









1:250 000-scale topographic base data produced CENTRE FOR TOPOGRAPHIC INFORMATION. NATURAL RESOURCES CANADA Copyright Her Majesty the Queen

ONE THOUSAND METRE GRID Universal Transverse Mercator Projection North American Datum 1983 Zone 9 CONTOUR INTERVAL 100 FEET

Elevations in metres above Mean Sea Level

Weighted sums model (Principal Component Residuals) **Sheet 12 of 15** SCALE 1:250 000 kilometres

**Porphyry Mo Deposits** 



SHELDON FINLAYSON WOLF WATSON

#### INTRODUCTION

New geochemical data from re-analysis of archived stream sediment samples have been assessed using weighted sums modeling and catchment basin analysis, as described in the methodology report accompanying this map (Mackie et al., 2015). Both commodity and pathfinder element abundances are evaluated to highlight areas that show geochemical responses consistent with a variety of base and precious-metal mineral deposit types. The results of modeling, completed using two approaches, are presented as a series of catchment maps and associated data files. This release is part of a regional a large part of Yukon.

## SAMPLING AND ANALYSIS PROGRAMS

Stream sediment and water samples from the Frances sedimentary and volcanic rocks in the west to felsic Lake map area (105H) were collected at a intrusive rocks in the east. The second principal reconnaissance scale in 1987 as part of the Canada- component shows high negative loadings for Co, Fe, Cr, Yukon Mineral Development Agreement (Hornbrook & Ni, Cu and Mg which forms a spatial pattern matching the Friske, 1988). Field descriptions and initial geochemical mapped distribution of the Hyland Group sedimentary data for 917 sites were released in Geological Survey of rocks. Regression analysis of selected metals against the Canada ("GSC") Open File 1649. New geochemical data relevant principal component(s) effectively filters these from the re-analysis of archived sample material were 'terrane-effects' while preserving responses related to released in GSC Open File 6043 and Yukon Geological known occurrences. Levelling by the dominant mapped Survey ("YGS") Open File 2009-1. The reader is referred geology has a more subdued effect on filtering the to these open files for detailed descriptions of sampling interpreted lithological control for certain (e.g., Ba, Cd, Hg techniques, analytical procedures and quality control and Ag). In order to reduce the impact these elements

#### MINERAL OCCURRENCES

mineralization are known to occur in the Frances Lake map sheet area as shown in Table 1 (YGS MINFILE, 2015). Skarn is dominant style of mineralization documented in the area and includes W (Tai, Woah and The effectiveness of historical sampling coverage has Susan deposits), Pb-Zn (Max, Miko, Fir Tree, and Lee been assessed empirically using graphs of WSMs plotted deposits) and Cu (Jan Prospect) types. The producing against catchment surface area to determine the ideal Cantung W-skarn mine, currently operated by North maximum catchment size (10 km²). Catchments that American Tungsten Corporation, occurs in the northeastern corner of the map area within Northwest sampled and thus require further sampling to properly Territories. In addition to skarn mineralization, intrusion- evaluate geochemical anomalism. Given the likelihood related gold mineralization has also been documented that a mineralization 'signal' would be progressively within the map area (Justin Deposit). The Finlayson Lake diluted with increase in catchment size, marginally high Zn-Pb-Cu-Ag VMS district and the Tintina polymetallic Ag- WSM scores for large catchments could also be of Pb-Zn deposit occur in the adjacent map area towards the interest. west (105G).

## WEIGHTED SUMS MODELLING

As described in the report accompanying this map (Mackie et al., 2015), two approaches have been used to subdue effects related to changes in underlying geology. One uses data levelled by the dominant geology mapped within each catchment. The other uses residuals calculated from regression against principal components interpreted to represent geologic horizons that exhibit a strong influence on the distribution of commodity and pathfinder elements. Weighted sums models (WSM) have been generated using the processed data. Importance rankings used in Weighted Sums Models (WSM) for a variety of deposit types are summarized in Table 2. Each

model is optimized for a target deposit type however other deposit types may be represented in a given model due to similarities in elemental abundances and associations. A WSM is presented for epithermal Au-Ag mineralization, however given the lack of occurrences of this type within the map area the model could not be validated and therefore should be used with caution.

Exploratory data analysis of both raw element data and principal components indicate that the distribution of many commodity and pathfinder elements is strongly influenced by lithological variation. The first principal component shows high positive loadings for Sb, Se, Hg, Ni, Ag, Cu, assessment of stream sediment geochemistry that covers

As, Cd, Ba and Zn; and negative loadings for K, Ti, Na, Al, Bi and U. Respectively, these groupings form geochemical domains that match the transition from had in the WSM they were assigned low importance rankings or were omitted for certain deposit types. Negative rankings were assigned to certain variables to A variety of types of base and precious-metal help differentiate deposit types with similar metal associations. For most deposit types the WSM models generated using the two approaches are quite similar.

Table 2: Importance rankings for weighted sums models using residuals on principal components.

| Target Deposit Type <sup>a</sup> | Other Deposit Types <sup>a</sup>                  | Mn | Fe | Со | Ni | Cu | Мо | Zn | Pb | Ag | Au <sup>1</sup> | As | Ва | Cd | Sn | Sb | Те | Hg | Ħ | Bi | F | w |
|----------------------------------|---------------------------------------------------|----|----|----|----|----|----|----|----|----|-----------------|----|----|----|----|----|----|----|---|----|---|---|
| Pb-Zn skam                       | VMS, SEDEX, MVT,<br>Polymetallic Ag-Pb-Zn         |    |    |    |    |    |    | 3  | 4  | 2  |                 |    |    | 1  |    |    |    |    | 1 |    |   | П |
| VMS (Zn-rich)                    | SEDEX, Pb-Zn skarn, MVT,<br>Polymetallic Ag-Pb-Zn |    |    |    | -2 | 2  |    | 4  | 2  | 1  |                 |    | 1  |    |    |    |    | 2  | 1 | -2 |   |   |
| Cu skarn                         | Porphyry Cu, Cu-Ag qtz vein                       |    |    |    |    | 3  |    |    |    | 3  |                 |    |    |    |    |    | 1  |    |   | 1  |   | П |
| W skarn                          | Porphyry Mo                                       |    |    |    |    |    | 1  |    |    |    |                 | 1  |    |    |    |    |    |    |   | 1  |   | 4 |
| Porphyry Mo                      | Porphyry Cu, W skarn                              |    |    |    |    | 2  | 3  |    |    |    |                 |    |    |    |    |    |    |    |   |    |   | 1 |
| Intrusion-related Au             | Epithermal Au-Ag                                  |    |    |    |    |    |    |    |    |    | 4               | 2  |    |    |    | 1  |    |    |   | 1  |   |   |
| Epithermal Au-Ag                 | Intrusion-related Au,<br>Polymetallic Ag-Pb-Zn    |    |    |    |    |    |    | -1 | -1 | 4  | 3               | 2  |    |    |    |    |    | 1  |   |    |   |   |

<sup>a.</sup>VMS = volcanic hosted/associated massive sulphide; SEDEX = sedimentary exhalative; MVT = Mississippi Valley Type; Polymetallic Ag-Pb-Zn type includes both vein and manto styles.

> **LEGEND** Town

> > ▲ Mineral Occurrence

Contou

NTS map sheet

Sample Location

Catchment > 10km²

Water Body

Wetland

Catchment

~~~ River

<sup>1</sup>Raw data following a log<sub>10</sub> transformation.

# RECOMMENDED CITATION

MACKIE, R., ARNE, D. AND PENNIMPEDE, C., 2015. Weighted sums model for Porphyry Mo deposits using principal component residuals. In: Enhanced interpretation of stream sediment geochemical data for NTS 105H. Yukon Geological Survey, Open File 2015-27, scale 1:250 000, sheet 12 of 15.

Catchment basin polygons generated by the Yukon Geological Survey (J. O. Bruce).

Table 1: List of Mineral Occurrences for NTS map sheet 105H (Yukon MINFILE, 2015)

Vein Polymetallic Ag-Pb-Zn±Au

Skarn Pb-Zn

Skarn Pb-Zn

Skarn Pb-Zn

Unknown

Skarn Pb-Zn

Skarn Pb-Zn

Skarn Pb-Zn

Plutonic Related Au

Plutonic Related Au

Porphyry Mo (Low F-Type)

Porphyry Mo (Low F-Type

Skarn Pb-Zn

Plutonic Related Au

Manto Polymetallic Ag-Pb-Zn

Sediment hosted Sedimentary Exhalative Zn-Pb-Ag (Sedex)

Volcanogenic Massive Sulphide (VMS) Besshi Cu-Zr

Sediment hosted Sedimentary Exhalative Zn-Pb-Ag (Sedex) | Showing

Vein Polymetallic Ag-Pb-Zn±Au

Vein Cu±Ag Quartz
Porphyry Mo (Low F-Type)

Skarn Pb-Zn

Skarn Pb-Zn

Skarn Pb-Zn

Vein Au-Quartz

Vein Au-Quartz

Porphyry Mo (Low F-Type)

Vein Cu±Ag Quartz

Vein Cu±Ag Quartz

Ultramafic Mafic Jade (Nephrite)

Ultramafic Mafic Jade (Nephrite)

Vein Polymetallic Ag-Pb-Zn±Au

Volcanogenic Massive Sulphide (VMS) Kuroko Cu-Pb-Zn

105H 003 KEE

105H 004 COX

105H 006 DC

105H 005 | FLIP

105H 007 VAGAS

105H 012 KLATZA

105H 023 LUCY

105H 024 CANYON

105H 027 CORRIE

105H 029 FIR TREE

105H 030 MONTSE

105H 032 HELEN

105H 033 BROD

105H 034 | NEEBING

105H 035 JUSTIN

105H 042 TANYA

105H 044 RENA

105H 045 FULCHER

105H 046 TUSTLES

105H 049 NARCHILLA

105H 051 YUSEZYU

105H 053 TILLEI

105H 055 ZEUS

105H 058 ALM 105H 059 BUS

105H 066 3ACE

105H 073 TAI

105H 078 JULIA

105H 081 TYERS

105H 082 TUNA

105H 085 | BEANS

105H 088 BILLINGS

105H 092 SHAN

105H 095 COME 105H 096 MCPHERSON

105H 100 MINI

105H 093 SEBASTIAN

105H 094 MT. BILLINGS

105H 098 ANDERSON

105H 103 SPROGGE

105H 079 TINY

105H 056 CARBIDE

105H 057 RICARDO

105H 064 MARKHAN

105H 067 GOLDEN CULVERT Orogenic Au

105H 028 BLACK JACK

105H 013 FRANCES

105H 008 MIKO

Commodities

Copper, Gold

Lead, Silver, Zinc

Drilled Prospect Copper, Silver, Zinc, Gold, Lead

Drilled Prospect | Copper, Silver, Lead, Zinc

Tungsten

Jade/Nephrite

Past Producer Chrysotile, Gold, Lead, Silver, Zinc.

Zinc, Silver, Gold

Drilled Prospect | Bismuth, Zinc, Silver, Nickel, Copper,

Drilled Prospect Bismuth, Gold, Silver, Zinc, Lead,

Drilled Prospect Copper, Zinc, Silver, Gold, Lead

Lead, Zinc, Silver

Copper, Tungsten

Copper, Tungsten

Lead, Zinc

Drilled Prospect Copper, Zinc, Lead, Silver

Anomaly

Showing

Sediment hosted Sedimentary Exhalative Zn-Pb-Ag (Sedex) | Drilled Prospect | Barite, Gypsum, Lead, Silver, Zinc,

Copper, Tungsten

Molybdenum, Tungsten

Lead, Zinc, Copper, Silver

Molybdenum, Tungsten

Copper, Zinc, Lead

Copper, Silver, Zinc, Lead

Antimony, Gold, Silver, Tungsten, Molybdenum, Copper, Arsenic, Bismuth

Copper, Tungsten, Zinc, Lead

Copper, Tungsten, Molybdenum

Molybdenum, Tungsten

Lead, Zinc, Tungsten

Lead, Zinc, Tungsten

Lead, Tungsten, Zinc Lead, Tungsten, Zinc

Tungsten

Copper, Silver, Zinc, Lead

Arsenic, Lead, Zinc, Copper, Gold

Gold, Bismuth, Arsenic, Antimony

Molybdenum, Tungsten

Gold, Arsenic Drilled Prospect Copper, Silver, Tungsten, Zinc, Lead

Drilled Prospect | Copper, Silver, Tungsten

Drilled Prospect | Gold, Arsenic

Drilled Prospect |Tungsten

Drilled Prospect Tungsten

Drilled Prospect Copper, Silver, Zinc, Tungsten, Lead

Molybdenum, Tungsten

Drilled Prospect | Arsenic, Silver, Gold

Gold, Arsenic, Lead

Drilled Prospect Copper, Gold, Tungsten, Silver, Lead,

Drilled Prospect Gold, Zinc, Lead, Silver

Copper

Showing

Jade/Nephrite, Copper

Copper, Silver, Zinc, Lead

Cobalt, Copper, Molybdenum, Nickel,

Copper, Lead, Gold, Silver, Zinc

Gold, Lead, Zinc, Antimony, Silver

Cadmium, Lead, Silver, Zinc, Copper,

Molybdenum, Zinc, Bismuth, Arsenic

Bismuth, Silver, Tungsten, Gold

Copper, Lead, Silver, Zinc, Gold

Barite, Silver, Zinc, Gold, Lead

Copper, Silver, Zinc, Gold, Lead

Lead, Molybdenum, Zinc, Tungsten

Copper, Silver, Tungsten, Zinc, Lead

Copper, Molybdenum, Tungsten, Zinc

Lead, Zinc

Drilled Prospect Lead, Zinc, Silver

Drilled Prospect Copper, Lead, Tungsten, Zinc, Silver,

Copper, Zinc, Lead, Silver

Copper, Silver, Zinc, Lead

Drilled Prospect Copper, Gold, Lead, Silver, Tungsten,

Any revisions or additional geological information known to the user would be welcomed by the Yukon Paper copies of this map and the accompanying report may be purchased from the Yukon Geological

Survey, Energy, Mines and Resources, Government of Yukon, Room 102-300 Main St., Whitehorse, Yukon, Y1A 2B5. Ph. 867-667-3201, Email geology@gov.yk.ca.

A digital PDF (Portable Document File) file of this map may be downloaded free of charge from the Yukon Geological Survey website: http://www.geology.gov.yk.ca.

> Yukon Geological Survey Energy, Mines and Resources Government of Yukon

Open File 2015-27

Weighted sums model for Porphyry Mo deposits using principal component residuals (NTS 105H) **Sheet 12 of 15** 

Yukon MINFILE, 2015. Yukon MINFILE – A database of mineral occurrences. Yukon Geological Survey, www.data.geology.gov.yk.ca, accessed May 2015.

# REFERENCES

Hornbrook, E.H.W. and Friske, P.W.B., 1988. Regional stream sediment and water geochemical data, southeastern Yukon (NTS 105H). Geological Survey of Canada, Open File 1649.

Mackie, R., Arne, D. and Brown, O., 2015. Enhanced interpretation of regional stream sediment (RGS) geochemical data from Yukon: catchment basin analysis and weighted sums modeling. Yukon Geological

McCurdy, M.W., Day, S.J.A., Friske, P.W.B., McNeil, R.J. and Hornbrook, E.H.W., 2009. Regional Stream Sediment and Water Geochemical Data, Frances Lake area, southeastern Yukon (NTS 105H). Geological Survey of Canada, Open File 6043, Yukon Geological Survey Open, File 2009-1.

Rob Mackie, Dennis Arne,