segment of the Cache Creek terrane, that was, centered over an area of intense Lower Cretaceous metamorphism in the Australian Mountain domain. Staples *et al.* (2013, 2014) suggest that this area has been exhumed about 30 km since peak metamorphism, while rocks to the north of the Tintina trench and to the west of the Whitehorse have been exhumed about 20 to 25 km (Johnston *et al.*, 1996; Staples *et al.*, 2014: Fig. 46). The dominance of stable rock fragments reflects

intense weathering in a warm humid climatic setting that would have removed much of the labile feldspars and high-temperature minerals derived from the local basement. Wet (humid) summer and winter conditions are also supported by the presence of coal deposits.

The hydrocarbon potential of the Tantalus Formation is considered to be limited to negligible given the predominance of conglomerates (all highly jointed) and lack of suitable cap rocks, although there may some, as yet undiscovered, coal resources, and a limited (unproven) potential for coalbed methane.

ACKNOWLEDGEMENTS

This project was initiated while I was in the Coal Geology section of the Geological Survey of Canada. Subsequent research was funded by NSERC Discovery grants, with additional direct funding and logistical support from the Yukon Geological Survey. I thank Dirk Tempelman-Kluit for introducing me to the area in 1978, and George Gehrels for dating zircons from the Tantalus Formation. I thank Maurice Colpron, Don Murphy, Lee Pigage, Charlie Roots, Steve Gordey, Grant Lowey, Phillipe Erdmer, Tiffani Fraser, Julie Hunt, Jim Monger, Steve Piercey, Pamela Read, Steve Johnston, and many others for stimulating discussions and sharing their insight into Yukon geology. I thank Tiffani Fraser, Matt Hutchison and Maurice Colpron for critically reviewing this paper and providing constructive criticism. Any remaining errors and misconceptions are my own.

REFERENCES

- Alegria-Arzaburu, A.R. de. and Masselink, G., 2010. Storm response and beach rotation on a gravel beach, Slapton Sands, UK. Marine Geology, vol. 278, p. 77-99.
- Allen, J.R.L., 1970. Physical Processes in Sedimentology. Allen and Unwin, London, 248 p.
- Allen, T.L., 2000. An evaluation of coal-bearing strata at Division Mountain (115H/8 east-half, 105E/5 west-half), southcentral Yukon. *In:* Yukon Exploration and Geology 1999, D.S. Emond and L.H. Weston (eds.), Exploration and Geological Services Division, Yukon, Indian and Northern Affairs Canada, p. 177-198.
- Alonso, A. and Garzón, G., 1994. Quaternary evolution of a meandering gravel bed river in central Spain. Terra Nova, vol. 6, p. 465-475.
- Appel, V.L., 1998. Geological, geochronological and Pb isotopic constraints on the age and origin of the Mount Nansen epithermal Au-Ag vein deposit, eastern Dawson Range, Yukon. Unpublished BSc thesis, University of British Columbia, Vancouver, BC.
- Arche A., 1983. Coarse-grained Meander Lobe Deposits in the Jarama River Madrid (Spain). *In:* Modern and ancient fluvial systems, J.D. Collinson and U. Lewin (eds.), International Association of Sedimentologists, Special Publication, no. 6, p. 313-321.
- Baker, J.C., Kassan, J. and Hamilton, P.J., 1995. Early diagenetic siderite as an indicator of depositional environment in the Triassic Rewan Group, southern Bowen Basin, eastern Australia. Sedimentology, vol. 43, p. 77-88.

- Bamber, E.W. and Waterhouse, J.B., 1971. Carboniferous and Permian Stratigraphy and Paleontology, Northern Yukon Territory, Canada. Bulletin of Canadian Petroleum Geology, vol. 19, p. 29-250.
- Bauluz, B., Yusye, A., Mayayo, M.J. and Canudo, J.I., 2014. Early kaolinization of detrital Weald facies in Galve sub-basin (Central Iberian Chain, northeast Spain) and its relationship to paleoclimate. Cretaceous Research, vol. 50, p. 214-227.
- Beaton, A.P., Cameron, A.R. and Goodarzi, F., 1992. Petrography, geochemistry and utilization potential of the Division Mountain coal occurrences, Yukon Territory. *In:* Current Research, Part E, Geological Survey of Canada, Paper 92-1E, p. 23–32.
- Beauchamp, B. and Baud, A., 2002. Growth and demise of Permian biogenic chert along northwest Pangea: evidence for end-Permian collapse of thermohaline circulation. Palaeogeography, Palaeoclimatology, Palaeoecology, vol. 184, p. 37–64.
- Bell, W.A., 1956. Lower Cretaceous floras of western Canada. Geological Survey of Canada, Memoir 285, 331 p.
- Bennett, M.R., Cassidy, N.J. and Pile, J., 2009. Internal structure of a barrier beach as revealed by ground penetrating radar (GPR): Chesil Beach, UK. Geomorphology, vol. 104, p. 218-229.
- Beranek, L.P. and Mortensen, J.K., 2011. The timing and provenance of the Late Permian Klondike orogeny in northwestern Canada and arc-continent collision along western North America. Tectonics, vol. 30, cit. no. TC5017, http://www.agu.org [accessed January 15, 2014]. doi:10.1029/2010TC002849.
- Berman, R.G., Ryan, J.J., Gordey, S.P. and Villeneuve, M., 2007. Permian to Cretaceous polymetamorphic evolution of the Stewart River region, Yukon-Tanana terrane, Yukon, Canada: P-T evolution linked with in situ SHRIMP monazite geochronology. Journal of Metamorphic Geology, vol. 25, p. 803–827.
- Best, J.L., Ashworth, P.J., Bristow, C.S. and Roden, J., 2003. Three-dimensional sedimentary architecture of a large, mid-channel sand braid bar, Jamuna River, Bangladesh. Journal of Sedimentary Research, vol. 73, p. 516-530.
- Bickerton, L., Colpron, M. and Gibson, D., 2013. Cache Creek terrane, Stikinia, and overlap assemblages of the eastern Whitehorse (NTS 105D) and western Teslin (NTS 105C) map areas. *In:* Yukon Exploration and Geology 2012, K.E. MacFarlane, M.G. Nordling and P.J. Sack (eds.). Yukon Geological Survey, p. 1-17.
- Blacknell, C., 1982. Morphology and surface sedimentary features of point bars in Welsh gravel-bed rivers. Geological Magazine, vol. 119, p. 181-192
- Bluck, B.J., 1971. Sedimentation in the meandering River Endrich. Scottish Journal of Geology, vol. 7, p. 93-138.

- Bond, D.P.G. and Chapman, R.J., 2006. Evaluation of the origins of gold hosted by the conglomerates of the Indian River formation, Yukon, using a combined sedimentological and mineralogical approach. *In:* Yukon Exploration and Geology 2006, D.S. Emond, L.L. Lewis and L.H. Weston (eds.). Yukon Geological Survey, p. 93-103.
- Bostock, H.S., 1936. Carmacks District, Yukon. Canada, Department of Mines, Geological Survey, Memoir 187, 67 p.
- Bostock, H.S. and Lees, E.J., 1938. Laberge map-area, Yukon. Canada Department of Mines and Resources, Geological Survey Memoir, 217, 32 p.
- Breitsprecher, K. and Mortensen, J.K. (compilers), 2004. YukonAge 2004: A database of isotopic age determinations for rock units from Yukon Territory. Yukon Geological Survey, CD-ROM.
- Bremner, T., 1988. Geology of the Whitehorse Coal Deposit. *In:* Yukon Geology Volume 2, J.G. Abbott (ed.). Exploration & Geological Services Division, Indian and Northern Affairs Canada, p. 1-7.
- Bridge, J.S. and Tye, R.S., 2000. Interpreting the dimensions of ancient fluvial channel bars, channels, and channel belts from wireline-logs and cores. American Association of Petroleum Geologists, Bulletin 84, p. 1205-1228.
- Bultman, T.R., 1979. Geology and tectonic history of the Whitehorse trough west of Atlin, British Columbia. PhD thesis, Yale University, New Haven, Connecticut, 296 p.
- Burge, L.M., 2006. Stability, morphology, and surface grain size patterns of channel bifurcation in gravel-cobble bedded anabranching rivers. Earth Surface Processes and Landforms, vol. 31, p. 1211-1226.
- Cairnes, D.D., 1910. Lewes and Nordenskiöld Rivers coal district. Canada Department of Mines, Geological Survey Branch, Memoir 5.
- Cairnes D.D., 1912. Wheaton District, Yukon Territory. Geological Survey of Canada, Memoir 31.
- Cairnes D.D., 1916. Wheaton District, southern Yukon; Supplement to Geological Survey of Canada Memoir 31. Geological Survey of Canada, Summary Report for 1915.
- Cameron, A. R. and Beaton, A. P., 2000. Coal resources of Northern Canada with emphasis on Whitehorse Trough, Bonnet Plume Basin and Brackett Basin. International Journal of Coal Geology, vol. 43, p. 187-210.
- Carne, R.C. and Gish, R.F., 1996. Geology of the Division Mountain coal deposit of Cash Resources Ltd. *In:* Yukon Exploration and Geology 1995. Exploration and Geological Services Division, Yukon, Indian and Northern Affairs Canada, p. 37-42.
- Carson, M.A., 1986. Characteristics of high-energy "meandering" rivers: the Canterbury Plains, New Zealand. Geological Society of America, Bulletin, vol. 97, p. 886–895.

- Castelle, B., Bonneton, P., Dupuis, H. and Sénéchal, N., 2007. Double bar beach dynamics on the high-energy meso-macrotidal French Aquitanian coast: a review. Marine Geology, vol. 245, p. 141-159.
- Cecil, C.B., 1990. Paleoclimate controls on stratigraphic repetition of chemical and siliciclastic rocks. Geology, vol. 18, p. 533-536.
- Childe, F.C. and Thompson, J.F.H., 1997. Geological setting, U-Pb geochronology, and radiogenic isotope characteristics of the Permo-Triassic Kutcho assemblage north-central British Columbia. Canadian Journal of Earth Sciences, vol. 34, p. 1310-1324.
- Childe, F.C., Thompson, J.F.H., Mortensen, J.K., Friedman, R.M., Schiarizza, P., Bellefontaine, K. and Marr, J.M., 1998. Primative Permo-Triassic volcanism in the Canadian Cordillera: tectonic and metallogenic implications. Economic Geology, vol. 93, p. 224-231.
- Clapham, M.E., Smith, P.L. and Tipper, H.W., 2002. Lower to Middle Jurassic stratigraphy, ammonoid fauna and sedimentary history of the Laberge Group in the Fish Lake syncline, northern Whitehorse trough, Yukon, Canada. *In:* Yukon Exploration and Geology 2001, D.S. Emond, L.H. Weston, and L.L. Lewis (eds.). Yukon Geological Survey, p. 73-85.
- Clemmensen, L.B. and Nielsen, L., 2010. Internal architecture of a raised beach ridge system (Anholt, Denmark) resolved by ground-penetrating radar investigations. Sedimentary Geology, vol. 223, p. 281-290.
- Cohen, K.M., Finney, S.C., Gibbard, P.L. and Fan, J.-X., 2013. The ICS International Chronostratigraphic Chart. Episodes, vol. 36, p. 199-204.
- Colpron, M. (compiler), 2011. Geological compilation of the Whitehorse Trough Whitehorse (105D), Lake Laberge (105E), and parts of Carmacks (115I) and Teslin (105C). Yukon Geological Survey, Geoscience Map 2011-1, 3 maps, legend and appendices.
- Colpron, M. and Friedman, R.M., 2008. U-Pb zircon ages for the Nordenskiöld formation (Laberge Group) and Cretaceous intrusive rocks, Whitehorse trough, Yukon. *In:* Yukon Exploration and Geology 2007, D.S. Emond, L.R. Blackburn, R.P. Hill and L.H. Weston (eds.). Yukon Geological Survey, p. 139-151.
- Colpron, M., Gordey, S.P., Lowey, G.W., White, D. and Piercey, S.J., 2007a. Geology of the northern Whitehorse trough, Yukon (NTS 105E/12, 13, and parts of 11 and 14; 105L/4 and parts of 3 and 5; parts of 115H/9 and 16; 115I/1 and part of 8) (1:150 000 scale). Yukon geological Survey, Open File 2007-6.
- Colpron, M., Mortensen, J.K., Gehrels, G.E. and Villeneuve, M., 2006b. Basement complex, Carboniferous magnetism and Paleozoic deformation in Yukon-Tanana terrane of central Yukon: field, geochemical and geochronological constraints from Glenyon map area. *In:* Paleozoic Evolution and Metallogeny of Pericratonic Terranes at the Ancient Pacific Margin of North America, Canadian and Alaskan Cordillera, M. Colpron and J.L. Nelson (eds.). Geological Association of Canada, Special Paper, no. 45, p. 131–151.

- Colpron, M., Murphy, D.C., Nelson, J.L., Roots, C.F., Gladwin, K., Gordey, S.P., Abbott, G. and Lipovsky, P.S., 2002. Preliminary geological map of Glenlyon (105L/1-7, 11-14) and northeast Carmacks (115I/9, 16) areas, Yukon Territory, scale 1:125000. Indian and Northern Affairs, Canada, Exploration and Geological Services Division, Yukon Region, Open File 2002-9/ Geological Survey of Canada, Open File 1457.
- Colpron, M. and Nelson, J.L., 2009. A Palaeozoic Northwest Passage: incursions of Caledonian, Baltican and Siberian terranes into eastern Panthalassa, and the early evolution of the North American Cordillera. *In:* Earth Accretionary Systems in time and Space, P.A. Cawood and A. Kröner (eds.). Geological Society (London), Special Publication 318, p. 273-307.
- Colpron, M., Nelson, J.L. and Israel, S., 2007c. A transect through accreted terranes of the northern Canadian Cordillera: from Cassiar, British Columbia to Kluane Lake, Yukon. Arizona Geological Society ores and orogenesis symposium field trip no. 15. Yukon Geological Survey, Open File 2007-3.
- Colpron, M., Nelson, J.L. and Murphy, D.C., 2006a. A tectonostratigraphic framework for the pericratonic terranes of the northern Cordillera. *In:* Paleozoic Evolution and Metallogeny of Pericratonic Terranes at the Ancient Pacific Margin of North America, Canadian and Alaskan Cordillera, M. Colpron and J.L. Nelson (eds.). Geological Association of Canada, Special Paper, no. 45, p. 1-23.
- Colpron, M., Nelson, J.L. and Murphy, D.C., 2007b. Northern Cordilleran terranes and their interactions through time. GSA Today, vol. 17, issue 4/5, p. 4-10.
- Colpron, M. and Reinecke, M., 2000. Glenlyon project: Coherent stratigraphic succession of Yukon-Tanana terrane in the Little Salmon Range, and its potential for volcanic-hosted massive sulphide deposits, central Yukon. *In:* Yukon Exploration and Geology 1999, D.S. Emond and L.H. Weston (eds.). Exploration and Geological Services Division, Yukon, Indian and Northern Affairs Canada, p. 87-100.
- Cordey, F., 1992. Radiolarian ages from chert pebbles of the Tantalus Formation, Carmacks area, Yukon Territory. Geological Survey of Canada, Paper 92-1E, p. 53-59.
- Cordey, F., Gordey, S.P. and Orchard, M.J., 1991. New biostratigraphic data for the northern Cache Creek terrane, Teslin map area, southern Yukon. *In:* Current Research, Part E. Geological Survey of Canada, Paper 91-1E, p. 67-76.
- Costa, J.E., 1983. Paleohydraulic reconstruction of flash-flood peaks from boulder deposits in the Colorado Front Range. Geological Society of America, Bulletin, vol. 94, p. 986-1004.
- Dean, W.E. and Arthur, M.A., 1999. Sensitivity of the North Atlantic basin to cyclic climatic forcing during the Early Cretaceous. Journal of Foraminiferal Research, vol. 29, p. 465-486.
- Delaney, G.D., 1981. The Mid-Proterozoic Wernecke Supergroup, Wernecke Mountains, Yukon Territory. Geological Survey of Canada, Paper 81-10, p. 1-23.
- Dickie, J.R., 1989. Sedimentary response to arc-continent transpressional tectonics: Laberge conglomerates (Jurassic), Whitehorse trough, Yukon Territory. MSc thesis, Dalhousie University, Halifax, NS, 361 p.

- Dickie, J.R. and Hein, F.J., 1995. Conglomerate fan deltas and submarine fans of the Jurassic Laberge Group, Whitehorse trough, Yukon Territory, Canada: fore-arc sedimentation and unroofing of a volcanic island arc complex. Sedimentary Geology, vol. 98, p. 263-292.
- Dickinson, W.R., 1970. Interpreting detrital modes of greywacke and arkose. Journal of Sedimentary Petrology, vol. 40, p. 695-707.
- Dixon, J., 1992. Stratigraphy of Mesozoic strata, Eagle Plain area, northern Yukon. Geological Survey of Canada, Bulletin, vol. 408, 58 p.
- Donahue, R.L., Miller, R.W. and Shikluna, J.C., 1958. Soils, an introduction to soils and plant growth. Prentice-Hall, Inc., New Jersey, USA.
- Engels, S. and Roberts, M.C., 2005. The architecture of prograding sandy-gravel beach ridges formed during the last Holocene highstand: southwestern British Columbia, Canada. Journal of Sedimentary Research, vol. 75, p. 1052-1064.
- English, J.M. and Johnston, S.T., 2005. Collisional orogenesis in the northern Canadian Cordillera: implications for Cordilleran crustal structure, ophiolite emplacement, continental growth, and the terrane hypothesis. Earth and Planetary Science Letters, vol. 232, p. 333-344.
- English, J.M., Johannson, G.G., Johnston, S.T., Mihalynuk, M.G., Fowler, M. and Wight, K.L., 2005. Structure, stratigraphy and petroleum resource potential of the central Whitehorse Trough, northern Canadian Cordillera. Bulletin of Canadian Petroleum Geology, vol. 53, issue 2, p. 130-153.
- Evenchick, C.A., McMechan, M.E., McNicoll, V.J. and Carr, S.D., 2007. A synthesis of the Jurassic-Cretaceous tectonic evolution of the central and southeastern Canadian Cordillera: exploring links across the orogeny. *In:* Whence the Mountains? Inquiries into the evolution of orogenic systems: a volume in honor of Raymond A Price, J.W. Sears, T.A. Harms, and C.A. Evenchick (eds.). Geological Society of America, Special Paper, no. 433, p. 117-145.
- Evenchick, C.A., Poulton, T.P. and McNicoll, V.J., 2010. Nature and significance of the diachronous contact between the Hazelton and Bowser Lake Groups (Jurassic), north-central British Columbia. Bulletin of Canadian Petroleum Geology, vol. 58, p. 235-267.
- Evenchick, C.A. and Thorkelson, D.J., 2005. Geology of the Spatsizi River map area, north-central British Columbia. Geological Survey of Canada, Bulletin, vol. 577, 276 p.
- Fielding, C.R. and Crane, R.C., 1987. An application of statistical modeling to the prediction of hydrocarbon recovery factors in fluvial reservoir sequences. *In:* Recent Developments in Fluvial Sedimentology, F.G. Ethridge, R.M. Flores, and M.D. Harvey, M.D., (eds.). SEPM, Special Publication, no. 39, p. 321–327.
- Fillmore, J.A., 2006. Character and origin of the Lower Jurassic (Pliensbachian) Nordenskiöld dacite, Whitehorse trough, Yukon Territory, Canada. Unpublished Honours BSc thesis, Laurentian University, Sudbury, Ontario, 28 p.
- Folk, R.L., 1974. Petrology of sedimentary rocks. Hemphill Publishing Co., Austin, Texas, USA.
- Fitzpatrick, E.A., 1980. Soils, their formation, classification and distribution. Longman Inc., New York, USA. 353 p.
- Fraser, C., Hill, P.R. and Allard, M., 2005. Morphology and facies architecture of a falling sea level strandplain, Umiujaq, Hudson Bay, Canada. Sedimentology, vol. 52, p. 141-160.
- Frostick, L.E. and Jones, S.J., 2002. Impact of periodicy on sediment flux in alluvial systems: grain to basin scale. *In:* Sedimentary flux to basins: causes, controls and consequences, S.J. Jones and L.E. Frostick (eds.). Geological Society, London, Special Publication no. 191, p. 81-95.
- Fyles, J.G., 1950. Geology of the northwest quarter of Whitehorse Map-Area, Yukon and studies of weathered granitic rocks near Whitehorse. MSc thesis, University of British Columbia, Vancouver, B.C.
- Gabrielse, H., Murphy, D.C. and Mortensen, J.K., 2006. Cretaceous and Cenozoic dextral orogenparallel displacements, magmatism and paleogeography, north-central Canadian Cordillera. *In:* Paleogeography of the North American Cordillera: Evidence For and Against Large-Scale Displacements, J.W. Haggart, J.W.H. Monger and R.J. Enkin (eds.). Geological Association of Canada, Special Paper, no. 46, p. 255–276.
- Gagnon, J.-F., Evenchick, C.A., Waldron, J.F.W., Cordey, F. and Poulton, T.P., 2009. Jurassic subsidence history of the Hazelton trough Bowser Basin in the area of Todagin Mountain, north-central British Columbia, Canada. Bulletin of Canadian Petroleum Geology, vol. 57, p. 430-448.
- Galloway, J.M., Sweet, A.R., Swindles, G.T., Dewing, K., Hadlari, T., Embry, A.F. and Sanei, H., 2013. Middle Jurassic to Lower Cretaceous paleoclimate of Sverdrup Basin, Canadian Arctic Archipelago inferred from the palynostratigraphy. Marine and Petroleum Geology, vol. 44, p. 240-255.
- Garrison, J.R., Jr., Williams, J., Miller, S.P., Weber, E.T., McMechan, G. and Zeng, X., 2010. Groundpenetrating radar study of North Padre Island: implications for barrier island internal architecture, model for growth of progradational microtidal barrier islands, and Gulf of Mexico sea-level cyclicity. Journal of Sedimentary Research, vol. 80, p. 303-319.
- Gehrels, G.E. and Kapp, P.A., 1997. Detrital zircon geochronology and regional correlation of metasedimentary rocks in the Coast Mountains, southeastern Alaska. Canadian Journal of Earth Sciences, vol. 35, p. 269-279.
- Ghosh, P., Sarkar, S. and Maulik, P., 2006. Sedimentology of a muddy alluvial deposit: Triassic Denwa Formation, India. Sedimentary Geology, vol. 191, p. 3-36.
- Gilbert, G.K., 1885. The topographic features of lake shores. United States Geological Survey, Annual Report, vol. 5, p. 69-123.
- Gilbert, G.K., 1890. Lake Bonneville. United States Geological Survey, Monograph, vol. 1, 438 p.
- Gomez, B., Coleman, S.E., Sy, W.V.K., Peacock, D.H. and Kent, M., 2007. Channel change, bankfull and effective discharges on a vertically accreting, meandering, gravel-bed river. Earth Surface Processes and Landforms, vol. 32, p. 770-785.

- Goodarzi, F. and Jerzykiewicz, T., 1989. The nature of thermally altered coal from Mount Granger, Whitehorse area, Yukon Territory. *In:* Contributions to Canadian Coal Geoscience, Geological Survey of Canada, Paper 89-8, p. 104-107.
- Gordey, S.P., 2008. Bedrock geology, Whitehorse (105D). Yukon. Geological Survey of Canada, Open File 5640, scale 1: 250 000.
- Gordey, S.P., 2013. Evolution of the Selwyn Basin region, Sheldon Lake and Tay River map areas, central Yukon. Geological Survey of Canada, Bulletin, vol. 599, 176 p.
- Gordey, S.P. and Irwin, S.E.B., 1987. Geology, Sheldon Lake and Tay River map areas, Yukon Territory. Geological Survey of Canada, Map 19-1987 (3 sheets), scale 1: 250 000.
- Gordey, S.P. and Makepeace, A.J., 2001. Bedrock Geology, Yukon Territory. Geological Survey of Canada, Open File 3754.
- Gordey, S.P. and Stevens, R.A., 1994a. Preliminary interpretation of the bedrock geology of the Teslin area (105 C), southern Yukon. Geological Survey of Canada, Open File 2886, scale 1: 250 000.
- Gordey, S.P. and Stevens, R.A., 1994b. Tectonic framework of the Teslin region, southern Yukon Territory. Geological Survey of Canada, Current Research 1994-A, 11-18.
- Gröcke, D.R., Price, G.D., Robinson, S.A., Baraboshkin, E.Y., Mutterlose, J. and Ruffell, A.H., 2005. The Upper Valanginian (Early Cretaceous) positive carbon-isotope event recorded in terrestrial plants. Earth and Planetary Science Letters, vol. 240, p. 495-509.
- Gunning, M.H., Bamber, E.W., Brown, D.A., Rui, L., Mamet, B.L. and Orchard, M.J., 1994. The Permian Ambition Formation of northwestern Stikinia, British Columbia. *In:* Pangea: global environments and resources, A.F. Embry, B. Beauchamp and D.J. Glass (eds.). Canadian Society of Petroleum Resources, Memoir 17, p. 589-619.
- Gustavson, T.C., 1978. Bed forms and stratification types of modern gravel meander lobes, Nueces River, Texas. Sedimentology, vol. 25, p. 401-426.
- Haggart, J.W., Matsukawa, M. and Ito, M., 2006. Paleogeographic and paleoclimatic setting of Lower Cretaceous basins of East Asia and Western North America, with reference to the nonmarine strata. Cretaceous Research, vol. 27, p. 149-167.
- Hallam, A., 1993. Palaeoclimates and their modelling with special reference to the Mesozoic Era. Philosophical Transactions, Royal Society of London, Biological Sciences, vol. 341, no. 1297, p. 287-296.
- Hannigan, P., Lee, P.J. and Osadetz, K.G., 1995. Oil and gas resource potential of the Bowser Whitehorse area of British Columbia. British Columbia, Ministry of Energy and Mines, GeoFile 2001-5, 190 p. http://www.empr.gov.bc.ca/Mining/Geoscience/PublicationsCatalogue/GeoFiles/Pages/2001-5.aspx> [accessed on 26th March 2014].

- Hart, C.J.R., 1997. A transect across northern Stikinia: geology of the northern Whitehorse map area, southern Yukon Territory (105D/13-16). Exploration and Geological Services Division, Yukon Region, Indian and Northern Affairs Canada, Bulletin 8, 112 p.
- Hart, C.J.R. and Orchard, M.J., 1996. Middle Triassic (Ladinian) volcanic strata in southern Yukon Territory, and their Cordilleran correlatives. Geological Survey of Canada, Current Research 1996-A, p. 11-18.
- Hart, C.J.R. and Pelletier, K.S., 1989. Geology of the Whitehorse (105D/11) map area. Indian and Northern Affairs Canada, Yukon Region, Open File 1989-2.
- Hart, C.J.R. and Radloff, J.K., 1990. Geology of Whitehorse, Alligator Lake, Fenwick Creek, Carcross and part of Robinson map areas (105D/11, 6, 3, 2, and 7). Indian and Northern Affairs Canada, Yukon Region, Open File 1990-4, 113 p.
- Hayes, B.J.R., 2012. Petroleum resource assessment of Whitehorse Trough, Yukon, Canada. Yukon Geological Survey, Miscellaneous Report 6, 52 p.
- Hayes, B.J.R. and Archibald, H.B., 2012. Scoping study of unconventional oil and gas potential, Yukon. Yukon Geological Survey, Miscellaneous Report 7, 100 p.
- Haywood, A.M., Valdes, P.J. and Marwick, P.J., 2004. Cretaceous (Wealden) climates: a modelling perspective. Cretaceous Research, vol. 25, p. 303-311.
- Hinderer, M., 2012. From gullies to mountain belts: a review of sediment budgets at various scales. Sedimentary Geology, vol. 280, p. 21-59.
- Hunt, J.A. and Hart, C.J.R., 1994. Thermal maturation and hydrocarbon source rock potential of Tantalus Formation coals in the Whitehorse area, Yukon Territory. *In:* Yukon Exploration and Geology, 1993. Exploration and Geological Services Division, Yukon, Indian and Northern Affairs, Canada, p. 67-77.
- Ingersol, R.V., 2012. Tectonics of sedimentary basins, with revised nomenclature. *In:* Tectonics of sedimentary basins: recent advances, C. Busby and A. Azor (eds.). Wiley-Blackwell Publishing Ltd, Chichester, U.K., p. 3-43.
- Israel, S., 2004. Geology of Southwestern Yukon (1:250 000 scale). Yukon Geological Survey, Open File 2004-16.
- Israel, S., Beranek, L., Friedman, R.M. and Crowley, J.L., 2014. New ties between the Alexander terrane and Wrangellia and implications for North American Cordilleran evolution. Lithosphere, vol. 6, p. 270-276
- Ito, M., Matsukawa, M, Takahiro Saito, T. and Nichols, D.J., 2006. Facies architecture and paleohydrology of a synrift succession in the Early Cretaceous Choyr Basin, southeastern Mongolia. Cretaceous Research, vol. 27, p. 226-240.
- Jackson, J.L., 1992. Tectonic analysis of the Nisling, northern Stikine and northern Cache Creek terranes, Yukon and British Columbia. PhD thesis, University of Arizona, 200 p.

- Johannson, G.G., Smith, P.L. and Gordey, S.P., 1997. Early Jurassic evolution of the northern Stikinian arc: Evidence from the Laberge Group, northwestern British Columbia. Canadian Journal of Earth Sciences, vol. 34, p. 1030-1057.
- Johnston, S.T., 2001. The great Alaskan terrane wreck: reconciliation of paleomagnetic and geological data in the northern Cordillera. Earth and Planetary Science Letters, vol. 193, p. 259–72.
- Johnston, S.T., 2008. The Cordilleran ribbon continent of North America. Annual Review of Earth and Planetary Sciences, vol. 36, p. 495–530.
- Johnston, S.T., Mortensen, J.K. and Erdmer, P., 1996. Igneous and metaigneous age constraints for the Aishihik metamorphic suite, southwest Yukon. Canadian Journal of Earth Sciences, vol. 33, p. 1543-1555.
- Johnston, S.T. and Timmerman, J., 1994. Geological map of the Hopkins Lake map area, southwest Yukon (115 H/7). Exploration and Geological Services Division, Yukon. Indian and Northern Affairs Canada, Open File 1994-2(g).
- Kent D.V. and Irving, E., 2010. Influence of inclination error is sedimentary rocks on the Triassic and Jurassic apparent polar wander paths for North America and implications for Cordilleran tectonics. Journal of Geophysical Research, vol. 115, B10103, doi:10.1029/2009JB007205,
- Koster, E.H., 1978. Transverse ribs: their characteristics, origin, and paleohydraulic significance. *In:* Fluvial Sedimentology, A.D. Miall (ed.). Canadian Association of Petroleum Geologists, Memoir 5, p. 161-186.
- Kostic, B. and Aigner, T., 2007. Sedimentary architecture and 3D ground-penetrating radar analysis of gravely meandering river deposits (Neckar Valley, S.W. Germany). Sedimentology, vol. 54, p. 789-808.
- Kujau, A., Heimhofer, U., Hochuli, P.A., Pauly, S., Morales, C., Adatte, T., Föllmi, K., Ploch, I. and Mutterlose, J., 2013. Reconstructing Valanginian (Early Cretaceous) mid-latitude vegetation and climate dynamics based on spore-pollen assemblages. Review of Paleobotany and Palynology, vol. 197, p. 50-69.
- Kumar, R., Suresh, N., Sangode, S.J. and Kumaravel, V., 2007. Evolution of the Quaternary alluvial fan system in the Himalayan foreland basin: implications for climatic and tectonic decoupling. Quaternary International, vol. 159, p. 6-20.
- Lapasha, C.A. and Miller, C.N., Jr., 1985. Flora of the Early Cretaceous Kootenai Formation in Montana, bryophytes and tracheophytes excluding conifers. Palaeontographica. Abteilung B: Palaeophytologie, vol. 196, p. 111-145, plus 15 plates.
- Latour, B.A., 1968. Coalfields and potential coal areas of Yukon Territory. Yukon Mining Assessment Report 019838, http://yma.gov.yk.ca/019838.pdf> [accessed on 25th March 2014].
- Leclair, S.F. and Bridge, J.S., 2001. Quantitative interpretation of sedimentary structures formed by river dunes. Journal of Sedimentary Research, vol. 71, p. 713-716.

- Leeder, M.R., 1973. Fluviatile fining-upward cycles and the magnitude of paleochannels. Geological Magazine, vol. 3, p. 265–276.
- Leeder, M.R., 1997, Sedimentary basins: tectonic recorders of sediment discharge from drainage catchments. Earth Surface Processes and Landforms, vol. 22, p. 229-237.
- Lees, E.J., 1934. Geology of the Laberge area, Yukon. Transactions of the Royal Canadian Institute, vol. 20, issue 1, p. 1-48, 6 plates.
- Li, Z., Wang, Z., Pan, H. and Li, W., 2014. The development mechanism of gravel bars in rivers. Quaternary International, vol. 336, p. 73-79.
- Long, D.G.F., 1980. Coals of the Yukon, their depositional environment, tectonic setting and resource potential. Seventh Geoscience Forum, Whitehorse, Yukon, December 2-4, 1979, p.16.
- Long, D.G.F., 1982a. Depositional framework of coal deposits in forearc basin and molasse sequences of the Whitehorse Trough, Yukon Territory, Canada. *In:* 11th International Congress on Sedimentology: Abstracts of Papers, J.O. Nriagu and R. Troost (eds.). International Congress on Sedimentology, Hamilton, Ontario, Canada, August 22-27, 1982, p. 55.
- Long, D.G.F., 1982b. Depositional style in a Late Jurassic-Early Cretaceous molasse sequence; the Tantalus Formation, Yukon Territory, Canada. Geological Society of America, Abstracts with Programs, vol. 14, issue 4, p. 181.
- Long, D.G.F., 1983a. Depositional setting of coal deposits in the Whitehorse Trough, Yukon Territory, Canada. *In:* The Mesozoic of Middle North America, Canadian Society of Petroleum Geologists, Program and Abstracts, p. 57.
- Long, D.G.F., 1983b. Coal in the Yukon. *In:* Mineral Deposits of northern Cordillera, abstracts. Canadian Institute of Mining and Metallurgy, December 5-7, Whitehorse, Yukon, p. 22-23.
- Long, D.G.F., 1984. Depositional setting of coal deposits in the Whitehorse Trough, Yukon Territory, Canada (abstract). *In:* The Mesozoic of middle North America, D.F. Stott, and D.J. Glass (eds.). Canadian Society of Petroleum Geologists, Memoir, vol. 9, p. 558.
- Long, D.G.F., 1986. Coal in Yukon. *In:* Mineral deposits of the northern Cordillera, J.D. Morin (ed.). Canadian Institute of Mining and Metallurgy, Special Paper, no. 37, p. 311-318.
- Long, D.G.F., 2000. Cretaceous fluvial strata in the Moose River basin of Ontario, Canada, as a source of kaolin for paper and ceramic industries. Applied Clay Science, vol. 16, p. 97-115.
- Long, D.G.F., 2005. Sedimentology and hydrocarbon potential of fluvial strata in the Tantalus and Aksala formations, northern Whitehorse Trough, Yukon. *In:* Yukon Exploration and Geology 2004, D.S. Emond, L.L. Lewis and G.D. Bradshaw (eds.). Yukon Geological Survey, p. 165-174.
- Long, D.G.F., 2006. Architecture of pre-vegetation sandy-braided perennial and ephemeral river deposits in the Paleoproterozoic Athabasca Group, northern Saskatchewan, Canada as indicators of Precambrian fluvial style. Sedimentary Geology, vol. 190, p. 71-95.

- Long, D.G.F., 2011. Architecture and depositional style of fluvial systems before land plants: a comparison of Precambrian, Early Paleozoic, and Modern river systems. *In:* From river to rock record: the preservation of fluvial sediments and their subsequent interpretation, S.K. Davidson, S. Leleu and C.P. North (eds.). SEPM Special Publication, no. 97, p. 37-61 plus appendix.
- Long, D.G.F. and Graham, P.S.W., 1993. Sedimentology and coal resources of the Early Oligocene Australian Creek Formation, near Quesnel, British Columbia. Geological Survey of Canada, Paper 93-11, 73 p.
- Long, D.G.F. and Lowey, G.M., 2006. Anatomy of a Late Jurassic Gilbert-type delta in basal strata of the Tantalus Formation, Whitehorse Trough, Yukon, Canada. *In*: Yukon Exploration and Geology 2005, D.S. Emond, G.D. Bradshaw, L.L. Lewis and L.H. Weston (eds.). Yukon Geological Survey, p. 195-205.
- Long, D.G.F. and Lowey, G.M., 2011. Wandering gravel-bed rivers and high-constructive stable channel fluvial systems in the Ross River area, Yukon Territory, Canada. Geoscience Frontiers, vol. 2, issue 3, p. 277-288.
- Long, D.G.F., Lowey, G.M. and Sweet, A.R., 2001. Age and setting of dinosaur trackways, Ross River area, Yukon Territory (105F/15). *In:* Yukon Exploration and Geology 2000, D.S. Emond and L.H. Weston (eds.). Exploration and Geological Services Division, Yukon, Indian and Northern Affairs Canada, p. 181-198.
- Lowey, G.W., 1984. The stratigraphy and sedimentology of siliciclastic rocks, west central Yukon, and their tectonic implications. PhD thesis, Department of Geology and Geophysics, University of Calgary, AB, 329 p.
- Lowey, G.W., 2004a. Exploration of the Whitehorse Trough (Yukon, Canada); petroleum potential of a frontier basin. American Association of Petroleum Geologists, Annual Meeting Expanded Abstracts, vol. 13, p. 87.
- Lowey, G.W., 2004b. Mopping up the stratigraphic mess; reinvestigation of the stratigraphy of the Laberge Group (Jurassic), south-central Yukon, provides new insights in the exploration for gas and oil in the Whitehorse Trough. CSPG Annual Convention 2004. I.C.E. 2004 CSPG/CHOA/ CWLS joint conference; abstract archive, http://www.cspg.org/conventions/abstracts/2004abstracts/2004abstracts/2004abstracts/019S0123.pdf> [accessed September 6, 2005].
- Lowey, G.W., 2005. Sedimentology, stratigraphy and source rock potential of the Richthofen Formation (Jurassic), Laberge Group, northern Whitehorse Trough, Yukon, Canada. Annual Meeting - American Association of Petroleum Geologists, Abstracts, vol. 14, p. A82.
- Lowey, G.W., 2007a. Hydrocarbon source rock potential of the Whitehorse Trough, a frontier basin in southern Yukon, Canada. Annual Meeting - American Association of Petroleum Geologists Abstracts, 2007, p. 84-85.
- Lowey, G.W., 2007b. Summary of the stratigraphy, sedimentology and hydrocarbon potential of the Laberge Group (Lower-Middle Jurassic), Whitehorse trough, Yukon. *In:* Yukon Exploration and Geology 2007, D.S. Emond, L.R. Blackburn, R.P. Hill and L.H. Weston (eds.). Yukon Geological Survey, p. 179-197.

- Lowey, G.W., 2008. A petroleum events chart for the Whitehorse Trough, Yukon. Reservoir, vol. 35, issue 1, p. 32-35.
- Lowey, G.W., 2011. The Lewes River Group (Triassic) arc-fringing carbonate platform; sedimentological evidence Whitehorse Trough was an east-facing forearc basin. Abstracts with Programs - Geological Society of America, vol. 43, issue 5, p. 440.
- Lowey, G.W. and Hills, L.V., 1988. Lithofacies, petrography and environments of deposition, Tantalus Formation (Lower Cretaceous) Indian River area, west-central Yukon. Bulletin of Canadian Petroleum Geology, vol. 36, p. 296–310.
- Lowey, G.M. and Long, D.G.F., 2006. Summary of Roc-Eval data for the Whitehorse Trough, Yukon: implications concerning the hydrocarbon potential of a frontier basin. *In:* Yukon Exploration and Geology 2005, D.S. Emond, G.D. Bradshaw, L.L. Lewis and L.H. Weston (eds.). Yukon Geological Survey, p. 207-230.
- Lowey, G.W., Long, D.G.F., Fowler, M.G., Sweet, A.R. and Orchard, M.J., 2009. Petroleum source rock potential of Whitehorse Trough; a frontier basin in south-central Yukon. Bulletin of Canadian Petroleum Geology, vol. 57, issue 3, p. 350-386.
- Ludwig, K.R., 2001. Isoplot/Ex, rev.2.49. Berkeley Geochronology Center, Special Publication, no. 1a, 56 p.
- Lunt, I.A. and Bridge, J.S., 2004. Evolution and deposits of a gravelly braid bar, Sagavanirtok River, Alaska. Sedimentology, vol. 51, p. 415-432.
- Mackenzie, W.S., 1974. Radiolaria from the Canol Formation, Northwest Territories. Geological Survey of Canada, Paper 74-1, p. 319.
- MacLeod, S.E. and Hills, L.V., 1991. Worldwide stratigraphic and geographic distribution of selected Jurassic—Cretaceous plant macrofossils and their significance to the northern Bowser Basin, British Columbia, Canada. Review of Paleobotany and Palynology, vol. 70, p. 47-65.
- MacNaughton, R.B., 2002. Sedimentology of Triassic siliciclastic strata in the Mount Martin and Mount Merrill map areas, Yukon Territory. *In:* Geological Survey of Canada, Current Research 2002-A4, 10 p.
- Martel, E., Turner, E.C. and Fischer, B.J., 2011. Geology of the central Mackenzie Mountains of the northern Canadian Cordillera, Sekwi Mountain (106P), Mount Eduni (106A), and northern Wigley Lake (95M) map-areas, Northwest Territories. Northwest Territories Geoscience Office, NWT Special Volume, no. 1, 423 p.
- Massari, F., 1983. Tabular cross-bedding in Messinian fluvial channel conglomerates, southern Alps, Italy. *In:* Modern and Ancient Fluvial Systems, J.D. Collinson, and J. Lewin (eds.). International Association of Sedimentologists, Special Publication 6, p. 287-300.
- McConnell, R.G., 1909. The Whitehorse Copper Belt. Geological Survey of Canada, Separate Report no. 1050, 63 p.

- McKee, E.D. and Weir, G.W., 1953. Terminology for stratification and cross-stratification in sedimentary rocks. Geological Society of America Bulletin, vol. 64, p. 381-390.
- McNicoll, V.J., Evenchick, C.A. and Mustard, P.S., 2005. Provenance studies on the depositional histories of the Bowser and Sustut basins and their implications for tectonic evolution of the northern Canadian Cordillera. Geological Association of Canada, Annual Meeting Abstracts, vol. 30, p. 133.
- Miall, A.D., 1976. Palaeocurrent and palaeohydrologic analysis of some vertical profiles through a Cretaceous braided stream deposits, Banks Island, Arctic Canada. Sedimentology, vol. 23, p. 459-483.
- Miall, A.D., 1996. The Geology of fluvial deposits. Springer-Verlag, Berlin, 582 p.
- Mihalynuk, M.G., 1999. Geology and mineral resources of the Tagish Lake area (NTS 104M/8, 9, 10E, 15 and 104N/12W) Northwestern British Columbia. BC Ministry of Energy and Mines, Energy and Minerals Division, Geological Survey Branch, Bulletin, no. 105.
- Mihalynuk, M.G., Erdmer, P., Ghent, E.D., Cordey, F., Archibald, D.A., Friedman, R.M. and Johannson, G.G., 2004. Coherent French Range blueschist: subduction to exhumation in <2.5 m.y.? Geological Society of America Bulletin, vol. 116, p. 910-922.
- Mihalynuk, M.G., Nelson, J. and Diakow, L.J., 1994. Cache Creek terrane entrapment: oroclinal paradox within the Canadian Cordillera. Tectonics, vol. 13, no. 2, p. 575-595.
- Mihalynuk, M.G. and Peter, J.M., 2001. A hydrothermal origin for "crinkle chert" of the Big Salmon Complex. *In:* Geological Fieldwork 2000, British Columbia Geological Survey, Paper 2001-1, p. 83-84.
- Monger, J.W.H., 1975. Upper Paleozoic rocks of the Atlin terrane, northwestern British Columbia and south-central Yukon. Geological Survey of Canada, Paper 74-47, 63 p.
- Monger, J.W.H. and Price, R.A., 1979. Geodynamic evolution of the Canadian Cordillera, progress and problems. Canadian Journal of Earth Sciences, vol. 16, p. 770-791.
- Monger, J.W.H., Price, R.A. and Tempelman-Kluit, D.J., 1982. Tectonic accretion and the origin of the two major metamorphic and plutonic welts in the Canadian Cordillera. Geology, vol. 10, p. 70-75.
- Morozova, G.S. and Smith, N.D., 2003. Organic matter deposition in the Saskatchewan River floodplain (Cumberland Marshes, Canada): effects of progradational avulsions. Sedimentary Geology, vol. 157, p. 15-29.
- Morrow, D.W., 1999. Lower Paleozoic stratigraphy of Northern Yukon Territory and northwestern District of Mackenzie. Geological Survey of Canada, Bulletin 538, 202 p.
- Mortensen, J.K., 1990. Geology and U-Pb geochronology of the Klondike district, west-central Yukon Territory. Canadian Journal of Earth Sciences, vol. 27, p. 903-914.

- Mumpy, A.J., Jol, H.M., Kean, W.F. and Isabell, J.L., 2007. Architecture and sedimentology of an active braid-bar in the Wisconsin River based on 3-D ground penetrating radar. *In:* Stratigraphic analysis using GPR, G.S. Baker and H.M. Jol (eds.). Geological Society of America, Special Paper, no. 432, p. 111-131.
- Murphy, D.C., Mortensen, J.K., Piercey, S.J., Orchard, M.J. and Gehrels, G.E., 2006. Mid-Paleozoic to early Mesozoic tectonostratigraphic evolution of Yukon-Tanana and Slide Mountain terranes and affiliated overlap assemblages, Finlayson Lake massive sulphide district, southeastern Yukon. *In:* Paleozoic Evolution and Metallogeny of Pericratonic Terranes at the Ancient Pacific Margin of North America, Canadian and Alaskan Cordillera, M. Colpron, and J.L. Nelson (eds.). Geological Association of Canada, Special Paper, vol. 45, p. 75-105.
- Murphy, D.C., van der Heyden, P., Parrish, R.R., Klepacki, D.W., McMillan, W., Struik, L.C. and Gabites, J., 1995. New geochronological constraints on Jurassic deformation of the western edge of North America, southeastern Canadian Cordillera. *In:* Jurassic Magmatism and Tectonics of the North American Cordillera, D.M. Miller and C. Busby (eds.). Geological Society of America, Special Paper, no. 299, p. 159–171.
- Murphy, D.C., van Stall, C. and Mortensen, J.K., 2008. Windy McKinley terrane, Stevenson Ridge area (115JK), western Yukon: composition and proposed correlations, with implications for mineral potential. *In:* Yukon Exploration and Geology 2007, D.S. Emond, L.R. Blackburn, R.P.Hill and L.W. Weston (eds.). Yukon Geological Survey, p. 225-235.
- Mutterlose, J. and Ruffell, A., 1999. Milankovitch-scale palaeoclimate changes in pale-dark bedding rhythms from the Early Cretaceous (Hauterivian and Barremian) of eastern England and northern Germany. Palaeogeography, Palaeoclimatology, Palaeoecology, vol. 154, p. 133-160.
- National Energy Board, 2001. Petroleum resource assessment of the Whitehorse Trough, Yukon Territory, Canada. Oil and Gas Resource Branch. Department of Economic Development, Government of the Yukon, 59 p.
- Nelson, J. and Colpron, M., 2007. Tectonics and metallogeny of the British Columbia, Yukon and Alaskan Cordillera, 1.8 Ga to present. *In:* Mineral deposits of Canada: a synthesis of major deposit-types, district metallogeny, the evolution of geological provinces, and exploration methods, W.D. Goodfellow (ed.). Geological Association of Canada, Special Publication, no. 5, p. 755-791.
- Nelson, J.L., Colpron, M. and Israel, S., 2013. The Cordillera of British Columbia, Yukon and Alaska: tectonics and metallogeny. *In*: Tectonics, metallogeny, and discovery: the North American Cordillera and similar accretionary settings, M. Colpron, T. Bissig, B.G. Rust and J.F.H. Thompson (eds.). Society of Economic Geologists, Special Publication 17, p. 53-109.
- Nesbitt, H.W., Fedo, C.M. and Young, G.M., 1997. Quartz and feldspar stability, steady and nonsteady state weathering and petrogenesis of siliciclastic sands and muds. Journal of Geology, vol. 105, p. 173-192.
- Norris, A.W., 1968. Reconnaissance Devonian stratigraphy of northern Yukon Territory and northwestern District of MacKenzie. Geological Survey of Canada, Paper 67-53.

- O'Connor, J.E., 1993. Hydrology, hydraulics and geomorphology of the Bonneville Flood. Geological Society of America, Special Paper 274.
- Passega, R., 1964. Grain size representation by C M patterns as a geological tool. Journal of Sedimentary Petrology, vol. 34, p. 830-847.
- Peel, M.C., Finlayson, B.L. and McMahon, T.A., 2007. Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences, vol. 11, p. 1633-1644.
- Pepin, E., Guyot, L.J., Armijos, E., Fraizy, P., Moquet, J.S., Noriega, L., Lavado, W., Pombosa, R. and Vauchel, P., 2013. Climatic control on eastern Andean denudation rates (Central Cordillera from Ecuador to Bolivia). Journal of South American Earth Sciences, vol. 44, p. 85-93.
- Pigage, L.C., 2004. Bedrock geology compilation of the Anvil District (parts of NTS 105K/2, 3, 5, 6, 7 and 11), central Yukon. Yukon Geological Survey, Bulletin, no. 15, 103 p.
- Plint, H.E. and Gordon, T.M., 1997. The Slide Mountain terrane and structural evolution of the Finlayson Lake Fault Zone, southeastern Yukon. Canadian Journal of Earth Sciences, vol. 34, p. 105-126.
- Postma, G., 1990. Depositional architecture and facies of river and fan deltas: a synthesis. *In:* Coarse-grained deltas, A. Colella and D.B. Prior (eds.). International Association of Sedimentologists, Special Publication 10, p. 13-27.
- Postma, G., 2001. Physical climate signatures in shallow and deep-water deltas. Global and Planetary Change, vol. 28, p. 93-106.
- Postma, G., Babic, L., Zupanic, J. and Roe, S.L., 1988. Delta-front failure and associated bottomset deformation in a marine, gravelly Gilbert-type fan delta. *In:* Fan deltas: sedimentology and tectonic settings, W. Nemec and R.J. Steel (eds.). Blackie, Glasgow and London, UK, p. 91-10.
- Potter, P.E. and Pettijohn, F.J., 1977. Paleocurrents and basin analysis (2nd edition). Springer-Verlag, Berlin, Germany, 424 p.
- Price, G.D., Sellwood, B.W. and Valdes, P.J., 1995. Sedimentological evaluation of general circulation model simulations for the "greenhouse" Earth: Cretaceous and Jurassic case studies. Sedimentary Geology, vol. 100, p. 159-180.
- Pyle, L.J. and Jones, A.L., 2009. Regional geoscience studies and petroleum potential, Peel plateau and plain, Northwest Territories and Yukon: Project Volume. Northwest Territories Geoscience Office, and Yukon Geological Survey, NWT Open File 2009-02/YGS Open File 2009-25, 540 p.
- Reid, R.P., 1981. Report of field work on the Upper Triassic reef complex of Lime Peak, Laberge map-area, Yukon. *In:* Yukon geology and exploration 1979-80, Exploration and Geological Sciences Division, Yukon Region, Indian and Northern Affairs Canada, p. 110-114.
- Reid, R.P., 1988. Lime Peak reef complex, Norian age, Yukon. *In:* Reefs; Canada and adjacent areas, H.J. Helmut, N.J. Geldsetzer and G.E. Tebbutt (eds.). Canadian Society of Petroleum Geologists, Memoir 13, p. 758-765.

- Reid, R.P. and Ginsburg, R.N., 1986. The role of framework in Upper Triassic patch reefs in the Yukon. Palaios, vol. 1, issue 6, p. 590-600.
- Richards, B.C., Bamber, E.W. and Utting, J., 1997. The geology, mineral and hydrocarbon potential of northern Yukon Territory and northwestern District of Mackenzie. Geological Survey of Canada, Bulletin, no. 422, p. 201-251.
- Ricketts, B.D., 1984. A coal index for Yukon and District of Mackenzie, Northwest Territories. Geological Survey of Canada, Open File 1115, 83 p.
- Ricketts, B.D., Evenchick, C.A., Anderson, R.G. and Murphy, D.C., 1992. Bowser basin, northern British Columbia: constraints on the timing of initial subsidence and Stikinia-North America terrane interactions. Geology, vol. 20, p. 1119-1122.
- Roots, C.F., Nelson, J.L., Simard, R.-L. and Harms, T.A., 2006. Continental fragments, mid-Paleozoic arcs and overlapping late Paleozoic arc and Triassic sedimentary strata in the Yukon-Tanana terrane of northern British Columbia and southern Yukon. *In:* Paleozoic evolution and metallogeny of pericratonic terranes at the ancient Pacific margin of North America, Canadian and Alaskan Cordillera, M. Colpron and J.L. Nelson (eds.). Geological Association of Canada, Special Paper, no. 45, p. 153-177.
- Schiarizza, P., 2012. Geology of the Kutcho Assemblage between Kehlechoa and Tucho rivers, northern British Columbia. British Columbia Geological Survey, Geological Fieldwork 2011, Paper 2012-1, p. 75-98.
- Schumm, S.A., 1968. Speculations concerning paleohydrologic controls of terrestrial sedimentation. Geological Society of America, Bulletin, vol. 79, p. 1573-1588.
- Sambrook Smith, G.H., Ashworth, P.J., Best, J.L., Lunt, I.A., Orfeo, O. and Parsons, D.R., 2009. The sedimentology and alluvial architecture of a large braid bar, Río Paraná, Argentina. Journal of Sedimentary Research, vol. 79, p. 629-642.
- Sellwood, B.W. and Price, G.D., 1993. Palaeoclimates and their modelling with special reference to the Mesozoic Era. Philosophical Transactions, Royal Society of London, Biological Sciences, vol. 341, no. 1297, p. 225-233.
- Sellwood, B.W., Valdes, P.J. and Price, G.D., 2000. Geological evaluation of multiple general circulation model simulations of Late Jurassic palaeoclimate. Palaeogeography, Palaeoclimatology, Palaeoecology, vol. 156, p. 147-160.
- Simard, R.-L. and Devine, F., 2003. Preliminary geology of the southern Semenof Hills, central Yukon (105E/1,7,8). In: Yukon Exploration and Geology 2002, D.S. Emond and L.L. Lewis (eds.). Exploration and Geological Services Division, Yukon Region, Indian and Northern Affairs Canada, p. 213-222.
- Skelley, R.L., Bristow, C.S. and Etheridge, F.G., 2003. Architecture of channel-belt deposits in an aggrading shallow sandbed braided river: the lower Niobrara River, northeast Nebraska. Sedimentary Geology, vol. 158, p. 249-270.

- Smith, D.G. and Smith, N.D. 1980. Sedimentation in anastomosed river systems: examples from alluvial valleys near Banff, Alberta. Journal of Sedimentary Petrology, vol. 50, p. 157-164.
- Smith, S.A., 1986. Meandering gravel-bed rivers: the sedimentology of selected modern and ancient examples. PhD thesis, University of Reading, UK, 288 p.
- Smith, S.A., 1989. Sedimentation in a meandering gravel-bed river: the River Tywi, South Wales. Geological Journal, vol. 24, issue 3, p. 193–204.
- Smith, S.A., 1990. The sedimentology and accretionary styles of an ancient gravel-bed stream: the Budleigh Salterton Pebble Beds (Lower Triassic), southwest England. Sedimentary Geology, vol. 67, p. 199–219.
- Sohn, Y.K., Kim, S.B., Hwang, I.G., Bahk, J.J., Choe, M.Y. and Chough, S.K., 1997. Characteristics and depositional processes of large-scale gravelly Gilbert-type foresets in the Miocene Doumsan fan delta, Pohang basin, SE Korea. Journal of Sedimentary Research, vol. 67, p. 130-141.
- Speelman, E.L., 1971. Report on Bush Mountain graphitic anthracite prospect, 1971 field season. Yukon Geology Assessment File, no. 019865, 64 p. http://yma.gov.yk.ca/019865.pdf [accessed on 5th March 2014].
- Stach, E., Mackowsky, M.-Th., Teichmüller, M., Taylor, G.D., Chandra, D. and Teichmüller, R., 1982. Stach's textbook of coal petrology, 2nd edition. Gebrüder Borntraeger, Berlin, Germany, 535 p.
- Staples, R.D., Gibson, H.D., Berman, R.G., Ryan, J.J. and Colpron, M., 2013. A window into the Early to mid-Cretaceous infrastructure of the Yukon-Tanana terrane recorded in multi-stage garnet of west-central Yukon. Journal of Metamorphic Geology, vol. 31, p. 729-753.
- Staples, R.D., Murphy, D.C., Gibson, H.D., Colpron, M., Berman, R.G. and Ryan, J.J., 2014. Middle Jurassic to earliest Cretaceous mid-crustal tectono-metamorphism in the northern Canadian Cordillera: recording foreland-directed migration of an orogenic front. Geological Society of America, Bulletin, vol. 126, p. 1511-1530.
- Tempelman-Kluit, D.J., 1974. Reconnaissance geology of Aishihik Lake, Snag and part of Stewart River map-areas, west-central Yukon. Geological Survey of Canada, Paper 73-41.
- Tempelman-Kluit, D.J., 1978. Laberge (106E) map area, Yukon. Geological Survey of Canada, Open File 578.
- Tempelman-Kluit, D.J., 1979. Transported cataclasite, ophiolite and granodiorite in Yukon: evidence of arc-continent collision. Geological Survey of Canada, Paper 79-14, 27 p.
- Tempelman-Kluit, D.J., 1984. Geology, Laberge (105E) and Carmacks (115I), Yukon Territory. Geological Survey of Canada, Open File 1101, 10 p.
- Tempelman-Kluit, D.J., 2009. Geology of Carmacks and Laberge Map areas, central Yukon: incomplete draft manuscript on stratigraphy, structure and its early interpretation (*ca.* 1986). Geological Survey of Canada, Open File 5982, 399 p.

- Thamó-Bozsó, Kercsmár, Z. and Nádor, A., 2002. Tectonic control on changes in sediment supply: Quaternary alluvial systems, Körös sub-basin, SE Hungary. *In:* Sedimentary flux to basins: causes, controls and consequences, S.J. Jones and L.E. Frostick (eds.). Geological Society, London, Special Publication no. 191, p. 37-53.
- Tipper, H.W. and Woodsworth, G.J., 1981. Tectonic assemblage map of the Canadian Cordillera. Geological Survey of Canada, Map 1505A, scale 1:2000000.
- Tozer, E.T., 1958. Stratigraphy of the Lewes River Group (Triassic), central Laberge area, Yukon Territory. Geological Survey of Canada, Bulletin, vol. 43, 28 p.
- Van der Zwan, C.J., 2002. The impact of Milankovitch-scale climatic forcing on sediment supply. Sedimentary Geology, vol. 147, p. 271-294.
- Wheeler, J.O., 1956. Evolution and history of the Whitehorse Trough as illustrated by the geology of Whitehorse map-area, Yukon. PhD thesis, Columbia University, New York, 194 p.
- Wheeler, J.O., 1961. Whitehorse map-area, Yukon Territory, 105D. Geological Survey of Canada, Memoir 312, 156 p.
- White, D., Colpron, M. and Buffett, G., 2012. Seismic and geological constraints on the structure and hydrocarbon potential of the northern Whitehorse trough, Yukon Canada. Bulletin of Canadian Petroleum Geology, vol. 60, issue 4, p. 239-255.
- White, D., Colpron, M., Buffett, G. and Roberts, B., 2006. Structural constraints for oil and gas assessments in the Whitehorse Trough: new results from seismic profiling. *In:* Yukon Exploration and Geology 2007, D.S. Emond, G.D. Bradshaw, L.L. Lewis and L.H. Weston (eds.), Yukon Geological Survey, p. 139-151.
- Wolf, D., Seim, A., Diaz de Olmo, F. and Faust, D., 2013. Late Quaternary fluvial dynamics of the Jarama River in central Spain. Quaternary International, vol. 302, p. 20-41.
- Wooldridge, C.L. and Hickin, E.J., 2005. Architecture and evolution of channel bars in wandering gravel-bed rivers: Fraser and Squamish rivers, British Columbia, Canada. Journal of Sedimentary Research, vol. 75, p. 844-860.
- Wu, H., Zhang, S., Jiang, G., Yang, T., Guo, J. and Li, H., 2013 Astrochronology for the Early Cretaceous Jehol biota in northeastern China. Palaeogeography, Palaeoclimatology, Palaeoecology, vol. 385, p. 221–228.
- Xu, J., 2004. Comparison of hydraulic geometry between sand- and gravel-bed rivers in relation to channel pattern discrimination. Earth Surface Processes and Landforms, vol. 29, p. 645-657.

APPENDIX 1 - Stratigraphic sections

Note: many of these sections are over-sized.

Faint colours = lithology implied

T6a. Hootalinqua

61°43'22"N, 134°56'34"W

T6b. Hootalinqua

T8 Cub Mountain 61°23'07"N, 135°59'26"W

70 m 150 -400 -650 · 900 -. . . Gap ~136 m

T9 Vowel Mountain

T10 Tantalus Mine (Old)

T10 Tantalus Mine (Old) East Side

T10 Tantalus Mine (Old) East Side

T10 Tantalus Mine (Old) East Side 62°05'39"N, 136°16'00"W

T10: Carmacks Old Mine (west) T10: Carmacks old mine (East)

T-11 Claire Creek 61°56'53"N, 135°22'23"W

YGS Open File 2015-23

YGS Open File 2015-23

T13b Tantalus Butte mine, Open Pit

T13a Tantalus Butte, East side of Open Pit.

Constrained by the second seco

T16 Hootalinqua south 61°35'06"N, 134°50'45"W

T17 Tantalus Butte Mine

T17 Tantalus Butte Mine

T17 Tantalus Butte Mine 62°07'34"N, 136°15'44"W.

T18 Carmacks Dump

62°04'42"N, 136°15'57"W

T18 Carmacks Dump 62°04'42"N, 136°15'57"W

60°29'54"N, 135°16'42"W

T19 Mt Granger

60°29'54"N, 135°16'42"W

Mt Granger - supplimentary section

T19 Mt Granger 60°29'54"N, 135°16'42"W

T19: Mt. Granger

T20 Mount Granger

60°29'29"N, 135°15'33"W

T-21 Ibex Valley

Section 23 Mt Granger

250

60°29'42"N, 135°17'16"W 60°29'56"N, 135°17'56"W

SAME AS T19

APPENDIX 2 - PETROLOGY

Table 1. Pebble counts
Table 2. Mount Granger
Table 3. Hootalinqua
Table 4. Carmacks
Table 5. Vowel-Braeburn
Table 6. All Tantalus Conglomerate
Table 7. All Tantalus Sandstone
Table 8. All Tanglefoot Conglomerate
Table 9. All Tanglefoot Sandstone

Note: the PDFs of these tables are all oversized; they are also available for download in excel format.

		Clast ty	pes (as c	count)								Calcula	ted perc	centages				
Location	Lithology	Black	Lt Grey	Grey-Brown	Red	Green	Qtz	Qtz-fedspathic	Sandstones	SAND (matrix)	Total	% Gravel	% Chert	% Qtz	% felsic RFs + Sst	% Black Chert	% It Grey Chert	%Grey-Brown chert
Carmacks / Tantalus E	Butte	120	0.1	T10, 12	2, 13, 17,	, 18	110				607			0.4 5	4.6	20.0	05.6	25.4
10-1 	sG C	139	91 148	126 146	0	3	119 75	2 25	6 19	141 119	627 789	//.5 8/ 9	73.9	24.5 11.2	1.6 6.6	39.0 46.3	25.6 27.1	35.4 26.7
T10-2 T10-3b	G	112	140	89	0	0	19	25 7	3	80	418	80.9	91.4	5.6	3.0	40.5 36.2	35.0	28.8
T12-1	sG	79	113	30	7	0	45	29	11	24	338	92.9	72.9	14.3	12.7	35.6	50.9	13.5
T12-40	G	38	46	37	0	0	13	5	1	172	312	44.9	86.4	9.3	4.3	31.4	38.0	30.6
T13-37	G	132	45	215	2	3	66	16	7	46	532	91.4	81.7	13.6	4.7	33.7	11.5	54.8
T17-6	G	86	70	13	0	0	25	7	13	25	239	89.5	79.0	11.7	9.3	50.9	41.4	7.7
117-7	sG	62 (0	85	9 115	0	0	29	6	11	178	380	53.2 75.0	77.2	14.4	8.4	39.7	54.5	5.8
T17-11 T17-12	su G	69 144	39 71	167	1	0	23 48	9 13	3 11	00 86	344 541	75.0 84 1	00.4 84 2	0.9 10 5	4./ 5.3	30.9 37 7	17.5	21.0 43.7
T17-13	sG	55	37	51	0	0	26	6	2	63	240	73.8	80.8	14.7	4.5	38.5	25.9	35.7
T17-17	G	157	107	153	0	0	15	29	0	20	481	95.8	90.5	3.3	6.3	37.6	25.7	36.7
T17-24	sG	149	64	157	2	1	32	10	13	296	724	59.1	87.1	7.5	5.4	40.3	17.3	42.4
T17-27	G	154	84	218	4	0	27	10	8	94	599	84.3	91.1	5.3	3.6	33.8	18.4	47.8
T17-31	sG	256	107	231	2	0	39	32	17	217	901	75.9	87.1	5.7	7.2	43.1	18.0	38.9
Total Braveburn/Vowel Mo	untain	1885	1215	1/5/ T7 8 0	20	9	601	206	125	1647	7456	77.9	84.1	10.3	3.5	38.8	25.0	36.2
T1-1	sG	123	178	54	0	0	5	8	0	116	484	76.0	96.5	1.4	2.2	34.6	50.1	15.2
T1-11	sG	73	72	193	2	0	25	5	0	98	468	79.1	91.9	6.8	1.4	21.6	21.3	57.1
T1-20	G	44	37	61	0	0	34	0	9	31	216	85.6	76.8	18.4	4.9	31.0	26.1	43.0
T1-27	G	121	90	65	1	0	48	15	1	60	401	85.0	81.2	14.1	4.7	43.8	32.6	23.6
T1-28	sG	70	24	10	0	0	2	13	0	31	150	79.3	87.4	1.7	10.9	67.3	23.1	9.6
T1-29	G	50	34	37	0	0	10	11	0	31	173	82.1	85.2	7.0	7.7	41.3	28.1	30.6
16-3 T6	sG	74 50	63 64	19 5	1	1	27	5	3 14	103 01	293	64.8 63.9	83.2 73.9	14.2	3.2 11.8	47.4	40.4 53.8	12.2
T7-6	sG	30 80	04 52	35	0	1	23 68	0	14	51 66	302	05.9 78 1	73.9	28.8	0.4	42.0 47 9	31.1	4.2 21.0
T7-8	sG	71	38	99	1	2	55	0	3	133	400	66.8	79.0	20.6	1.1	34.1	18.3	47.6
T7-14	sG	96	72	17	0	0	55	0	1	95	336	71.7	76.8	22.8	0.4	51.9	38.9	9.2
T7-16	sG	88	81	40	1	0	54	0	5	100	369	72.9	78.1	20.1	1.9	42.1	38.8	19.1
T8-5	sG	101	60	77	0	4	17	10	2	85	352	75.9	90.6	6.4	4.5	42.4	25.2	32.4
T9-13	sG	83	70	107	5	0	30	15	3	131	444	70.5	84.7	9.6	5.8	31.9	26.9	41.2
19-14 T9-20	sG	17	36 26	3/	1	3	14	6	0	/ I 55	182	61.0 78.0	84./ 88.2	12.6	5.4 1 5	18.9	40.0	41.1 55.6
T9-33	G	121	20 52	93 98	0	0	20	5 12	12	55 69	230 384	82.0	86.0	6.3	7.6	44.6	19.2	36.2
Total	0	1312	1049	1049	13	11	507	106	54	1366	5456	75.0	84.0	12.4	3.9	38.5	30.8	30.8
Hootalinqua / Claire (Creek			T6, 15,	16, 11													
Т6-3	G	74	63	19	1	1	27	3	3	103	293	64.8	83.2	14.2	3.2	47.4	40.4	12.2
Т6	sG	50	64	5	0	0	23	5	14	91	252	63.9	73.9	14.3	11.8	42.0	53.8	4.2
111-10 T11 12	sG	99 40	125	65 24	0	1	71	1	0	119	480	75.2 80 E	80.3	19.7	0.3	34.3	43.3	22.5
T15-1	G	49 125	265	24 49	2	0	19	0 46	0 34	45 78	615	873	82 1	3.0	5.4 14 9	28.5	52.5 60.4	15.7
T16-1	sG	35	28	22	0	0	10	2	12	79	190	58.4	76.6	10.8	12.6	41.2	32.9	25.9
T16-3	G	69	27	40	0	1	60	2	15	51	264	80.7	64.3	28.2	8.0	50.7	19.9	29.4
T16-4	sG	89	39	91	0	21	26	6	22	196	469	58.2	87.9	9.5	10.3	40.6	17.8	41.6
T16-5	sG	31	61	12	0	0	28	3	64	93	292	68.2	52.3	14.1	33.7	29.8	58.7	11.5
T16-6	sG	175	159	118	4	3	126	31	111	321	1045	69.3	63.4	17.4	19.6	38.7	35.2	26.1
Mt Granger /outliers		790	911	443	/	27	400	105	273	11/4	4121	71.3	74.2	15.0	12.9	37.0	42.3	20.7
T2-3	G	19	59	192	0	1	66	3	0	62	401	84.5	79.9	19.5	0.9	7.0	21.9	71.1
05W-50	sG	52	24	17	0	0	27	0	0	175	295	40.7	77.5	22.5	0.0	55.9	25.8	18.3
05W-69	sG	56	47	13	0	0	14	8	3	63	204	69.1	82.3	9.9	5.7	48.3	40.5	11.2
05W-81	sG	71	91	14	0	0	69	10	0	134	389	65.6	69.0	27.1	3.9	40.3	51.7	8.0
05W-82	sG	23	43	20	0	0	11	1	0	115	213	46.0	87.8	11.2	1.0	26.7	50.0	23.3
T19-13	с С	167	102 237	100 61	0	5 0	45 80	∠9 15	с З	י ע 103	552 666	00.2 84 5	04.5 82.6	9.5 14 7	0.1 2.7	∠7.U 35.9	45.0 51.0	27.2 13.1
T19-23	G	104	123	15	0	1	41	8	7	43	341	87.4	81.5	13.8	2.7	43.0	50.8	6.2
T19-27	G	57	101	50	0	0	26	-	0	60	295	79.7	88.5	11.1	0.4	27.4	48.6	24.0
T19-29	G	103	181	17	0	0	39	0	3	11	354	96.9	87.8	11.4	0.0	34.2	60.1	5.6
T19-59	G	377	319	35	0	0	46	22	6	34	839	95.9	90.8	5.7	2.7	51.6	43.6	4.8
T22-11	G	108	229	58	0	0	24	4	2	13	438	97.0	92.9	5.6	0.9	27.3	58.0	14.7
i otai		1244	1636	600	U	1	488	101	29	ϭϭʹʹ	498/	ŏ2.2	ŏ5.1	11.9	2.5	35./	47.0	17.2
ALL SAMPLES		5237	4811	3851	40	54	2004	518	483	5076	22020	76.9	82.6	11.8	3.1	37.7	34.6	27.7

Nt Granger, WE Granger, W	Chert by colour G B+R+ White Yellow Grey Black %<	Qm Qp Qs % % %	Chert Groups A to K L to T +Z U to W	sub / total <mark>%Mas %Brec %sphe</mark> r
	G B+R+ White Yellow Grey Black % % % % % 0 0 96.2 3.8 0.0 0.0 0 0 84.4 15.6 0.0 0.0	%%%%	A to K L to T +Z U to W	V total <mark>%Mas %Brec %sphe</mark>
Tantalus Fm Conglomerate detailed Qm Qp Qs Chert Srf Mr Yel Gry Blk Wht Yel Gry Blk	% % % 0 0 96.2 3.8 0.0 0.0 0 0 84.4 15.6 0.0 0.0			
14 14 14 14 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 <mark>96.2 3.8 0.0 0.0</mark> 0 0 84.4 15.6 0.0 0.0		MASSIVE BRECCIATED SPHERE	.(ES
	0 0 <mark>84.4 15.6 0.0 0.0</mark>	43.75 12.50 43.75 T2-3	415 21 35	471 <mark>88.1 4.5 7.4</mark>
T3-1a 0.0 G 7 5 9 482 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		<mark>33.33 23.81 42.86</mark> T3-1a	334 38 110	482 <mark>69.3 7.9 22.8</mark>
T19-14 70.00 Gm Tantalus 27 24 172 23 0 0 0 3 1 0 0 1 3 50 1 5 33 1 540 44.60 4.80 50.60 10 9 11 8 0 30 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	25 38 <mark>34.3 38.3 10.9 16.5</mark> 23	30 <mark>12.11 10.76 77.13</mark> T19-14	78 48 104	230 <mark>33.9 20.9 45.2</mark>
T19-23 91.60 Gh Tantalus 0 0 51 393 31 0 10 0 0 0 15 500 0 3 5 0 508 10.20 3.00 86.80 11 1 0 14 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 24 <mark>65.9 28.0 0.0 6.1</mark> 39	93 <mark>0.00 0.00 100.00</mark> T19-23	123 187 83	393 <mark>31.3 47.6 21.1</mark>
T19-29 92.40 Gh Tantalus 0 18 25 347 81 21 0 0 0 0 8 500 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	27 85 <mark>42.4 25.4 7.8 24.5</mark> 34	47 <mark>0.00 41.86 58.14</mark> T19-29	42 76 229	347 <mark>12.1 21.9 66.0</mark>
T19-59 217.00 Gm Tantalus 4 0 50 409 0 2 4 0 0 0 13 50 0 2 0 0 13 50 0 2 0 0 13 50 0 2 0 0 13 50 0 2 0 0 13 50 0 2 0 0 13 50 0 2 0 0 13 50 0 2 0 0 13 50 0 2 0 0 13 50 0 2 0 0 13 50 0 2 0 0 13 50 0 2 0 0 13 50 0 2 0 0 13 50 0 2 0 0 13 50 0 2 0 0 13 50 0 2 0 0 13 50 0 13	5 27 <mark>35.2 57.0 1.2 6.6</mark> 40	09 <mark>7.41 0.00 92.59</mark> T19-59	34 338 37	409 <mark>8.3 82.6 9.0</mark>
T19-60 224.00 SGh Tantalus 18 16 176 150 3 4 38 33 8 0 54 500 5 1 0 1 507 42.00 19.00 39.00 22 21 9 10 0 10 5 5 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	17 41 <mark>30.0 31.3 11.3 27.3</mark> 15	50 <mark>8.57 7.62 83.81</mark> T19-60	87 17 46	150 <mark>58.0 11.3 30.7</mark>
05W-62 gG 15 18 140 23 2 6 35 0 0 0 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0	24 14 <mark>37.9 45.7 10.3 6.0</mark> 23	32 <mark>8.67 10.40 80.92</mark> 05W-62	2 125 38 69	232 <mark>53.9 16.4 29.7</mark>
gG gG<	5 40 63.3 25.1 1.3 10.3 38	87 20.93 2.33 76.74 05W-69	9 126 125 136	387 <u>32.6</u> <u>32.3</u> <u>35.1</u>
g 10 11 186 226 7 2 24 2 2 0 42 512 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	19 48 40.3 30.1 8.4 21.2 22	26 4.83 5.31 89.86 05W-80	0 98 65 63	226 43.4 28.8 27.9
gG 12 13 4 0	16 15 47.4 42.5 5.2 4.9 30	08 1.49 1.49 97.01 05W-8	1 82 77 149	308 26.6 25.0 48.4
		48 12.34 0.43 87.23 05W-82	2 81 16 51	
135 100 1191 3/85 129 /8 1/8 101 1/ 0 308 6022 8 134 38 39 AVE 23.6/ /.08 69.25 508 1/4 4/ 55 0 638 51 30 / 4 10 0 0 0 10 0 0 0 10 0 0 0 10 0 0 0 10 0 0 0 10 0 0 0 10 0 0 0 10 0 0 0 10 0 0 0 10 0 0 0 10 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	AVE 54.1 29.8 5.3 10.7 AV	VE 12.8 9.7 77.5		AVE 42.7 25.8 31.5
	MAX 96.2 57.0 11.3 27.3 M	AX 43.8 41.9 100.0		MAX 88.1 82.6 66.0
MIN 4.7 0.0 0.1 0.0 0	MIN 30.0 3.8 0.0 0.0 MI	1111 0.0 0.0 42.9		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	3DEV 21.0 14.0 4.8 9.4 3L	JEV 13.8 12.3 19.4		3DEV 23.3 21.3 18.4
	22 19 40.0 25.8 18.3 15.8 12	20 6 20 6 93 86 86 T19-30	78 9 33	120 650 75 275
	12 17 48 1 24 5 11 3 16 0 10	06 7 06 5 58 87 36 T19-31	70 10 26	106 66 0 9 4 24 5
	12 31 63.7 15.2 5.9 15.2 20	04 28.07 5.26 66.67 T19-58	119 12 73	204 58.3 5.9 35.8
	18 20 42.6 34.9 10.7 11.8 16	69 15.15 6.57 78.28 T19-61	95 26 48	169 56.2 15.4 28.4
05W-50 gvcS Tantalus? 22915721570292010405000101200000000000000000000000000	11 42 62.8 12.6 5.1 19.5 21	15 11.70 4.79 83.51 05W-50	0 125 33 57	215 58.1 15.3 26.5
05W-51 ms Tantalus? 38 5 94 85 2 11 57 136 32 1 39 500 0 43 7 9 559 27.40 41.60 31.00 6 22 9 15 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	12 16 32.9 34.1 14.1 18.8 85	5 27.74 3.65 68.61 05W-5 ⁻	1 62 1 22	85 <mark>72.9 1.2 25.9</mark>
vs 1071092472118100105002460351 25.2021.2053.602273503440100000000000000000000000000000000	13 22 58.7 27.1 5.3 8.9 24	47 7.94 5.56 86.51 05W-6 ⁻	1 103 29 115	247 41.7 11.7 46.6
Sum Cong 168 74 1064 1146 18 18 176 323 51 1 461 3500 12 350 88 15 AVE 37.3 23.9 38.8 135 128 55 86 0 181 14 10 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	AVE 49.8 24.9 10.1 15.2 AV	VE 14.8 5.5 79.7		AVE 59.8 9.5 30.7
4.8 2.1 30.4 32.7 0.5 0.5 5.0 9.2 1.5 0.0 13.2 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	MAX 63.7 34.9 18.3 19.5 M	AX 28.1 6.9 87.4		MAX 72.9 15.4 46.6
MIN <u>2.8 12.2 23.8</u> 3.1 1.1 1.1 1.1 1.2 0.0 0.1 1.1 1.1 1.1 1.2 0.0 0.0 0.1 1.1 1.1 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	MIN 32.9 12.6 5.1 8.9 MI	IIN 6.2 3.6 66.7		MIN 41.7 1.2 24.5
Fwk = 88.27 Total 3965 13.16 9.14 12.32 SDEV	SDEV 12.1 8.5 5.0 3.7 SD	DEV 9.4 1.1 8.8		SDEV 9.9 5.2 7.9
Tangelfoot Fm Conglomerate				
T21-12 92.00 Gm Tangelfoot 44 matrix 17 3 44 338 0 0 77 15 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 9 97.3 0.0 0.0 2.7 33	38 <mark>26.56 4.69 68.75</mark> T21-12	308 27 3	338 <mark>91.1 8.0 0.9</mark>
T21-1 106.0 SGm Tangelfoot 18 matrix 42 18 139 132 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	19 19 <mark>71.2 0.0 14.4 14.4</mark> 13	32 21.11 9.05 69.85 T21-11	17 27 88	132 <mark>12.9 20.5 66.7</mark>
T21-6 234.00 Gm Tangelfoot 21 13 219 89 6 6 69 41 8 0 28 500 0 44 0 0 544 50.60 15.40 34.00 22 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 12 83.1 0.0 3.4 13.5 89	9 8.30 5.14 86.56 T21-6	51 20 18	89 57.3 22.5 20.2
80 34 402 [559 6 6 240 [15 23 2 33 [1500 [0 56 0 0 [13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	AVE 83.9 0.0 5.9 10.2 AV	VE 18.7 6.3 75.1		AVE 53.8 17.0 29.3
$ Matrix \% 1 \\ Matrix \% 1 \\ $	MAX 97.3 0.0 14.4 14.4 M	AX 26.6 9.0 86.6		MAX 91.1 22.5 66.7
3.8 3.8 0.0 0	MIN /1.2 0.0 0.0 2.7 MI	IIN 8.3 4.7 68.8		MIN 12.9 8.0 0.9
FWK = 92.71 10 Tai 1618 19.47 6.35 23.66 SDEV	SDEV 13.1 0.0 7.5 6.5 SL	DEV 9.4 2.4 10.0		SDEV 39.2 7.8 33.8
		32 93 4 88 62 20 T21-14	0 0 0	0 na na na
	0 0 na na na na 0	40.63 7.81 51.56 T21-13		
	21 54 33.1 21.7 12.7 32.5 16	56 7.91 3.72 88.37 T19-1	123 11 32	166 74.1 6.6 19.3
	19 25 33.6 29.4 16.0 21.0 11	19 16.67 4.76 78.57 T19-2	93 10 16	119 78.2 8.4 13.4
	13 11 54.8 24.3 11.3 9.6 11	15 35.00 7.50 57.50 T19-3	96 3 16	115 83.5 2.6 13.9
$T_{2} = 1.5 + 1.$	22 29 43.9 11.4 19.3 25.4 11	14 24.12 4.52 71.36 T21-8	56 9 49	114 49.1 7.9 43.0
Sum Cong 21 48 650 514 12 12 616 526 68 2 338 300 0 104 44 47 AVE 30.4 31.1 38.5 61 72 39 66 0 91 9 12 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	AVE 41.3 21.7 14.8 22.1 AV	VE 20.9 5.1 74.0		AVE 71.2 6.4 22.4
Matrix % [7.1 1.6 21.7 17.1 0.4 0.4 20.5 17.5 2.3 0.1 11.3 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	MAX 54.8 29.4 19.3 32.5 M	AX 35.0 7.5 88.4		MAX 83.5 8.4 43.0
MIN 1.4 3.6 0.0 0	MIN 33.1 11.4 11.3 9.6 M	IIN 7.9 3.7 57.5		MIN 49.1 2.6 13.4
Fwk = 93.0 Total 3227 10.17 10.99 10.67	SDEV 10.2 7.6 3.6 9.6 SD	DEV 11.5 1.6 13.0		SDEV 15.2 2.6 14.0

Qm = monocrystalline unstrained quartz Fk = Potasium feldspar

Qp = poltcrystalline quartz Fp = plagioclase feldspar

Qs = Strained quartz

Srf = sedimentary rock fragments Fe = Epimatrix (feldspar replaced by clays)

Fm = Microcline

Mrf = Metamorphic rock fragments Fwk = framework

Mi = Igneous rock fragments See Appendix 3 for chert types

SDEV = standard deviation

Location	Stratigraphic Uni	it Point counts (number of observations)																			
Hootalinqua/Masons Landing		n1 Cements n	n Derived	Chert types													Totals	Chert by colour	Qm Qp Qs	Chert Groups	sub
				A rd B rd	C D	E F	G H	J J	K L	M N	O P	Q R	S T	U V	W X	Z	B' W Y G	B+R+Gr <mark>White Yellow Grey Black</mark>	<mark>% % %</mark>	A to K L to T +Z	U to W total <mark>%Mas %Brec %spher</mark>
Tantalus Sandstones	deta	tailed Qm Qp Qs Chert Srf Mrf Fig Fk Fp Fm Fe fwk Voids Hem carb Qtz	Q F L	Wht Yel Gry Blk grn Wht Yel Gry Blk gr	n Wht Yel Gry Blk Wht Yel Gry Blk	Wht Yel Gry Blk Wht Yel Gry Blk	Wht Yel Gry Blk Wht Yel Gry Blk	Wht Yel Gry Blk Wht Yel Gry Blk	Wht Yel Gry Blk Wht Yel Gry Blk	Wht Yel Gry Blk Wht Yel Gry Blk	Wht Yel Gry Blk Wht Yel Gry Blk	Wht Yel Gry Blk Wht Yel Gry Blk	Wht Yel Gry Blk Wht Yel Gry Blk	Wht Yel Gry Blk Wht Yel Gry Blk	Wht Yel Gry Blk Wht Yel Gry Blk	Wht Yel Gry Blk Wht Yel Gry Blk	Wht Yel Gry Blk	<mark>% % %</mark>		MASSIVE BRECCIAT	ED SPHERES
T6-4 99.50 cSt	Tantalus	10 25 92 368 7 5 0 0 0 0 0 507 404 2 0 0 9	913 <mark>25.05 0.00 74.</mark>	4.95 74 56 16 46 0 47 37 14 2 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 4 0 0	0 0 0 0 0 0 0 0	7 0 0 2 0 3 0 0	0 0 3 0 0 0 0	0 0 4 9 0 0 0 0	5 0 2 0 0 0 0 0	0 2 0 7 1 1 6 7	7 2 0 4 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 368 141 105 45	77 <mark>38.3 28.5 12.2 20.9</mark> 3	.68 <mark>7.9 19.7 72.4</mark>	T6-4 296 35	37 368 <mark>80.4 9.5 10.1</mark>
T11-5 18.00 S	Tantalus	41 29 143 257 1 0 4 0 0 0 25 500 0 27 95 0 6	622 <mark>42.60 5.00 52.</mark>	2.40 57 29 18 19 0 59 19 5 11 0	0 0 0 0 0 0 0 0	1 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	5 2 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 3 0 0 0 0	0 1 0 0 0 0 0	0 0 1 4 6 9 1 4	2 1 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 257 130 61 25	41 <mark>50.6 23.7 9.7 16.0</mark> 2	157 <mark>19.2 13.6 67.1 19.2 13.6 19.2 13.6 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2</mark>	T11-5 218 11	28 257 <mark>84.8 4.3 10.9</mark>
T11-6 28.00 S	Tantalus	37 25 148 241 1 1 5 0 0 0 42 500 1 17 36 0 5	554 <mark>42.00 8.40 49.</mark>	9.60 55 40 7 24 0 63 7 1 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 1 0 0 0	0 1 0 0 0 0 0	0 0 3 0 0 0 0	0 0 0 0 5 0 0 0	0 0 0 0 4 14 0 0	8 4 4 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 241 136 66 15	24 <mark>56.4 27.4 6.2 10.0</mark> 2	41 <mark>17.6 11.9 70.5</mark>	T11-6 197 10	34 241 <mark>81.7 4.1 14.1</mark>
T11-9 74.00 mSr	Tantalus	22 14 84 356 3 3 9 0 0 0 9 500 2 11 0 1 5	514 <mark>24.00 1.80 74.</mark>	4.20 100 49 18 24 0 72 12 8 7 0	0 0 0 0 0 0 0 0	2 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	7 0 2 0 0 0 0 0	0 0 0 0 0 0 0	0 2 0 1 0 0 0 1	6 6 1 0 3 0 0 0	1 0 2 0 15 6 0 4	3 2 1 0 0 0 0 0	1 0 0 0 0 0 0 0	0 0 0 0 356 210 77 32	37 <mark>59.0 21.6 9.0 10.4</mark>	56 18.3 11.7 70.0	T11-9 292 30	<u>34 356 82.0 8.4 9.6</u>
SUM SST		110 93 467 1222 12 9 18 0 0 0 76 2007 407 57 131 1	AVE <mark>33.41 3.80 62.</mark>	<mark>2.79</mark> 286 174 59 113 0 241 75 28 20 0	0 0 0 0 0 0 0 0	3 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 4 0 0	0 0 0 0 0 0 0 0	19 2 2 2 1 3 0 0	0 1 3 0 0 0 0 0	0 2 7 13 0 0 0 1	11 7 3 0 8 0 0 0	1 2 3 11 26 30 7 15	20 9 5 4 0 0 0 0	1 0 0 0 0 0 0 0	0 0 0 0 1222 617 309 117	179 AVE 51.1 25.3 9.3 14.3	VE 15.8 14.2 70.0		AVE 82.3 6.6 11.2
Fwk %		5.5 4.6 23.3 60.9 0.6 0.4 0.9 0.0 0.0 0.0 3.8 100.0 15.6 2.2 5.0 0.0 1	MAX <mark>42.6 8.4 75.</mark>	5.0 23.4 14.2 4.8 9.2 0.0 19.7 6.1 2.3 1.6 0.	0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.6 0.2 0.2 0.2 0.1 0.2 0.0 0.0	0.0 0.1 0.2 0.0 0.0 0.0 0.0 0.0	0.0 0.2 0.6 1.1 0.0 0.0 0.0 0.1	0.9 0.6 0.2 0.0 0.7 0.0 0.0 0.0	0.1 0.2 0.2 0.9 2.1 2.5 0.6 1.2	1.6 0.7 0.4 0.3 0.0 0.0 0.0 0.0	0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 100.0 50.5 25.3 9.6	14.6 MAX 59.0 28.5 12.2 20.9 /	MAX 19.2 19.7 72.4		MAX 84.8 9.5 14.1
		Sum Q= 33.4 Sum RF= 62.8 Sum F= 3.8 % % % %	MIN <mark>24.00 0.00 49.</mark>	9.60 51.7 29	9.8 0.0 0.0	0.2 0.0	0.0 0.0	0.0 0.3	0.0 0.0	2.0 0.3	0.3 0.0	1.8 0.1	1.7 0.7	1.4 6.4	3.1 0.0	0.1 0.0	0.0	MIN 38.3 21.6 6.2 10.0 I	AIN 7.9 11.7 67.1		MIN 80.4 4.1 9.6
		%Fwk = 77.1	2603															SD 9.2 3.2 2.5 5.2 S	D 5.3 3.7 2.2		SD 1.8 2.8 2.0
							I I		T T	I I					Γ						
Tantalus Conglomerates	T . I																	White Yellow Grey Black	Qm Qp Qs		%Mas %Brec %spher
16-1 231.00 Gm	Tantalus		512 19.37 0.00 78.	3.46 38 43 4 11 0 53 46 9 2 0														36 <u>31.5</u> 46.7 10.6 11.2 3		16-1 219 36	62 31/ 69.1 11.4 19.6
16-3 97.00 Gm	Tantalus		505 7.40 0.00 91.											0 0 0 5 0 245 5 32					01 21.6 35.1 43.2	16-3 82 32	
111-10 92.00 Gm	Tantalus		522 1 7.20 0.20 82.	2.60 131 0 0 0 0 19 1 0 0 0															158 2.3 19.8 //.9	111-10 151 123	84 358 42.2 34.4 23.5
111-11 157.00 Gm	Tantalus		615 <u>5.05</u> <u>1.94</u> 93.	3.01 23 10 2 3 0 9 1 1 0 0															29 3.8 15.4 80.8	111-11 49 9	3/1 429 11.4 2.1 86.5
111-12 240.00 Gm	Tantalus		546 12.20 2.80 85.	5.00 32 24 11 6 0 32 2 20 0 0										0 24 0 0 35 14 5 35		5 4 0 6 0 0 0 0		78 42.1 26.2 11.4 20.3 3 50 22.2 55.6 1.2 10.0	$\frac{35}{2}$ $\frac{3.3}{2}$ $\frac{4.9}{2}$ $\frac{91.8}{2}$	111-12 127 100 T1114/40 152 14	158 385 <u>33.0</u> 26.0 41.0
111-14/40 Gm	Tantalus		543 <u>33.40</u> 1.20 65.	5.40 23 60 0 8 0 37 14 4 6 0														23.2 55.6 1.3 19.9 25.6 1.1 11.7 74.4 2.0 11.1	.97 3.6 1.8 94.6	111-14/40 152 14 T15 1 20 210	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
T16.1 70.00 Gm	18.6/3 Tantalus		555 11.36 0.00 88 .	5.64 14 3 1 8 0 10 2 0 0 0													0 0 0 0 316 37 235 9	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16 0.0 4.8 95.2	115-1 38 210 T16.1 120 01	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
T16-1 /9.00 Sm	Tantalus		522 13.95 0.59 85.	5.46 76 32 2 6 0 22 1 0 0 0															30 5.6 15.5 78.9	116-1 139 91 T16-2 130 57	200 430 32.3 21.2 46.5
T16-2 166.30 Gm	Tantalus		524 10.53 1.99 79.	5.40 50 28 10 22 0 25 3 1 0 0														$\begin{array}{cccccccccccccccccccccccccccccccccccc$	73 9.7 11.0 70.5	116-2 139 57	1/7 $3/3$ $3/.3$ 15.3 $4/.5$
T16-3 164.00 Gm	Tantalus		509 3.40 0.20 96.	5.40 11 6 4 0 0 0 2 0 0 0													0 0 0 0 467 219 242 4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		T16 4 161 190	
T16 5 261 10 Cm	Jn Tantalus Tantalus		520 8.00 1.20 90.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$														$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13 7.3 12.3 80.0	116-4 161 189 116-5 264 15	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
T16.9	Tantalus		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7.80 30 100 13 11 0 20 0 0 0 0															240 0.0 13.0 00.4	110-3 204 13 112 12	0^{9} 540 75.9 4.5 19.0
	Tantalus		AVE 11.92 0.92 97.	7.00 54 51 5 6 0 16 0 5 0 0														$\begin{array}{cccccccccccccccccccccccccccccccccccc$	VE 5 2 12 5 91 2	118-0 113 12	
			$MAX \frac{33}{10} \frac{100}{280} \frac{97}{97}$	780 121 105 14 21 00 62 17 08 02 0								29 51 00 03 00 00 00 02	54 03 03 08 01 00 00 00	00 17 00 14 30 106 07 31				11 2 MAX 99 7 74 4 11 4 30 1	AX 216 351 952		MAX 84 3 94 6 86 5
TWK 70		Sum $O = -111$ Sum $PE = -881$ Sum $E = -0.8$ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/	MAX 33.40 2.00 37.	240 12.1 10.3 1.4 2.1 0.0 0.2 1.7 0.0 0.2 0.						9.1 0.5		83 0.0	6.7 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		9.5 5.2 0.0 5.0 0.0 0.0 0.0 0.0 0.0			MIN 11.7 0.3 0.0 0.0	4N = 0.0 + 1.8 + 13.2		MAX 04.3 94.0 00.3
		$\int \frac{1}{\sqrt{6}} = \frac$	7382	20.0 0.	0.0 0.0	0.0	0.2 0.0	0.1 0.2	0.0 0.0	9.1 0.5	0.1 5.0	0.5 0.2	0.7 0.1	5.2 17.4	15.4 0.0	0.4 0.1	0.0	SD 242 217 36 90	62 82 134		SD 245 286 258
		/01WK = 55.5	/ 502				I	<u> </u>	<u> </u>	I		<u> </u>	<u> </u>	I	<u>I</u> I		I	50 24.2 21.7 5.0 9.0	0.2 0.2 15.4		50 24.5 20.0 25.0
Laberge Sandstones			O F L															White Yellow Grev Black	Om Op Os		%Mas %Brec %spher
T11-2 (g)vc	S Tanglefoot?	69 19 179 43 3 0 3 57 0 2 125 500 0 21 0 0	521 53.40 #### 9.8	80 7 0 0 0 0 12 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 24 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 43 43 0 0	0 100.0 0.0 0.0 0.0 4	3 25.8 7.1 67.0	Г11-2 19 24	0 43 44.2 55.8 0.0
	0							I	<u> </u>		I	I		1 I		I	I I				

Qm = monocrystalline unstrained quartz Fk = Potasium feldspar

SDEV = standard deviation

Qp = poltcrystalline quartz Fp = plagioclase feldspar Qs = Strained quartz Fm = Microcline

Srf = sedimentary rock fragments Fe = Epimatrix (feldspar replaced by clays)

Mrf = Metamorphic rock fragments Fwk = framework

Mi = Igneous rock fragments See Appendix 3 for chert types

Incation Stratigraphic Unit	Point counts (number of observations)			-																						
Location Stratgraphic Onit	Framework Grains	n1 Cements	n Derived	Chert types																		Fotals	Chert by colour	Om Op Os	Chert Groups	sub
Carmacks area				A rd	B rd C	DE	F	GH	I	J	L	M	O P	Q	R S	Т	U	W	Х	Z A'	В'	W Y G B+R+	G White Yellov Grey Black	% % %	A to K L to T +Z	U to W total <mark>%Mas %Brec %sphe</mark>
Tantalus Conglomerates detailed	Qm Qp Qs Chert Srf Mrf Fig	Fk Fp Fm Fe fwk Voids Hem	n carb Qtz <mark>Q F L</mark>	Wht Yel Gry Blk grn	Wht Yel Gry Blk grn Wht Yel Gry	Blk Wht Yel Gry Blk W	Vht Yel Gry Blk Wht Yel (Gry Blk Wht Yel Gry Blk Wht	t Yel Gry Blk Wht Yel Gry Blk	Wht Yel Gry Blk Wh	t Yel Gry Blk Wht Yel Gry I	Blk Wht Yel Gry Blk Wht Yel Gry	3lk Wht Yel Gry Blk Wht	Yel Gry Blk Wht Yel Gry	y Blk Wht Yel Gry Blk Wht Yel	Gry Blk Wht Yel Gry Blk	Wht Yel Gry Blk V	/ht Yel Gry Blk Wht Yel	Gry Blk Wht Yel Gry Blk	Wht Yel Gry Blk Wht Yel	Gry Blk Wht Yel Gry Blk		<mark>% % % %</mark>	S	ection T1 MASSIVE BRECCIATED	SPHERES
T10-2 0.70 Gm-Gh Tantalus	1 4 4 356 33 6 26	0 0 0 70 500 0 6	2 0 508 <mark>1.8 14.0 84</mark>	4.2 8 7 5 0 74	0 0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0	0 10 0 0 16 0 0 0	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 26 0 0	0 1 0 0 0 0	0 0 0 6	5 121 0 16 7 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0	356 90 128 5 133	<mark>31.9 45.4 1.8 20.9</mark> 356	6 <mark>11.11 44.44 44.44</mark> T	0-2 94 53	209 356 <mark>26.4 14.9 58.7</mark>
T10-4 97.50 Gm	15 14 82 273 0 6 63	0 0 0 47 500 4 20	32 0 556 22.2 9.4 68	8.4 21 50 6 5 0	24 7 0 0 0 0 0 0	0 1 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 5 0 0	0 0 0 0 0 0		0 0 0 0 0	0 0 0 0 18 0	30 1 0 0 0 4 12	0 0 0 4 0 0	1 0 0 17 1	3 26 5 1 7 2	0 0 0 0 0 0	0 0 0 0 0 0		273 85 119 16 53	31.1 43.6 5.9 19.4 273	3 13.51 12.61 73.87 T	0-4 119 77	77 273 43.6 28.2 28.2
113-33 87.50 Gm	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0 0 501 8.4 0.2 91	1.4 6/ 92 13 36 1 5.4 21 20 6 0 0																		411 89 138 130 54	21.7 33.7 31.7 12.9 41	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3-33 232 120	59 411 56.4 29.2 14.4 140 260 28.0 22.2 28.0
T14-24 47.50 Gm	9 2 72 408 0 0 13	0 0 0 0 0 300 3 0 14	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25 20 55 27 34 0										0 0 0 17 20				35 8 6 6 16				104 222 9 23 408 140 156 64 48	$26.9 \ 61.7 \ 2.5 \ 6.9 \ 560$	0 0.01 20.05 72.50 1 8 10 84 2 41 86 75 T	4.24 236 82	140 560 56.9 22.2 56.9 90 408 57.8 20.1 22.1
T17-6 58.00 Gm Tantalus	1 0 28 446 14 0 0	0 0 2 4 510 0 14 0 0 0 11 500 3 14	0 0 517 5.8 2.2 92	2.0 0 1 0 29 0										$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				3 0 0 0 4 70				446 200 100 0 146	44.8 22.4 0.0 32.7 446	6 3.45 0.00 96.55 T	7-6 192 68	186 446 43.0 15.2 41.7
T17-7 59.00 Gm Tantalus	4 5 119 360 5 5 1	0 0 0 1 500 0 7	18 0 525 <mark>25.6 0.2 74</mark>	4.2 32 28 0 0 0	65 6 1 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0	0 0 0 4 0 0 0	0 0 0 0	0 0 0 0 0 0	3 0 0 0 0 0	0 0 0 0 0	0 0 0 11 5 0	6 0 0 0 0 11 3	0 0 0 0 0	0 0 0 39 4	5 60 0 0 8 32	0 0 0 0 0	0 0 0 0 0		360 180 134 1 45	50.0 37.2 0.3 12.5 360	0 <mark>3.13 3.91 92.97</mark> T	7-7 136 39	185 360 <mark>37.8 10.8 51.4</mark>
T17-8 74.10 vcSm Tantalus	7 2 153 313 0 0 13	10 0 0 2 500 0 15	1 0 516 <mark>32.4 2.4 65</mark>	<mark>5.2</mark> 45 63 9 14 0	57 11 6 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0	0 0 0 0 0 0	0 5 14 9 3 3 2 0	0 0 0 0 0	0 0 0 0 0 0	2 0 0 0 0 4 2	17 5 0 0 0 0	0 0 8 12 0	9 0 0 2 8	0 3 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 3	313 116 109 49 39	<mark>37.1 34.8 15.7 12.5</mark> 313	3 <mark>4.32 1.23 94.44</mark> T	7-9 205 66	42 313 <mark>65.5 21.1 13.4</mark>
T17-11 90.00 Gm Tantalus	2 0 39 459 0 0 0	0 0 0 0 500 0 8	19 0 527 <mark>8.2 0.0 91</mark>	1.8 4 52 0 0 0	45 2 0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0	0 29 5 0 0 0 0 0	0 0 0 0 0	0 0 0 10 16 0	5 0 0 0 0 111 9	0 0 0 0 0	0 0 0 4 1	7 48 0 0 25 77	0 0 0 0 0	0 0 0 0 0 0		459 241 209 0 9	<mark>52.5 45.5 0.0 2.0</mark> 459	9 <mark>4.88 0.00 95.12</mark> T	7-11 103 185	171 459 <mark>22.4 40.3 37.3</mark>
T17-12 181.50 Gh Tantalus	1 2 52 434 5 6 0		0 0 508 11.0 0.0 89	9.0 7 54 0 0 0	10 3 5 7 0 0 0 0	0 0 0 0 0 3	0 0 0 0 7 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	7 0 0 0 0	0 0 0 0 0 0	0 9 4 16 0 0 10 0	0 0 0 0 0	0 0 0 0 105 0	0 0 0 0 0 26 0	0 0 0 0 0 0	0 3 0 6 1	2 74 0 0 26 40	0 0 0 0 0 0	0 0 0 0 0 0		434 100 300 21 13	23.0 69.1 4.8 3.0 434	4 1.82 3.64 94.55 T	7-12 103 170	161 434 <mark>23.7 39.2 37.1</mark>
11/-13 194.00 Gh,t Iantalus	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			6.5 13 8/ 8 10 0 0.0 12 25 17 6 0										0 0 0 0 35 0	0 0 0 0 0 26 4			96 0 0 I II				336 58 255 8 15		6 3.66 0.61 95./3 T	7-13 143 75 102 74	118 336 42.6 22.3 35.1 214 200 26.2 10.0 54.0
T17-24 217.00 gSGN Tallalus tr mylonite	1 1 40 390 22 34 4 1 1 81 324 92 0 0		0 0 502 10.0 0.0 90	32 2 9 2 1 0										$\begin{array}{cccccccccccccccccccccccccccccccccccc$				16 0 0 10 7				324 63 171 2 88	19452806272324	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7-24 102 74	214 390 20.2 19.0 $34.959 324 13.0 68.8 18.2$
T17-31 308.00 Gmb Tantalus	2 0 117 375 0 6 0		0 0 501 23.8 0.0 76	6.2 8 5 5 6 0											0 0 0 0 0 64 191			4 0 1 0 80				375 83 280 5 7	22.1 74.7 1.3 1.9 375	5 1.68 0.00 98.32 T	7-31 32 255	88 375 8.5 68.0 23.5
T17-37 321.00 Gh,m Tantalus	5 2 17 470 3 1 0	0 0 0 2 500 0 6	0 0 506 <mark>4.8 0.4 94</mark>	4.8 22 20 1 0 0	10 2 0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 4	0 0 0 0 0 0	0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0	0 0 0 16 0 0	0 0 0 0 0 1 126	0 17 0 0 0 0	0 17 0 34 0	160 0 2 11 27	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 4	470 64 352 1 53	13.6 74.9 0.2 11.3 47 0	0 20.83 8.33 70.83 T	7-37 59 160	251 470 12.6 34.0 53.4
T17-38 334.00 Gm,h Tantalus	0 3 58 385 0 0 50	0 0 0 4 500 0 1	0 1 502 12.2 0.8 87	<mark>7.0</mark> 17 24 1 5 0	107 3 0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	3 0 0 0 0	0 0 0 0 0 0	5 10 0 0 0 0	0 0 0 0 0	0 0 0 0 12 0	0 0 0 0 0 0	0 0 5 0 0 0	0 20 3 2 8	72 0 0 34 47	7 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 3	385 179 188 11 7	<mark>46.5 48.8 2.9 1.8</mark> 385	5 <mark>0.00 4.92 95.08</mark> T	7-38 160 32	193 385 <mark>41.6 8.3 50.1</mark>
T17-39 Gm,h Tantalus	0 1 23 473 0 0 0	0 0 0 3 500 1 14	0 0 515 <mark>4.8 0.6 94</mark>	4.6 27 77 7 8 0	23 0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	9 0 0 0 0	0 0 0 0 0 0	5 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 4	0 0 0 0 0 7 0	3 0 0 0 0 0	0 10 2 1 8	3 19 14 0 63 17	7 46 0 0 0 0	0 36 0 0 0 0		473 222 159 37 55	<mark>46.9 33.6 7.8 11.6</mark> 473	3 <mark>0.00 4.17 95.83</mark> T	7-39 151 55	267 473 <mark>31.9 11.6 56.4</mark>
T18-5 24.00 Gmh Tantalus	5 10 61 317 15 14 59	0 0 0 19 500 0 11	0 0 511 15.2 3.8 81	1.0 18 24 4 19 0	13 1 3 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 1	0 0 0 0 0 0	0 107 12 2 0 0 0 0	0 0 0 0 0	0 0 0 3 46 0	6 0 0 0 8 0	3 0 0 0 0 0	0 10 0 0 1	0 9 0 0 10 2	2 0 0 0 0 0	0 4 0 0 0 0		317 170 108 14 25	53.6 34.1 4.4 7.9 317	7 6.58 13.16 80.26 T	8-5 83 191	43 317 26.2 60.3 13.6
T18-7 37.00 Gm Lantalus	3 0 15 477 0 1 7		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5.8 23 29 9 7 0	26 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0									0 0 0 5 61 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					477 84 377 9 7		7 16.67 0.00 83.33 T	8-7 96 208	173 477 20.1 43.6 36.3 184 488 76 547 377
T18-13 126.00 Gm Tantalus			0 0 502 2.4 0.0 97 0 0 510 390 7.2 53	3 8 80 28 24 8 0						$\begin{array}{cccccccccccccccccccccccccccccccccccc$												+00 +37 +25 +4 +4	52 1 31 0 12 3 4 6 261	0.00 0.00 100.00 1	8-13 183 /9	104 400 7.0 34.7 37.729 261 70.1 18.8 11.1
Sum G	77 97 1435 8116 235 97 244	10 0 2 210 10523 19 144	$72 \ 4 \ AVE \ 15.3 \ 2.1 \ 82$	2.6 462 778 148 192 75	710 184 33 12 0 0 0 0							0 205 187 34 25 8 12 0		22 0 0 355 499 6	69 1 0 0 111 305 388		3 130 19 216 5	28 1009 44 38 295 584				8116	AVE 36.5 47.8 5.7 10.0 AV	E 5.6 8.0 86.5		AVE 34.1 31.0 34.9
%	0.7 0.9 13.6 77.1 2.2 0.9 2.3	0.1 0.0 0.0 2.0 100 0.2 1.3	0.7 0.0 Max 39.0 14.0 97	7.6 5.7 9.6 1.8 2.4 0.9	8.7 2.3 0.4 0.1 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	.0 0.0 0.0 0.0 0.0 0.1 0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.3 0.0 0.1 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0	0.0 2.5 2.3 0.4 0.3 0.1 0.1 0.0	0.2 0.0 0.0 0.0 0.0 0.3	0.3 0.0 0.0 4.4 6.1 0.1	0.9 0.0 0.0 0.0 1.4 3.8 4.8	1.6 0.6 0.3 0.0 0.0 0.0	0.0 1.6 0.2 2.7 6	5 12.4 0.5 0.5 3.6 7.2	0.3 0.6 0.0 0.0 0.0 0.0	0.1 0.6 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	100.0	MAX 93.6 79.0 31.7 32.7 MA	X 20.8 44.4 100.0		MAX 70.1 68.8 58.7
	Sum Q= 15.3 Sum RF= 82.6	Sum F= 2.1 % %	% % <mark>Min 1.8 0.0 53</mark>	3.8 20.4	11.6	0.0 0.0	0.1	0.1 0.0	0.0 0.0	0.4	0.0	0.0 5.6	0.4 0.0	0.6	11.4 1.4	10.7 0.4	4.5	19.9	11.7 0.0	0.7	0.0 0.0		MIN 13.6 4.7 0.0 0.8 MII	N 0.0 0.0 44.4		MIN 7.6 8.3 11.1
		%Fwk =	97.8 n 10762																				SDEV 18.5 19.9 7.7 8.9 SD	EV 5.8 12.8 15.0		SDEV 18.1 18.7 15.6
Tautalus Caudatanas		1 1			1												-			1 1	T					
T17.10 75.30 σ vcS Tantalus	12 2 170 308 0 0 1	6 0 0 1 500 3 21	1 1 526 368 14 61	18 51 80 4 27 0	51 15 7 2 0 0 0 0						2 0 0 0 0 0			0 0 0 0 4 0	5 0 0 0 0 3 5	0 0 2 0 0 0	0 4 0 2 4	5 0 0 9 7	0 2 0 0 0 0			308 124 135 11 38	40 3 43 8 3 6 12 3 308	8 652 109 9239 T	7-10 240 35	33 308 77.9 11.4 10.7
T17-23 215.00 mcSh Tantalus	18 8 161 280 2 3 2	20 0 1 5 500 2 37	0 0 539 37.4 5.2 57	7.4 83 58 23 12 0	26 9 13 0 0 0 0 0													12 1 2 6 8	9 2 0 0 0 0			280 124 90 47 19	44.3 32.1 16.8 6.8 280	0 9.63 4.28 86.10 T	7-23 225 11	44 280 80.4 3.9 15.7
T17-30 307.00 c-vcSh,w Tantalus	15 6 123 339 1 3 4	5 0 0 4 500 0 0	0 0 500 28.8 1.8 69	<mark>9.4</mark> 65 54 28 17 0	22 8 3 0 2 1 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0	0 0 0 1 0 0 0	0 0 0 0	0 0 0 2 6 1 0	0 4 5 0 0 0 0) 1 0 0 0 0	0 0 0 0 3 0	5 3 0 1 1 2 10	0 8 0 0 0 0	0 3 0 2 3	19 2 9 17 19	1 4 0 0 0 0	7 0 0 0 0 0	0 0 0 0 0	339 124 126 41 48	36.6 37.2 12.1 14.2 33 9	9 10.42 4.17 85.42 T	7-30 201 59	79 339 59.3 17.4 23.3
T18-6 32.00 cSm Tantalus	21 2 99 335 7 1 6	2 0 0 27 500 1 22	0 9 532 <mark>24.4 5.8 69</mark>	<mark>9.8</mark> 79 50 24 15 0	30 13 1 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	2 2 0 0 1	0 0 0 0 0 0	0 7 55 1 1 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 1 4	0 0 1 0 0 0	0 0 0 5 5	3 1 8 24 2	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 3	335 150 129 27 29	<mark>44.8 38.5 8.1 8.7</mark> 335	5 <mark>17.21 1.64 81.15</mark> T	8-6 217 70	48 335 <mark>64.8 20.9 14.3</mark>
T18-10 69.00 mcSp Tantalus tr chlorite ceme	nt 14 3 102 361 10 1 5	0 0 0 4 500 0 27	0 22 549 23.8 0.8 75	<mark>5.4</mark> 115 48 21 9 0	76 6 3 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	4 1 0 0 0	0 0 0 0 0 0	0 3 5 0 2 0 0 0) 1 0 0 0 0	0 0 0 2 2 1	0 1 0 0 0 3	1 0 2 0 0 0	1 2 0 0 1	4 12 1 1 19 4	1 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0	361 238 83 28 12	<mark>65.9 23.0 7.8 3.3 36</mark> 1	1 11.76 2.52 85.71 T	8-10 283 23	55 <u>361</u> 78.4 6.4 15.2
Sum S	80 21 655 1623 20 8 18	33 0 1 41 2500 6 107	1 32 AVE 30.2 3.0 66	6.8 393 290 100 80 0	205 51 27 2 2 1 0 0					$\begin{bmatrix} 6 & 3 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			0 51 5 20 75 40				1623	AVE 46.4 34.9 9.7 9.1 AV	E 11.1 2.7 86.2		AVE 72.1 12.0 15.9
%	3.2 0.8 26.2 64.9 0.8 0.3 0.7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0 1.2 Max 37.4 5.8 75	5.4 24.2 17.9 6.2 4.9 0.0		0.0 0.0 0.0 0.0 0.0 0.0 0.0	.0 0.0 0.0 0.0 0.0 0.0 0			0.4 0.2 0.0 0.0 0.1	0.1 0.0 0.0 0.1 0.4 0.1 0	0.0 0.8 4.9 0.4 0.2 0.0 0.0 0.0		0.0 0.0 0.0 0.1 0.6 0.1	1 0.6 0.2 0.0 0.1 0.2 0.6 1.4	0.1 0.5 0.3 0.0 0.0 0.0		8 3.1 0.3 1.2 4.6 2.5	0.7 0.5 0.0 0.0 0.0 0.0	0.4 0.1 0.0 0.0 0.0 0.0		100.0	MAX 65.9 43.8 16.8 14.2 MA	AX 17.2 4.3 92.4		MAX 80.4 20.9 23.3
	Sum Q- 30.2 Sum Ki - 66.6	501111- 5 //0 //0 %Fwk =	945 n = 2646	7.4 33.2	17.7	0.1	0.0	0.0	0.1	0.0	0.2	0.0	0.1	0.0	1.4 0.5	2.5 0.5	1.2	0.5	0.0	0.5	0.0		SDEV 11.4 7.9 5.0 4.3 SD	FV 3 9 1 4 4 0		SDEV 95 72 46
																					l l					
Tangelfoot Conglomerate																										
T17-1 0.00 Gm Tangelfoot volcLithRudite	14 2 18 0 1 0 373	59 33 0 0 500 1 10	0 0 511 <mark>6.8 18.4 74</mark>	<mark>4.8</mark> 00000	0 0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0	<mark>na na na na</mark> 0	<mark>41.18 5.88 52.94</mark> T	7-1 0 0	0 0 <mark>na na na</mark>
T17-2b 5.00 Gt Tangelfoot	132 6 182 0 0 0 0 26 0 205 0 0 0 0	103 0 0 77 500 0 222		0 0 0 0 0		0 0 0 0 0 0		0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0				0 0 0 0 0 0		0 0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0 0			0 0 0 0	<mark>na na na na</mark> 0	41.25 1.88 56.88 T	7-2b 0 0	0 0 <mark>na na na</mark>
T17.4 1.50 Gt Tangelfoot	$26 \ 0 \ 305 \ 0 \ 0 \ 0 \ 32$	134 0 0 3 500 0 40	98 0 638 66.2 27.4 6.4	$\frac{.4}{72}$ 0 0 0 0 0																			na na na na O	7.85 0.00 92.15 T	7-3 0 0	0 0 na na na
T18-4 $>$ -200 Gm Tangelfoot	0 1 59 400 23 17 0		0 0 511 120 00 88									31 79 0 0 0 0 0 0		0 0 0 14 12 0								400 287 95 0 18	71.8 23.8 0.0 4.5 400	0 0 0 1 67 98 33 T	8-4 30 348	22 400 75 870 55
Sum G	186 23 633 400 52 17 463	571 33 0 122 2500 4 288	98 0 AVE 33.7 29.0 37	7.3 20 0 0 6 0										0 0 0 14 12 0	0 0 0 0 0 67 0		0 0 0 12 6						AVE 71.8 23.8 0.0 4.5 AV	<u>E 20.9 4.8 74.3</u>		AVE 7.5 87.0 5.5
%	7.4 0.9 25.3 16.0 2.1 0.7 18.5	22.8 1.3 0.0 4.9 100.0 0.1 10.0	3.4 0.0 Max 66.2 63.4 88	8.0 5.0 0.0 0.0 1.5 0.0	1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	.0 0.0 0.0 0.0 0.0 0.0 0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0	0.0 7.8 19.8 0.0 0.0 0.0 0.0 0.0	0.0 11.3 0.0 0.0 0.0 0.0	0.0 0.0 0.0 3.5 3.0 0.0	0.0 0.0 0.0 0.0 0.0 16.8 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 3.0 1	5 0.0 0.0 0.0 0.0 1.0	0.0 0.0 0.0 0.0 0.0 0.0	25.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0		MAX 71.8 23.8 0.0 4.5 MA	AX 41.3 14.4 98.3		MAX 7.5 87.0 5.5
		% %	% % <mark>Min 6.8 0.0 0.0</mark>	.0 6.5	1.0	0.0 0.0	0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0 27.5	0.0 11.3	0.0	6.5 0.0	16.8 0.0	3.0	1.5	1.0 0.0	25.0	0.0 0.0		MIN 0.0 0.0 0.0 0.0 MII	N 0.0 0.0 52.9		MIN 0 0 0
		%Fwk =	86.5 n = 2890																				SDEV na na na SDI	EV 19.2 5.8 20.4		SDEV na na na
Tangelfoot Em Sandstone		1 1			I		I	I			1			I						1 1						
T18-1 -20.00 vcSm Tangelfoot	55 6 249 0 105 0 2	50 2 0 31 500 0 48	0 0 548 620 166 21	14 0 0 0 0										0 0 0 0 0									pa pa pa pa O	17 74 1 94 80 32 T	8-1 0 0	
T18-3 >-200 g.vcSm Tangelfoot	50 11 228 1 0 0 28	161 11 0 10 500 1 29	0 0 530 57.8 36.4 5.4	.8 0 0 0 0 0						0 0 0 0 0												1 1 0 0 0	100.0 0.0 0.0 0.0 1	17.30 3.81 78.89 T	8-3 1 0	0 1 <u>100.0 0.0</u> 0.0
Sum S	105 17 477 1 105 0 30	211 13 0 41 1000 1 77	0 0 AVE 59.9 26.5 13	3.6																					-	
%	10.5 1.7 47.7 0.1 10.5 0.0 3.0	21.1 1.3 0.0 4.1 100.0 0.1 7.1	0.0 0.0 <mark>Max 62.0 36.4 21</mark>	1.4																						
			Min 57.8 16.6 5.8	.8																						
		%Fwk =	92.8 n = 1078																							

Qm = monocrystalline unstrained quartzFk = Potasium feldsparQp = poltcrystalline quartzFp = plagioclase feldsparQs = Strained quartzFm = Microcline

Srf = sedimentary rock fragments Fe = Epimatrix (feldspar replaced by clays)

Mrf = Metamorphic rock fragments Fwk = framework

SDEV = standard deviation

- Mi = Igneous rock fragments See Appendix 3 for chert types

Location Stratigraphic Unit	Point counts (number of observations)																
Vowel Mt / Braeburn Area	Framework grains n1	Cements n Derived	Chert types									Totals		Chert by colour	Qm Qp Qs Ch	ert Groups	sub
Tantalus Conglomerates detailed	Om Op Os Chert Srf Mrf Fk Fp Fm Fe Fig fwk	Voids Hem carb Otz O F L	Wht Yel Grv Blk grn	B rd C D E Wht Yel Grv Blk grn Wht Yel Grv Blk Wht Yel Grv Blk Wht Yel Grv Blk	Wht Yel Grv Blk	K IL M Wht Yel Grv Blk Wht Yel Grv Blk Wht Yel Grv Blk '	N O Wht Yel Grv Blk Wht Yel Grv Blk	Wht Yel Grv Blk Wht Yel Grv Blk Wht Yel Grv Blk W	Wht Yel Grv Blk Wht Yel Grv Blk W	U Wht Yel Grv Blk V	W X Wht Yel Grv Blk Wht Yel Grv Blk Wht Yel Grv Blk	Z — — — — — — — — — — — — — — — — — — —	VV Y G B+R+G	White Yellow Grey Black	%%%%%	SSIVE BRECCIATED SPHERES	total %Mas %Brec %spher
T1-1 0.25 G	2 0 3 495 0 0 0 0 0 0 500	42 2 0 5 549 <mark>1.00 0.00 99.00</mark>	33 148 5 20 1	19 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 4 0 0 0 0 0 0 0 0	3 0 0 0 0 0 9	0 0 0 0 0 0 0 0 0 40 49 0	0 0 146 39 0 0 0 0 0	0 0 0 0	0 3 0 0 0 0 0 0 0 0 0	0 8 0 0 0 0 0 0 0 0 0 544	55 176 191 122	10.1 32.4 35.1 22.2	495 <mark>40.00 0.00 60.00</mark> T1-1 24	7 294 3	544 <mark>45.4 54.0 0.6</mark>
T1-11 58.60 G		5 0 0 3 508 0.00 0.00 100.00 21 70 0 0 (01 2.80 0.00 07.20					0 0 0 145 0 0 0 0				$\frac{1}{2}$ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 510	343 10 0 157 187 200 0 0	67.3 2.0 0.0 30.8 28.5 (1.5 0.0 0.0	500 0.00 0.00 0.00 T1-11 26	3 149 93 262 157	510 52.5 29.2 18.2 486 126 541 222
T1-16 135.00 G	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15 46 0 561 0.20 0.00 97.20 0.00 99.80 0.00	3 14 0 0 0							0 10 0 0 9	297 0 0 0 0 0 0 0 0 0		475 24 0 0	95.2 4.8 0.0 0.0	406 7.14 92.06 0.00 11-15 66 499 100.00 0.00 0.00 T1-16 25	73 401	400 13.0 54.1 52.3 499 5.0 14.6 80.4
T1-18 202.50 G	12 0 8 480 0 0 0 0 0 0 500	51 27 0 0 578 <mark>4.00 0.00 96.00</mark>	20 12 3 1 0	17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	83 69 0 0 0 0 0 0 11 0 0 0	17 0 0 0 0 0 0 0		0 0 0 0 0 0 0	0 91 0 36 4	4 129 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 493	152 301 3 37	30.8 61.1 0.6 7.5	480 <mark>60.00 0.00 40.00 </mark> T1-18 20	5 28 260	493 <mark>41.6 5.7 52.7</mark>
T1-20 269.80 G	3 0 5 395 97 0 0 0 0 0 500 0 1 7 102 0 0 0 0 0 0 500	4 32 0 0 536 1.60 0.00 98.40 21 1 0 0 532 1.60 0.00 98.40	6 163 0 0 0 22 0 0 0 0								23 0 68 0 0 0 0 0	D O	200 186 9 0	50.6 47.1 2.3 0.0	395 37.50 0.00 62.50 T1-20 16 402 0.00 12.50 87.50 T1.20 14	9 135 91	395 42.8 34.2 23.0 402 8.0 8.0 2.0
T1-23 422.00 G	1 0 4 297 198 0 0 0 0 0 0 500	21 1 0 0 522 1.60 0.00 $98.402 8 0 1 511 1.00 0.00 99.00$	22 0 0 0 0 0 28 7 0 9 0									$\begin{array}{cccccccccccccccccccccccccccccccccccc$	492 0 0 0 131 157 0 9	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	492 0.00 12.50 87.50 11-23 44 297 20.00 0.00 80.00 T1-27 70	433 IS 191 35	492 8.9 88.0 3.0 296 23.6 64.5 11.8
T1-28 625.00 G	3 2 6 452 35 0 0 0 2 0 500	7 7 0 0 514 2.20 0.40 97.40	42 5 0 7 0				127 0 0 0 0 0 0 0			0 0 0 3	34 11 0 173 0 0 0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	392 17 0 43	86.7 3.8 0.0 9.5	452 <mark>27.27 18.18 54.55</mark> T1-28 71	163 218	452 15.7 36.1 48.2
T1-29 740.00 G	1 6 4 489 0 0 0 0 0 0 0 500	29 45 0 574 2.20 0.00 97.80	1 0 0 13 102	5 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 50 0 0 0	48 14 0 0 0 0 0 0		0 0 0 0 0 0 0 0	0 0 0 1		0 0 0 0 0 0 0 0 0 0 0 489	354 20 0 115	91.5 5.2 0.0 3.4	489 9.09 54.55 36.36 T1-29 12	7 112 250	489 26.0 22.9 51.1
17-5 51.50 Gh(t) T7-6 64.00 Ct	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 58 53 0 624 0.98 0.00 99.02 16 8 0 0 524 2.80 0.00 97.20	71 29 19 1 0 8 7 1 3 0	9 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$80 338 42 43 \\ 342 22 17 63$	15.9 67.2 8.3 8.5 77.0 5.0 3.8 14.2	503 20.00 0.00 80.00 17-5 13 444 42 86 14 29 42 86 17-6 13	5 66 301 I 10 303	503 27.0 13.1 59.8 444 29.5 2.3 68.2
T7-7 84.50 Gm	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 0 0 0 505 1.60 0.00 98.40	21 14 14 4 0	28 5 0					0 0 318 0 0 0 0 0	0 0 0 0 1	18 37 5 2 2 8 0 0 0 0 0 0		79 68 19 324	16.1 13.9 3.9 66.1	490 25.00 37.50 37.50 T7-7 86	332 72	490 17.6 67.8 14.7
T7-16 305.00 Gh,m	2 7 20 471 0 0 0 0 0 0 500	7 33 0 0 540 <mark>5.80 0.00 94.20</mark>	14 142 7 3 0	45 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 88 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0 3 8 0 0 6	6 0 0 0 0 0 0 1	1 10 2 14 5	52 32 0 0 33 0 0 0 0 0 0 0	4 0 0 0 0 0 0 0 0 0 0 0 471	246 199 9 17	52.2 42.3 1.9 3.6	471 <mark>6.90 24.14 68.97</mark> T7-16 21	3 109 144	471 <mark>46.3 23.1 30.6</mark>
T7-16b 305.00 Gh,m	1 0 25 488 0 0 0 0 0 0 0 514 5 6 5 465 10 0 0 0 0 0 514	26 69 0 0 609 5.06 0.00 94.94	8 9 8 3 0								0 8 0 174 5 0	0 0 0 0 0 0 0 0 488 0 6 0 0 0 0 0 0 0 465	268 207 10 3 277 53 0 26	54.9 42.4 2.0 0.6	488 3.85 0.00 96.15 T7-16b 41	258 189	488 8.4 52.9 38.7 465 486 41 47.2
T8-9 1306.00 Gm	$12 \ 2 \ 16 \ 492 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 500$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	13 7 0 1 0								3 1 3 0 39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		412 9 3 68	83.7 1.8 0.6 13.8	465 31.25 37.30 31.25 16-5 22 492 40.00 6.67 53.33 T8-9 11	3 328 46	465 46.6 4.1 47.5 492 24.0 66.7 9.3
T9-4 189.00 Gm Tantalus	26 37 213 162 2 0 36 2 0 22 0 500	2 19 3 0 524 <mark>55.20 12.00 32.80</mark>	3 22 3 11 0	25 3 13 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 4 0 5 1 6 2	0 0 0 0 0 0 0	0 0 0 0 0 0 3 0 0 0 0	0 0 0 0 0 0 0 2	2 2 0 0 3	3 22 2 11 0 0 19 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 162	38 50 47 27	23.5 30.9 29.0 16.7	162 <mark>9.42 13.41 77.17</mark> T9-4 80	21 61	162 <mark>49.4 13.0 37.7</mark>
T9-6 204.45 Gh Tantalus	24 23 168 236 6 0 30 2 1 10 0 500	1 39 24 0 564 <mark>43.00 8.60 48.40</mark>	17 16 1 43 0	38 3 1 0 0 0 0 0 0 0 0 0		0 0 0 0 9 0 0 1 0 0 0	0 0 0 0 0 0 0			10 0 0 21 4	46 10 0 6 2 0	D 0 0 0 0 0 0 0 236	123 36 2 75	52.1 15.3 0.8 31.8	236 11.16 10.70 78.14 T9-6 11	9 22 95	236 50.4 9.3 40.3
19-8 297.50 Gt Iantalus	27 16 157 206 0 5 62 0 2 25 0 500 7 28 18 447 0 0 0 0 0 0 500	0 26 0 0 526 40.00 17.80 42.20 8 2 0 2 512 10.60 0.00 89.40	22 20 7 1 0 81 65 14 14 0							$\begin{array}{cccccccccccccccccccccccccccccccccccc$		5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 206	120 57 7 22 267 135 21 24	58.3 27.7 3.4 10.7 59.7 30.2 4.7 5.4	206 13.50 8.00 78.50 19-8 13 447 13.21 52.83 33.96 T9-13 23	5 17 53 6 45 163	206 66.0 8.3 25.7 447 53.5 10.1 36.5
T9-14 604.50 Gm Tantalus	3 3 23 471 0 0 0 0 0 0 0 500	1 23 0 524 512 10.00 0.00 94.20	63 30 0 4 0	76 28 22 0			9 0 0 0 0 0 0 0			0 0 0 0 1	159 3 0 0 22 11 0 0 0 0 0 0	5 0 0 0 0 0 0 0 0 0 0 0 0 471	336 109 22 4	71.3 23.1 4.7 0.8	471 10.34 10.34 79.31 T9-14 22	3 53 195	471 47.3 11.3 41.4
T9-17 705.00 Gm Tantalus	5 7 29 458 1 0 0 0 0 0 500	2 15 0 2 519 <mark>8.20 0.00 91.80</mark>	18 12 3 22 0	21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 12 0 0	0 0 0 0 0 0 0		0 0 0 0 0 0 0 1	19803	321 16 0 0 13 0 0 1 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 458	375 49 11 23	81.9 10.7 2.4 5.0	458 <mark>12.20 17.07 70.73</mark> T9-17 76	13 369	458 <mark>16.6 2.8 80.6</mark>
T9-20 808.40 Gm Tantalus	3 4 29 460 4 0 0 0 0 0 500 4 2 20 4(4 0 0 0 0 0 500	4 0 0 0 504 7.20 0.00 92.80 2 27 0 0 520 7.20 0.00 02.80	23 22 10 6 0 24 10 10 12 0	48 2 0 1 0			46 0 0 0 0 0 0 0			7 5 0 0 7	73 17 0 4 148 30 0 0 0 0 0 0 0 0 0 0 0 0 0	3 0 0 0 0 0 0 0 0 0 0 0 460 5 12 0 0 0 0 0 0 0 0 460	359 80 10 11	78.0 17.4 2.2 2.4	460 8.33 11.11 80.56 T9-20 11	2 64 284	460 24.3 13.9 61.7
T9-22 899.00 Gm Tantalus	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 27 0 0 529 7.20 0.00 92.80 2 55 0 1 560 8.96 0.00 91.04 0.00	17 0 0 1 0								75 37 8 3 110 15 9 0 0 0 0 0 0	3 48 0 0 0 0 0 0 0 0 0 0 0 0 464	255 114 41 54 315 125 5 1	70.6 28.0 1.1 0.2	464 11.11 0.33 00.36 19-22 14 446 8.89 22.22 68.89 T9-23 10	3 54 270 3 164 173	464 30.2 11.6 58.2 446 24.4 36.8 38.8
T9-25 1090.75 Gm Tantalus	3 1 10 426 0 0 0 0 0 0 13 453	9 6 35 0 503 <mark>3.09 0.00 96.91</mark>	11 12 2 2 0			0 0 0 0 0 0 0 41 0 0 0	0 0 0 0 29 0 0 0		7 79 0 39 0 0 0 0 3	3 4 0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	211 164 10 41	49.5 38.5 2.3 9.6	426 <mark>21.43 7.14 71.43</mark> T9-25 14	3 203 75	426 34.7 47.7 17.6
T9-26 1120.00 Gh Tantalus	7 1 25 499 0 0 0 0 0 0 0 532	3 15 0 0 550 <mark>6.20 0.00 93.80</mark>	26 23 8 66 12	65 12 0 1 0		0 0 0 0 0 0 0 0 43 0 0	0 0 0 0 0 0 0		0 15 0 0 0 0 0 1	1 7 0 17 1	112 6 43 0 41 0 1 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 499	245 106 52 96	50.3 21.8 10.7 17.2	499 <mark>21.21 3.03 75.76</mark> T9-26 21	3 58 228	499 42.7 11.6 45.7
T9-29 1242.00 Gm Tantalus	1 5 19 455 20 0 0 0 0 0 500 5 1 4 490 0 0 0 0 0 0 0 500	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	53 36 24 16 0 27 12 17 14 0	$\begin{bmatrix} 31 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0$							56 65 25 7 14 67 0 7 0 0 0 0 0 0 0	0 2 14 0 0 0 0 0 0 0 455 11 0 0 0 0 0 0 0 0 480	177 185 63 30	38.9 40.7 13.8 6.6 42.4 22.1 2.0 10.6	455 4.00 20.00 76.00 T9-29 17 490 50.00 10.00 40.00 T9.20 12	5 25 254 1 106 249	455 <u>38.7</u> 5.5 55.8 489 27.4 21.7 50.9
T9-31 1330.40 Gm Tantalus	1 2 4 512 0 0 0 0 0 0 0 500 1 2 4 512 0 0 0 0 0 0 0 0 0	0 35 0 0 554 1.35 0.00 98.60	7 10 4 4 0							$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		185 314 9 4	36.1 61.3 1.8 0.8	512 14.29 28.57 57.14 T9-31 30	132 350	469 27.4 21.7 50.9 512 5.9 25.8 68.4
T9-32 1414.80 Gm Tantalus	6 2 15 496 4 0 0 0 0 0 523	2 7 0 0 532 <mark>4.40 0.00 95.60</mark>	24 39 36 32 0	89 14 3 2 0 0 0 0 0 0 0 11 0 0 0 0	0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 5 2 0 0	0 0 0 0 2 0 0 0	0 0 0 0 9 0 0 0 0 8 0 0	0 7 0 0 3 0 0 3	3 12 13 24 3	35 17 13 24 2 62 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 496	177 153 73 93	35.7 30.8 14.7 18.8	496 <mark>26.09 8.70 65.22</mark> T9-32 25	5 36 205	496 <mark>51.4 7.3 41.3</mark>
T9-33 1461.20 Gm Tantalus	1 4 13 482 0 0 0 0 0 500	0 22 0 0 522 3.60 0.00 96.40	28 12 27 0 0	59 1 1 0		0 0 0 0 0 0 0 0 11 0 0 0		3 75 135 0 60 25 0 <td>0 0 0 1 0 0 1</td> <td>1 1 0 2 6</td> <td>5 0 1 0 8 22 0</td> <td>D 0 0 0 0 0 0 0 482</td> <td>120 171 189 2</td> <td>24.9 35.5 39.2 0.4</td> <td>482 5.56 22.22 72.22 T9-33 13</td> <td>) 311 41</td> <td>482 27.0 64.5 8.5</td>	0 0 0 1 0 0 1	1 1 0 2 6	5 0 1 0 8 22 0	D 0 0 0 0 0 0 0 482	120 171 189 2	24.9 35.5 39.2 0.4	482 5.56 22.22 72.22 T9-33 13) 311 41	482 27.0 64.5 8.5
L3-85 Indet Gm Fantalus 6 clay cem.	43 17 236 141 2 0 51 0 0 7 3 500 223 206 1139 14789 433 15 179 4 3 66 16 17073	0 3 31 0 542 59.20 11.60 29.20 309 763 146 15 AVE 7.68 1.18 91.14	16 14 2 2 0 916 956 234 326 115	$\begin{bmatrix} 20 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & $		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 0 0 0 0 0 0 0 570 175 0 169 31 0 0 9	$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 &$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 25 0 0 2 49 322 39 149 1	2 5 0 0 2 14 5 0 4 0 0 0 1768 1184 135 198 1629 402 34 8 4 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	66 61 7 7 8166 4157 900 1637 4	46.8 43.3 5.0 5.0	141 14.53 5.74 79.73 L3-85 66	17 54	1 37 48.2 12.4 39.4 47.6 32.8 27.8 39.4
Fwk % Clay	1.3 1.2 6.7 86.6 2.5 0.1 1.0 0.0 0.0 0.4 0.1 100.0	1.7 4.2 0.8 0.1 MAX 55.20 17.80 100.00	6.2 6.5 1.6 2.2 0.8	8.9 1.5 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1		0.6 0.5 0.0 0.0 0.1 0.0 0.0 0.0 7.8 0.7 0.0 0.0	3.9 1.2 0.0 1.1 0.2 0.0 0.0 0.1	1.3 0.5 0.9 0.2 0.6 0.5 0.2 0.9 0.0 1.3 0.3 0.3 0	0.1 0.8 1.0 2.7 0.0 0.0 0.0 0.0 0.1	0.3 2.2 0.3 1.0 1	12.0 8.0 0.9 1.3 11.0 2.7 0.2 0.1 0.0 0.0 0.0 0.0	0.2 1.7 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	N 100 4107 500 1007	Max 100.0 67.2 39.2 66.1	Max 100.0 92.9 96.2		Max 66.0 88.0 80.6
0.03		% % % <mark>MIN 0.00 0.00 32.80</mark>	17.2	10.8 0.0 0.1 0.2	0.0 0.2 0.1 1.6 0.0	1.1 0.1 8.5	6.2 0.3	2.9 2.3 2.0	4.6 0.1	3.8	22.2 14.0 0.0	2.2 0.0 0.0	N	Min 10.1 0.0 0.0 0.0	Min 0.0 0.0 0.0		Min 5.0 2.3 0.6
	Fwk = 93.2	18306 <u>15.36 4.25 19.32</u>	SDEV										S	SDEV 24.1 19.3 9.8 13.1	SDEV 20.2 19.7 25.3		SDEV 16.0 23.5 21.2
Tantalus Fm Sandstones		Q F L												White Yellow Grey Black	<mark>Qm Qp Qs</mark>		%Mas %Brec %spher
T1-7 13.95 S	106 28 95 238 0 2 15 1 0 15 0 500	0 14 0 23 537 45.80 6.20 48.00	105 60 4 5 0	27 15 1 0 0 0 2 1 0 0 0 2 0			0 0 0 0 0 1 0		0 0 1 5 0 0 0	0 0 0 2	2 2 0 0 0 0 0 0 0 0 0 0	D 0 0 0 0 0 0 0 236	141 79 6 10	59.7 33.5 2.5 4.2	46.29 12.23 41.48 T1-7 22	5 7 4	236 95.3 3.0 1.7
T1-12 65.30 S T1-24 427.00 S	15 52 15 345 4 0 2 0 1 9 0 443 20 18 79 375 6 0 0 0 2 0 500	2 10 0 9 464 18.51 2.71 78.78 18 3 0 2 523 23 40 0 40 76 20	112 47 22 16 0										207 108 19 11 280 57 22 16	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17.09 15.38 67.52 T1-24 33	23 6 3 5 33	345 91.6 6.7 1.7 371 898 13 89
T7-11 mfSm	35 16 52 380 5 0 0 0 0 0 488	95 4 0 24 611 21.11 0.00 78.89	98 69 14 31 0	108 12 3 4 0					1 0 0 0 2 0 0 0 0		23 5 0 2 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 380	236 90 17 37	62.1 23.7 4.5 9.7	380 33.98 15.53 50.49 T7-11 34) 10 30	380 <mark>89.5 2.6 7.9</mark>
T7-13 221.00 cSh	21 12 65 403 2 0 0 0 0 0 503	17 11 0 13 544 <mark>19.48 0.00 80.52</mark>	98 59 25 27 0	137 14 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0	0 0 0 0 0 0 0 6 2 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 3	3 0 0 0 0 0 0 1	1 0 0 1 1	7 2 1 2 0 0 0 0 0 0 0 0	D 0 0 0 0 0 0 0 0 0 0 0 403	264 77 30 32	65.5 19.1 7.4 7.9	403 <mark>21.43 12.24 66.33 </mark> T7-13 36	3 11 24	403 <mark>91.3 2.7 6.0</mark>
T8-6 mSm T9-7 234.00 (pbl)vcSm Tantalus	25 14 52 409 0 0 0 0 0 0 500 15 27 166 195 0 5 82 0 0 6 4 500	5 28 0 4 537 <u>18.20</u> 0.00 <u>81.80</u> 3 18 0 1 522 <u>41.60</u> <u>17.60</u> <u>40.00</u>	156 76 50 24 0 18 26 7 5 31	$\begin{bmatrix} 60 & 7 & 0 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0$									239 91 51 28	58.4 22.2 12.5 6.8 40.9 26.8 26.8 5.5	409 27.47 15.38 57.14 T8-6 37	5 6 26	408 92.2 1.5 6.4 195 63.1 22.1 14.9
T9-10 467.70 mSt Tantalus	48 36 95 179 10 5 27 0 0 97 3 500	6 35 32 0 573 35.80 24.80 39.40	31 18 8 6 0	69 24 0 3 0					5 0 0 0 0 0 0 0 0	0 0 4 1			115 42 9 13	64.2 23.5 5.0 7.3	179 26.82 20.11 53.07 T9-10 15	9 5 15	179 88.8 2.8 8.4
T9-18 743.40 McSm Tantalus	13 4 62 406 2 4 0 0 0 9 0 500	7 7 0 9 523 <mark>15.80 1.80 82.40</mark>	122 41 18 20 0	134 16 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 1 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 1	1 0 0 0 0 0 0 2	2 0 0 2 1	9 3 3 1 16 4 0 0 0 0 0 0	1 0 0 0 0 0 0 0 0 0 0 406	296 64 23 23	72.9 15.8 5.7 5.7	406 <mark>16.46 5.06 78.48</mark> T9-18 35	3 3 50	406 <mark>86.9 0.7 12.3</mark>
L3-76 856.00 pbl-vcSm Tantalus	36 3 110 340 0 1 8 0 4 0 502 334 310 701 3370 30 17 134 1 143 7 4036	0 25 0 0 527 29.68 2.39 67.93	71 28 22 4 5						4 4 4 0 0 0 0 0 0 17 5 4 1 22 0 0 0 2		53 17 5 0 3 20 0 2 0 0 0 17 52 15 5 12 25 0 2 0 0 0		193 83 45 19	57.6 24.8 13.4 4.2	340 24.16 2.01 73.83 L3-76 21	1 24 105	340 62.1 7.1 30.9
Sum S Fwk%	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.9 2.9 0.6 1.6 MAX 45.8 24.8 82.4	27.3 15.1 5.6 4.5 1.1	332 130 28 19 0 0 0 2 1 0 0 1 2 0 0 1 2 0 </td <td></td> <td>0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 1.0 0.2 0.0 0.0</td> <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td></td> <td>17 3 4 1 23 0 0 0 3 0.5 0.2 0.1 0.0 $0.7 0.0 0.0 0.0 0.$</td> <td>5 6 1 13 1 0.1 0.2 0.0 0.4 5</td> <td>1/4 33 13 3 23 25 0 2 0<!--</td--><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>2036 733 266 229 7</td><td>Max 74.7 33.5 26.8 9.7</td><td>Max 46.3 63.4 79.8</td><td></td><td>Max 95.3 22.1 30.9</td></td>		0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 1.0 0.2 0.0 0.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		17 3 4 1 23 0 0 0 3 0.5 0.2 0.1 0.0 $0.7 0.0 0.0 0.0 0.$	5 6 1 13 1 0.1 0.2 0.0 0.4 5	1/4 33 13 3 23 25 0 2 0 </td <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>2036 733 266 229 7</td> <td>Max 74.7 33.5 26.8 9.7</td> <td>Max 46.3 63.4 79.8</td> <td></td> <td>Max 95.3 22.1 30.9</td>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2036 733 266 229 7	Max 74.7 33.5 26.8 9.7	Max 46.3 63.4 79.8		Max 95.3 22.1 30.9
		MIN 15.80 0.00 39.40	53.6	30.9 0.1 0.1 0.1	0.0 0.0 0.0 0.2 0.8	0.1 0.1 1.2	0.2 0.0	0.0 0.1 1.1	0.9 0.7	0.8	8.0 1.7 0.1	0.0 0.0 0.1	A	Vin 40.9 15.2 2.5 3.2	Min 7.2 2.0 18.3		Min 62.1 0.7 1.7
	Fwk= 92.1	Total 5361 10.7 8.6102 17.8104	4 SDEV										S	SDEV 9.3 6.0 7.2 2.0	SDEV 10.8 17.0 19.0		SDEV 12.1 6.3 8.4
Tangelfoot Fm Conglomerate		Q F L												White Yellow Grey Black	<mark>Qm Qp Qs</mark>		%Mas %Brec %spher
L3-40 4.80 Gm Tangelfoot	63 16 129 0 0 6 173 16 0 7 90 500	2 96 3 0 601 41.60 39.20 19.20	0 0 0 0 0				0 0 0 0 0 0 0						0 0 0 0	na na na na	0 <u>30.29</u> 7.69 62.02 L3-40 0	0 0	0 <mark>na na na</mark>
L3-2 599.00 gGm Tangelfoot / clay cem.	29 7 331 0 0 0 127 0 0 8 0 502 69 5 268 0 0 3 128 0 0 21 6 500													na na na na na na na na	0 7.90 1.91 90.19 L3-2 0 0 20.18 1.46 78.36 L3-61 0		0 na na na 0 na na na
L3-71 681.00 Gm Tangelfoot 51 org C 30 clay	18 8 340 0 0 84 0 3 42 5 500	0 0 0 0 500 73.20 25.80 1.00											0 0 0 0	na na na na	0 4.92 2.19 92.90 L3-71 0	0 0	0 na na na
Sum G	179 36 1068 0 9 512 16 3 78 101 2002	5 198 126 1 AVE 64.08 30.42 5.50	0 0 0 0 0			0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0	0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0		Ave 15.8 3.3 80.9		
Fwk% Clay = 124	8.9 1.8 53.3 0.0 0.0 0.4 25.6 0.8 0.1 3.9 5.0 100.0	0.2 8.0 5.1 0.0 MAX 73.20 39.20 19.20 MIN 41.60 25.80 0.00	0.0 0.0 0.0 0.0 0.0			0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0			Max 30.3 7.7 92.9		
Organics = 30	Fwk= 80.5	Total w clay 2486 15.15 6.09 9.16	SDEV	0.0 0.0		0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0 0.0			SDEV 11.7 2.9 14.1		
1.2																	
Tangelfoot Fm Sandstone																	
T9-1 30.25 vc-cSm Tanglefoot	40 29 287 23 15 0 85 1 3 17 0 500	5 8 19 3 535 <mark>71.20 21.20 7.60</mark>	11 2 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0			0 0 0 0	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 23	15 8 0 0	65.2 34.8 0.0 0.0	23 <mark>11.24 8.15 80.62 </mark> T9-1 17	6 0	23 <mark>73.9 26.1 0.0</mark>
19-2 120.00 (g)vcSt Tanglefoot	89 10 229 7 44 0 66 2 1 52 0 500 54 5 205 1 2 1 171 22 2 2 2 500	$\begin{array}{cccccccccccccccccccccccccccccccccccc$													7 27.13 3.05 69.82 T9-2 2 1 20.45 1.80 77.65 1.3.30 0	0 5	7 28.6 0.0 71.4
L3-42 56.50 c-vcSt Tangelfoot	85 17 161 0 3 187 26 0 5 16 500	4 31 2 0 537 52.60 43.60 3.80												na na na na	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0	0 na na na
L3-45 208.00 vcSm Tangelfoot	67 12 183 0 3 8 169 14 0 31 13 500	0 40 16 1 557 <mark>52.40 42.80 4.80</mark>	0 0 0 0 0			0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0			0 0 0 0			0 0 0 0	na na na na	0 <mark>25.57 4.58 69.85</mark> L3-45 0	0 0	0 <mark>na na na</mark>
L3-48 350.00 c-vcSm Tangelfoot 15 clay cem.	68 7 170 0 1 13 181 22 6 20 14 502 70 0 1 13 181 22 6 20 14 502	0 10 12 0 539 48.80 45.62 5.58											0 0 0 0	na na na na	0 <u>27.76</u> <u>2.86</u> <u>69.39</u> L3-48 0	0 0	0 <mark>na na na</mark>
L3-51 411.00 C-VCSM Langelfoot 17 clay cem.	70 9 172 1 1 4 179 32 3 10 21 502 68 10 136 0 0 5 190 57 4 10 22 502	7 20 3 0 545 50.00 44.62 5.38 0 11 0 3 518 42.63 51.99 5.38 51.99 51.												100.0 0.0 0.0 0.0 na na na na	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1 100.0 0.0 0.0 0 na na na
L3-55 502.00 g-vcSm Tangelfoot 19 clay cem	89 11 143 0 0 3 178 28 2 9 37 500	0 4 1 0 524 <mark>48.60 43.40 8.00</mark>											0 0 0 0	na na na na	0 <mark>36.63 4.53 58.85</mark> L3-55 0	0 0	0 <mark>na na na</mark>
L3-56 575.00 g-vcSm Tangelfoot 18 clay cem.	87 9 159 0 0 2 181 28 8 9 19 502	1 26 16 0 563 <mark>50.80 45.02 4.18</mark>	0 0 0 0 0				0 0 0 0 0 0 0		0 0 0 0 0 0 0 0	0 0 0 0	0 0 0 0 0 0 0 0 0 0 0		0 0 0 0	na na na na	0 34.12 3.53 62.35 L3-56 0	0 0	0 <mark>na na na</mark>
L3-75 812.50 g-vcSt Tangelfoot 65 clay cem/epi	44 11 324 0 0 96 0 4 23 0 502 54 11 370 0 2 0 57 0 0 8 0 502	$\begin{array}{cccccccccccccccccccccccccccccccccccc$												na na na na	0 11.61 2.90 85.49 L3-75 0 12.41 2.53 85.06 L3.77 0	0 0	0 <mark>na na na</mark>
L3-80 859.00 mcSr Tangelioot 77 clav	129 14 189 16 0 1 65 0 17 1 432	0 158 160 0 827 76.85 18.98 4.17	3 1 0 1 0										13 1 0 2	81.3 6.3 0.0 12.5	16 <mark>38.86 4.22 56.93</mark> L3-77 0	2 1	16 <mark>81.3 12.5 6.3</mark>
Sum S	944 155 2728 48 69 40 1805 233 33 214 175 6444	41 430 327 17 <mark>AVE 59.57 35.28 5.14</mark>	14 3 0 1 0			0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0		2 0 0 0 1 0 0 0	0 0 0 6	5 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 48	37 9 0 2 A	Ave 89.3 8.2 0.0 2.5	Ave 26.0 4.1 69.9		56.7 27.7 15.5
Fwk% Clay = 213	14.6 2.4 42.3 0.7 1.1 0.6 28.0 3.6 0.5 3.3 2.7 100.0	0.5 5.8 4.4 0.2 MAX 86.65 51.99 10.20	29.2 6.3 0.0 2.1 0.0	20.8 0.0 0.0 2.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12.5 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		4.2 0.0 0.0 0.0 2.1 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 1	12.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	N	Max	Max 38.9 8.1 85.5		
2.9	Fwk= 86.2	MIN 42.63 12.95 0.00 Total w clay 7472 13.83 12.85 2.86	SDEV	22.9 0.0 0.0 0.0	0.0 0.0 0.0 8.3	0.0 0.0 12.5	0.0	0.0 0.0 0.0	4.2 2.1	0.0	12.5 0.0 0.0	0.0 0.0 0.0	N S	SDEV	SDEV 9.4 1.7 9.6		

Location	Stratigraphic Unit Point counts (number of observations)													
	Lithology n1 Cements n Derived	A rd	B rd C	D E F	IG H II II K			T U	V W X Z	A' B' Totals W Y G B+R+G	Chert by colour White Yellow Grev Black	QmQpQsChert Groups%%%A to KL to	sub T+7 U to W total <mark>%Mas %Brec</mark>	Non-chert lithic ratios
Tantalus Fm Conglomerate	e detailed Qm Qp Qs Chert Srf Mrf Fk Fig Fk Fp Fm Fe fwk Voids Hem carb Qtz Q F	L Wht Yel Gry Blk grn	Wht Yel Gry Blk grn Wht Yel Gry Bl	Blk Wht Yel Gry Blk Wht Yel Gry Blk Wht Yel Gry Blk	Wht Yel Gry Blk Wht Yel Gry Blk Wht Yel Gry Blk Wht Yel Gry Blk Wht	Yel Gry Blk Wht Yel Gry Blk Wht Yel Gry Blk Wht Yel Gr	ry Blk Wht Yel Gry Blk Wht Yel Gry Blk Wht Yel Gry Blk Wht Yel Gry Blk Wht Yel	Gry Blk Wht Yel Gry Blk Wht Yel Gry B	Wht Yel Gry Blk Wht Yel Gry Blk Wht Yel Gry Blk Wht Yel Gry Blk	Wht Yel Gry Blk Wht Yel Gry Blk	% % % %	MASSIVE BRE	CCIATED SPHERES	Met Ig Sed
T2-3 T3-1a 0.00	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	93.7 221 8 0 0 0 95.8 85 25 0 0 0	176 10 0			0 0 0 0 0 0 0 21 0 0 0 0 0 0 0 0 0 0 0 0			18 0 0 0 0 0 0 0 0 0 0 0 55 28 0 0 27 0 0 0 0 0 0 0 0 0	0 0 0 2 0 0 473 455 18 0 0 0 0 0 0 482 407 75 0	96.2 3.8 0.0 0.0 473 84.4 15.6 0.0 0.0 482	43.75 12.50 43.75 T2-3 415 21 33.33 23.81 42.86 T3-1a 334 38	35 471 <mark>88.1 4.5</mark> 110 482 693 79	7.4 na na na 22.8 na na na
T19-14 70.00	Gm Tantalus 27 24 172 230 0 11 23 11 0 13 500 1 5 33 1 540 44.60 4.80	50.60 10 9 11 8 0	30 1 1 1 0			0 0 0 0 0 0 0 11 22 0 2 0 0 0			0 38 5 1 20 12 1 2 0 0 0 0 4 0 0 0	0 0 0 0 0 0 102 107 79 88 25 38	34.3 38.3 10.9 16.5 230	12.11 10.76 77.13 T19-14 78 48	104 230 <mark>33.9 20.9</mark>	45.2 0.0 100.0 0.0
T19-23 91.60	Gh Tantalus 0 0 51 393 31 0 10 0 0 15 500 0 3 5 0 508 10.20 3.00 Ch Tantalus 0 18 25 247 81 21 0 0 0 8 500 0 6 0 0 506 160	86.80 11 1 0 14 0							8 28 0 0 0 37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 393 259 110 0 24 0 0 0 0 0 0 247 147 88 27 85	65.9 28.0 0.0 6.1 393	0.00 0.00 100.00 T19-23 123 187	83 393 <mark>31.3 47.6</mark> 220 247 121 210	21.1 0.0 24.4 75.6 66.0 20.6 0.0 79.4
T19-29 92.40 T19-59 217.00	Gin Tantalus 0 10 23 347 01 21 0 <th>86.60 13 8 0 1 0</th> <th></th> <th></th> <th></th> <th>0 0 0 0 0 0 0 15 10 0 0 0 0 0</th> <th>0 0 0 0 0 81 0 0 38 0 0 0 0 0 13 5</th> <th></th> <th>6 0 0 26 0 0 0 0 0 0 0 0 85 88 0 0</th> <th>0 0<th>35.2 57.0 1.2 6.6 409</th><th>7.41 0.00 92.59 T19-29 42 76 7.41 0.00 92.59 T19-59 34 338</th><th>37 409 8.3 82.6</th><th>9.0 0.0 100.0 0.0</th></th>	86.60 13 8 0 1 0				0 0 0 0 0 0 0 15 10 0 0 0 0 0	0 0 0 0 0 81 0 0 38 0 0 0 0 0 13 5		6 0 0 26 0 0 0 0 0 0 0 0 85 88 0 0	0 0 <th>35.2 57.0 1.2 6.6 409</th> <th>7.41 0.00 92.59 T19-29 42 76 7.41 0.00 92.59 T19-59 34 338</th> <th>37 409 8.3 82.6</th> <th>9.0 0.0 100.0 0.0</th>	35.2 57.0 1.2 6.6 409	7.41 0.00 92.59 T19-29 42 76 7.41 0.00 92.59 T19-59 34 338	37 409 8.3 82.6	9.0 0.0 100.0 0.0
T19-60 224.00	SGh Tantalus 18 16 176 150 3 4 33 38 33 8 0 54 500 5 1 0 1 507 42.00 19.00	39.00 22 21 9 10 0	10 5 5 0 2 0 0 0 0 10 1 12 2 2 0 0 0 0			0 0 0 0 0 0 4 0 0 1 0 0 0				D 0 0 0 0 0 150 45 47 17 41 D </th <th>30.0 31.3 11.3 27.3 150</th> <th>8.57 7.62 83.81 T19-60 87 17</th> <th>46 150 <mark>58.0 11.3</mark></th> <th>30.7 8.9 84.4 6.7 14.6 14.6 10.0 10.0</th>	30.0 31.3 11.3 27.3 150	8.57 7.62 83.81 T19-60 87 17	46 150 <mark>58.0 11.3</mark>	30.7 8.9 84.4 6.7 14.6 14.6 10.0 10.0
05W-62 05W-69	gG 9 1 33 387 1 38 0 0 0 0 31 500 0 11 38 0 0 539 34.60 10.80	54.60 32 45 7 4 0 85.20 18 8 5 6 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			4 21 3 1 17 16 0 0 0 0 0 0 0 0 0 0 18 10 0 0 85 12 0 0 0 0 0 26 0	0 0 0 0 0 0 0 0 0 0 232 88 106 24 14 0 0 0 0 0 0 0 0 387 245 97 5 40	63.3 25.1 1.3 10.3 387	8.67 10.40 80.92 05W-62 125 38 20.93 2.33 76.74 05W-69 126 125	136 387 <u>32.6 32.3</u>	29.7 14.6 85.4 0.0 35.1 97.4 0.0 2.6
05W-80	gG 10 11 186 226 7 2 2 24 2 2 0 42 512 0 0 0 3 515 40.43 8.98	50.59 36 16 7 6 0	8 6 12 3 0 0 0 0 0		0 0 0 0 0 0 0 0 2 0 0 1 1 0 0 0	0 0 0 0 0 0 7 5 0 2 0 0 0	0 0 0 0 0 0 0 0 0 7 0 8 0 0 0 2 0 0	0 12 0 0 0 0 0 0 0 4	7 17 0 11 19 5 0 0 0 0 0 0 13 9 0 0	0 0 0 0 0 0 0 0 226 91 68 19 48	40.3 30.1 8.4 21.2 226	4.83 5.31 89.86 05W-80 98 65	63 226 <mark>43.4 28.8</mark>	27.9 6.1 72.7 21.2
05W-81 05W-82	gG 2 2 130 308 6 7 13 8 13 4 0 22 502 0 11 0 0 513 26.69 7.77 gG 29 1 205 148 0 0 42 16 42 3 0 56 500 1 55 0 3 559 47.00 20.20	65.54 18 24 6 4 0 32.80 25 9 2 2 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 0 0 0 308 146 131 16 15 0 0 0 0 0 148 107 23 10 8	47.4 42.5 5.2 4.9 308 72.3 15.5 6.8 5.4 148	1.49 1.49 97.01 05W-81 82 77 12.34 0.43 87.23 05W-82 81 16	149 308 26.6 25.0 51 148 54.7 10.8	48.4 33.3 38.1 28.6 34.5 0.0 100.0 0.0
T6-1 231.00	Gm 11 16 71 321 76 0 11 0 0 0 506 0 5 0 1 512 19.37 0.00	78.46 38 43 4 11 0	53 46 9 2 0		5 0 4 0 0 0 0 0 0 2 2 0 0 0 0 0 0	0 0 0 0 0 0 0 0 20 0 0 2 3		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 31 8 15 0 0 0 0 0 0 0 0 6 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<u>31.5 46.7 10.6 11.2</u> 321	11.2 16.3 72.4 T6-1 219 36	62 317 <mark>69.1 11.4</mark>	19.6 0.0 12.6 87.4
T6-3 97.00	Gm 8 13 16 401 56 0 6 0 0 0 500 0 5 0 0 500 0 5 0 0 500 0 5 0 0 500 10 12 0 0 522 17 20 0 20 10 12 0 0 522 17 20 0 20 10 12 0 0 522 17 20 0 20 10 12 0 0 522 17 20 0 20 10 12 0 0 522 17 20 0 20 10 12 0 0 522 17 20 0 20 <th>91.40 35 14 4 4 0 82.60 131 0 0 0</th> <th>19 5 0</th> <th></th> <th></th> <th>0 0 0 0 2 0 0 4 24 0 0 0 0 0 0 0 0 0 0 0</th> <th></th> <th></th> <th>0 245 5 32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th> <th>0 0 0 0 0 0 401 59 292 9 41 0 0 0 0 0 0 358 357 1 0</th> <th>14.7 72.8 2.2 10.2 401 99.7 0.3 0.0 0.0 358</th> <th>21.6 35.1 43.2 T6-3 82 32 2.3 19.8 77.9 T11-10 151 123</th> <th>287 401 20.4 8.0 84 358 42.2 34.4</th> <th>71.6 0.0 9.7 90.3 23.5 0.0 0.0 100.0</th>	91.40 35 14 4 4 0 82.60 131 0 0 0	19 5 0			0 0 0 0 2 0 0 4 24 0 0 0 0 0 0 0 0 0 0 0			0 245 5 32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 401 59 292 9 41 0 0 0 0 0 0 358 357 1 0	14.7 72.8 2.2 10.2 401 99.7 0.3 0.0 0.0 358	21.6 35.1 43.2 T6-3 82 32 2.3 19.8 77.9 T11-10 151 123	287 401 20.4 8.0 84 358 42.2 34.4	71.6 0.0 9.7 90.3 23.5 0.0 0.0 100.0
T11-11 157.00	Gm 1 4 21 429 13 3 0 0 0 10 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 12 12 12 <th12< th=""></th12<>	93.01 23 10 2 3 0	9 1 1 0 0 0 0 0			0 0 0 0 0 0 8 1 0 0 0 0			1 93 0 2 151 0 0 124 0 0 0 0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	44.8 24.5 0.7 30.1 429	3.8 15.4 80.8 T11-11 49 9	371 429 <mark>11.4 2.1</mark>	86.5 6.0 68.0 26.0
T11-12 240.00	Gm 2 3 56 385 31 9 0 0 0 14 500 7 3 36 0 546 12.20 2.80 Cm 6 3 158 297 28 2 0 0 0 6 500 25 18 0 0 543 134 120	85.00 32 24 11 6 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0 0 0 0 0 0 0 20 2 8 0 7 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	35 14 5 35 11 31 0 3 0 0 0 5 4 0 6 1 51 0 0 25 0 8 0 0 0 0 0 0	0 0 0 0 0 0 385 162 101 44 78 0 0 0 0 0 0 297 69 165 4 59	42.1 26.2 11.4 20.3 385 23.2 55.6 1.3 19.9 297	3.3 4.9 91.8 T11-12 127 100 3.6 1.8 94.6 T11.14/40 152 14	158 385 <mark>33.0 26.0</mark> 131 297 51.2 4.7	41.0 22.5 0.0 77.5 44.1 6.7 0.0 93.3
T15-1	Gin G	88.64 14 3 1 8 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0 0 0 0 0 0 0 0 0 186 8 0 0 0 0		0 16 0 0 0 0 0 0 0 7	7 27 0 6 17 0 4 0	0 0 0 0 0 0 237 03 103 4 35 0 0 0 0 0 0 316 37 235 9 35	<u>11.7 74.4 2.8 11.1 316</u>	0.0 4.8 95.2 T15-1 38 210	68 316 <u>12.0</u> 66.5	21.5 0.0 100.0 95.5
T16-1 79.00	Sm 4 11 56 430 0 0 5 0 0 3 509 5 5 3 0 522 13.95 0.59 Cm 0 11 73 273 0 26 0 0 0 10 503 4 15 0 3 524 18.53 1.00	85.46 76 32 2 6 0	22 1 0 0 0 0 0 0 0 25 2 1 0 0 0 0 0 0			0 0 0 0 0 0 0 3 0 0 0 0 0 0	0 0 0 0 0 0 0 0 64 0 0 0 0 0 0 18 5		24 29 15 4 111 7 0 <th>D 0 0 0 0 0 430 319 74 17 20 D D D D D D D 273 174 104 23 73</th> <th>74.2 17.2 4.0 4.7 430</th> <th>5.6 15.5 78.9 T16-1 139 91 0.7 11.8 78.5 T16.2 130 57</th> <th>200 430 <mark>32.3 21.2</mark></th> <th>46.5 0.0 100.0 0.0 47.5 100.0 0.0 0.0</th>	D 0 0 0 0 0 430 319 74 17 20 D D D D D D D 273 174 104 23 73	74.2 17.2 4.0 4.7 430	5.6 15.5 78.9 T16-1 139 91 0.7 11.8 78.5 T16.2 130 57	200 430 <mark>32.3 21.2</mark>	46.5 0.0 100.0 0.0 47.5 100.0 0.0 0.0
T16-3 164.00	Gin 9 11 75 0 26 0 0 0 10 502 14 15 0 524 10.55 1.99 Gm 0 2 15 467 15 0 0 0 0 1 500 2 6 0 1 509 3.40 0.20	96.40 11 6 4 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$							$\begin{array}{cccccccccccccccccccccccccccccccccccc$	46.9 51.8 0.9 0.4 46 7	0.0 11.8 88.2 T16-3 23 442	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	47.5 100.0 0.0 0.0 0.4 0.0 0.0 100.0
T16-4 192.50	Gm-Gh 3 5 32 415 39 0 0 0 0 6 500 9 10 0 1 520 8.00 1.20	90.80 47 50 9 14 0	27 1 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 11 0 0 2	0 0 0 0 0 0 2 0 0 0 0 0 0	0 0 0 0 0 138 0 0 0 42 0 0 0 0 0 0 0 5		3 3 0 13 4 42 0	D 0 0 0 0 0 415 276 101 11 27 D	66.5 24.3 2.7 6.5 415	7.5 12.5 80.0 T16-4 161 189 12.5 26.4 716.5 26.4 15	65 415 <mark>38.8 45.5</mark>	15.7 0.0 0.0 100.0
T16-8 361.10	Gm 0 3 19 348 59 0 0 571 0 0 0 1000 1 7 0 0 1008 2.20 0.00 Gm 0 1 7 134 0 3 0 352 0 0 0 3 500 1 0 0 0 501 1.60 0.60	97.80 50 168 15 11 0 97.80 34 51 3 6 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$							0 0 0 0 0 0 348 142 168 21 1/ 0 0 0 0 0 0 134 64 55 8 7	40.8 48.3 6.0 4.9 348 47.8 41.0 6.0 5.2 134	0.0 13.6 86.4 116-5 264 15 0.0 12.5 87.5 T16-8 113 12	69 348 75.9 4.3 9 134 84.3 9.0	19.8 0.0 90.6 9.4 6.7 0.8 99.2 0.0
T10-2 0.70	Gm-Gh Tantalus 1 4 4 356 33 6 0 26 0 0 0 70 500 0 6 2 0 508 1.8 14.0	84.2 8 7 5 0 74	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 10 0 16 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 26 0 0	0 1 0 0 0 0 0 0 0 0	65 121 0 16 7 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 356 90 128 5 133	<mark>31.9 45.4 1.8 20.9</mark> 356	11.11 44.44 44.44 T10-2 94 53	209 356 <mark>26.4 14.9</mark>	58.7 9.2 40.0 50.8
T10-4 97.50 T13-33 87.50	Gm Tantalus 15 14 82 273 0 6 0 63 0 0 47 500 4 20 32 0 556 22.2 9.4 Gm Tantalus 1 16 24 411 46 0 0 0 1 500 0 1 0 0 501 8.4 0.2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 0 0 0 273 85 119 16 53 0 0 0 0 0 0 411 89 138 130 54	<u>31.1 43.6 5.9 19.4 273</u> 21.7 33.7 31.7 12.9 411	13.51 12.61 73.87 T10-4 119 77 4.76 38.10 57.14 T13-33 232 120	77 273 <mark>43.6 28.2</mark> 59 411 56.4 29.2	28.2 8.7 91.3 0.0 14.4 0.0 0.0 100.0
T13-37	$ gGm \qquad Tantalus \qquad 1 33 89 360 0 17 0 0 0 0 0 0 500 5 0 0 0 505 24.6 0.0 $	75.4 21 30 6 0 0	20 60 3 0 0 0 0 0			0 0 0 0 0 0 0 0 14 0 0 0 0 0	0 0 0 0 0 0 0 0 21 12 0 19 0 0 0 0 0 0	0 14 0 0 0 17 0 0	25 8 0 6 3 81 0 0 0 0 0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28.9 61.7 2.5 6.9 360	0.81 26.83 72.36 T13-37 140 80	140 360 <mark>38.9 22.2</mark>	38.9 100.0 0.0 0.0
T14-24 47.50	Gm Tantalus 9 2 72 408 0 0 13 0 0 2 4 510 0 14 0 1 525 16.3 1.2 Gm Tantalus 1 0 28 446 14 0 0 0 11 500 3 14 0 0 517 5 8 2	82.5 20 55 27 34 0	58 33 6 3 0 0 0 0 0 156 6 0 0 0 0 0 0 0				0 0 0 0 0 0 0 0 0 17 2 0 0 0 0 0 22 10 14 0 0 0 0 0 0 0 0 0 23 0 0 0 0 0 16 0		2 35 8 6 16 7 0 0 0 0 0 0 18 0 0 0 4 70 0 0 0 0 0 0 0	0 0 0 0 0 0 408 140 156 64 48 0 0 0 0 0 0 446 200 100 0 146	34.3 38.2 15.7 11.8 408 44.8 22.4 0.0 32.7 446	10.84 2.41 86.75 T14-24 236 82 3.45 0.00 96.55 T17.6 192 68	90 408 57.8 20.1 186 446 43.0 15.2	22.1 0.0 100.0 0.0 41.7 0.0 0.0 100.0
T17-7 59.00	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	74.2 32 28 0 0	65 6 1 0 0 0 0 0 0				$\begin{array}{cccccccccccccccccccccccccccccccccccc$		46 60 0 0 8 32 0 0 0 0 0 0 0 0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50.0 37.2 0.3 12.5 360	3.13 3.91 92.97 T17-7 136 39	185 360 <mark>37.8 10.8</mark>	51.4 6.0 6.0 100.0 51.4 45.5 9.1 45.5
T17-8 74.10	vcSm Tantalus 7 2 153 313 0 0 13 10 0 2 500 0 15 1 0 516 32.4 2.4 Cm Tantalus 2 0 39 459 0 0 0 0 0 0 8 19 0 527 8.2 0.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	57 11 6 0 0 0 0 0 0 45 2 0 0 0 0 0 0 0			0 0 0 0 0 0 0 5 14 9 3 3 2 0	0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 4 2	7 5 0 0 0 0 0 8 1.	0 9 0 0 2 8 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 313 116 109 49 39 0 0 0 0 0 0 459 241 209 0	37.1 34.8 15.7 12.5 313	4.32 1.23 94.44 T17-9 205 66 4.88 0.00 95.12 T17.11 103 185	42 313 65.5 21.1 171 459 22.4 40.3	13.4 0.0 100.0 0.0 37.3 p2 p2 p2
T17-12 181.50	Gin Tantalus 2 0 39 0 <t< th=""><th>89.0 7 54 0 0 0</th><th>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</th><th></th><th></th><th>0 0 0 0 0 0 0 0 0 29 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 4 16 0 0 10 0</th><th></th><th></th><th>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</th><th>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</th><th>23.0 69.1 4.8 3.0 434</th><th>1.82 3.64 94.55 T17-12 103 170</th><th>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</th><th>37.3 11a 11a 11a 37.1 54.5 0.0 45.5</th></t<>	89.0 7 54 0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0 0 0 0 0 0 0 0 0 29 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 4 16 0 0 10 0			$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23.0 69.1 4.8 3.0 434	1.82 3.64 94.55 T17-12 103 170	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	37.3 11a 11a 11a 37.1 54.5 0.0 45.5
T17-13 194.00	Gh,t Tantalus 6 1 157 336 0 1 0 0 507 1 1 0 0 32.3 1.2 rSCh Tantalus 1 1 48 300 32 34 0 0 0 0 500 1 1 0 0 502 100 00	66.5 13 87 8 10 0	12 9 0 0 0 0 0 0 0 11 21 0 0 0 0 0 0 0						5 96 0 1 11 0 0 0 0 0 5 0 0 10 102 4 4 51 25 0<	D 0 0 0 0 0 336 58 255 8 15 D D D D D D D 111 244 22 12	17.3 75.9 2.4 4.5 336	3.66 0.61 95.73 T17-13 143 75 2.00 2.00 06.00 T17.24 102 74	118 336 <mark>42.6 22.3</mark>	35.1 100.0 0.0 0.0 54.0 56.7 6.7 26.7
T17-24 217.00 T17-27 252.00	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	83.2 2 9 2 1 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				0 0 0 0 0 23 22 0 0 5 76 0 0 0 0 85 0 6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 0 0 0 0 390 111 244 23 12 0 0 0 0 0 0 324 63 171 2 88	19.4 52.8 0.6 27.2 324	1.20 1.20 97.59 T17-24 102 74 1.20 1.20 97.59 T17-27 42 223	59 324 13.0 68.8	54.9 56.7 6.7 56.7 18.2 0.0 0.0 100.0
T17-31 308.00	Gmh Tantalus 2 0 117 375 0 6 0 0 0 0 1 0 0 123.8 0.0	76.2 8 5 5 6 0	8 0 0 0 0 0 0 0			0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 64 191		3 4 0 1 0 80 0	D 0 0 0 0 0 375 83 280 5 7	22.1 74.7 1.3 1.9 375	1.68 0.00 98.32 T17-31 32 255 1.68 0.00 98.32 T17-31 32 255	88 375 <mark>8.5 68.0</mark>	23.5 100.0 0.0 0.0
T17-37 321.00 T17-38 334.00	Gh,m Iantalus 5 2 1/ $4/0$ 3 1 0 0 0 2 500 0 6 0 0 506 4.8 0.4 Gm,h Tantalus 0 3 58 385 0 0 50 0 0 4 500 0 1 0 1 502 12.2 0.8	94.8 22 20 1 0 0 87.0 17 24 1 5 0	10 2 0 0 0 0 0 0 0 107 3 0 0 0 0 0 0 0					$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 160 0 2 11 27 0 <th>0 0 0 0 0 0 4/0 64 352 1 53 0 0 0 0 0 0 385 179 188 11 7</th> <th>13.6 74.9 0.2 11.3 470 46.5 48.8 2.9 1.8 385</th> <th>20.83 8.33 /0.83 11/-37 59 160 0.00 4.92 95.08 T17-38 160 32</th> <th>251 4/0 12.6 34.0 193 385 41.6 8.3</th> <th>53.4 25.0 0.0 75.0 50.1 0.0 100.0 0.0</th>	0 0 0 0 0 0 4/0 64 352 1 53 0 0 0 0 0 0 385 179 188 11 7	13.6 74.9 0.2 11.3 470 46.5 48.8 2.9 1.8 385	20.83 8.33 /0.83 11/-37 59 160 0.00 4.92 95.08 T17-38 160 32	251 4/0 12.6 34.0 193 385 41.6 8.3	53.4 25.0 0.0 75.0 50.1 0.0 100.0 0.0
T17-39	Gm,h Tantalus 0 1 23 473 0 0 0 0 3 500 1 14 0 0 515 4.8 0.6	94.6 27 77 7 8 0	23 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0	0 0 0 0 0 0 5 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 7 0	0 0 0 0 0 0 10 2 1	88 19 14 0 63 17 7 46 0 0 0 0 36 0 0	0 0 0 0 0 0 0 0 473 222 159 37 55	46.9 33.6 7.8 11.6 473	0.00 4.17 95.83 T17-39 151 55	267 473 <mark>31.9 11.6</mark>	56.4 na na na
T18-5 24.00 T18-7 37.00	Gmh Tantalus 5 10 61 317 15 14 0 59 0 0 0 11 0 0 511 15.2 3.8 Gm Tantalus 3 0 15 477 0 1 0 0 3 506 0 6 0 2 514 3.6 0.6	81.0 18 24 4 19 0 95.8 23 29 9 7 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0 0 0 0 0 0 0 0 107 12 2 0 0 0 0 0 0 0 0 0 0 0 6 111 0 0 0 0 0			$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 0 0 0 317 170 108 14 25 0 0 0 0 0 0 477 84 377 9 7	53.6 34.1 4.4 7.9 317 17.6 79.0 1.9 1.5 477	6.58 13.16 80.26 T18-5 83 191 16.67 0.00 83.33 T18-7 96 208	43 317 26.2 60.3 173 477 20.1 43.6	13.6 15.9 67.0 17.0 36.3 12.5 87.5 0.0
T18-9 58.00	Gm Tantalus 0 0 12 488 0 0 0 0 0 0 0 0 0 2 0 0 2.4 0.0	97.6 15 8 4 4 0	4 0 0 0 0 0 0 0 0				0 0 0 0 0 0 0 0 266 0 0 0 0 0 0 0 0 0 0		168 0 0 1 14 0 0 0 0 0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	93.6 4.7 0.8 0.8 488	0.00 0.00 100.00 T18-9 37 267	184 488 <mark>7.6 54.7</mark>	37.7 na na na
T18-13 126.00	Gm Tantalus 11 0 184 261 0 0 8 0 0 36 500 0 10 0 39.0 7.2 G Tantalus 1 0 184 261 0 0 0 0 36 500 0 10 0 0 39.0 7.2 G Tantalus 2 0 3 495 0 0 0 0 500 42 2 0 5 549 1.00 0.00	53.8 80 28 24 8 0	34 2 3 0						7 8 2 2 7 2 1 0	0 0 0 0 0 0 261 136 81 32 12 0 0 0 0 0 0 544 55 176 191 122	52.1 31.0 12.3 4.6 261 10.1 32.4 35.1 22.2 495	5.64 0.00 94.36 T18-13 183 49	29 261 70.1 18.8 3 544 454 540	11.1 0.0 100.0 0.0 0.6 pa pa pa
T1-11 58.60	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	100.00 7 4 0 0 0	4 1 0 0 0 0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					93 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	67.3 2.0 0.0 30.8 500	0.00 0.00 0.00 T1-11 247 254 0.00 0.00 0.00 T1-11 268 149	93 510 <mark>52.5 29.2</mark>	18.2 na na na
T1-15 124.60	G Tantalus 1 13 0 486 0 0 0 0 0 0 0 500 31 70 0 0 601 2.80 0.00	97.20 28 0 0 0 0 99.80 3 14 0 0 0	22 16 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0			0 0 0 0 0 0 0 102 0 0 0 0 161 0			20 26 0	0 0 0 0 0 0 486 187 299 0 0 0 0 0 0 0 499 475 24 0	38.5 61.5 0.0 0.0 486	7.14 92.86 0.00 T1-15 66 263 100.00 0.00 0.00 T1-16 25 73	157 486 <mark>13.6 54.1</mark> 401 499 50 14.6	32.3 na na na
T1-18 202.50	$ G \qquad \text{Tantalus} \qquad \qquad 12 0 8 480 0 0 0 0 0 0 0 0 500 13 40 0 0 501 0.20 0.00 0 0 0 0 0 0 0 0$	96.00 20 12 3 1 0	17 0 0 0 0 0 0 0 0			69 0 0 0 0 0 11 0 0 17 0			4 129 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30.8 61.1 0.6 7.5 480	60.00 0.00 40.00 T1-18 205 28	260 493 <mark>41.6 5.7</mark>	52.7 na na na
T1-20 269.80	G Tantalus 3 0 5 395 97 0 0 0 0 0 0 0 500 4 32 0 0 536 1.60 0.00	98.40 6 163 0 0 0				0 0 0 0 0 0 0 126 0 0 0 0 0 0 0 0 0 0 0 0 0 372 0 0 0 61 0 0			0 23 0 0 68 0 0 0 0 0 0 0 0 0 9 0	0 0 0 0 0 395 200 186 9 0 0 0 0 0 0 0 492 492 0 0	50.6 47.1 2.3 0.0 395 100.0 0.0 0.0 100 1	37.50 0.00 62.50 T1-20 169 135 0.00 12.50 87.50 T1-23 44 433	91 395 <mark>42.8 34.2</mark> 15 492 89 880	23.0 0.0 0.0 100.0 3.0 p2 p2 p3
T1-25 422.00 T1-27 545.00	G Tantalus 1 0 1 7 1492 0 0 0 0 0 0 0 0 0 0 0 21 1 0 0 0 0 0 0	99.00 28 7 0 9 0	22 0 0 0 0 0 0 0 23 3 0 0 0 0 0 0 0			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			34 1 0	1 0 0 0 0 0 0 0 0 1 492 492 0 0 0 1 0 0 0 0 0 0 0 297 131 157 0 9	44.1 52.9 0.0 3.0 297	20.00 0.00 80.00 T1-25 44 455 20.00 0.00 80.00 T1-27 70 191	35 296 23.6 64.5	11.8 0.0 0.0 100.0
T1-28 625.00	G Tantalus 3 2 6 452 35 0 0 0 0 2 500 7 7 0 0 514 2.20 0.40 C Tantalus 1 6 4 480 0 0 0 0 0 20 45 0 0 574 2.20 0.40	97.40 42 5 0 7 0 07.80 1 0 0 12 102				0 0 0 0 0 0 0 0 0 0 0 127 0 0			34 11 0 173 0 <th>0 0 0 0 0 0 452 392 17 0 43 0 0 0 0 0 0 115 115</th> <th>86.7 3.8 0.0 9.5 452</th> <th>27.27 18.18 54.55 T1-28 71 163 0.00 54.55 26.36 T1.20 127 112</th> <th>218 452 <mark>15.7 36.1</mark></th> <th>48.2 0.0 0.0 100.0 51.1 no no no no</th>	0 0 0 0 0 0 452 392 17 0 43 0 0 0 0 0 0 115 115	86.7 3.8 0.0 9.5 452	27.27 18.18 54.55 T1-28 71 163 0.00 54.55 26.36 T1.20 127 112	218 452 <mark>15.7 36.1</mark>	48.2 0.0 0.0 100.0 51.1 no no no no
T7-5 51.50	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	97.80 1 0 0 13 102 99.02 71 29 19 1 0	9 0 7 0 0 0 0 0 0				24 0	0 0 5 0 0 0 0 14 0	0 267 2 0 0 18 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 469 534 20 0 115 0 0 0 0 0 0 503 80 338 42 43	15.9 67.2 8.3 8.5 5 03	20.00 0.00 80.00 T7-5 136 66	301 503 27.0 13.1	59.8 na na na
T7-6 64.00	Gt Tantalus 6 2 6 444 42 0 0 0 0 500 16 8 0 0 524 2.80 0.00 Grave Tantalus 2 2 2 0 0 0 0 0 16 8 0 0 524 2.80 0.00	97.20 8 7 1 3 0	89 15 1 1 <mark>6</mark> 0 0 0 0						244 0 15 44 0 <th>D 0 0 0 0 0 444 342 22 17 63 D<</th> <th>77.0 5.0 3.8 14.2 444</th> <th>42.86 14.29 42.86 T7-6 131 10</th> <th>303 444 <mark>29.5 2.3</mark></th> <th>68.2 0.0 0.0 100.0 14.7 0.0 0.0 100.0</th>	D 0 0 0 0 0 444 342 22 17 63 D<	77.0 5.0 3.8 14.2 444	42.86 14.29 42.86 T7-6 131 10	303 444 <mark>29.5 2.3</mark>	68.2 0.0 0.0 100.0 14.7 0.0 0.0 100.0
T7-16 305.00	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	98.40 21 14 14 4 0 94.20 14 142 7 3 0	45 7 0 0 0 0 0 0 0 0						$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	52.2 42.3 1.9 3.6 4 71	23.00 37.30 37.30 17-7 86 332 6.90 24.14 68.97 T7-16 218 109	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30.6 na na na
T7-16b 305.00	Gh,m Tantalus 1 0 25 488 0 0 0 0 0 514 26 69 0 609 5.06 0.00	94.94 8 9 8 3 0	7 6 0 0 0 0 0 0			0 0 0 0 0 0 79 0 0 0 0 0 0			0 8 0 0 174 5 0 0 0 0 0 0 0 0 0 0	D 0 0 0 0 0 488 268 207 10 3 D<	54.9 42.4 2.0 0.6 488	3.85 0.00 96.15 T7-16b 41 258	189 488 <mark>8.4 52.9</mark>	38.7 na na na
T8-9 1306.00	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	96.80 111 40 9 11 0 94.25 13 7 0 1 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			45 0 15 158 0 0 0 0 0 0 0 0 0 0 0 3 1 3 0 39 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	81.1 11.4 1.9 5.6 465 83.7 1.8 0.6 13.8 492	31.25 37.30 31.25 16-5 226 19 40.00 6.67 53.33 T8-9 118 328	46 492 24.0 66.7	9.3 na na na
T9-4 189.00	Gm Tantalus 26 37 213 162 2 0 36 2 0 22 500 2 19 3 0 52.4 55.20 12.00	32.80 3 22 3 11 0	25 3 13 0 0 0 0 0 0 20 1 0 0 0 0 0 0			0 0 0 0 4 0 5 1 6 2 0 0 0		0 0 0 0 0 2 2 0 0	3 22 2 11 0 0 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	D 0 0 0 0 0 162 38 50 47 27 D </th <th>23.5 30.9 29.0 16.7 162</th> <th>9.42 13.41 77.17 T9-4 80 21</th> <th>61 162 49.4 13.0</th> <th>37.7 0.0 0.0 100.0 100.2 0.0 100.0 100.0</th>	23.5 30.9 29.0 16.7 162	9.42 13.41 77.17 T9-4 80 21	61 162 49.4 13.0	37.7 0.0 0.0 100.0 100.2 0.0 100.0 100.0
19-6204.45T9-8297.50	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	48.40 17 16 1 43 0 42.20 22 20 7 1 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0 0 0 9 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0		$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0 0 0 0 0 0 236 123 36 2 75 0 0 0 0 0 0 206 120 57 7 22	52.1 15.3 0.8 31.8 236 58.3 27.7 3.4 10.7 206	11.16 10.70 78.14 19-6 119 22 13.50 8.00 78.50 T9-8 136 17	53 236 <u>50.4 9.3</u> 53 206 <u>66.0 8.3</u>	40.3 0.0 0.0 100.0 25.7 100.0 0.0 0.0
T9-13 555.70 T0.14 60.450	Gm-Gh Tantalus 7 28 18 447 0 0 0 0 0 500 8 2 0 2 512 10.60 0.00	89.40 81 65 14 14 0	59 5 1 0 0 0 0 0 0 77 20 20 20 20 20 20 20 20 20 20 20 20 20			0 0 0 0 0 0 21 0 0 7 0 0		0 0 0 0 0 2 0 0 8	24 51 6 2 64 6 0 0 0 0 7 2 0 0 150 2 64 6 0 0 0 0 7 2 0 0	D 0 0 0 0 0 447 267 135 21 24 D	59.7 30.2 4.7 5.4 447	13.21 52.83 33.96 T9-13 239 45 10.24 10.24 50.21 50.21 50.21 50.21	163 447 <mark>53.5 10.1</mark>	36.5 na na na
19-14604.50T9-17705.00	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	94.20 63 30 0 4 0 91.80 18 12 3 22 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0 0 0 0 0 0 0 0 0 37 0 0 9 0 0 0 0 0 0 0 0 0 0 12 0 0 0 0 0			$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 0 0 0 0 4/1 336 109 22 4 0 0 0 0 0 0 458 375 49 11 23	81.9 10.7 2.4 5.0 458	10.34 10.34 79.31 19-14 223 53 12.20 17.07 70.73 T9-17 76 13	47.3 11.3 369 458 16.6 2.8 2.8 16.6 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8	41.4 na n
T9-20 808.40	Gm Tantalus 3 4 29 460 4 0 0 0 0 0 500 4 0 0 504 7.20 0.00	92.80 23 22 10 6 0	48 2 0 1 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 1 4 0 0 46 0 0	0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0	0 0 0 0 0 7 5 0 0	73 17 0 4 148 30 0 0 0 0 0 0 3 0 0 0	0 0 0 0 0 0 0 460 359 80 10 11	78.0 17.4 2.2 2.4 460	8.33 11.11 80.56 T9-20 112 64	284 460 <mark>24.3 13.9</mark>	61.7 0.0 0.0 100.0
19-22899.00T9-231000.20	Gm Tantalus 4 3 29 464 0 0 0 0 0 0 0 0 500 2 27 0 0 529 7.20 0.00 Gm Tantalus 4 10 31 446 1 10 0 0 0 0 0 0 502 2 55 0 1 560 8.96 0.00	92.80 34 10 10 12 0 91.04 17 0 0 1 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$						75 37 8 3 110 15 9 0 0 0 0 0 0 5 12 0 9 29 5 0 111 19 0 0 0 0 0 0 3 48 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	55.0 24.6 8.8 11.6 464 70.6 28.0 1.1 0.2 446	11.11 8.33 80.56 19-22 140 54 8.89 22.22 68.89 T9-23 109 164	270 464 30.2 11.6 173 446 24.4 36.8	58.2 na na na 38.8 90.9 0.0 9.1
T9-25 1090.75	Gm Tantalus 3 1 10 426 0 0 13 0 0 0 0 453 9 6 35 0 503 3.09 0.00	96.91 11 12 2 2 0	120 1 0 0 0 0 0 0 0				0 29 0 0 0 0 0 0 0 0 0 0 0 0 0 7 79	39 0 0 0 3 4 0 0	0 41 0 0 0 27 0 0 0 0 0 0 8 0	0 0 0 0 0 0 0 0 426 211 164 10 41	49.5 38.5 2.3 9.6 426	21.43 7.14 71.43 T9-25 148 203	75 426 34.7 47.7	17.6 0.0 100.0 0.0
19-261120.00T9-291242.00	Gh Iantalus 7 1 25 499 0 0 0 0 0 0 0 532 3 15 0 0 550 6.20 0.00 Gm Tantalus 1 5 19 455 20 0 0 0 0 0 0 0 500 0 7 0 1 508 500 0.00	93.80 26 23 8 66 12 95.00 53 36 24 16 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					$\begin{array}{cccccccccccccccccccccccccccccccccccc$	112 6 43 0 1 0	0 0 0 0 0 0 499 245 106 52 96 0 0 0 0 0 0 455 177 185 63 30	50.3 21.8 10.7 17.2 499 38.9 40.7 13.8 66 455	21.21 3.03 75.76 T9-26 213 58 4.00 20.00 76.00 T9-29 176 25	228 499 <mark>42.7 11.6</mark> 254 455 <u>38</u> 7 55	45.7 na na na 55.8 0.0 0.0 100.0
T9-30 1277.00	Gm Tantalus 5 1 4 490 0	98.00 37 12 17 14 0	52 1 0 0 0 0 0 0 0					$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14 28 2 80 23 98 0 0 0 0 0 2 11 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	43.4 33.1 3.9 19.6 490	50.00 10.00 40.00 T9-30 134 106	249 489 27.4 21.7	50.9 na na na
T9-311330.40T9-321414.80	Gm Tantalus 1 2 4 512 0 0 0 0 0 519 0 35 0 0 554 1.35 0.00 Gm Tantalus 6 2 15 496 4 0 0 0 0 523 2 7 0 0 532 4 4 0 0 0 0 523 2 7 0 0 532 4 4 0 0 0 0 523 2 7 0 0 532 4 4 0 0 0 0 0 523 2 7 0 0 532 4 4 0 0 0 0 0 523 2 7 0 0 532 4 4 0 0 0 0 0 523 2 7 0 0 332 4 0 0 0 0 0 523 2 7 0 0 332 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <th>98.65 7 10 4 4 0 95.60 24 39 36 32 0</th> <th>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</th> <th></th> <th></th> <th></th> <th></th> <th>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</th> <th>0 269 5 0 42 0</th> <th>0 0 0 0 0 0 512 185 314 9 4 0 0 0 0 0 0 496 177 153 73 92</th> <th>36.1 61.3 1.8 0.8 512 35.7 30.8 14.7 18.8 496</th> <th>14.29 28.57 57.14 T9-31 30 132 26.09 8.70 65.22 T9-32 255 36</th> <th>350 512 <mark>5.9 25.8</mark> 205 496 514 7.3</th> <th>68.4 na na na 1000</th>	98.65 7 10 4 4 0 95.60 24 39 36 32 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 269 5 0 42 0	0 0 0 0 0 0 512 185 314 9 4 0 0 0 0 0 0 496 177 153 73 92	36.1 61.3 1.8 0.8 512 35.7 30.8 14.7 18.8 496	14.29 28.57 57.14 T9-31 30 132 26.09 8.70 65.22 T9-32 255 36	350 512 <mark>5.9 25.8</mark> 205 496 514 7.3	68.4 na na na 1000
T9-33 1461.20	Gm Tantalus 1 4 13 482 0 <t< th=""><th>96.40 28 12 27 0 0</th><th>59 1 1 0 0 0 0 0</th><th></th><th></th><th></th><th>0 0 0 0 3 75 135 0 0 60 25 0 0 0 0 0 0 0</th><th>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</th><th>6 0 1 0 8 22 0 0 0 0 0 0 0 0 0 0</th><th>0 0</th></t<> <th>24.9 35.5 39.2 0.4 482</th> <th>5.56 22.22 72.22 T9-33 130 311</th> <th>41 482 <mark>27.0 64.5</mark></th> <th>8.5 na na na</th>	96.40 28 12 27 0 0	59 1 1 0 0 0 0 0				0 0 0 0 3 75 135 0 0 60 25 0 0 0 0 0 0 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6 0 1 0 8 22 0 0 0 0 0 0 0 0 0 0	0 0	24.9 35.5 39.2 0.4 482	5.56 22.22 72.22 T9-33 130 311	41 482 <mark>27.0 64.5</mark>	8.5 na na na
L3-85 indet	Gm Tantalus 6 clay cem. 43 17 236 141 2 0 51 0 7 500 0 3 31 0 542 59.20 11.60 6 481 495 4415 31364 1169 232 290 1585 290 21 5 629 40596 451 1159 230 66 43697 0 6	29.20 16 14 2 2 0 2450 2397 494 573 100	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 5 0 0 2 14 5 0 4 0 0 0 0 0 0 6 2634 2885 221 427 2654 1317 65 227 4 0 0 0 152 425 53 13	0 0 0 0 0 0 0 0 141 66 61 7 7	46.8 43.3 5.0 5.0 141 White Vollow Croy Plack	14.53 5.74 79.73 L3-85 66 17	54 137 <mark>48.2 12.4</mark>	39.4 0.0 60.0 40.0
Fwk %	0.01 1.2 1.2 10.8 77.1 2.9 0.6 0.7 3.9 0.7 0.1 0.0 1.6 100.0 1.0563 2.7121 0.749 0.155 AVE 13.4 2.4	84.2 7.8 7.6 1.6 2.1 0.6	9.4 1.7 0.5 0.1 0.0 0.0 0.0 0.0 0.		0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.8 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0.6 0.1 0.0 0.0 0.0 1.1 0.6 0.4 0.1 2.4 3.0 0.2 0.9 0.0 0.6 0.2 0.6 1.9 1.8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 8.4 9.2 0.7 1.4 8.5 4.2 0.2 0.8 0.0 0.0 0.0 0.0 0.5 1.4 0.2 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	AVE 48.5 35.5 5.6 10.4 AVE	13.3 12.7 72.7	AVE 35.7 28.1	37.0 AVE 18.2 34.2 47.7
	MAX 59.2 20.2	100.0 19.8	11.8 0.	0.0 0.0 0.1 0.0	0.1 0.1 0.8 0.5	0.5 0.1 7.6	3.1 0.1 2.2 6.4 1.4	6.2 0.2 3.	19.7 13.6 0.0 2.1	0.0 0.0	MAX 100.0 79.0 39.2 66.1 MAX	100.0 92.9 100.0	MAX 88.1 94.6	86.5 MAX 100.0 100.0 100.0
	STDEV 14.4 4.6	18.0									STDEV 23.4 20.6 7.8 10.8 STDEV	16.3 15.8 23.4	STDEV 19.4 22.5	20.3 STDEV 33.0 43.1 44.5

Location Stratigraphic Unit	Point co	counts (number of obser	ations)																																				
	Framew	work Grains		n1	Cements	n <mark>Derivec</mark>	d Chert	t types																									Totals	Chert by colour	Qm Qp	Qs Ch ^r	<mark>∉ert groups s</mark> ι'	du	Non-chert lithic fragments
Lithology	Quartz	z types Rock fragi	nents Feldsp	rs			A	rd	B rd C	D	E	F	G	Н	I	J	К	L	Μ	Ν	0	Р	Q	R S	Т	U	V	W	Х	Z	Α'	B'	W Y G B+R+Gr	White Yellow Grey B'	lack n <mark>% %</mark>	<mark>%</mark> A t⁄	.oK L to T +Z U to W to	tal <mark>%Mas %Brec %spher</mark>	
All Tantalus Fm Sandstones detailed	Qm C	Qp Qs Chert Sr	Mrf Fig Fk I	o Fm Fe fwk	Voids Hem carb	Qtz Q	F L Wht	Yel Gry Blk grn	Wht Yel Gry Blk grn W	Vht Yel Gry Blk W	ht Yel Gry Blk Wht	Yel Gry Blk Wht Yel	Gry Blk Wht Yel	Gry Blk Wht Yel Gry	Blk Wht Yel Gry Bl	x Wht Yel Gry E	Blk Wht Yel Gry	3lk Wht Yel Gry Blk	Wht Yel Gry Blk W	Vht Yel Gry Blk Wht	it Yel Gry Blk Wht Ye	Gry Blk Wht Yel (Gry Blk Wht Yel	Gry Blk Wht Yel Gry	Blk Wht Yel Gry Blk	Wht Yel Gry Blk	Wht Yel Gry Blk	n	% % % %	0	MA	ASSIVE BRECCIATED SPHERES		<mark>met ig sed</mark>					
T19-30 93.82 cSt Tantalus	17 1	19 238 120 0	2 12 18	0 72 500	0 10 0	0 510 <mark>54.80</mark>	<mark>18.40 26.80</mark> 7	16 13 13 0	15 2 4 0 0 0	0 0 0 0	0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 1 0 0 0	7 0 0 0	0 0 0 0	0 0 0 0	0 1 0 0	1 0 0 0	0 0 0 0	0 0 2 0	0 1 0 0	0 0 0 0	2 0 1 1	0 0 0 1	0 3 9 5 0	0 1 7 2	5 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	120 48 31 22 19	40.0 25.8 18.3 1'	<mark>5.8</mark> 120 6.20 6.93	86.86 T19-30 78	9 33 12	20 65.0 7.5 27.5	<mark>14.3 85.7 0.0</mark>
T19-31 95.90 f,mSr Tantalus	19 1	15 235 106 0	1 12 41	0 67 500	0 1 0	2 503 <mark>53.80</mark>	<mark>22.40 23.80</mark> 20	13 5 7 0	16 1 3 2 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0	3 0 0 0	0 0 0 0	0 0 0 0	0 3 3 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 2 1	0 0 0 0	0 0 0 0	0 0 0 1	0 3 4 3 1	1 4 4 5	1 0 0 0 0	0 1 0 0 0	0 0 0 0	0 0 0 0	106 51 26 12 17	48.1 24.5 11.3 1/	<mark>6.0</mark> 106 7.06 5.58	87.36 T19-31 70	10 26 10	J6 <mark>66.0 9.4 24.5</mark>	7.7 92.3 0.0
T19-58 188.00 mSm Tantalus	32 6	6 76 204 7	2 37 66	0 63 500	10 220 81	0 811 <mark>22.80</mark>	27.20 50.00 31	18 8 20 0	33 0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0	9 0 0 0	0 0 0 0	0 0 0	0 4 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 2 5	0 0 0 3	1 6 34 9 3	3 1 13 1	0 2 0 0 0	0 1 0 0 0	0 0 0 0	0 0 0 0	204 130 31 12 31	63.7 15.2 5.9 1'	5.2 204 28.07 5.26	66.67 T19-58 115	ع 12 73 2 0	J4 <mark>58.3 5.9 35.8</mark>	<mark>4.3 80.4 15.2</mark>
T19-61 248.00 g,c-vcSm Tantalus	30 1	13 155 169 0	1 11 41	0 75 500	0 13 0	0 513 <mark>39.60</mark>	24.20 36.20 24	30 11 1 0	16 7 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0	3 0 1 2	2 0 0 0	0 0 0	0 14 0 1	1 0 0 0	0 0 0 0	0 0 2 0	0 1 0 0	0 0 0 5	0 0 1 1	0 0 0 3	0 11 4 8 5	5 4 5 8	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	169 72 59 18 20	42.6 34.9 10.7 1	1.8 169 15.15 6.57	78.28 T19-61 95	26 48 1F	o9 <mark>56.2 15.4 28.4</mark>	8.3 91.7 0.0
05W-50 g,vcS Tantalus?	22 9	9 157 215 7	0 29 20	0 40 500	0 17 0	1 518 <mark>37.60</mark>	12.20 50.20 25	2 6 25 0	57 0 3 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 2 0 0 0	4 0 1 0	0 0 0 0	0 0 0	0 10 12 0	0 0 0 0	0 0 0 0	0 0 0 0	0 1 0 6	0 0 0 0	0 0 4 0	0 0 0 8	0 7 24 0 1	1 0 13 4	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	215 135 27 11 42	62.8 12.6 5.1 1	<u>9.5</u> 215 11.70 4.79	83.51 05W-50 12F	5 33 57 2 ¹	15 <mark>58.1 15.3 26.5</mark>	<mark>0.0 80.6 19.4</mark>
05W-51 mS Tantalus?	38 5	5 94 85 2	11 57 136	2 1 39 500	0 43 7	9 559 <mark>27.40</mark>	<mark>41.60 31.00</mark> 6	22 9 15 0	10 0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 1	0 0 0 0 0	0 0 5 4 3	3 1 6 3	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	85 28 29 12 16	32.9 34.1 14.1 1'	3.8 85 27.74 3.65	68.61 05W-51 62	1 22 8F	<i>i</i> 72.9 1.2 25.9	<mark>15.7 81.4 2.9</mark>
05W-61 vcS	10 7	7 109 247 2	1 18 1 (0 105 500	2 46 0	3 551 <mark>25.20</mark>	21.20 53.60 22	27 3 5 0	34 4 0 1 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0	7 0 0 0	0 0 0 0	0 1 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 11 0 0	0 7 0 0	2 0 0 0 0	0 4 3 1	0 0 0 9	6 11 17 15 0	0 1 50 5	0 1 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	247 145 67 13 22	58.7 27.1 5.3 8	.9 247 <mark>7.94 5.56</mark>	86.51 05W-61 10 ²	<u>3</u> 29 115 2 ^ℓ	47 41.7 11.7 46.6	4.8 85.7 9.5
T6-4 99.50 cSt	10 2	25 92 368 7	5 0 0 0	0 0 507	404 2 0	0 913 <mark>25.05</mark>	0.00 74.95 74	56 16 46 0	47 37 14 2 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 4 0 0	0 0 0 0	0 0 0	0 7 0 0	2 0 3 0	0 0 0 3	0 0 0 0	0 0 4 9	0 0 0 5	0 2 0 0	0 0 0 0 2	0 7 1 1 6	5 7 7 2	0 4 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	368 141 105 45 77	38.3 28.5 12.2 2/	. <mark>J.9</mark> 368 7.9 19.7	72.4 T6-4 29F	o 35 37 3F	o8 <mark>80.4 9.5 10.1</mark>	41.7 0.0 58.3
T11-5 18.00 S	41 2	29 143 257 1	0 4 0	0 25 500	0 27 95	0 622 <mark>42.60</mark>	5.00 52.40 57	29 18 19 0	59 19 5 11 0 0	0 0 0 0	0 0 0 1	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0	0 5 2 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 3	0 0 0 0	0 1 0 0 0	0 0 0 0 0	1 4 6 9 1	1 4 2 1	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	257 130 61 25 41	50.6 23.7 9.7 1	ó.0 257 <mark>19.2 13.6</mark>	67.1 T11-5 218	d 11 28 2.5	<i>5</i> 7 <mark>84.8 4.3 10.9</mark>	<mark>0.0 80.0 20.0</mark>
T11-6 28.00 S	37 2	25 148 241 1	1 5 0 0	0 42 500	1 17 36	0 554 <mark>42.00</mark>	<mark>8.40 49.60</mark> 55	40 7 24 0	63 7 1 0 0 0	0 0 0 0	0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0	0 0 0 0	0 1 0 0	0 0 1 0	0 0 0 0	0 0 3 0	0 0 0 0	0 0 0 5	0 0 0 0 0	0 0 4 14 0	0 8 4	4 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	241 136 66 15 24	56.4 27.4 6.2 1	J.0 241 17.6 11.9	70.5 T11-6 19 ⁻	1 10 34 24	.41 81.7 4.1 14.1	14.3 71.4 14.3
T11-9 74.00 mSr	22 1	14 84 356 3	3 9 0 0	0 9 500	2 11 0	1 514 <mark>24.00</mark>	1.80 74.20 100	49 18 24 0	72 12 8 7 0 0	0 0 0 0	0 0 0 2	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0	0 7 0 2	0 0 0 0	0 0 0 0	0 0 0 0	0 2 0 1	0 0 1 6	6 1 0 3	0 0 0 1 0	2 0 15 6 0	0 4 3 2	1 0 0 0 0	0 1 0 0 0	0 0 0 0	0 0 0 0	356 210 77 32 37	59.0 21.6 9.0 1	J.4 356 18.3 11.7	70.0 T11-9 29°	2 30 34 3F	<i>5</i> 6 82.0 8.4 9.6	<mark>20.0 60.0 20.0</mark>
T17-10 75.30 g,vcS Tantalus	12 2	2 170 308 0	0 1 6	0 1 500	3 21 1	1 526 <mark>36.8</mark>	<mark>1.4 61.8</mark> 51	80 4 27 0	51 15 7 2 0 0	0 0 0 0	0 0 0	0 0 0 0 0	0 0 0 0	0 0 1 0 0	0 0 0 0 0	0 0 0 0	0 0 2 0	0 0 0 0	0 3 12 0	0 0 0 0	0 0 0 0	0 0 0 0	0 4 0 5	0 0 0 3	5 0 0 2	0 0 0 0 4	0 2 4 5 0	0 9 7	0 2 0 0 0	0 0 1 0 0	0 0 0 0	0 0 0 0	308 124 135 11 38	40.3 43.8 3.6 1	2.3 308 6.52 1.09	92.39 T17-10 240	J 35 33 3C	J8 77.9 11.4 10.7	<mark>0.0 100.0 0.0</mark>
T17-23 215.00 mcSh Tantalus	18 8	8 161 280 2	3 2 20	1 5 500	2 37 0	0 539 <mark>37.4</mark>	<mark>5.2 57.4</mark> 83	58 23 12 0	26 9 13 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 1 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0	0 0 3 1	1 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 2 4	0 0 0 0	0 0 0 0 0	0 0 4 12 1	1 2 6 8	9 2 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	280 124 90 47 19	44.3 32.1 16.8 6	. <mark>8</mark> 280 <mark>9.63 4.28</mark>	86.10 T17-23 22 ^F	28 أ	30 <mark>80.4 3.9 15.7</mark>	<mark>42.9 28.6 28.6</mark>
T17-30 307.00 c-vcSh,w Tantalus	15 6	6 123 339 1	3 4 5 0	0 4 500	0 0 0	0 500 <mark>28.8</mark>	<mark>1.8 69.4</mark> 65	54 28 17 0	22 8 3 0 2 1	0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 1 0 0 0	0 0 0 0	0 0 0 0	0 2 6 1	0 0 4 5	0 0 0 0	0 1 0 0	0 0 0 0	0 3 0 5	3 0 1 1 2	10 0 8 0	0 0 0 3	0 2 3 19 2	2 9 17 19	1 4 0 0 0	0 7 0 0 0	0 0 0 0	0 0 0 0	339 124 126 41 48	36.6 37.2 12.1 1	4.2 339 10.42 4.17	85.42 T17-30 20 ¹	1 59 79 3 .2	<i>3</i> 9 5 9.3 17.4 23.3	<mark>37.5 50.0 12.5</mark>
T18-6 32.00 cSm Tantalus	21 2	2 99 335 7	1 6 2 0	0 27 500	1 22 0	9 532 <mark>24.4</mark>	<mark>5.8 69.8</mark> 79	50 24 15 0	30 13 1 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0	2 2 0 0	0 1 0 0	0 0 0	0 7 55 1	1 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 1	4 0 0 1	0 0 0 0 0	0 5 5 3 1	1 8 24 2	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	335 150 129 27 29	44.8 38.5 8.1 8	.7 335 17.21 1.64	81.15 T18-6 21 ⁻	1 70 48 3 ²	35 <mark>64.8 20.9 14.3</mark>	7.1 42.9 50.0
T18-10 69.00 mcSp Tantalus tr chlorite cer	ment 14 3	3 102 361 10	1 5 0 0	0 4 500	0 27 0	22 549 <mark>23.8</mark>	0.8 75.4 115	48 21 9 0	76 6 3 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0	4 1 0 0	0 0 0 0	0 0 0	0 3 5 0	2 0 0 0	0 1 0 0	0 0 0 0	0 2 2 1 0	1 0 0 0 0	3 1 0 2	0 0 0 1 2	0 0 14 12 1	1 1 19 4	1 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	361 238 83 28 12	65.9 23.0 7.8 3	.3 361 11.76 2.52	85.71 T18-10 28 ²	<u>3 23 55 36</u>	o1 78.4 6.4 15.2	<mark>6.3 31.3 62.5</mark>
T1-7 13.95 S	106 2	28 95 238 0	2 0 15	0 15 500	0 14 0	23 537 <mark>45.80</mark>	<u>6.20 48.00</u> 105	60 4 5 0	27 15 1 0 0 0	0 0 2 1	0 0 0 0	2 0 0 0 0	0 0 0 0	0 0 0 0 0	0 1 0 0 0	0 0 0 0	0 0 0 0	2 0 0 0	0 0 0 0	0 0 0 0	0 0 0 1	0 0 0 0	0 0 0 0	0 0 0 0	0 0 1 5	0 0 0 0 0	0 0 2 2 0	0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	236 141 79 6 10	59.7 33.5 2.5 4	.2 236 46.29 12.23	41.48 T1-7 22 ^F	5 7 4 2.2	<i>3</i> 6 95.3 3.0 1.7	100.0 0.0 0.0
T1-12 65.30 S	15 5	52 15 345 4	0 0 2	1 9 443	2 10 0	9 464 <mark>18.51</mark>	2.71 78.78 83	70 12 10 0	101 32 7 1 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0	0 0 0	0 1 0 0	0 0 3 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 3	0 0 0 16	0 0 0 3	0 0 3 0 0	0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	345 207 108 19 11	60.0 31.3 5.5 3	.2 345 18.29 63.41	18.29 T1-12 31/	ó 23 6 3 ⁴	45 91.6 6.7 1.7	0.0 0.0 100.0
T1-24 427.00 S	20 1	18 79 375 6	0 0 0	0 2 500	18 3 0	2 523 <mark>23.40</mark>	0.40 76.20 112	47 22 16 0	134 2 0 0 0 0	0 0 0 0	0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0	0 5 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 25 8 0	0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	4 0 0 0	375 280 57 22 16	74.7 15.2 5.9 4	. <mark>3</mark> 375 17.09 15.38	67.52 T1-24 33 ⁷	3 5 33 3 7	/1 <mark>89.8 1.3 8.9</mark>	<mark>0.0 0.0 100.0</mark>
T7-11 mfSm	35 1	16 52 380 5	0 0 0	0 0 488	95 4 0	24 611 <mark>21.11</mark>	0.00 78.89 98	69 14 31 0	108 12 3 4 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 1 0 0 0	0 0 0 0	0 0 0 0	0 0 0	0 3 4 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 1	0 0 0 2	0 0 0 0 0	0 0 23 5 0	0 2 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	380 236 90 17 37	62.1 23.7 4.5 9	.7 380 <mark>33.98 15.53</mark>	50.49 T7-11 340	J 10 30 38	30 <mark>89.5 2.6 7.9</mark>	<mark>0.0 0.0 100.0</mark>
T7-13 221.00 cSh	21 1	12 65 403 2	0 0 0	0 0 503	17 11 0	13 544 <mark>19.48</mark>	0.00 80.52 98	59 25 27 0	137 14 4 2 0 0	0 0 0 0	0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 2 0 0 0	0 0 0 0	0 0 0 0	0 0 0	0 6 2 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 3	0 0 0 0	0 0 0 1 0	0 1 17 2 1	1 2 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	403 264 77 30 32	65.5 19.1 7.4 7	.9 403 21.43 12.24	66.33 T7-13 368	ð 11 24 4C	J3 91.3 2.7 6.0	<mark>0.0 0.0 100.0</mark>
T8-6 mSm	25 1	14 52 409 0	0 0 0	0 0 500	5 28 0	4 537 <mark>18.20</mark>	0.00 81.80 156	76 50 24 0	60 7 0 3 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0	0 4 0 0	0 1 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 1 0 0 0	0 0 0 0 0	0 1 16 6 1	1 0 1 1	0 0 0 0	0 0 0 0 0	1 0 0 0	0 0 0 0	409 239 91 51 28	58.4 22.2 12.5 6	.8 409 27.47 15.38	57.14 T8-6 37F	<u>ó 6 26 4</u> C	J8 <mark>92.2 1.5 6.4</mark>	<mark>na na na</mark>
T9-7 234.00 (pbl)vcSm Tantalus	15 2	27 166 195 0	5 4 82 0	0 6 500	3 18 0	1 522 <mark>41.60</mark>	<mark>17.60 40.00</mark> 18	26 7 5 <mark>31</mark>	32 2 1 0 0 0	0 0 0 0	0 0 0 1	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0	0 6 0 0	0 1 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 3 32 1 0	0 0 0 0	0 0 0 0 3	0 3 6 10 4	4 0 3 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	195 67 44 44 40	40.9 26.8 26.8 5	.5 195 7.21 12.98	79.81 T9-7 12 ⁷	<u>,3 43 29 1°</u>	<i>y</i> 5 63.1 22.1 14.9	<mark>55.6 44.4 0.0</mark>
T9-10 467.70 mSt Tantalus	48 3	36 95 179 10	5 3 27 0	0 97 500	6 35 32	0 573 <mark>35.80</mark>	24.80 39.40 31	18 8 6 0	69 24 0 3 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 5	0 0 0 0	0 0 0 0 0	0 4 10 0 1	1 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	179 115 42 9 13	64.2 23.5 5.0 7	.3 179 <mark>26.82 20.11</mark>	53.07 T9-10 15°	9 5 15 17	/9 <mark>88.8 2.8 8.4</mark>	<mark>27.8 16.7 55.6</mark>
T9-18 743.40 McSm Tantalus	13 4	4 62 406 2	4 0 0 0	0 9 500	7 7 0	9 523 <mark>15.80</mark>	1.80 82.40 122	41 18 20 0	134 16 2 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	0 1 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 1	0 0 0 0	0 0 0 2 0	0 2 19 3 3	3 1 16 4	0 0 0 0	0 1 0 0 0	0 0 0 0	0 0 0 0	406 296 64 23 23	72.9 15.8 5.7 5	.7 406 16.46 5.06	78.48 T9-18 35 [?]	<u>3</u> 3 50 40	J6 <mark>86.9 0.7 12.3</mark>	<mark>66.7 0.0 33.3</mark>
L3-76 856.00 pbl-vcSm Tantalus	36 3	3 110 340 0	1 0 8 0	0 4 502	0 25 0	0 527 <mark>29.68</mark>	2.39 67.93 71	28 22 4 5	30 6 10 6 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 2 0 0 0	18 6 3 0	0 0 0 0	0 1 0 0	0 8 0 0	0 0 0 0	0 0 0 0	0 0 0 0	3 0 0 0	0 0 0 4	4 4 0 0	0 0 0 0 2	1 2 53 17 5	5 0 3 20	0 2 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	340 193 83 45 19	57.6 24.8 13.4 4	.2 340 24.16 2.01	73.83 L3-76 21 ¹	1 24 105 3 ⁴	40 62.1 7.1 30.9	<mark>100.0 0.0 0.0</mark>
Sum Sst	692 3	398 2977 7261 79	52 219 490 s	2 3 720 12943	3 578 669 252	133 14575 <mark>Q</mark>	F L 1708	1086 396 427 36	1459 270 93 44 2 1	0 0 2 1	0 0 0 4	2 0 0 0 0	0 0 1 0	0 0 1 0 0	0 10 0 0 0	57 13 5 2	2 1 2 0	2 5 6 1	0 97 102 10	8 3 6 0	0 2 1 4	0 11 4 0	0 5 21 10 30	5 3 33 5 43	3 36 12 20 45	0 0 0 5 44	11 74 327 178 4	40 52 216 102 2	22 17 0 0 0	0 11 1 0 0	1 0 0 0	4 0 0 0		White Yellow Grey B'	lack %	%	%	<mark>%Mas %Brec %spher</mark>	<mark>%%%</mark>
Fwk%	5.3 3	3.1 23.0 56.1 0.	0.4 1.7 3.8	4 0.0 5.6 100	4.0 4.6 1.7	0.9 AVE 31.4	9.7 58.9 23.5	15.0 5.5 5.9 0.5	20.1 3.7 1.3 0.6 0.0 0.	.0 0.0 0.0 0.0 0.	0.0 0.0 0.0 0.1	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.1 0.0 0.0 0.	0.8 0.2 0.1 0	0.0 0.0 0.0 0.0	0.0 0.1 0.1 0.0	0.0 1.3 1.4 0.1	0.1 0.0 0.1 0.0	0.0 0.0 0.0 0.1	0.0 0.2 0.1 0.0	0.0 0.1 0.3 0.1 0.4	0.1 0.0 0.5 0.1 0.	.6 0.5 0.2 0.3 0.6	0.0 0.0 0.0 0.1 0.6	0.2 1.0 4.5 2.5 0	0.6 0.7 3.0 1.4	0.3 0.2 0.0 0.0 0.0	0.0 0.2 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.1 0.0 0.0 0.0		VE 53.9 26.4 9.4 1	J.3 AVE 17.8 10.9	71.3 AVE 216	6.3 20.8 41.8 A ^v	.√E 75.3 7.8 16.8	AVE 23.0 44.9 32.1
						MAX 54.8	41.6 82.4	50.3	25.7	0.0	0.0	0.1	0.0	0.0	0.0 0.	1	1.1	0.1	0.2	3.0	0.1	0.1	0.2 0.9	0.6	1.5	0.6	1.8	8.2	4.9	0.0 0.2	0.0	0.1		AAX 74.7 43.8 26.8 2	.J.9 MAX 46.3 63.4	92.4 MAX 376	ó.0 70.0 115.0 M	AX 95.3 22.1 46.6	MAX 100.0 100.0 100.0
						MIN 15.8	0.0 23.8																											AIN 32.9 12.6 2.5 3	.2 MIN 6.2 1.1	18.3 MIN 62	.0 1.0 4.0 M	MN 41.7 0.7 1.7	MIN 0.0 0.0 0.0
						SDEV 11	11 18																											DEV 12 8 5 5	SDEV 10 12	17 SDEV 99	17 27 SF	JEV 14 6 11	SDEV 30 38 36

Location	Stratigraphi	ic Unit	Point coun	nts (number of observations)																																												
			Framework	k grains	n	1 Cements	n <mark>Derived</mark>	Chert type	es																																Totals	Chr	rt by colour	Qm Qp Qs	Chert Groups			Non-chert lithic ratios
I	Lithology	detrital	Quartz type	pes Rock Fragments	eldspars			А	rd	В	rd C	D	E		F	G	Н			J	К	L		М	Ν	0	Р	Q		R	S	Т	U	V	W	΄ Χ		Z	A'	B'	n W Y G	B+R+G Wh	te Yellow Grey Black	<mark>% % %</mark>	A to K L to T +Z	U to W	%Mas %Brec %spher	
Tangelfoot Fm Conglon	merates	clay detailed	Qm Qp	Qs Chert Srf Mrf Fig	k Fp Fm Fe fv	vk Voids Hem carb Qtz	Q F	L Wht Yel	Gry Blk grn	Wht Yel Gry B	ilk grn Wht Yel	Gry Blk Wht	Yel Gry Blk W	/ht Yel Gry Blk	Wht Yel Gry	/ Blk Wht Yel	Gry Blk Wht '	Yel Gry Blk	Wht Yel Gry B	lk Wht Yel G	Gry Blk Wht Yel	l Gry Blk W	Vht Yel Gry Blk	Wht Yel Gry B	wht Yel Gry	Blk Wht Yel Gr	y Blk Wht Yel	Gry Blk Wht	Yel Gry Blk	Wht Yel Gry Blk	Wht Yel Gry	Blk Wht Yel Gry	Blk Wht Yel	Gry Blk Wht Yel	Gry Blk Wl	′ht Yel Gry Blk V	ht Yel Gry Blk	Wht Yel Gry Blk	Wht Yel Gry Blk	k Wht Yel Gry Bll	<	%	% % %		MASSIVE BRECCIA	ATED SPHERES		Met Ig Sed
T21-12 92.00 (Gm Tangelfoot	44 44 matrix	17 3	44 338 0 0 77	5 6 0 0 5	0 0 2 0 0	502 12.80 4.20	83.00 2 0	0 0 0	288 0 0 0	0 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0 0	18 0 0	0 0 0	0 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0 0	0 18 0	0 0 0	0 0 0	0 0 0 9	0 0 0	0 0 0 0	0 0 0	0 0 0 0	0 0 3	0 0 0 0	0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	338 329 0 0	9 97,7	0.0 0.0 2.7	26.56 4.69 68.75 T	21-12 308 27	3	91.1 8.0 0.9	0.0 100.0 0.0
T21-11 106.00 S	SGm Tangelfoot	18 18 matrix	42 18	139 132 0 0 94	59 9 2 5 5 5	0 10 0 0	510 39.80 15.00	45.20 4 0	2 3 0	3 0 0 1	0 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0	0 0 0	0 0 0 0	0 0 0	2 0 0 0	2 0 0	0 0 0	0 0 0	0 0 0	7 0 3 2	0 0 0	0 0 0 0	0 0 0	0 0 6	0 0 0	0 0 0 1	2 0 0	6 0 0 0	0 0 0	0 0 43 0	4 4 25	5 0 10 2 0	0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	132 94 0 19	19 71.	2 0.0 14.4 14.4	21.11 9.05 69.85 T	21-11 17 27	88	12.9 20.5 66.7	0.0 100.0 0.0
T21-6 234.00 (Gm Tangelfoot	0	21 13	219 89 6 6 69	1 8 0 28 5	0 0 44 0 0	544 50.60 15.40	34.00 22 0	1 2 0	20 0 0 0	0 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0	0 0 0	0 0 0 0	0 0 0	2 0 0 0	4 0 0	0 0 0	0 0 0	0 0 0	11 0 0 2	0 0 0	0 0 0 0	0 0 0	0 0 7	0 0 0	0 0 0 0	0 0 0	0 0 0 0	0 0 0	2 8 0 0	0 0 8	0 0 0 0	0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	89 74 0 3	12 83	0.0 3.4 13.5	8.30 5.14 86.56 T	21-6 51 20	18	57.3 22.5 20.2	7.4 85.2 7.4
T17-1 0.00 (Gm Tangelfoot	0 volcLithRudite	e 14 2	18 0 1 0 373	59 33 0 0 5	00 1 10 0 0	511 <mark>6.8 18.4</mark>	74.8 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 na	na na na	<mark>41.18 5.88 52.94</mark> T	17-1 0 0	0	na na na	0.0 99.7 0.3
T17-2b 5.00 (Gt Tangelfoot	0	132 6	182 0 0 0 0	03 0 0 77 5	0 0 222 0 0	722 64.0 36.0	0.0 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 na	na na na	41.25 1.88 56.88 T	17-2b 0 0	0	na na na	na na na
T17-3 5.60 (Gt Tangelfoot	0	26 0	305 0 0 0 32	34 0 0 3 5	0 40 98 0	638 66.2 27.4	6.4 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 na	na na na	7.85 0.00 92.15 T	17-3 0 0	0	na na na	0.0 100.0 0.0
T17-4 1.50 (Gm.t Tangelfoot	0	14 14	69 0 28 0 58	275 0 0 42 5		508 19.4 63.4	17.2 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 na	na na na	14.43 14.43 71.13 T	17-4 0 0	0	na na na	0.0 67.4 32.6
T18-4 >-200 (Gm Tangelfoot	0	0 1	59 400 23 17 0		0 3 8 0 0	511 12.0 0.0	88.0 20 0	0 6 0	4 0 0 0	0 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0 0			0 0 0	0 0 0	31 79 0 0	0 0 0	0 45 0 0	0 0 0	0 0 14	12 0 0	0 0 0 0	67 0 0	0 0 0 0	0 0 0	0 12 6 0	0 0 0	4 0 0 0	0 0 0	100 0 0 0	0 0 0 0	0 0 0 0	400 287 95 0	18 71	3 23.8 0.0 4.5	0.00 1.67 98.33 T	18-4 30 348	22	7.5 87.0 5.5	42.5 0.0 57.5
13-40 4.80	Gm Tangelfoot	0	63 16	129 0 0 6 90	73 16 0 7 5	20029630	601 41.60 39.20	19.20 0 0	0 0 0			0 0 0		0 0 0	0 0 0	0 0 0		0 0 0				0 0 0	0 0 0		0 0 0	0 0 0 0	0 0 0	0 0 0	0 0 0		0 0 0	0 0 0 0	0 0 0		0 0 0		0 0 0					0 na	na na na	30.29 7.69 62.02	3-40 0 0	0	na na na	6.3 93.8 0.0
13-2 599.00	gGm Tangelfoot	7 7 clay cem	29 7	331 0 0 0 0	27 0 0 8 5	$\frac{1}{2}$ 0 89 121 1	720 73 11 26 89							0 0 0				0 0 0					0 0 0				0 0 0						0 0 0				0 0 0					0 na	na na na	7 90 1 91 90 19	3-2 0 0	0	na na na	na na na
L3-61 635.50 (Gt Tangelfoot	87 87 clay matrix	x 69 5	268 0 0 3 6	28 0 0 21 5	32 0 0 13 2 0	605 68 40 29 80																														0 0 0					0 na	na na na	20.18 1.46 78.36	3-61 0 0	0	na na na	33 3 66 7 0.0
L3-71 681.00 (Gm Tangelfoot	30 51 org C 30 cla	clav 18 8	340 0 0 0 5	34 0 3 42 5		500 73 20 25 80	1.00 0 0																																		0 na	na na na	492 219 9290	3-71 0 0	0	na na na	
Sum Cong	ungenoor	186	445 93	2103 959 58 32 804	198 72 5 233 6	002 9 542 224 1	AVE 44.0 25.1	30.9 48 0	3 11 0	315 0 0 1														49 79 3 4		0 45 0 0	0 18 0	0 0 27	12 0 0		69 0 0			2 20 49 0	4 4 36	5 4 10 2 0					0 0 0 0	Ave 80	4 59 44 88	Ave 18 7 4 7 76 7	5,1 0 0	Ave	42 2 34 5 23 3 Ave	e 99 792 109
Sum cong	Matrix/clavs	= 2.7 Ewk% =	74 15	350 160 10 05 134		00001783200	MAX 73.2 63.4	88.0 5.0 0.0																51 82 03 0							72 00 00			$\begin{array}{cccccccccccccccccccccccccccccccccccc$	04 04 38	8 04 10 02 0					1	Max 97	3.3 1.4 1.4	Max 41.3 14.4 98.3		Max	91.1 87.0 66.7 Ma	2x 42 5 100 0 57 5
	iniau ing Clays	2.7 1 WK /0	7.7 (.5	55.6 10.6 1.6 0.5 15.4	.0.0 1.2 0.1 0.0 1	50.0 0.1 7.0 5.2 0.0	MIN 68 00	0.0 5.0 0.0	65	52.0 0.0 0.0 0	33.0	0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0 0	0.0 0.0 0.0	0.7 0.0 0.0 0.	.0 2.5 0.0 0.	25	0.0 0.0 0.	0.0 0.0 0.0	1	1	0.0 4.7 0.0 0.0	4.7	1.0	1.5 0.0 0.0	0.0 0.0 0.0 1.0	, ,,2 0.0 0.0 0	7.8	0.0 0.0 0.0 0	22 2.1 5.1 0.0	5.9	5 1	0.0 0.0 0.0	10.7 0.0 0.0 0.0			ź	Min 71		Min 0.0 0.0 52.9		Min	7.5 8.0 5.5 Mir	
							(100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	24.0	0.0		0.00	0.0	0.0	0.0		0.0	0.0	0.0	0.	.4	2.5	0.0	0.0		. 1	0.0	4./	1.5	4.1	1.0		/.0	0.0	2.2	5.5	5.4	0.0	10.4	+ 0.0	0.0	,	(1)	0.0 0.0 4.5 p	STDV 12.876 4.124 15.27			/ 20 52 25 6 20 052 STE	0.0 0.0 0.0 0.0
							510 25./ 16.9	54.0																	1								1									SIDV 12.2	33 11.073 0.0220 0.030	5107 15.0/0 4.154 15.2/		SIDV	v 59.52 55.0 50.052 STL	V 15./ 51.5 19.0

Location Stratigraphic Unit		Point counts (number of observations)			_																												
		Framework grains	n1 Cements	n <mark>Derived</mark>	Chert types																						Totals	Chert by colour	Qm Qp (Qs Chert Groups		٦	Non-chert lithic ratios
Lithology detrit	tal	Quartz types Rock Fragments	eldspars		A rd	B rd	С	D E	F	G	Н	l J	К	L	М	N O	Р	Q	R	S T	U	V	W	X Z	A'	Β'	n W Y G B+R	-G White Yellow Grey Blac	% % %	% A to K L to T +Z	U to W <mark>%Mas %</mark>	Brec %spher	
Tangelfoot Fm Sandstonesclay	detailed	Qm Qp Qs Chert Srf Mrf Fig	k Fp Fm Fe fwk Voids Hem carb Qtz	Q F L	Wht Yel Gry Blk grn	Wht Yel Gry Blk grn	Wht Yel Gry Blk	Wht Yel Gry Blk Wh	t Yel Gry Blk Wht Ye	I Gry Blk Wht Yel Gry E	lk Wht Yel Gry Blk	Wht Yel Gry Blk W	ht Yel Gry Blk Wht Yel	Gry Blk Wht Yel Gry B	k Wht Yel Gry Blk	Wht Yel Gry Blk Wht Y	el Gry Blk Wht Yel	Gry Blk Wht Yel Gry B	k Wht Yel Gry Blk	Wht Yel Gry Blk Wi	ht Yel Gry Blk Wht Ye	el Gry Blk Wht Yel Gr	y Blk Wht Yel Gry Blk	Wht Yel Gry Blk Wht	Yel Gry Blk Wht Yel Gry	Blk Wht Yel Gr	ry Blk	% % %		MASSIVE BRECCIAT	O SPHERES	Ν	Met Ig Sed
16 T21-14 26.00 vcSm Tangelfoot	16 matrix	27 4 51 0 4 4 271	45 3 0 91 500 0 22 0 0	522 16.40 27.80 55.80	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0	0 0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0	0 0 0 0 0	na na na na	32.93 4.88 6	<mark>62.20</mark> T21-14 0 0	0 <mark>na na</mark>	<mark>a na</mark> 1	1.4 97.1 1.4
21-13 80.00 mfSm Tangelfoot 6	6 matrix	52 10 66 0 0 4 207	48 13 0 0 500 0 0 0 0	500 25.60 32.20 42.20	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0	0 0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0	0 0 0 0 0	na na na na	40.63 7.81 5	51.56 T21-13 0 0	0 <mark>na na</mark>	<mark>a na</mark> 1	1 <mark>.9 98.1 0.0</mark>
18-1 -20.00 vcSm Tangelfoot 0		55 6 249 0 105 0 2	50 2 0 31 500 0 48 0 0	548 <mark>62.0 16.6 21.4</mark>	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0	0 0 0 0 0	na na na na	17.74 1.94 8	80.32 T18-1 0 0	0 <mark>na na</mark>	<mark>a na </mark> C	J.0 1.9 98.1
.3-42 56.50 c-vcSt Tangelfoot 0		85 17 161 0 0 3 16	87 26 0 5 500 4 31 2 0	537 52.60 43.60 3.80	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0	0 0 0 0 0	na na na na	32.32 6.46 6	<mark>61.22</mark> L3-42 0 0	0 <mark>na na</mark>	<mark>a na</mark> 1	1 <mark>5.8 84.2 0.0</mark>
3-45 208.00 vcSm Tangelfoot 0		67 12 183 0 3 8 13	69 14 0 31 500 0 40 16 1	557 52.40 42.80 4.80	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0	0 0 0 0 0	na na na na	25.57 4.58 6	<mark>69.85</mark> L3-45 0 0	0 <mark>na na</mark>	<mark>a na</mark> 3	3 <mark>3.3 54.2 12.5</mark>
.3-48 350.00 c-vcSm Tangelfoot 15	15 clay cem.	68 7 170 0 1 13 14	181 22 6 20 502 0 10 12 0	539 <mark>48.80 45.62 5.58</mark>	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0	0 0 0 0 0	na na na na	27.76 2.86 6	<mark>69.39</mark> L3-48 0 0	0 <mark>na na</mark>	<mark>a na 4</mark>	4 <mark>6.4 50.0 3.6</mark>
_3-54 471.00 vcSm Tangelfoot 2	2 clay cem.	68 10 136 0 0 5 22	90 57 4 10 502 0 11 0 3	518 <mark>42.63 51.99 5.38</mark>	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0	0 0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0	0 0 0 0 0	na na na na	31.78 4.67 6	<mark>63.55</mark> L3-54 0 0	0 <mark>na na</mark>	<mark>a na</mark> 1	1 <mark>8.5 81.5 0.0</mark>
_3-55 502.00 g-vcSm Tangelfoot 19	19 clay cem	89 11 143 0 0 3 37	78 28 2 9 500 0 4 1 0	524 <mark>48.60 43.40 8.00</mark>	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0	0 0 0 0 0	na na na na	36.63 4.53 5	<mark>58.85</mark> L3-55 0 0	0 <mark>na na</mark>	<mark>a na</mark> 7	<mark>7.5 92.5 0.0</mark>
.3-56 575.00 g-vcSm Tangelfoot 18	18 clay cem.	87 9 159 0 0 2 19	81 28 8 9 502 1 26 16 0	563 <mark>50.80 45.02 4.18</mark>	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0	0 0 0 0 0	na na na na	34.12 3.53 6	<mark>62.35</mark> L3-56 0 0	0 <mark>na na</mark>	<mark>a na</mark> 9	<mark>୬.5 90.5 0.0</mark>
3-75 812.50 g-vcSt Tangelfoot 65	65 clay cem/epi	44 11 324 0 0 0 0	06 0 4 23 502 0 3 0 0	570 75.50 24.50 0.00	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	na na na na	11.61 2.90 8	<mark>85.49</mark> L3-75 0 0	0 <mark>na na</mark>	a na n	n <mark>a na na</mark>
_3-77 836.00 g-vcGSt Tangelfoot 0		54 11 370 0 2 0 0	57 0 0 8 502 1 72 91 0	666 <mark>86.65 12.95 0.40</mark>	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	na na na na	12.41 2.53 8	<mark>85.06</mark> L3-77 0 0	0 <mark>na na</mark>	a na O	<mark>J.0 0.0 100.0</mark>
Г19-1 0.40 cSt Lbg 0	Ab Ig RFs	17 8 190 166 6 1 44	55 10 0 3 500 0 28 18 24	570 <mark>43.00 13.60 43.40</mark>	18 25 10 35 0	16 2 7 2 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 6	0 1 1 0 0	0 0 0 0 0	3 1 2 0	0 0 0 0 0 0	0 0 0 0	0 0 1 0 0 0	0 0 0 0	0 2 0 0 0	0 0 2 0 1	0 11 2 4 0	3 9 1 1 0	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0	0 166 55 36 21 54	33.1 21.7 12.7 32.5	7.91 3.72 8	88.37 T19-1 123 11	32 <mark>74.1 6.</mark>	<mark>.6 19.3</mark> 2	<mark>2.0 86.3 11.8</mark>
19-2 4.50 g,cSm Lbg 0	Ab Ig RFs	28 8 132 119 1 0 38	96 20 2 56 500 0 12 6 13	531 <mark>33.60 34.80 31.60</mark>	0 12 27 13 18 0	16 2 3 2 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	1 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 3 0 1	0 0 0 0	0 0 0 0 5	0 0 0 0 0	0 2 1 0 2	2 5 3 1 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 119 40 35 19 25	33.6 29.4 16.0 21.0	16.67 4.76 7	78.57 T19-2 93 10	16 <mark>78.2 8.</mark>	.4 13.4 C	J <mark>.0 97.4 2.6</mark>
19-3 9.90 fSr Lbg 10	10 x chlorite	42 9 69 115 0 0 27	81 22 0 35 500 0 40 20 9	569 <mark>24.00 47.60 28.40</mark>) 11 14 11 9 0	43 5 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 2	1 0 0 0 0	0 0 0 0 0	2 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 1	0 0 0 0 0	0 1 0 7 2	1 4 1 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 115 63 28 13 11	54.8 24.3 11.3 9.6	35.00 7.50 5	<mark>57.50</mark> T19-3 96 3	16 <mark>83.5 2.</mark>	.6 13.9 C	J <mark>.0 100.0 0.0</mark>
Г21-8 156.00 mSm Tangelfoot 32	32	48 9 142 114 1 3 29	0 0 153 500 0 2 0 1	503 <mark>39.80 30.80 29.40</mark>	20 6 5 4 0	16 0 2 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 3 0 0 0	0 0 0 0 0 0	0 0 0 2	0 0 0 0 0	0 0 0 0	0 0 0 0 4	0 0 0 2	0 0 0 1 0	0 0 0 2 0	1 7 6 2 4	6 6 5 7 3	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 114 50 13 22 29	43.9 11.4 19.3 25.4	24.12 4.52 7	71.36 T21-8 56 9	49 <mark>49.1 7.</mark>	.9 43.0 9	9 <mark>.1 87.9 3.0</mark>
Γ11-2 (g)vcS ? Tanglefoot? 0		69 19 179 43 3 0 3	57 0 2 125 500 0 21 0 0	521 53.40 36.80 9.80	7 0 0 0 0	12 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 24	0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 43 43 0 0 0	100.0 0.0 0.0 0.0	25.8 7.1 6	67.0 T11-2 19 24	0 <mark>44.2 5</mark> .	5.8 0.0 C	<mark>ک.0 50.0 50.0 ا</mark>
Г18-3 >-200 g,vcSm Tangelfoot 0		50 11 228 1 0 0 28	61 11 0 10 500 1 29 0 0	530 <mark>57.8 36.4 5.8</mark>	0 0 0 0 0	1 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 1 1 0 0 0	100.0 0.0 0.0 0.0	17.30 3.81 7	78.89 T18-3 1 0	0 <mark>100.0 0.</mark>	.0 0.0 C	<mark>J.0 100.0 0.0</mark>
Г9-1 30.25 vc-cSm Tanglefoot 0		40 29 287 23 15 0 0	35 1 3 17 500 5 8 19 3	535 71.20 21.20 7.60	11 2 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 4	0 0 0 0	0 0 0 0 0 0	0 6 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 23 15 8 0 0	65.2 34.8 0.0 0.0	11.24 8.15 8	<mark>80.62</mark> T9-1 17 6	0 <mark>73.9 20</mark>	6.1 0.0 C	<mark>.0.0 0.0 100.0</mark>
9-2 120.00 (g)vcSt Tanglefoot 0		89 10 229 7 44 0 0	56 2 1 52 500 16 1 7 0	524 <mark>65.60 24.20 10.20</mark>	0 0 0 0 0	2 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 5 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 7 7 0 0 0	100.0 0.0 0.0 0.0	27.13 3.05 6	<mark>69.82</mark> T9-2 2 0	5 <mark>28.6 0.</mark>	. <mark>0 71.4 0</mark>	<mark>0.0 0.0 100.0</mark>
_3-39 0.00 cSm,r Tangelfoot 0		54 5 205 1 3 1 32	71 23 2 3 500 7 46 0 10	563 52.80 39.80 7.40	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 1	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 1 1 0 0 0	100.0 0.0 0.0 0.0	20.45 1.89 7	<mark>77.65</mark> L3-39 0 1	0 0.0 10	00.0 0.0 2	<mark>2.8 88.9 8.3</mark>
.3-51 411.00 c-vcSm Tangelfoot 17	17 clay cem.	70 9 172 1 1 4 21	79 32 3 10 502 7 20 3 0	545 50.00 44.62 5.38	0 0 0 0 0	1 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 1 1 0 0 0	100.0 0.0 0.0 0.0	27.89 3.59 6	<mark>68.53</mark> L3-51 1 0	0 <u>100.0</u> 0.	.0 0.0 1	1 <mark>5.4 80.8 3.8</mark>
.3-80 859.00 mcSr Tangelfoot 77	77 clay	129 14 189 16 0 1 1	55 0 0 17 432 0 158 160 0	827 76.85 18.98 4.17	3 1 0 1 0	7 0 0 1 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	2 0 0 0 0	0 0 0 0 0	0 0 1 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 16 13 1 0 2	81.3 6.3 0.0 12.5	38.86 4.22 5	<mark>56.93</mark> L3-80 13 2	1 <mark>81.3 1</mark> 2	2.5 6.3 5	. <mark>50.0 50.0 0.0</mark>
um Sst 277		1332 239 4034 606 189 52 824	2599 314 37 718 10944 42 632 371 64	Ave 51.4 33.4 15.2	82 75 39 67 0	114 9 12 5 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 1	2 1 4 1 0 0	0 0 0 0 0	6 7 2 2	0 0 0 0 0 0) 0 0 0 0	0 0 1 3 0 5	0 0 0 2	2 2 0 1 31	0 0 2 2 1	1 21 15 13 8	12 24 10 9 3	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0	0	Ave 73.8 11.6 5.4 9.2	Ave 25.3 4.5 7	<mark>70.2</mark>	Ave 64.8 20	0.0 15.2 Ave 7	<mark>7.2 67.4 25.4</mark>
2.2		12.2 2.2 36.9 5.5 1.7 0.5 7.5	23.7 2.9 0.3 6.6 100.0 0.3 5.1 3.0 0.5	Max 86.65 51.99 55.80	13.5 12.4 6.4 11.1 0.0	18.8 1.5 2.0 0.8 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.	0 0.0 0.0 0.0 0.0 0.0 0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 2.	0 0.2 0.7 0.2 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.	0 1.0 1.2 0.3 0.3	0.0 0.0 0.0 0.0 0.0 0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.2 0.5 0.0 0	8 0.0 0.0 0.0 0.3	0.3 0.3 0.0 0.2 5.1	0.0 0.0 0.3 0.3 0.2	2 0.2 3.5 2.5 2.1 1.3	2.0 4.0 1.7 1.5 0.5	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0 0.0	Max 100.0 34.8 19.3 32.5	Max 40.63 8.15 8	88.37	Max 100.0 10	00.0 71.4 Max 5	5 <mark>0.0 100.0 100.0</mark>
				Min 16.40 12.95 0.00	43.4	23.1	0.0	0.0	0.0	0.0	.0 0.0	0.0	3.0	0.0 0	0 2.8	0.0	0.0	0.0 1	5 0.3	0.8	5.4	4.1	7.9 7.6	0.0	0.0	0.0	0.0	Min 33.1 0.0 0.0 0.0	Min 7.91 1.89 5	51.56	Min 0.0 0.	.0 0.0 Min 0	0.0 0.0 0.0
				STDV 17.57 11.88 16.01																								Stdv 28.4399 13.4922 7.722 12.1	9 Stdv 9.439 1.9846 9	9.712	Stdv 31.028 3	1.2062 22.78196 Stdv 1	15.0 37.6 39.5

APPENDIX 3 - CHERT TYPES (by texture)

Colour determined in plain polarized light

Each pair of photograph shows chert types in plain polarized light (ppl), adjacent to a view in cross polarized light (with "x" after primary letter designation).

Massive chert (A-M)

A. Predominantly massive, uniform, microcrystalline chert, with minor clusters of mesocrystalline quartz (>20 µm). Ax: viewed in xpl.

B. Massive microcrystalline chert, with textures suggesting replacement of a carbonate grainstone (note dark rims). Bx: viewed in xpl.

C. Massive, micro and meso crystalline chert, possibly reflecting porphyroid neomorphic recrystallization, with secondary fractures. Cx: viewed in xpl.

D. Massive, micro and meso crystalline chert. Dx: viewed in xpl.

E. Patchy, massive micro and mesocrystalline quartz, with minor dark bands. Dx: viewed in xpl.

F. Banded microcrystalline quartz. Fx: viewed in xpl.

G. Massive microcrystalline quartz, with clusters of mesocrystalline quartz with diffuse boundaries (possibly indicating porphyroid neomorphic recrystallization). Gx: viewed in xpl.

H. Massive microcrystalline quartz, with larger clusters of mesocrystalline quartz with diffuse boundaries (possibly indicating porphyroid neomorphic recrystallization). Hx: viewed in xpl.

I. Massive microcrystalline quartz, with clusters of mesocrystalline quartz, producing a clotted texture. Ix: viewed in xpl.

J. Massive chert with hint of clotted texture (microcrystalline quartz, surrounded by mesocrystalline quartz - possibly reflecting replacement of void fill around pelloids in carbonate protolith). Jx: viewed in xpl.

K. Massive microcrystalline chert, with poorly defined zones of mesocrystalline quartz (possibly reflecting replacement of void fill around pelloids or intraclasts in carbonate protolith). Kx: viewed in xpl.

A'. Massive micro to mesocrystalline chert (similar to E). A'x: viewed in xpl.

B'. Grain similar to type E, adjacent to grain consisting entirely of chalcedony. B'x: viewed in xpl.

Brecciated chert (L to T + Z)

L. Predominantly massive microcrystalline quartz, with poorly defined re-healed fractures (best seen in ppl). Lx: viewed in xpl.

M. Microcrystalline chert cut by two generations of mesocrystalline quartz: dark area reflects later precipitation of iron sesquioxides in late fracture. Mx: viewed in xpl.

N. Similar to M. Mx: viewed in xpl.

O. Microcrystalline chert, with minor clusters of mesocrystalline quartz, with bands of mesocrystalline quartz along bedding planes, cut by quartz filled fractures (with uniform extinction of individual crystals) indicative of druzy infill of later fractures. Ox: viewed in xpl.

P. Microcrystalline quartz, with iron sesquioxide filled fractures. Px: viewed in xpl.

Q. Microcrystalline chert, with abundant clusters of mesocrystalline chert, cut by fracture fill quartz. Qx: viewed in xpl.

R. Microcrystalline chert with multiple fractures filled with equant quartz. Rx: viewed in xpl.

S. Highly brecciated chert, with dispersed remnants of microcrystalline chert. Sx: viewed in xpl,

T. Brecciated microcrystalline chert with late fracture fill chalcedony. Tx: viewed in xpl.

Z. Chertified microcrystalline breccia. Zx: viewed in xpl.

Chert with spheres (U to W)

U. Microcrystalline chert, with abundant, well defined spheres of mesocrystalline chert (possibly replacement of radiolarians). Ux: viewed in xpl.

V. Microcrystalline quartz with abundant spherical to sub-spherical clusters of mesocrystalline chert, with diffuse margins (possibly replacement of radiolarians). Vx: viewed in xpl.

W. Diffuse clusters of mesocrystalline quartz in microcrystalline matrix. Wx viewed in xpl.

Other quartz-rich grains

Y. Moderately poorly sorted siltstone (Quartz-lutite). Note sutured contacts between grains. Yx" viewed in xpl.

APPENDIX 4 – TANTALUS ZIRCON DATA

Methodology for zircon analysis

U-Pb geochronology of zircons was conducted by laser ablation multicollector inductively coupled plasma mass spectrometry (LA-MC-ICPMS). According to Gehrels (pers. com., 2005), the analyses involved ablation of zircon with a New Wave DUV193 Excimer laser (operating at a wavelength of 193 nm) using a spot diameter of 25 - 50 microns. The ablated material was transported in helium into the plasma source of a Micromass Isoprobe, which was equipped with a flight tube of sufficient width that U, Th, and Pb isotopes were measured simultaneously. All measurements were made in static mode, using Faraday detectors for ²³⁸U, ²³²Th, ²⁰⁸⁻²⁰⁶Pb, and an ion-counting channel for ²⁰⁴Pb. Ion yields were 0.5-1.0 mv per ppm. Each analysis consisted of one 20-second integration on peaks with the laser off (for backgrounds), 20 one-second integration with the laser firing, and a 30-second delay to purge the previous sample and prepare for the next analysis. The ablation pit was typically about 15 microns deep.

Gehrels (pers. com., 2005) noted that for each analysis, the errors in determining $^{206}Pb/^{238}U$ and $^{206}Pb/^{204}Pb$ resulted in a measurement error of ~1-2% (at 2-sigma level) in the $^{206}Pb/^{238}U$ age. The errors in measurement of $^{206}Pb/^{207}Pb$ and $^{206}Pb/^{204}Pb$ also resulted in ~1-2% (at 2-sigma level) uncertainty in age for grains that are >1.0 Ga, but are substantially larger for younger grains, due to low intensity of the ^{207}Pb signal. For most analyses, the cross-over in precision of $^{206}Pb/^{238}U$ and $^{206}Pb/^{237}Pb$ ages occurs at 0.8-1.0 Ga.

Common Pb correction was accomplished using the measured ²⁰⁴Pb, and assumed an initial Pb composition from Stacey and Kramers (1975), with uncertainties of 1.0 for ²⁰⁶Pb/²⁰⁴Pb and 0.3 for ²⁰⁷Pb/²⁰⁴Pb. The measurement of ²⁰⁴Pb was unaffected by the presence of ²⁰⁴Hg as backgrounds were measured on peaks (thereby subtracting any background ²⁰⁴Hg and ²⁰⁴Pb), and very little Hg was present in the argon gas.

Gehrels (pers. com. 2005) noted that inter-element fractionation of Pb/U was generally ~20%, whereas fractionation of Pb isotopes was generally ~2%. In-run analysis of fragments of a large zircon crystal (generally every fifth measurement), with a known age of 564 ± 4 Ma (2-sigma error), was used to correct for this fractionation. The uncertainty resulting from the calibration correction was generally 2-3% (2-sigma) for both 206 Pb/ 207 Pb and 206 Pb/ 238 U ages.

The analytical data are provided in Appendix 4b. Uncertainties shown in this appendix are at the 1-sigma level, and include only measurement errors. Interpreted ages are based on $^{206}Pb/^{238}U$ for <800 Ma grains and on $^{206}Pb/^{207}Pb$ for >800 Ma grains. This division at 800 Ma results from the increasing uncertainty of $^{206}Pb/^{238}U$ ages and the decreasing uncertainty of $^{206}Pb/^{207}Pb$ ages as a function of age. Analyses that are >30% discordant (by comparison of $^{206}Pb/^{238}U$ and $^{206}Pb/^{207}Pb$ ages) or >5% reverse discordant (in italics in Appendix 4) are not considered further.

REFERENCE

Stacey, J.S. and Kramers, J.D., 1975. Approximation of terrestrial lead isotope evolution by a two stage model. Earth and Planetary Science Letters, vol. 26, p. 207-221.

					Isotopic	ratios						Apparer	nt ages (Ma)		
sample	U	²⁰⁶ Pb	U/Th	²⁰⁷ Pb	± (%)	²⁰⁶ Pb	± (%)	error	²⁰⁶ Pb	± (Ma)	²⁰⁷ Pb	± (Ma)	²⁰⁶ Pb	± (Ma)	BEST	± (Ma)
·	(ppm)	²⁰⁴ Pb		²³⁵ U	. ,	²³⁸ U	. ,	corr.	²³⁸ U	. ,	²³⁵ U	, , , , , , , , , , , , , , , , , , ,	²⁰⁷ Pb	. ,	AGE	, ,
TB1-89	691	10790	1.0	0.16494	6.8	0.02419	1.1	0.17	154.1	1.7	155	10	170	156	154	2
TB1-55	344	2654	1.4	0.17591	11.2	0.02468	2.2	0.19	157.2	3.3	165	17	272	252	157	3
TB1-77	651	12119	1.8	0.16772	6.7	0.02485	1.0	0.15	158.2	1.6	157	10	146	154	158	2
TB1-72	980	16321	1.3	0.17488	5.6	0.02510	1.0	0.18	159.8	1.6	164	9	219	128	160	2
TB1-22	912	4605	1.2	0.16511	6.5	0.02554	1.6	0.25	162.6	2.6	155	9	43	150	163	3
TB1-44	708	5664	1.0	0.17449	6.0	0.02577	1.0	0.17	164.0	1.6	163	9	153	139	164	2
TB1-7	323	4245	0.9	0.18915	11.3	0.02630	1.2	0.11	167.4	2.0	176	18	292	258	167	2
TB1-58	225	1482	0.9	0.19545	32.9	0.02640	3.0	0.09	168.0	5.0	181	55	358	758	168	5
TB1-9	586	5969	1.4	0.17862	6.3	0.02737	1.0	0.16	174.0	1.7	167	10	66	148	174	2
TB1-65	897	697	1.5	0.21727	5.5	0.02741	2.9	0.51	174.3	4.9	200	10	510	105	174	5
TB1-70	383	7564	1.3	0.21367	6.9	0.02870	1.9	0.28	182.4	3.4	197	12	371	149	182	3
TB1-53	463	2103	0.9	0.21706	5.8	0.02922	2.6	0.45	185.7	4.8	200	11	366	118	186	5
TB1-31	311	3964	1.3	0.19174	10.5	0.02957	1.0	0.10	187.8	1.9	178	17	51	250	188	2
TB1-81	446	2405	1.5	0.21272	4.9	0.02985	1.4	0.28	189.6	2.6	196	9	271	108	190	3
TB1-74	148	916	0.9	0.21167	17.0	0.02993	3.0	0.17	190.1	5.6	195	30	254	388	190	6
TB1-43	369	4142	1.3	0.21077	8.9	0.02995	1.0	0.11	190.2	1.9	194	16	243	203	190	2
TB1-8	142	1744	1.4	0.23274	16.7	0.03015	1.8	0.11	191.5	3.4	213	32	452	372	192	3
TB1-91	712	12060	2.1	0.21576	3.8	0.03038	1.5	0.39	192.9	2.8	198	7	264	81	193	3
TB1-10	204	3357	1.3	0.19987	15.5	0.03065	2.1	0.13	194.6	3.9	185	26	64	366	195	4
TB1-5	209	1725	1.2	0.21320	11.4	0.03066	1.5	0.13	194.7	2.8	196	20	215	263	195	3
TB1-19	227	2354	1.6	0.19035	12.0	0.03076	2.1	0.18	195.3	4.1	177	19	-62	288	195	4
TB1-98	379	6177	1.7	0.21112	9.5	0.03076	1.0	0.11	195.3	1.9	195	17	185	220	195	2
TB1-73	255	6601	1.9	0.21845	10.3	0.03083	1.5	0.15	195.7	2.9	201	19	259	235	196	3
TB1-25	275	3702	1.3	0.23235	7.8	0.03087	1.1	0.14	196.0	2.2	212	15	395	173	196	2
TB1-23	541	6248	2.5	0.20142	4.8	0.03093	1.6	0.35	196.4	3.2	186	8	61	106	196	3
TB1-60	268	4985	1.7	0.22200	12.6	0.03100	1.1	0.09	196.8	2.1	204	23	283	289	197	2
TB1-11	257	3563	3.3	0.22387	7.9	0.03109	2.4	0.31	197.4	4.7	205	15	295	171	197	5
TB1-47	414	15632	1.7	0.21512	7.6	0.03113	1.3	0.17	197.6	2.5	198	14	201	175	198	3
TB1-100	370	8561	1.5	0.20780	9.0	0.03117	1.0	0.11	197.9	2.0	192	16	116	211	198	2
TB1-52	91	1446	1.4	0.16796	25.2	0.03119	2.2	0.09	198.0	4.2	158	37	-413	664	198	4
TB1-14	140	960	2.0	0.20306	20.9	0.03128	1.3	0.06	198.5	2.5	188	36	54	503	199	3
TB1-29	304	3286	2.6	0.21370	5.9	0.03134	1.5	0.25	198.9	2.9	197	11	169	133	199	3
TB1-3	129	2027	1.2	0.20214	7.9	0.03135	1.9	0.24	199.0	3.7	187	13	37	183	199	4
TB1-1	397	4178	1.6	0.19430	6.8	0.03140	1.6	0.23	199.3	3.1	180	11	-62	161	199	3
TB1-49	649	12859	2.1	0.21277	5.8	0.03149	1.2	0.20	199.9	2.3	196	10	148	134	200	2
TB1-17	184	2342	1.6	0.22368	15.2	0.03152	2.7	0.18	200.0	5.3	205	28	262	346	200	5
TB1-13	257	1834	1.9	0.19549	12.6	0.03155	2.8	0.22	200.2	5.5	181	21	-59	300	200	6

Appendix 4U-Pb geochronologic analyses by Laser-Ablation Multicollector ICP Mass Spectrometery

					Isotopio	c ratios						Appare	nt ages (N	la)		
sample	U	²⁰⁶ Pb	U/Th	²⁰⁷ Pb	± (%)	²⁰⁶ Pb	± (%)	error	²⁰⁶ Pb	± (Ma)	²⁰⁷ Pb	± (Ma)	²⁰⁶ Pb	± (Ma)	BEST	± (Ma)
	(ppm)	²⁰⁴ Pb		²³⁵ U		²³⁸ U		corr.	²³⁸ U		²³⁵ U		²⁰⁷ Pb		AGE	
TB1-54	289	307	2.1	0.26912	16.1	0.03157	1.6	0.10	200.4	3.2	242	35	668	344	200	3
TB1-68	293	5488	1.9	0.24185	8.7	0.03161	1.3	0.15	200.6	2.5	220	17	432	191	201	3
TB1-15	153	2213	1.3	0.22515	14.1	0.03162	2.3	0.16	200.7	4.5	206	26	269	319	201	5
TB1-39	127	1848	1.1	0.17082	17.7	0.03162	2.3	0.13	200.7	4.5	160	26	-405	460	201	5
TB1-64	239	5450	1.5	0.23024	14.7	0.03167	2.6	0.18	201.0	5.1	210	28	317	330	201	5
TB1-18	287	1594	1.5	0.21746	10.9	0.03176	1.4	0.13	201.6	2.7	200	20	179	253	202	3
TB1-20	275	3095	1.3	0.22322	8.5	0.03196	1.2	0.14	202.8	2.5	205	16	226	195	203	3
TB1-61	447	6444	2.2	0.22218	6.8	0.03199	4.6	0.67	203.0	9.1	204	13	212	118	203	9
TB1-79	125	2101	1.2	0.16510	29.6	0.03199	2.5	0.08	203.0	5.0	155	43	-526	803	203	5
TB1-56	102	2119	1.0	0.24950	28.4	0.03210	2.0	0.07	203.6	4.0	226	58	467	638	204	4
TB1-97	205	5805	1.7	0.22906	14.4	0.03210	1.8	0.12	203.7	3.5	209	27	275	328	204	4
TB1-26	194	4378	1.8	0.24939	13.2	0.03211	2.4	0.18	203.8	4.7	226	27	465	288	204	5
TB1-34	69	1051	1.4	0.26402	24.6	0.03233	2.3	0.09	205.1	4.6	238	52	576	540	205	5
TB1-86	311	7768	2.0	0.22922	10.8	0.03233	1.0	0.09	205.1	2.0	210	21	260	249	205	2
TB1-4	353	5220	1.4	0.21220	6.5	0.03234	1.0	0.15	205.2	2.0	195	12	79	152	205	2
TB1-33	224	2526	1.4	0.22741	10.4	0.03255	1.4	0.13	206.5	2.8	208	20	226	238	207	3
TB1-63	178	2831	1.5	0.17544	22.1	0.03256	1.4	0.06	206.5	2.9	164	34	-411	583	207	3
TB1-90	480	5621	2.6	0.21609	8.5	0.03262	1.7	0.20	207.0	3.5	199	15	101	197	207	4
TB1-41	183	1357	1.8	0.24456	18.4	0.03270	1.5	0.08	207.4	3.1	222	37	381	414	207	3
TB1-32	378	5741	2.4	0.21248	8.3	0.03279	1.0	0.12	208.0	2.1	196	15	49	197	208	2
TB1-94	306	7687	1.6	0.24034	6.7	0.03283	1.0	0.15	208.3	2.1	219	13	333	151	208	2
TB1-38	171	3335	1.3	0.22703	11.5	0.03287	1.8	0.15	208.5	3.6	208	22	199	264	209	4
TB1-99	97	2510	1.6	0.17694	34.8	0.03290	2.5	0.07	208.7	5.1	165	53	-416	930	209	5
TB1-66	208	3060	2.2	0.21173	13.6	0.03296	1.0	0.07	209.0	2.1	195	24	28	327	209	2
TB1-30	280	6551	1.0	0.21127	8.0	0.03301	1.0	0.13	209.4	2.1	195	14	19	191	209	2
TB1-75	83	2854	2.0	0.31448	20.7	0.03355	1.9	0.09	212.7	3.9	278	50	868	431	213	4
TB1-28	247	5352	0.6	0.26036	9.0	0.03367	1.0	0.11	213.5	2.1	235	19	456	200	214	2
TB1-93	100	3001	1.1	0.30681	23.9	0.03369	2.3	0.10	213.6	4.9	272	57	808	504	214	5
TB1-80	116	1992	1.2	0.26607	16.8	0.03408	1.7	0.10	216.0	3.5	240	36	477	372	216	4
TB1-40	225	3541	4.3	0.23202	9.7	0.03440	1.1	0.11	218.0	2.3	212	19	144	226	218	2
TB1-42	79	1932	1.5	0.26102	37.8	0.03446	2.9	0.08	218.4	6.1	236	80	409	871	218	6
TB1-46	47	723	2.2	0.23052	30.8	0.03648	3.6	0.12	231.0	8.2	211	59	-12	753	231	8
TB1-92	331	6599	1.9	0.25110	6.4	0.03662	1.4	0.23	231.9	3.3	228	13	182	144	232	3
TB1-48	37	1823	3.0	0.27949	34.4	0.03748	4.5	0.13	237.2	10.6	250	76	375	788	237	11
TB1-67	148	3977	2.4	0.33655	15.7	0.03915	1.1	0.07	247.5	2.6	295	40	686	336	248	3
TB1-6	552	8872	1.5	0.27654	4.7	0.03950	1.1	0.24	249.7	2.7	248	10	231	104	250	3
TB1-71	360	7912	1.4	0.26878	7.6	0.04007	1.1	0.14	253.3	2.7	242	16	131	177	253	3
TB1-76	272	6048	1.7	0.28902	11.3	0.04042	2.4	0.21	255.5	6.0	258	26	279	254	256	6
TB1-69	526	10641	1.7	0.29095	4.6	0.04164	2.5	0.55	263.0	6.5	259	11	226	88	263	7

					Isotopic	ratios						Appare	nt ages (M	a)		
sample	U (ppm)	²⁰⁶ Pb ²⁰⁴ Pb	U/Th	²⁰⁷ Pb	± (%)	²⁰⁶ Pb ²³⁸ L	± (%)	error	²⁰⁶ Pb ²³⁸ L	± (Ma)	²⁰⁷ Pb ²³⁵ L	± (Ma)	²⁰⁶ Pb ²⁰⁷ Pb	± (Ma)	BEST	± (Ma)
TR1 16	224	39/5	16	0 33076	8.0	0.04504	2.0	0.36	284.0	8.0	290	20	340	170	284	8
	ZZ4 F4	1100	1.0	0.33070	20.0	0.04304	2.9	0.50	204.0	0.0 7.0	290	20	111	72.4	204	0
	54 72	1109	1.2	0.32203	30.6	0.04642	2.4	0.00	304.8	7.2	204	/0 _0	111	/ 34	305	6
	/3 E22	1123	1.0	0.30399	20.4	0.04940	1.9	0.09	310.9	2.0 2.1	330	20	40/	454	311 216	0
	532 120	9903	1./	0.3/548	3.1 24.7	0.05026	1.0	0.32	310.1	3.1	324 215	9	3/0	00 572	310	3
TB1-59	120	2611	1.0	0.36400	24./	0.05087	1.0	0.04	319.9	3.2	315	6/ 25	201	5/3	320	3
	142	24/0	0.8	0.35341	9.2	0.05208	2.8	0.31	327.3	9.0	307	25	158	206	327	9
IBI-83	101	4/9/	1.0	0.40512	10./	0.05226	1.4	0.13	328.4	4.6	345	31	461	235	328	5
TB1-36	158	4125	0.8	0.31/41	16.1	0.05228	1.0	0.06	328.5	3.2	280	39	-109	396	329	3
TB1-95	261	6431	1.2	0.35/96	6.3	0.05246	1./	0.27	329.6	5.5	311	17	1/1	142	330	6
IBI-84	350	10068	1./	0.38834	5.0	0.052/5	1./	0.33	331.4	5.4	333	14	345	107	331	5
TB1-24	278	5904	1.3	0.39162	5.6	0.05311	1.1	0.19	333.6	3.5	336	16	349	124	334	4
IBI-5/	59	2640	1.4	0.26509	4/.4	0.05312	2.9	0.06	333./	9.4	239	101	-616	1353	334	9
	11/	3/58	1.3	0.3/451	16.0	0.05359	1.9	0.12	336.5	6.1	323	44	226	369	33/	6
TB1-50	89	2058	2.0	0.4341/	16.3	0.05363	1.5	0.09	336.8	4.9	366	50	556	35/	33/	5
1B1-88	202	/604	0./	0.39506	4.4	0.05427	1.6	0.35	340./	5.2	338	13	320	94	341	5
TB1-82	219	7965	0.7	0.42142	9.8	0.05456	1.0	0.10	342.4	3.3	357	30	453	217	342	3
TB1-96	61	2778	1.1	0.41771	23.3	0.05575	2.3	0.10	349.7	8.0	354	70	385	528	350	8
IB1-85	434	11471	1.1	0.39652	4.0	0.05614	1.2	0.30	352.1	4.1	339	11	251	87	352	4
IB1-37	442	1830	1.6	0.45798	4.7	0.05815	1.0	0.22	364.4	3.6	383	15	496	101	364	4
IB1-62	74	11397	1.0	5.60322	2.3	0.34468	1.9	0.81	1909.1	30.9	1917	20	1925	24	1925	24
IB1-35	95	3455	1.0	7.62905	4.6	0.38767	4.1	0.89	2112.0	73.0	2188	41	2261	36	2261	36
TB2-19	290	2558	1.6	0.17917	27.8	0.02203	3.2	0.12	140.5	4.5	167	43	566	612	141	5
TB2-84	451	6526	0.8	0.17895	17.3	0.02262	1.7	0.10	144.2	2.4	167	27	506	381	144	2
TB2-57	318	3479	1.8	0.16162	22.4	0.02274	1.9	0.08	144.9	2.7	152	32	266	519	145	3
TB2-88	250	10025	2.2	0.13276	36.2	0.02288	1.5	0.04	145.8	2.2	127	43	-221	935	146	2
TB2-15	305	2153	1.8	0.14887	32.7	0.02317	2.1	0.06	147.7	3.0	141	43	29	801	148	3
TB2-69	449	3677	1.4	0.14267	10.6	0.02341	2.5	0.23	149.2	3.6	135	13	-100	254	149	4
TB2-21	248	6681	2.0	0.21576	25.1	0.02370	2.9	0.11	151.0	4.3	198	45	807	529	151	4
TB2-24	220	3093	2.0	0.18699	21.5	0.02424	3.8	0.18	154.4	5.8	174	34	450	474	154	6
TB2-65	256	2786	1.9	0.18872	27.4	0.02445	2.9	0.10	155.7	4.4	176	44	451	614	156	4
TB2-16	253	2608	1.7	0.14676	13.7	0.02454	3.1	0.23	156.3	4.8	139	18	-146	333	156	5
TB2-37	547	8039	1.3	0.21052	6.3	0.02482	1.7	0.28	158.0	2.7	194	11	657	129	158	3
TB2-43	496	5099	1.5	0.18626	10.3	0.02489	1.0	0.10	158.5	1.6	173	16	382	231	159	2
TB2-1	514	2223	1.5	0.16908	18.7	0.02513	6.2	0.33	160.0	9.9	159	28	138	417	160	10
TB2-70	239	3113	2.0	0.19720	23.3	0.02553	2.4	0.10	162.5	3.9	183	39	453	522	163	4
TB2-77	187	3270	2.4	0.24603	25.0	0.02588	3.1	0.12	164.7	5.0	223	50	897	519	165	5
TB2-30	341	3306	1.3	0.21731	20.4	0.02624	1.8	0.09	166.9	2.9	200	37	606	445	167	3
TB2-59	179	1012	2.0	0.19441	32.6	0.02625	3.2	0.10	167.0	5.3	180	54	359	750	167	5

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						Isotopio	c ratios					Appare		ent ages (Ma)			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	sample	U	²⁰⁶ Pb	U/Th	²⁰⁷ Pb	± (%)	²⁰⁶ Pb	± (%)	error	²⁰⁶ Pb	± (Ma)	²⁰⁷ Pb	± (Ma)	²⁰⁶ Pb	± (Ma)	BEST	± (Ma)
TB2-14 133 1445 0.8 0.19984 25.2 0.02822 4.3 0.17 179.4 7.6 185 43 257 578 179 8 TB2-16 331 2578 1.7 0.21518 15.4 0.02861 1.9 0.13 181.8 3.5 198 28 394 345 182 4 TB2-96 416 11419 1.9 0.19968 22.3 0.02872 1.1 0.05 182.6 1.9 185 38 214 522 183 2 TB2-78 620 2151 1.1 0.21123 12.0 0.02879 2.6 0.22 183.0 4.7 195 21 338 266 183 5 TB2-74 428 5249 1.4 0.21701 20.6 0.02910 4.4 0.22 184.9 8.1 199 37 375 457 185 8 TB2-65 52 12051 0.6 0.2030 8.3 0.02912 1.1 0.14 190 193 185 <td< th=""><th></th><th>(ppm)</th><th>⁻°'Pb</th><th></th><th>100</th><th></th><th>1300</th><th></th><th>corr.</th><th>1300</th><th></th><th><u> </u></th><th></th><th>-** Pb</th><th></th><th>AGE</th><th></th></td<>		(ppm)	⁻ °'Pb		100		1300		corr.	1300		<u> </u>		-** Pb		AGE	
IB2-17 331 2578 1.7 0.21518 15.4 0.02861 1.9 0.13 181.8 3.5 198 28 394 345 182 4 TB2-96 416 11419 1.9 0.19968 22.3 0.02872 1.1 0.05 182.6 1.9 185 38 214 522 183 2 TB2-76 620 2151 1.1 0.021723 12.0 0.02879 2.6 0.22 183.9 5.5 198 24 372 292 184 6 TB2-78 55 1044 1.5 0.21701 20.6 0.02910 4.4 0.22 184.9 8.1 199 37 375 457 185 8 TB2-85 264 4486 1.4 0.19714 15.2 0.02914 1.6 0.11 185.2 3.0 183 25 151 356 185 3 TB2-75 426 4387 1.7 0.17959 19.7 0.02943 2.4 0.12 186.5 4.3 168	TB2-14	133	1445	0.8	0.19984	25.2	0.02822	4.3	0.17	179.4	7.6	185	43	257	578	179	8
TB2-96 416 11419 1.9 0.19968 22.3 0.02872 1.1 0.05 182.6 1.9 185 38 214 522 183 2 TB2-78 620 2151 1.1 0.21123 12.0 0.02879 2.6 0.22 183.0 4.7 195 21 338 266 183 5 TB2-74 428 5249 1.4 0.21556 13.3 0.02893 3.0 0.22 184.9 8.1 199 37 375 457 185 8 TB2-68 582 12051 0.6 0.20030 8.3 0.02912 1.1 0.14 185.0 2.1 185 14 190 193 185 2 TB2-75 426 4387 1.7 0.17959 19.7 0.02936 2.4 0.12 186.5 4.3 168 31 90 484 187 4 TB2-35 311 4626 1.9 0.22873 11.8 0.02936 1.8 0.15 186.7 3.2 209	TB2-17	331	2578	1.7	0.21518	15.4	0.02861	1.9	0.13	181.8	3.5	198	28	394	345	182	4
TB2-78 620 2151 1.1 0.21123 12.0 0.02879 2.6 0.22 183.0 4.7 195 21 338 266 183 5 TB2-74 428 5249 1.4 0.21556 13.3 0.02893 3.0 0.23 183.9 5.5 198 24 372 292 184 6 TB2-85 95 1044 1.5 0.21701 20.6 0.02910 4.4 0.22 184.9 8.1 199 37 375 457 185 8 TB2-85 264 4486 1.4 0.19714 15.2 0.02914 1.6 0.11 185.2 3.0 183 25 151 356 185 3 TB2-75 264 4486 1.4 0.19714 15.2 0.02918 1.8 0.12 186.7 3.2 209 22 470 259 187 3 TB2-35 311 402 1.7 0.20039 11.4 0.02940 2.0 0.17 186.8 3.6 186 <t< td=""><td>TB2-96</td><td>416</td><td>11419</td><td>1.9</td><td>0.19968</td><td>22.3</td><td>0.02872</td><td>1.1</td><td>0.05</td><td>182.6</td><td>1.9</td><td>185</td><td>38</td><td>214</td><td>522</td><td>183</td><td>2</td></t<>	TB2-96	416	11419	1.9	0.19968	22.3	0.02872	1.1	0.05	182.6	1.9	185	38	214	522	183	2
TB2-74 428 5249 1.4 0.21556 13.3 0.02893 3.0 0.23 183.9 5.5 198 24 372 292 184 6 TB2-85 95 1044 1.5 0.21701 20.6 0.02910 4.4 0.22 184.9 8.1 199 37 375 457 185 8 TB2-68 582 12051 0.6 0.20300 8.3 0.02912 1.1 0.14 185.0 2.1 185 14 190 193 185 2 TB2-95 264 4486 1.4 0.19714 15.2 0.02916 2.4 0.12 186.5 4.3 168 31 -90 484 187 4 TB2-75 426 4387 1.7 0.17959 19.7 0.02936 2.4 0.12 186.5 4.3 168 31 -90 484 187 4 TB2-35 311 4626 1.9 0.27051 16.1 0.02940 2.0 0.17 186.9 5.0 243 <	TB2-78	620	2151	1.1	0.21123	12.0	0.02879	2.6	0.22	183.0	4.7	195	21	338	266	183	5
IB2-85 95 1044 1.5 0.21701 20.6 0.02910 4.4 0.22 184.9 8.1 199 37 375 457 185 8 IB2-68 582 12051 0.6 0.20030 8.3 0.02912 1.1 0.14 185.0 2.1 185 14 190 193 185 2 IB2-95 264 4486 1.4 0.19714 15.2 0.02914 1.6 0.11 185.2 3.0 183 25 151 356 185 3 IB2-75 426 4387 1.7 0.17959 19.7 0.02936 2.4 0.12 186.5 4.3 168 31 -90 484 187 4 IB2-35 311 4626 1.9 0.22873 11.8 0.02940 2.0 0.17 186.8 3.6 186 19 168 262 187 4 IB2-11 198 2049 2.1 0.27051 16.1 0.02972 1.2 0.11 188.4 3.6 194 <	TB2-74	428	5249	1.4	0.21556	13.3	0.02893	3.0	0.23	183.9	5.5	198	24	372	292	184	6
TB2-68 582 12051 0.6 0.20030 8.3 0.02912 1.1 0.14 185.0 2.1 185 14 190 193 185 2 TB2-95 264 4486 1.4 0.19714 15.2 0.02914 1.6 0.11 185.2 3.0 183 25 151 356 185 3 TB2-75 426 4387 1.7 0.17959 19.7 0.02936 2.4 0.12 186.5 4.3 168 31 -90 484 187 4 TB2-35 311 4626 1.9 0.22873 11.8 0.02940 2.0 0.17 186.7 3.2 209 22 470 259 187 3 TB2-41 491 8022 1.7 0.20039 11.4 0.02940 2.0 0.17 186.8 3.6 186 19 168 262 187 4 TB2-63 460 8859 1.5 0.21049 16.5 0.02966 1.9 0.12 188.4 3.6 194	TB2-85	95	1044	1.5	0.21701	20.6	0.02910	4.4	0.22	184.9	8.1	199	37	375	457	185	8
TB2-9526444861.40.1971415.20.029141.60.11185.23.0183251513561853TB2-7542643871.70.1795919.70.029362.40.12186.54.316831-904841874TB2-3531146261.90.2287311.80.029381.80.15186.73.2209224702591873TB2-4149180221.70.2003911.40.029402.00.17186.83.6186191682621874TB2-1119820492.10.2705116.10.029422.70.17186.95.0243358283331875TB2-6346088591.50.2104916.50.029661.90.12188.43.6194292623791884TB2-2642975231.70.1892711.10.029721.20.11188.82.21761882671892TB2-2523427811.80.2029926.70.030062.10.08190.93.9188461476341914TB2-3837838242.30.2123113.60.030091.80.13191.13.4196242493111913 <t< td=""><td>TB2-68</td><td>582</td><td>12051</td><td>0.6</td><td>0.20030</td><td>8.3</td><td>0.02912</td><td>1.1</td><td>0.14</td><td>185.0</td><td>2.1</td><td>185</td><td>14</td><td>190</td><td>193</td><td>185</td><td>2</td></t<>	TB2-68	582	12051	0.6	0.20030	8.3	0.02912	1.1	0.14	185.0	2.1	185	14	190	193	185	2
TB2-7542643871.70.1795919.70.029362.40.12186.54.316831-904841874TB2-3531146261.90.2287311.80.029381.80.15186.73.2209224702591873TB2-4149180221.70.2003911.40.029402.00.17186.83.6186191682621874TB2-1119820492.10.2705116.10.029422.70.17186.95.0243358283331875TB2-6346088591.50.2104916.50.029661.90.12188.43.6194292623791884TB2-6342975231.70.1892711.10.029721.20.11188.82.21761882671892TB2-2817212581.60.2218529.00.030022.50.09190.74.7203543546651915TB2-3837838242.30.2123113.60.030091.80.13191.13.4196242493111913TB2-9918735272.20.2354022.70.030122.20.10191.34.2215444795061914 <t< td=""><td>TB2-95</td><td>264</td><td>4486</td><td>1.4</td><td>0.19714</td><td>15.2</td><td>0.02914</td><td>1.6</td><td>0.11</td><td>185.2</td><td>3.0</td><td>183</td><td>25</td><td>151</td><td>356</td><td>185</td><td>3</td></t<>	TB2-95	264	4486	1.4	0.19714	15.2	0.02914	1.6	0.11	185.2	3.0	183	25	151	356	185	3
TB2-3531146261.90.2287311.80.029381.80.15186.73.2209224702591873TB2-4149180221.70.2003911.40.029402.00.17186.83.6186191682621874TB2-1119820492.10.2705116.10.029422.70.17186.95.0243358283331875TB2-6346088591.50.2104916.50.029661.90.12188.43.6194292623791884TB2-5642975231.70.1892711.10.029721.20.11188.82.21761882671892TB2-2817212581.60.2218529.00.030022.50.09190.74.7203543546651915TB2-2523427811.80.2029926.70.030062.10.08190.93.9188461476341914TB2-3837838242.30.2123113.60.030091.80.13191.13.4196242493111913TB2-9918735272.20.2354022.70.030152.20.04191.54.124613380413991924	TB2-75	426	4387	1.7	0.17959	19.7	0.02936	2.4	0.12	186.5	4.3	168	31	-90	484	187	4
TB2-4149180221.70.2003911.40.029402.00.17186.83.6186191682621874TB2-1119820492.10.2705116.10.029422.70.17186.95.0243358283331875TB2-6346088591.50.2104916.50.029661.90.12188.43.6194292623791884TB2-5642975231.70.1892711.10.029721.20.11188.82.21761882671892TB2-2817212581.60.2218529.00.030022.50.09190.74.7203543546651915TB2-2523427811.80.2029926.70.030062.10.08190.93.9188461476341914TB2-3837838242.30.2123113.60.030091.80.13191.13.4196242493111913TB2-9918735272.20.2354022.70.030152.20.04191.54.124613380413991924TB2-73389269761.60.1939318.20.030142.60.14191.54.818030324331925	TB2-35	311	4626	1.9	0.22873	11.8	0.02938	1.8	0.15	186.7	3.2	209	22	470	259	187	3
TB2-1119820492.10.2705116.10.029422.70.17186.95.0243358283331875TB2-6346088591.50.2104916.50.029661.90.12188.43.6194292623791884TB2-5642975231.70.1892711.10.029721.20.11188.82.21761882671892TB2-2817212581.60.2218529.00.030022.50.09190.74.7203543546651915TB2-2523427811.80.2029926.70.030062.10.08190.93.9188461476341914TB2-3837838242.30.2123113.60.030091.80.13191.13.4196242493111913TB2-9918735272.20.2354022.70.030122.20.10191.34.2215444795061914TB2-73389269761.60.1939318.20.030152.20.04191.54.124613380413991924TB2-7118023352.30.2083322.30.030165.50.24191.610.31923919950819210<	TB2-41	491	8022	1.7	0.20039	11.4	0.02940	2.0	0.17	186.8	3.6	186	19	168	262	187	4
TB2-6346088591.50.2104916.50.029661.90.12188.43.6194292623791884TB2-5642975231.70.1892711.10.029721.20.11188.82.21761882671892TB2-2817212581.60.2218529.00.030022.50.09190.74.7203543546651915TB2-2523427811.80.2029926.70.030062.10.08190.93.9188461476341914TB2-3837838242.30.2123113.60.030091.80.13191.13.4196242493111913TB2-9918735272.20.2354022.70.030122.20.10191.34.2215444795061914TB2-73389269761.60.1939318.20.030152.20.04191.54.124613380413991924TB2-73389269761.60.1939318.20.030142.60.14191.54.818030324331925TB2-5118023352.30.2083322.30.030165.50.24191.610.31923919950819210<	TB2-11	198	2049	2.1	0.27051	16.1	0.02942	2.7	0.17	186.9	5.0	243	35	828	333	187	5
TB2-5642975231.70.1892711.10.029721.20.11188.82.21761882671892TB2-2817212581.60.2218529.00.030022.50.09190.74.7203543546651915TB2-2523427811.80.2029926.70.030062.10.08190.93.9188461476341914TB2-3837838242.30.2123113.60.030091.80.13191.13.4196242493111913TB2-9918735272.20.2354022.70.030122.20.10191.34.2215444795061914TB2-7313912131.40.2740260.30.030152.20.04191.54.124613380413991924TB2-73389269761.60.1939318.20.030142.60.14191.54.818030324331925TB2-5118023352.30.2083322.30.030165.50.24191.610.31923919950819210TB2-663027671.60.1705132.20.030163.90.12191.67.416048-2888341927 </td <td>TB2-63</td> <td>460</td> <td>8859</td> <td>1.5</td> <td>0.21049</td> <td>16.5</td> <td>0.02966</td> <td>1.9</td> <td>0.12</td> <td>188.4</td> <td>3.6</td> <td>194</td> <td>29</td> <td>262</td> <td>379</td> <td>188</td> <td>4</td>	TB2-63	460	8859	1.5	0.21049	16.5	0.02966	1.9	0.12	188.4	3.6	194	29	262	379	188	4
TB2-2817212581.60.2218529.00.030022.50.09190.74.7203543546651915TB2-2523427811.80.2029926.70.030062.10.08190.93.9188461476341914TB2-3837838242.30.2123113.60.030091.80.13191.13.4196242493111913TB2-9918735272.20.2354022.70.030122.20.10191.34.2215444795061914TB2-2713912131.40.2740260.30.030152.20.04191.54.124613380413991924TB2-73389269761.60.1939318.20.030142.60.14191.54.818030324331925TB2-5118023352.30.2083322.30.030165.50.24191.610.31923919950819210TB2-663027671.60.1705132.20.030163.90.12191.67.416048-2888341927	TB2-56	429	7523	1.7	0.18927	11.1	0.02972	1.2	0.11	188.8	2.2	176	18	8	267	189	2
TB2-2523427811.80.2029926.70.030062.10.08190.93.9188461476341914TB2-3837838242.30.2123113.60.030091.80.13191.13.4196242493111913TB2-9918735272.20.2354022.70.030122.20.10191.34.2215444795061914TB2-2713912131.40.2740260.30.030152.20.04191.54.124613380413991924TB2-73389269761.60.1939318.20.030142.60.14191.54.818030324331925TB2-5118023352.30.2083322.30.030165.50.24191.610.31923919950819210TB2-663027671.60.1705132.20.030163.90.12191.67.416048-2888341927	TB2-28	172	1258	1.6	0.22185	29.0	0.03002	2.5	0.09	190.7	4.7	203	54	354	665	191	5
TB2-3837838242.30.2123113.60.030091.80.13191.13.4196242493111913TB2-9918735272.20.2354022.70.030122.20.10191.34.2215444795061914TB2-2713912131.40.2740260.30.030152.20.04191.54.124613380413991924TB2-73389269761.60.1939318.20.030142.60.14191.54.818030324331925TB2-5118023352.30.2083322.30.030165.50.24191.610.31923919950819210TB2-663027671.60.1705132.20.030163.90.12191.67.416048-2888341927	TB2-25	234	2781	1.8	0.20299	26.7	0.03006	2.1	0.08	190.9	3.9	188	46	147	634	191	4
TB2-9918735272.20.2354022.70.030122.20.10191.34.2215444795061914TB2-2713912131.40.2740260.30.030152.20.04191.54.124613380413991924TB2-73389269761.60.1939318.20.030142.60.14191.54.818030324331925TB2-5118023352.30.2083322.30.030165.50.24191.610.31923919950819210TB2-663027671.60.1705132.20.030163.90.12191.67.416048-2888341927	TB2-38	378	3824	2.3	0.21231	13.6	0.03009	1.8	0.13	191.1	3.4	196	24	249	311	191	3
TB2-27 139 1213 1.4 0.27402 60.3 0.03015 2.2 0.04 191.5 4.1 246 133 804 1399 192 4 TB2-73 389 26976 1.6 0.19393 18.2 0.03014 2.6 0.14 191.5 4.8 180 30 32 433 192 5 TB2-51 180 2335 2.3 0.20833 22.3 0.03016 5.5 0.24 191.6 10.3 192 39 199 508 192 10 TB2-66 302 767 1.6 0.17051 32.2 0.03016 3.9 0.12 191.6 7.4 160 48 -288 834 192 7	TB2-99	187	3527	2.2	0.23540	22.7	0.03012	2.2	0.10	191.3	4.2	215	44	479	506	191	4
TB2-73 389 26976 1.6 0.19393 18.2 0.03014 2.6 0.14 191.5 4.8 180 30 32 433 192 5 TB2-51 180 2335 2.3 0.20833 22.3 0.03016 5.5 0.24 191.6 10.3 192 39 199 508 192 10 TB2-66 302 767 1.6 0.17051 32.2 0.03016 3.9 0.12 191.6 7.4 160 48 -288 834 192 7	TB2-27	139	1213	1.4	0.27402	60.3	0.03015	2.2	0.04	191.5	4.1	246	133	804	1399	192	4
TB2-51 180 2335 2.3 0.20833 22.3 0.03016 5.5 0.24 191.6 10.3 192 39 199 508 192 10 TB2-66 302 767 1.6 0.17051 32.2 0.03016 3.9 0.12 191.6 7.4 160 48 -288 834 192 7	TB2-73	389	26976	1.6	0.19393	18.2	0.03014	2.6	0.14	191.5	4.8	180	30	32	433	192	5
TB2-66 302 767 1.6 0.17051 32.2 0.03016 3.9 0.12 191.6 7.4 160 48 -288 834 192 7	TB2-51	180	2335	2.3	0.20833	22.3	0.03016	5.5	0.24	191.6	10.3	192	39	199	508	192	10
	TB2-66	302	767	1.6	0.17051	32.2	0.03016	3.9	0.12	191.6	7.4	160	48	-288	834	192	7
TB2-58 283 4698 1.7 0.19313 15.1 0.03029 1.9 0.13 192.4 3.6 179 25 10 361 192 4	TB2-58	283	4698	1.7	0.19313	15.1	0.03029	1.9	0.13	192.4	3.6	179	25	10	361	192	4
TB2-64 157 2673 2.4 0.22327 22.2 0.03029 4.3 0.19 192.4 8.1 205 41 348 499 192 8	TB2-64	157	2673	2.4	0.22327	22.2	0.03029	4.3	0.19	192.4	8.1	205	41	348	499	192	8
TB2-79 654 13482 2.0 0.20509 10.6 0.03033 2.0 0.18 192.6 3.7 189 18 150 245 193 4	TB2-79	654	13482	2.0	0.20509	10.6	0.03033	2.0	0.18	192.6	3.7	189	18	150	245	193	4
TB2-10 653 4996 2.1 0.21592 5.7 0.03035 1.0 0.18 192.7 1.9 199 10 268 128 193 2	TB2-10	653	4996	2.1	0.21592	5.7	0.03035	1.0	0.18	192.7	1.9	199	10	268	128	193	2
TB2-90 62 1943 1.7 0.21285 71.6 0.03050 4.7 0.07 193.7 8.9 196 128 223 1917 194 9	TB2-90	62	1943	1.7	0.21285	71.6	0.03050	4.7	0.07	193.7	8.9	196	128	223	1917	194	9
TB2-12 413 4246 3.2 0.20952 16.0 0.03062 1.7 0.10 194.4 3.2 193 28 178 372 194 3	TB2-12	413	4246	3.2	0.20952	16.0	0.03062	1.7	0.10	194.4	3.2	193	28	178	372	194	3
TB2-18 249 2615 2.1 0.26628 15.4 0.03091 3.3 0.21 196.3 6.3 240 33 690 322 196 6	TB2-18	249	2615	2.1	0.26628	15.4	0.03091	3.3	0.21	196.3	6.3	240	33	690	322	196	6
TB2-8 169 1460 1.6 0.27667 32.4 0.03093 3.6 0.11 196.4 6.9 248 71 770 694 196 7	TB2-8	169	1460	1.6	0.27667	32.4	0.03093	3.6	0.11	196.4	6.9	248	71	770	694	196	7
TB2-52 154 2172 2.4 0.19642 37.6 0.03093 2.3 0.06 196.4 4.5 182 63 1 932 196 5	TB2-52	154	2172	2.4	0.19642	37.6	0.03093	2.3	0.06	196.4	4.5	182	63	1	932	196	5
IB2-22 116 1669 2.8 0.20300 31.8 0.03094 3.1 0.10 196.5 6.0 188 55 78 769 197 6	TB2-22	116	1669	2.8	0.20300	31.8	0.03094	3.1	0.10	196.5	6.0	188	55	78	769	197	6
IB2-67 332 1271 2.6 0.20951 22.3 0.03096 2.2 0.10 1965 4.2 193 39 152 526 197 4	TB2-67	332	1271	2.6	0.20951	22.3	0.03096	2.2	0.10	196.5	4.2	193	39	152	526	197	4
$IB_{2.76}$ 170 3000 2.3 0.26001 32.7 0.03096 3.3 0.10 196.6 6.3 235 69 6.36 719 197.6	TB2-76	170	3000	23	0.26001	32.7	0.03096	33	0.10	196.6	63	235	69	636	719	197	6
$TB_{2,71}$ 474 3547 2.4 0.21938 13.3 0.03098 2.9 0.21 1967 5.5 201 2.4 257 300 197 6	TB2-71	474	3547	2.5	0.21938	13.3	0.03098	29	0.10	196.7	5.5	201	24	257	300	197	6
TB2-9 109 1009 2.7 0.30151 38.9 0.03105 4.7 0.12 1971 9.1 268 92 941 822 197 9	TB2-9	109	1009	27	0 30151	38.9	0.03105	47	0.12	197.1	9.1	268	92	941	822	197	9
TB2-7 442 1667 3.2 0.21396 16.4 0.03123 1.7 0.10 198.3 3.3 197 29 180 381 198.3	TB2-7	442	1667	3.2	0.21396	16.4	0.03123	/ 17	0.12	198 3	33	197	29	180	381	198	3
TR2.81 304 2624 1.7 0.21270 170 0.03137 3.3 0.19 199.1 6.4 196 30 156 392 100 6	TB2-81	304	2624	17	0.21270	17.0	0.03137	33	0.10	199.5	5.5 6.4	196	30	156	392	199	6
TB2-53 358 3699 1.5 0.23584 11.3 0.03155 3.3 0.29 200.2 6.5 215 22 380 244 200 7	TB2-53	358	3699	1.5	0.23584	11.3	0.03155	3.3	0.29	200.2	6.5	215	22	380	244	200	7

					Isotopio	c ratios						Apparei	nt ages (N	la)		
sample	U	²⁰⁶ Pb	U/Th	²⁰⁷ Pb	± (%)	²⁰⁶ Pb	± (%)	error	²⁰⁶ Pb	± (Ma)	²⁰⁷ Pb	± (Ma)	²⁰⁶ Pb	± (Ma)	BEST	± (Ma)
	(ppm)	²⁰⁴ Pb		²³⁵ U		²³⁸ U		corr.	²³⁸ U		²³⁵ U		²⁰⁷ Pb		AGE	
TB2-45	482	9631	3.3	0.22537	8.7	0.03157	1.1	0.12	200.4	2.1	206	16	275	199	200	2
TB2-39	318	4280	1.8	0.20816	17.6	0.03166	3.2	0.18	200.9	6.4	192	31	83	413	201	6
TB2-23	531	8511	2.2	0.19993	10.4	0.03177	1.6	0.15	201.6	3.1	185	18	-21	249	202	3
TB2-55	258	3036	1.5	0.21580	11.6	0.03179	1.2	0.10	201.7	2.4	198	21	159	269	202	2
TB2-72	387	8490	2.1	0.22922	13.5	0.03203	1.3	0.09	203.3	2.5	210	26	281	309	203	3
TB2-32	186	1678	1.5	0.20366	39.0	0.03218	2.7	0.07	204.2	5.4	188	67	-8	972	204	5
TB2-50	138	1986	2.1	0.20342	49.4	0.03245	5.6	0.11	205.9	11.2	188	85	-31	1261	206	11
TB2-44	214	3398	2.8	0.24063	15.0	0.03261	1.7	0.11	206.9	3.5	219	30	351	339	207	4
TB2-33	221	1997	1.7	0.23473	27.9	0.03278	2.3	0.08	207.9	4.7	214	54	283	646	208	5
TB2-91	145	1830	2.8	0.18976	32.7	0.03278	2.5	0.08	207.9	5.1	176	53	-228	841	208	5
TB2-60	274	4173	2.1	0.24420	16.0	0.03278	3.0	0.19	208.0	6.2	222	32	372	355	208	6
TB2-62	216	5216	1.5	0.21307	37.3	0.03292	2.6	0.07	208.8	5.4	196	67	46	917	209	5
TB2-83	254	1956	1.5	0.18250	23.3	0.03294	2.8	0.12	208.9	5.7	170	37	-339	603	209	6
TB2-5	215	1423	2.9	0.21390	13.9	0.03297	2.3	0.16	209.1	4.7	197	25	52	329	209	5
TB2-47	356	7097	2.6	0.25052	19.3	0.03308	1.4	0.07	209.8	3.0	227	39	409	433	210	3
TB2-3	140	854	2.6	0.21737	22.0	0.03310	3.5	0.16	209.9	7.1	200	40	81	522	210	7
TB2-94	400	6544	1.8	0.23146	18.4	0.03336	1.6	0.09	211.6	3.3	211	35	210	427	212	3
TB2-4	167	1142	1.7	0.32028	22.1	0.03361	2.3	0.10	213.1	4.7	282	54	902	458	213	5
TB2-61	121	1921	1.8	0.29202	29.5	0.03412	3.2	0.11	216.3	6.8	260	68	677	641	216	7
TB2-48	201	2743	1.9	0.27905	18.1	0.03417	1.8	0.10	216.6	3.8	250	40	575	394	217	4
TB2-87	161	6479	2.1	0.24278	18.0	0.03417	3.7	0.20	216.6	7.8	221	36	264	406	217	8
TB2-20	85	900	3.5	0.25813	34.2	0.03482	4.6	0.13	220.6	9.9	233	71	361	784	221	10
TB2-29	328	3785	2.9	0.21172	12.9	0.03507	3.0	0.24	222.2	6.6	195	23	-123	311	222	7
TB2-92	220	3249	2.1	0.26051	14.8	0.03524	6.4	0.44	223.2	14.1	235	31	355	302	223	14
TB2-6	207	1560	4.8	0.22455	31.8	0.03540	4.4	0.14	224.3	9.7	206	59	-2	776	224	10
TB2-13	113	1605	4.0	0.23106	20.5	0.03543	4.2	0.21	224.4	9.3	211	39	64	483	224	9
TB2-97	55	1209	1.4	0.21176	27.8	0.03545	3.9	0.14	224.6	8.6	195	49	-149	695	225	9
TB2-31	89	1840	1.9	0.28202	21.1	0.03896	2.3	0.11	246.4	5.6	252	47	307	482	246	6
TB2-93	230	1495	4.4	0.29355	17.8	0.03959	4.1	0.23	250.3	10.0	261	41	362	394	250	10
TB2-54	833	429	1.1	0.32122	35.6	0.04075	5.6	0.16	257.5	14.2	283	88	498	796	258	14
TB2-36	444	4809	1.9	0.32551	11.7	0.04280	7.1	0.61	270.2	18.8	286	29	418	208	270	19
TB2-100	218	618	1.3	0.26868	26.1	0.04319	4.2	0.16	272.6	11.2	242	56	-49	637	273	11
TB2-80	84	2192	2.1	0.36369	31.3	0.04564	6.3	0.20	287.7	17.8	315	85	522	686	288	18
TB2-49	352	4882	2.8	0.35554	11.3	0.04627	2.6	0.23	291.6	7.5	309	30	442	245	292	8
TB2-82	467	815	1.3	0.38056	13.6	0.04659	1.8	0.13	293.5	5.2	327	38	576	293	294	5
TB2-34	324	5279	1.3	0.33738	8.2	0.04710	2.1	0.26	296.7	6.2	295	21	283	182	297	6
TB2-42	185	2717	1.4	0.34101	17.6	0.04816	1.0	0.06	303.2	3.0	298	46	257	407	303	3
TB2-89	159	5396	1.4	0.40335	20.7	0.04993	1.4	0.07	314.1	4.2	344	61	552	455	314	4
TB2-86	108	2155	1.8	0.36300	26.5	0.05222	2.8	0.11	328.1	8.9	315	72	214	619	328	9

					Isotopic	c ratios						Apparei	nt ages (M	a)		
sample	U (ppm)	²⁰⁶ Pb ²⁰⁴ Pb	U/Th	²⁰⁷ Pb ²³⁵ U	± (%)	²⁰⁶ Pb ²³⁸ U	± (%)	error	²⁰⁶ Pb ²³⁸ U	± (Ma)	²⁰⁷ Pb ²³⁵ U	± (Ma)	²⁰⁶ Pb ²⁰⁷ Pb	± (Ma)	BEST Age	± (Ma)
TB2-26	102	2069	25	0.36271	22.3	0.05319	39	0.17	334.1	127	314	60	170	519	334	13
TB2-20	88	584	15	0.34462	49 7	0.05768	3.5	0.17	361.5	12.7	301	130	-148	1303	362	12
TB2-40	340	19456	4.0	2 45202	4 7	0.13869	44	0.92	837.2	34.2	1258	34	2074	33	2074	33
TB2-46	390	61053	1.3	5.13062	2.3	0.28911	2.2	0.92	1637.1	31.5	1841	20	2080	15	2080	15
TB3-34	1351	1367	2.1	0.14331	7.0	0.02446	3.4	0.49	155.8	5.2	136	9	-197	152	156	5
TB3-80	126	2472	1.1	0.18203	18.3	0.02449	3.4	0.19	156.0	5.3	170	29	367	407	156	5
TB3-69	588	25707	2.5	0.17740	5.0	0.02468	1.4	0.28	157.2	2.2	166	8	291	110	157	2
TB3-12	266	1657	0.9	0.15094	18.4	0.02479	1.4	0.08	157.8	2.2	143	24	-102	453	158	2
TB3-29	122	1800	1.1	0.14445	21.5	0.02511	2.1	0.10	159.9	3.3	137	28	-243	545	160	3
TB3-90	322	2854	1.0	0.17130	14.0	0.02556	5.2	0.38	162.7	8.4	161	21	129	306	163	8
TB3-13	171	8010	0.7	0.19589	20.0	0.02562	1.3	0.06	163.1	2.0	182	33	431	449	163	2
TB3-100	530	11502	2.5	0.19602	5.9	0.02564	1.0	0.17	163.2	1.6	182	10	431	129	163	2
TB3-48	187	8226	1.6	0.19603	9.3	0.02688	1.4	0.15	171.0	2.4	182	15	324	208	171	2
TB3-14	306	1630	0.2	0.16041	18.9	0.02728	1.5	0.08	173.5	2.5	151	27	-188	476	174	3
TB3-74	237	808	2.1	0.13091	19.9	0.02737	2.5	0.13	174.1	4.3	125	23	-734	556	174	4
TB3-77	248	8008	2.0	0.18882	7.5	0.02810	2.7	0.37	178.7	4.8	176	12	135	164	179	5
TB3-60	196	6547	1.2	0.19176	13.2	0.02823	1.2	0.09	179.5	2.1	178	22	160	309	180	2
TB3-24	166	2405	2.6	0.18236	19.4	0.02854	2.3	0.12	181.4	4.2	170	30	15	466	181	4
TB3-52	279	16156	1.9	0.20135	8.7	0.02876	1.6	0.18	182.8	2.8	186	15	230	197	183	3
TB3-32	166	1539	1.7	0.21746	22.5	0.02909	3.9	0.18	184.9	7.2	200	41	380	504	185	7
TB3-67	150	5603	1.9	0.22219	16.2	0.02981	2.1	0.13	189.4	3.9	204	30	373	362	189	4
TB3-11	307	11421	1.4	0.20254	3.9	0.02985	1.1	0.27	189.6	2.0	187	7	158	87	190	2
TB3-73	233	1604	1.9	0.18278	21.5	0.03007	3.8	0.18	191.0	7.1	170	34	-106	525	191	7
TB3-23	334	4662	1.6	0.21424	6.6	0.03019	1.5	0.23	191.7	2.8	197	12	262	148	192	3
TB3-25	404	3446	4.4	0.19933	9.1	0.03032	1.3	0.14	192.6	2.5	185	15	83	214	193	3
TB3-33	117	1678	1.6	0.16676	22.5	0.03043	2.2	0.10	193.2	4.1	157	33	-367	587	193	4
TB3-5	332	18311	2.1	0.20999	8.7	0.03046	2.4	0.27	193.4	4.6	194	15	195	195	193	5
TB3-28	544	12792	2.7	0.21526	6.2	0.03045	2.3	0.37	193.4	4.4	198	11	253	131	193	4
TB3-1	484	987	4.0	0.23807	12.6	0.03046	3.8	0.30	193.5	7.2	217	25	479	267	194	7
TB3-81	195	1187	1.6	0.16604	26.2	0.03051	3.3	0.13	193.7	6.3	156	38	-385	685	194	6
TB3-62	267	6473	1.9	0.21225	11.2	0.03054	1.0	0.09	193.9	1.9	195	20	214	258	194	2
TB3-22	362	47899	2.5	0.21699	5.5	0.03061	1.0	0.18	194.3	1.9	199	10	260	124	194	2
TB3-10	323	5205	2.2	0.22121	6.8	0.03062	2.0	0.29	194.4	3.7	203	13	303	149	194	4
TB3-76	150	7931	1.4	0.18563	15.8	0.03063	3.0	0.19	194.5	5.8	173	25	-113	385	195	6
TB3-19	505	23663	3.0	0.22933	2.9	0.03075	1.2	0.42	195.2	2.3	210	5	375	59	195	2
TB3-21	85	962	2.5	0.16947	31.8	0.03079	2.2	0.07	195.5	4.2	159	47	-356	838	196	4
TB3-87	105	3058	1.8	0.19128	22.6	0.03080	3.5	0.15	195.5	6.7	178	37	-53	549	196	7
TB3-15	156	2547	1.3	0.25521	17.0	0.03082	1.7	0.10	195.7	3.3	231	35	605	367	196	3

sample					Isotopio	c ratios						Appare	Apparent ages (Ma)			
sample	U	²⁰⁶ Pb	U/Th	²⁰⁷ Pb	± (%)	²⁰⁶ Pb	± (%)	error	²⁰⁶ Pb	± (Ma)	²⁰⁷ Pb	± (Ma)	²⁰⁶ Pb	± (Ma)	BEST	± (Ma)
	(ppm)	²⁰⁴ Pb		²³⁵ U		²³⁸ U		corr.	²³⁸ U		²³⁵ U		²⁰⁷ Pb		AGE	
TB3-54	226	3803	2.3	0.21628	9.5	0.03083	1.1	0.11	195.7	2.1	199	17	235	219	196	2
TB3-44	396	10032	2.0	0.22887	6.9	0.03086	3.2	0.46	195.9	6.1	209	13	362	139	196	6
TB3-49	386	2471	3.7	0.19768	12.6	0.03086	1.3	0.10	196.0	2.4	183	21	21	303	196	2
TB3-4	383	23429	2.5	0.23129	4.4	0.03097	2.2	0.50	196.6	4.3	211	8	378	85	197	4
TB3-93	286	3358	2.4	0.21541	12.6	0.03097	3.8	0.30	196.6	7.4	198	23	216	279	197	7
TB3-72	242	9620	1.9	0.22543	10.2	0.03106	4.4	0.43	197.2	8.5	206	19	313	211	197	9
TB3-43	188	1876	1.7	0.25726	10.8	0.03108	2.1	0.20	197.3	4.1	233	22	605	229	197	4
TB3-3	234	4659	2.6	0.21534	10.8	0.03109	3.2	0.30	197.4	6.3	198	20	206	240	197	6
TB3-2	204	1562	1.8	0.17612	21.1	0.03115	3.0	0.14	197.7	5.9	165	32	-287	536	198	6
TB3-85	333	4530	1.8	0.22046	8.2	0.03117	2.6	0.31	197.8	5.0	202	15	255	179	198	5
TB3-26	272	9749	2.3	0.23321	6.6	0.03118	1.5	0.22	197.9	2.8	213	13	381	144	198	3
TB3-51	172	921	1.9	0.26643	36.8	0.03125	3.6	0.10	198.4	7.0	240	79	668	809	198	7
TB3-45	144	2882	2.5	0.21774	15.3	0.03128	2.8	0.19	198.6	5.6	200	28	217	350	199	6
TB3-92	196	8833	1.8	0.23462	13.2	0.03136	2.2	0.16	199.0	4.2	214	25	382	293	199	4
TB3-46	108	2205	1.9	0.21377	14.5	0.03137	2.3	0.16	199.1	4.5	197	26	168	335	199	5
TB3-89	134	4929	1.9	0.26487	18.9	0.03136	6.1	0.32	199.1	11.9	239	40	648	386	199	12
TB3-7	419	12057	2.7	0.20761	4.7	0.03146	1.1	0.24	199.7	2.2	192	8	93	108	200	2
TB3-84	185	2183	2.0	0.19610	20.8	0.03151	4.1	0.20	200.0	8.0	182	35	-48	499	200	8
TB3-39	235	9119	3.1	0.20972	13.6	0.03157	3.6	0.26	200.4	7.1	193	24	108	312	200	7
TB3-20	308	3129	1.6	0.20169	11.7	0.03174	1.1	0.10	201.4	2.2	187	20	2	281	201	2
TB3-53	149	6957	1.7	0.20620	13.2	0.03176	2.3	0.17	201.5	4.5	190	23	54	310	202	5
TB3-9	396	2224	0.5	0.19716	14.4	0.03181	1.3	0.09	201.9	2.6	183	24	-58	351	202	3
TB3-55	185	4170	1.3	0.20416	15.9	0.03187	3.0	0.19	202.2	5.9	189	27	22	377	202	6
TB3-64	63	3252	2.1	0.27272	27.0	0.03188	2.1	0.08	202.3	4.2	245	59	676	585	202	4
TB3-50	254	12399	2.4	0.21685	10.4	0.03198	1.0	0.10	202.9	2.0	199	19	156	242	203	2
TB3-91	114	2217	2.1	0.22589	15.8	0.03204	3.3	0.21	203.3	6.5	207	30	247	357	203	7
TB3-17	246	9849	3.5	0.22650	7.1	0.03215	1.2	0.16	204.0	2.4	207	13	245	163	204	2
TB3-78	175	6185	3.2	0.23471	10.9	0.03223	3.2	0.30	204.5	6.5	214	21	321	236	205	7
TB3-36	180	12561	2.9	0.25344	9.8	0.03227	4.7	0.48	204.7	9.5	229	20	490	189	205	10
TB3-63	282	11365	3.3	0.23700	6.5	0.03231	1.0	0.15	205.0	2.0	216	13	337	146	205	2
TB3-83	165	1496	1.2	0.22714	19.0	0.03236	4.5	0.24	205.3	9.1	208	36	236	429	205	9
TB3-70	229	31279	1.1	0.21853	6.9	0.03240	1.2	0.17	205.5	2.4	201	13	144	158	206	2
TB3-59	195	58202	2.4	0.25063	9.4	0.03253	1.0	0.11	206.4	2.0	227	19	448	208	206	2
TB3-57	241	3665	1.6	0.23692	5.0	0.03259	1.0	0.20	206.7	2.1	216	10	317	111	207	2
TB3-95	342	34480	2.2	0.23177	7.4	0.03280	3.2	0.43	208.1	6.5	212	14	252	155	208	7
TB3-98	113	8915	2.4	0.27579	11.7	0.03285	2.8	0.24	208.4	5.8	247	26	635	246	208	6
TB3-65	94	1870	1.6	0.19563	20.3	0.03308	1.9	0.09	209.8	4.0	181	34	-174	508	210	4
TB3-66	283	11556	1.2	0.24463	6.9	0.03313	1.9	0.27	210.1	3.9	222	14	352	151	210	4
TB3-88	275	7883	1.9	0.26926	8.8	0.03372	5.5	0.63	213.8	11.7	242	19	526	150	214	12

					Isotopic ratios					Appare	nt ages (M	a)				
sample	U	²⁰⁶ Pb	U/Th	²⁰⁷ Pb	± (%)	²⁰⁶ Pb	± (%)	error	²⁰⁶ Pb	± (Ma)	²⁰⁷ Pb	± (Ma)	²⁰⁶ Pb	± (Ma)	BEST	± (Ma)
	(ppm)	Pb		0		0		corr.	0		0		Pb		AGE	
TB3-79	132	1934	2.6	0.25378	14.2	0.03477	5.4	0.38	220.4	11.7	230	29	326	299	220	12
TB3-99	134	2497	1.9	0.28808	12.7	0.03509	2.9	0.23	222.3	6.3	257	29	587	269	222	6
IB3-56	439	9996	2.7	0.25605	5.7	0.03628	1.5	0.26	229.8	3.3	232	12	249	126	230	3
IB3-75	107	1558	2.5	0.28778	15.4	0.04019	3.5	0.23	254.0	8.8	257	35	283	344	254	9
IB3-82	62	1207	2.5	0.28049	25.9	0.04071	5.4	0.21	257.2	13.7	251	58	194	596	257	14
TB3-68	532	11747	0.8	0.34964	2.7	0.04600	1.1	0.39	289.9	3.0	305	7	417	55	290	3
TB3-97	215	5862	2.3	0.36903	7.1	0.04634	1.4	0.20	292.0	4.0	319	20	520	153	292	4
TB3-58	241	12317	1.3	0.41564	4.9	0.05153	1.0	0.21	323.9	3.2	353	15	549	104	324	3
TB3-6	136	1390	1.3	0.34624	20.1	0.05172	1.6	0.08	325.1	4.9	302	52	126	475	325	5
TB3-42	87	6651	1.7	0.38111	11.9	0.05226	2.8	0.23	328.4	9.0	328	33	324	264	328	9
TB3-41	105	10980	1.7	0.43467	4.4	0.05235	1.3	0.30	329.0	4.1	367	13	611	90	329	4
TB3-94	106	2576	1.8	0.40836	16.3	0.05323	4.9	0.30	334.3	16.0	348	48	438	347	334	16
TB3-16	59	1782	1.2	0.39939	13.6	0.05339	1.6	0.12	335.3	5.3	341	39	382	304	335	5
TB3-47	68	1561	1.9	0.44823	19.1	0.05344	2.9	0.15	335.6	9.6	376	60	633	409	336	10
TB3-30	79	4481	1.3	0.44820	8.7	0.05352	1.4	0.16	336.1	4.5	376	27	630	185	336	5
TB3-96	102	6114	1.3	0.48646	6.3	0.05440	1.5	0.24	341.5	5.0	403	21	769	130	342	5
TB3-8	430	34762	1.8	0.43777	1.8	0.05550	1.0	0.57	348.2	3.4	369	5	499	32	348	3
TB3-31	319	3438	1.7	0.40920	9.5	0.05694	4.2	0.44	357.0	14.5	348	28	291	196	357	15
TB3-18	119	5480	2.3	0.46921	11.2	0.05728	1.0	0.09	359.0	3.5	391	36	582	243	359	4
TB3-38	268	11660	1.5	0.46494	5.1	0.05753	2.9	0.57	360.6	10.0	388	16	553	91	361	10
TB3-35	260	41464	4.7	0.45071	6.1	0.05855	4.2	0.69	366.8	15.0	378	19	446	99	367	15
TB3-27	222	183518	1.5	4.92100	5.8	0.28391	5.7	0.99	1611.0	81.8	1806	49	2039	12	2039	12
TB3-71	169	229982	0.7	6.02818	3.4	0.34386	3.3	0.98	1905.2	54.6	1980	30	2059	13	2059	13
TB3-40	20	3362	2.0	8.13460	4.1	0.40594	2.2	0.55	2196.3	41.6	2246	37	2292	58	2292	58
C1-36	234	4614	2.3	0.19459	13.8	0.02527	1.2	0.08	160.9	1.8	181	23	446	308	161	2
C1-44	182	5822	3.9	0.17725	11.0	0.02553	1.0	0.09	162.5	1.6	166	17	212	255	163	2
C1-96	124	4780	2.9	0.20510	12.9	0.02572	2.1	0.16	163.7	3.3	189	22	524	280	164	3
C1-39	106	4643	4.2	0.17357	22.4	0.02613	1.9	0.08	166.3	3.1	163	34	107	532	166	3
C1-47	203	4669	3.5	0.19261	13.5	0.02614	2.6	0.19	166.4	4.2	179	22	347	301	166	4
C1-58	197	1727	3.7	0.16413	20.8	0.02616	1.4	0.07	166.5	2.3	154	30	-28	507	167	2
C1-84	150	1571	3.3	0.18718	18.4	0.02636	1.6	0.09	167.7	2.7	174	29	263	423	168	3
C1-38	1041	28340	0.9	0.18192	3.0	0.02641	1.1	0.37	168.1	1.9	170	5	193	64	168	2
C1-93	159	4565	2.7	0.20745	12.0	0.02656	1.3	0.11	169.0	2.1	191	21	478	264	169	2
C1-76	213	7873	4.7	0.17425	11.2	0.02660	1.0	0.09	169.2	1.7	163	17	75	266	169	2
C1-17	161	10271	2.3	0.21783	12.6	0.02691	1.4	0.11	171.2	2.4	200	23	556	273	171	2
C1-5	142	4284	1.7	0.16103	22.0	0.02710	1.2	0.05	172.4	2.0	152	31	-162	551	172	2
C1-97	134	5688	2.4	0.24669	12.2	0.02714	1.2	0.10	172.6	2.1	224	24	804	254	173	2
C1-87	110	3389	3.5	0.16523	39.7	0.02731	1.4	0.04	173.7	2.5	155	57	-118	1012	174	3

					Isotopic	ratios						Appare	nt ages (M	a)		
sample	U	²⁰⁶ Pb	U/Th	²⁰⁷ Pb	± (%)	²⁰⁶ Pb	± (%)	error	²⁰⁶ Pb	± (Ma)	²⁰⁷ Pb	± (Ma)	²⁰⁶ Pb	± (Ma)	BEST	± (Ma)
	(ppm)	²⁰⁴ Pb		²³⁵ U		²³⁸ U		corr.	²³⁸ U		²³⁵ U		²⁰⁷ Pb		AGE	
C1-28	269	2582	2.0	0.17771	8.2	0.02758	1.0	0.12	175.4	1.7	166	13	36	195	175	2
C1-64	150	4753	3.0	0.16725	18.9	0.02783	2.3	0.12	176.9	4.0	157	28	-134	468	177	4
C1-69	351	6488	2.9	0.19195	6.8	0.02783	1.1	0.17	177.0	2.0	178	11	196	155	177	2
C1-18	351	11945	2.7	0.19025	6.7	0.02793	1.6	0.24	177.6	2.8	177	11	167	151	178	3
C1-91	128	899	2.8	0.20000	22.3	0.02793	3.2	0.14	177.6	5.5	185	38	282	510	178	6
C1-45	223	14996	2.2	0.21052	11.7	0.02797	1.1	0.09	177.8	2.0	194	21	395	263	178	2
C1-13	159	4675	2.5	0.19387	18.4	0.02799	1.9	0.10	178.0	3.3	180	30	206	427	178	3
C1-66	100	2037	3.6	0.21100	14.9	0.02806	2.0	0.13	178.4	3.5	194	26	393	333	178	4
C1-82	260	10724	2.3	0.20043	7.9	0.02809	1.0	0.13	178.6	1.8	186	13	274	180	179	2
C1-68	205	6270	1.1	0.20141	18.4	0.02825	1.1	0.06	179.6	1.9	186	31	273	423	180	2
C1-4	302	10717	2.2	0.21050	8.8	0.02831	1.0	0.11	180.0	1.8	194	16	368	197	180	2
C1-16	159	3623	4.0	0.17862	15.9	0.02832	3.4	0.21	180.0	6.1	167	25	-16	378	180	6
C1-92	419	23513	1.7	0.19252	6.8	0.02831	1.0	0.15	180.0	1.8	179	11	163	157	180	2
C1-8	83	4814	1.3	0.17212	38.3	0.02838	1.9	0.05	180.4	3.4	161	57	-112	972	180	3
C1-34	425	1579	1.6	0.18986	6.6	0.02841	1.3	0.19	180.6	2.3	177	11	122	153	181	2
C1-73	347	17582	2.3	0.19329	5.9	0.02843	1.0	0.17	180.7	1.8	179	10	162	136	181	2
C1-37	276	11386	2.2	0.19979	9.2	0.02849	1.0	0.11	181.1	1.8	185	16	234	210	181	2
C1-63	336	14013	1.6	0.20780	7.8	0.02857	1.6	0.21	181.6	2.9	192	14	318	174	182	3
C1-33	263	6017	2.2	0.18912	10.5	0.02859	1.5	0.15	181.7	2.8	176	17	98	246	182	3
C1-49	395	879	1.6	0.22390	10.6	0.02867	1.3	0.13	182.2	2.4	205	20	478	233	182	2
C1-27	279	13674	2.5	0.21851	9.0	0.02878	1.3	0.14	182.9	2.3	201	16	415	199	183	2
C1-95	315	12103	1.8	0.21116	7.3	0.02880	1.0	0.14	183.0	1.8	195	13	336	164	183	2
C1-12	331	8218	2.0	0.20258	9.7	0.02882	1.0	0.10	183.2	1.8	187	17	240	223	183	2
C1-1	260	10927	2.0	0.22046	14.8	0.02888	1.0	0.07	183.6	1.8	202	27	427	331	184	2
C1-30	319	4998	1.8	0.21264	9.3	0.02901	1.1	0.12	184.3	2.1	196	17	336	209	184	2
C1-59	257	16733	1.9	0.21050	10.6	0.02914	1.0	0.09	185.1	1.8	194	19	303	241	185	2
C1-31	219	8119	1.5	0.20692	15.4	0.02916	1.0	0.07	185.3	1.8	191	27	262	355	185	2
C1-24	279	10093	2.0	0.19801	8.7	0.02919	1.0	0.12	185.5	1.8	183	15	157	202	186	2
C1-35	360	3569	1.7	0.19771	6.7	0.02924	1.4	0.21	185.8	2.6	183	11	150	153	186	3
C1-32	349	8515	2.5	0.20865	8.0	0.02931	1.0	0.13	186.2	1.8	192	14	269	183	186	2
C1-88	190	4004	1.6	0.20081	14.0	0.02933	1.4	0.10	186.3	2.5	186	24	179	326	186	3
C1-51	277	5594	2.0	0.20641	12.1	0.02936	1.0	0.08	186.5	1.9	191	21	240	278	187	2
C1-20	424	18772	1.9	0.19940	4.9	0.02939	1.0	0.20	186.7	1.8	185	8	158	112	187	2
C1-21	267	6475	2.0	0.18381	10.5	0.02938	1.0	0.10	186.7	1.8	171	17	-35	255	187	2
C1-40	153	7522	1.4	0.20907	12.6	0.02938	1.7	0.14	186.7	3.2	193	22	268	287	187	3
C1-85	399	3050	4.0	0.17940	7.0	0.02938	1.0	0.14	186.7	1.8	168	11	-95	171	187	2
C1-56	267	1728	1.2	0.21058	16.0	0.02940	1.2	0.08	186.8	2.2	194	28	283	367	187	2
C1-65	466	10074	2.8	0.20922	5.8	0.02944	1.0	0.17	187.1	1.8	193	10	265	132	187	2
C1-22	256	8384	2.3	0.22029	11.4	0.02947	1.0	0.09	187.2	1.9	202	21	380	256	187	2

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																
(ppm)204Pb233U238Ucorr.238Ucorr.238U233U207PbAGEC1-911927131.60.1920817.10.029491.40.08187.42.61782861408187C1-5322765331.50.1963618.60.029641.20.06188.32.218231102442188C1-5426665741.90.217588.10.029741.30.16188.92.420015332181189C1-1128557332.00.1886611.20.029781.10.10189.12.117618-5269189C1-2337095321.90.197565.60.029791.00.18189.21.91839104130189C1-52253103061.80.188128.50.029941.20.15190.22.317514-25203190C1-716453931.70.2007918.40.030071.50.08191.02.718631120435191C1-41462162081.80.2245627.20.030192.70.10191.75.120651369619192C1-108131661.50.2245627.20.030192.70.10191.75.120651	± (Ma)															
C1-911927131.60.1920817.10.029491.40.08187.42.61782861408187C1-5322765331.50.1963618.60.029641.20.06188.32.218231102442188C1-5426665741.90.217588.10.029741.30.16188.92.420015332181189C1-1128557332.00.1886611.20.029781.10.10189.12.117618-5269189C1-2337095321.90.197565.60.029791.00.18189.21.91839104130189C1-52253103061.80.188128.50.029941.20.15190.22.317514-25203190C1-716453931.70.2007918.40.030071.50.08191.02.718631120435191C1-41462162081.80.202537.10.030173.50.48191.66.518712133147192C1-108131661.50.2245627.20.030192.70.10191.75.120651369619192C1-4827044963.30.207018.60.030281.1																
C1-5322765331.50.1963618.60.029641.20.06188.32.218231102442188C1-5426665741.90.217588.10.029741.30.16188.92.420015332181189C1-1128557332.00.1886611.20.029781.10.10189.12.117618-5269189C1-2337095321.90.197565.60.029791.00.18189.21.91839104130189C1-52253103061.80.188128.50.029941.20.15190.22.317514-25203190C1-716453931.70.2007918.40.030071.50.08191.02.718631120435191C1-41462162081.80.202537.10.030173.50.48191.66.518712133147192C1-108131661.50.2245627.20.030192.70.10191.75.120651369619192C1-4827044963.30.207018.60.030281.10.12192.32.019115176200192C1-4827044963.30.207018.60.030281.1 <td>3</td>	3															
C1-5426665741.90.217588.10.029741.30.16188.92.420015332181189C1-1128557332.00.1886611.20.029781.10.10189.12.117618-5269189C1-2337095321.90.197565.60.029791.00.18189.21.91839104130189C1-52253103061.80.188128.50.029941.20.15190.22.317514-25203190C1-716453931.70.2007918.40.030071.50.08191.02.718631120435191C1-41462162081.80.202537.10.030173.50.48191.66.518712133147192C1-108131661.50.2245627.20.030192.70.10191.75.120651369619192C1-4827044963.30.207188.60.030281.10.12192.32.019115176200192C1-2817419262.50.2717188.60.030281.10.12192.32.019115176201192C1-4827044963.30.2071788.60.030281.1 <td>2</td>	2															
C1-1128557332.00.1886611.20.029781.10.10189.12.117618-5269189C1-2337095321.90.197565.60.029791.00.18189.21.91839104130189C1-52253103061.80.188128.50.029941.20.15190.22.317514-25203190C1-716453931.70.2007918.40.030071.50.08191.02.718631120435191C1-41462162081.80.202537.10.030173.50.48191.66.518712133147192C1-108131661.50.2245627.20.030192.70.10191.75.120651369619192C1-4827044963.30.20718.60.030281.10.12192.32.019115176200192C1-4827044963.30.20718.60.030281.10.12192.32.019115176201192C1-4827044963.30.20718.60.030281.10.12192.71015176201192C1-4827044963.30.20718.60.030281.10.12	2															
C1-23 370 9532 1.9 0.19756 5.6 0.02979 1.0 0.18 189.2 1.9 183 9 104 130 189 C1-52 253 10306 1.8 0.18812 8.5 0.02994 1.2 0.15 190.2 2.3 175 14 -25 203 190 C1-7 164 5393 1.7 0.20079 18.4 0.03007 1.5 0.08 191.0 2.7 186 31 120 435 191 C1-41 462 16208 1.8 0.20253 7.1 0.03017 3.5 0.48 191.6 6.5 187 12 133 147 192 C1-10 81 3166 1.5 0.22456 27.2 0.03019 2.7 0.10 191.7 5.1 206 51 369 619 192 C1-48 270 4496 3.3 0.20701 8.6 0.03028 1.1 0.12 192.3 2.0 191 15 176 200 192 <t< td=""><td>2</td></t<>	2															
C1-52 253 10306 1.8 0.18812 8.5 0.02994 1.2 0.15 190.2 2.3 175 14 -25 203 190 C1-7 164 5393 1.7 0.20079 18.4 0.03007 1.5 0.08 191.0 2.7 186 31 120 435 191 C1-41 462 16208 1.8 0.20253 7.1 0.03017 3.5 0.48 191.6 6.5 187 12 133 147 192 C1-10 81 3166 1.5 0.22456 27.2 0.03019 2.7 0.10 191.7 5.1 206 51 369 619 192 C1-48 270 4496 3.3 0.20701 8.6 0.03028 1.1 0.12 192.3 2.0 191 15 176 200 192 C1-48 270 4496 3.3 0.20701 8.6 0.03028 1.1 0.12 192.3 2.0 191 15 176 200 192 <td>2</td>	2															
C1-7 164 5393 1.7 0.20079 18.4 0.03007 1.5 0.08 191.0 2.7 186 31 120 435 191 C1-41 462 16208 1.8 0.20253 7.1 0.03017 3.5 0.48 191.6 6.5 187 12 133 147 192 C1-10 81 3166 1.5 0.22456 27.2 0.03019 2.7 0.10 191.7 5.1 206 51 369 619 192 C1-48 270 4496 3.3 0.20701 8.6 0.03028 1.1 0.12 192.3 2.0 191 15 176 200 192 C1-48 270 4496 3.3 0.2071710 115 0.03018 1.1 0.12 192.3 2.0 191 15 176 200 192 C1-48 270 4496 3.3 0.2071710 115 0.03028 1.1 0.12 192.3 2.0 191 15 176 200 192 192	2															
C1-41 462 16208 1.8 0.20253 7.1 0.03017 3.5 0.48 191.6 6.5 187 12 133 147 192 C1-10 81 3166 1.5 0.22456 27.2 0.03019 2.7 0.10 191.7 5.1 206 51 369 619 192 C1-48 270 4496 3.3 0.20701 8.6 0.03028 1.1 0.12 192.3 2.0 191 15 176 200 192 C1-48 174 1926 14 0.03028 1.1 0.12 192.3 2.0 191 15 176 200 192	3															
C1-10 81 3166 1.5 0.22456 27.2 0.03019 2.7 0.10 191.7 5.1 206 51 369 619 192 C1-48 270 4496 3.3 0.20701 8.6 0.03028 1.1 0.12 192.3 2.0 191 15 176 200 192 C1-2 174 10362 25 0.21730 115 0.20314 10 0.203 102.7 102.7	7															
C1-48 270 4496 3.3 0.20701 8.6 0.03028 1.1 0.12 192.3 2.0 191 15 176 200 192 C1-48 174 10262 25 0.21720 115 0.2020 102.7 100 200 112 102	5															
	2															
UI-2 1/4 10263 2.5 0.21/30 11.5 0.03034 1.0 0.09 192./ 1.9 200 21 283 264 193	2															
C1-74 208 7370 2.1 0.20951 8.5 0.03037 1.2 0.14 192.8 2.3 193 15 197 196 193	2															
C1-29 368 5326 2.8 0.22190 5.4 0.03039 1.0 0.19 193.0 1.9 204 10 327 120 193	2															
C1-89 289 7550 2.1 0.21335 7.6 0.03054 1.5 0.20 193.9 2.9 196 14 226 173 194	3															
C1-42 133 5703 2.6 0.18503 28.3 0.03057 1.2 0.04 194.1 2.2 172 45 -116 708 194	2															
C1-6 264 6392 3.5 0.22327 8.0 0.03078 1.3 0.16 195.4 2.4 205 15 312 179 195	2															
C1-19 234 3546 2.5 0.21080 16.7 0.03081 1.8 0.11 195.6 3.5 194 30 177 390 196	4															
C1-62 163 6109 1.6 0.23208 7.3 0.03088 1.1 0.15 196.1 2.1 212 14 392 161 196	2															
C1-81 214 8519 4.0 0.20777 10.9 0.03097 1.0 0.09 196.6 1.9 192 19 131 255 197	2															
C1-78 297 17331 2.4 0.22225 8.6 0.03110 1.0 0.12 197.4 1.9 204 16 278 197 197	2															
C1-98 231 6644 2.2 0.22119 6.4 0.03109 1.1 0.17 197.4 2.1 203 12 268 145 197	2															
C1-94 368 5433 1.6 0.23759 7.1 0.03128 4.0 0.56 198.5 7.8 216 14 416 132 199	8															
C1-43 84 1644 3.7 0.21967 27.9 0.03130 1.8 0.06 198.7 3.5 202 51 236 654 199	4															
C1-67 227 15415 2.9 0.23447 9.8 0.03132 1.2 0.13 198.8 2.4 214 19 383 218 199	2															
C1-25 135 6312 2.5 0.25774 15.5 0.03136 1.8 0.12 199.0 3.6 233 32 590 336 199	4															
C1-75 155 5192 2.5 0.19483 14.0 0.03144 1.0 0.07 199.5 2.0 181 23 -58 342 200	2															
C1-77 256 7353 1.7 0.22743 10.1 0.03144 1.1 0.10 199.5 2.1 208 19 306 229 200	2															
C1-60 294 15153 3.5 0.23244 8.9 0.03149 2.0 0.23 199.8 4.0 212 17 352 195 200	4															
C1-79 206 9975 2.4 0.22922 8.9 0.03158 1.0 0.11 200.4 2.0 210 17 313 201 200	2															
C1-70 291 9971 2.6 0.21977 8.9 0.03170 1.0 0.11 201.2 2.0 202 16 208 205 201	2															
C_{1-80} 210 6275 2.1 0.22742 15.2 0.03179 1.0 0.07 2018 2.0 208 29 280 349 202	2															
	3															
(1.14 1.41 4.84 2.2 0.28783 15.3 0.03198 1.9 0.12 202.9 3.7 255 35 769 321 203	4															
C1.46 153 8276 19 0 22297 112 0 03216 16 0 14 2011 3 2 204 21 208 258 204	3															
C1.61 169 5764 3.3 0.22403 163 0.03217 1.8 0.11 204.1 3.7 205 30 218 378 204	4															
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4															
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3															
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 11															
$C_{1.71}$ 80 10230 2.9 0.25752 20.3 0.03375 2.5 0.12 214.0 5.3 233 42 426 453 214	5															
	Isotopic ratios										Appare	nt ages (Ma)				
--------	-----------------	--	------	---------------------------------------	-------	---------------------------------------	-------	----------------	---------------------------------------	--------	---------------------------------------	--------------	--	--------	-------------	--------
sample	U (ppm)	²⁰⁶ Pb ²⁰⁴ Pb	U/Th	²⁰⁷ Pb ²³⁵ U	± (%)	²⁰⁶ Pb ²³⁸ U	± (%)	error corr.	²⁰⁶ Pb ²³⁸ U	± (Ma)	²⁰⁷ Pb ²³⁵ U	± (Ma)	²⁰⁶ Pb ²⁰⁷ Pb	± (Ma)	best Age	± (Ma)
C1-100	82	1859	2.3	0.22587	9.7	0.03455	1.7	0.17	218.9	3.6	207	18	70	229	219	4
C1-15	417	492	3.7	0.31586	9.7	0.03902	1.5	0.15	246.8	3.6	279	24	556	210	247	4
C1-90	283	1492	2.4	0.34051	11.9	0.04508	1.1	0.09	284.2	2.9	298	31	403	267	284	3
C1-57	212	2371	1.6	0.37400	5.9	0.05267	2.1	0.35	330.9	6.8	323	16	263	128	331	7
C1-86	195	7075	2.2	0.42162	9.7	0.05565	1.0	0.11	349.1	3.5	357	29	410	216	349	4
C1-55	380	43196	4.2	0.72103	1.9	0.08998	1.0	0.52	555.4	5.3	551	8	534	36	555	5
C1-26	194	3191	7.8	3.30126	2.6	0.21194	1.8	0.70	1239.1	20.2	1481	20	1848	34	1848	34

206Pb/204Pb is measured ratio.

Analyses in red/italics are excluded due to >10% error in critical age, >30% discordance, or >5% reverse discordance.

All errors are at the 1-sigma level, and include only random uncertainties.

Best age = 206Pb/238U ages for analyses younger than 1.0 Ga and 206Pb/207Pb ages for analyses older than 1.0 Ga.

U concentration and U/Th are calibrated by comparison with NBS SRM 610 and have uncertainty of ~25%.

Decay constants: 235U=9.8485x10-10. 238U=1.55125x10-10, 238U/235U=137.88.

Isotope ratios are corrected for Pb/U fractionation by comparison with standard zircon with an age of 564 ± 4 Ma (2-sigma).

Initial Pb composition interpreted from Stacey and Kramers (1975), with uncertainties of 1.0 for 206Pb/204Pb and 0.3 for 207Pb/204Pb.