
135°30'W

135°W

FIRST VERTICAL DERIVATIVE OF THE **REDUCED-TO-POLE MAGNETIC FIELD** MAYO (NTS 105M) YUKON

134°W

134°30'W

Standardization of publicly available digital magnetic data from assessment reports was performed in 2019 and 2020. Residual magnetic field was calculated through removal of the IGRF. A levelled magnetic field channel was calculated by sampling the 1:250 000 compilation grid and taking the mean difference between the residual magnetic field and the overlapping points; this mean difference is applied as zero order datum shift to the residual data. This is repeated for each 1:250 000 compilation that the survey overlaps.

Up to four gridded products are produced for each survey (Residual Total Magnetic Field (TMI), Reduced-to-Pole Magnetic Field (RTP), First Vertical Derivative of the Reduced-to-Pole Magnetic Field (RTP_VD) and Tilt Derivative of the Reduced-to-Pole Magnetic Field (RTP_TDR) and these have pre-existing analogous 1:250 000 products from Open Files 2017-5 to 2017-

The outline of the assessment report data is extracted and eroded by a buffer, typically 200 m. The buffer is automatically reduced if it exceeds half the range of either the x or y coordinates. The eroded buffer is then windowed from each the four corresponding 1:250 000 compilations.

Each assessment report grid is then blended with the compilation grid through averaging common points between the grids. By previously windowing out the eroded assessment report outline from the compilation, both fidelity to the higher quality assessment report data and a smooth transition to avoid edge artifacts are achieved. This is an appropriate approach when the assessment report data are of higher quality than the compilation. Mostly this is true due to the higher resolution of data that is typical of a property-scale survey compared to a government regional-scale survey. However this is not universally the case and for every assessment report each of the four new blended grids are compared with the unaltered compilation. Assessment report grids which upon blending lower the quality of the compilation are manually rejected. A log file of accepted and rejected assessment reports for each 1:250 000 sheet is maintained.

The Yukon Geological Survey created georeferenced *.pdf maps of the shaded relief colour contour products for each 1:250 000 map sheet. The map data are provided as GeoTiff files.

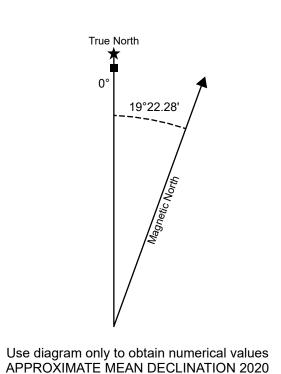
Funding for this project was provided by the Canadian Northern Economic Development Agency through their Strategic Investments in Northern Economic Development program.

REFERENCES

Miles, W., Saltus, R., Hayward, N. and Oneschuk, D., 2015. Alaska and Yukon Magnetic Compilation, Residual total magnetic field. Geological Survey of Canada, Open File

7862. Yukon Gold Corporation Inc. and Strategic Metals Ltd., 2006. Report on a Helicopter-Borne Time Domain Electromagnetic Geophysical Survey-Marg Property. Yukon Energy, Mines and Resources Assessment Report 94938. 650399 BC Ltd. and United Keno Hill Mines Ltd., 2006. 2006 Geological, Aerial Photography and Orthophoto Assessment Report on the Keno Hill Property. Yukon Energy, Mines and Resources Assessment Report 94943. Yukon Gold Corporation Inc., 2007. Assessment Report Describing VTEM Geophysical Surveys at the Gram Property. Yukon Energy, Mines and Resources Assessment Report 94957. Mayo Lake Minerals Inc., 2012. Assessment Report on the Davidson Claim Group Describing an Airborne Geophysical Survey. Yukon Energy, Mines and Resources Assessment Report 96243. Mayo Lake Minerals Inc., 2012. Assessment Report on the Cascade Claim Group Cas1-Cas52 Describing an Airborne Geophysical Survey. Yukon Energy, Mines and Resources Assessment Report 96264.

Mayo Lake Minerals Inc., 2012. Assessment Report on the Roop Claim Group Describing an Airborne Geophysical Survey. Yukon Energy, Mines and Resources Assessment Report 96265.


Assessment Report 96266.

RECOMMENDED CITATION

Aurora Geosciences Ltd. and Bruce, J.O., 2020. First Vertical Derivative of the Reduced-to-Pole Magnetic Field Shaded Colour Contour Map (NTS 105M). In: Reprocessing of Yukon magnetic data for NTS 105M. Yukon Geological Survey, Open File 2020-21, scale 1:250 000, 4 sheets. Any revisions or additional geological information known to the user would be welcomed by the Yukon Geological Survey. Paper copies of this map and the accompanying report may be obtained from the Yukon Geological Survey, Energy, Mines and Resources, Government of Yukon, Room 102-300 Main St., Whitehorse, Yukon, Y1A 2B5. Email: geology@gov.yk.ca. A digital PDF (Portable Document File) file of this map, and available data, can be downloaded free of charge from the Yukon Geological Survey website: https://yukon.ca/en/science-and-natural-resources/geology.

1:250 000-scale topographic base data produced CENTRE FOR TOPOGRAPHIC INFORMATION, NATURAL RESOURCES CANADA

ONE THOUSAND METRE GRID Universal Transverse Mercator Projection North American Datum 1983 Zone 8

FOR CENTRE OF MAP

Annual change 22.4' West

116A 106D 106C LARSEN NADALEEN NASH RIVER CREEK CREEK 105N THIS 115P LANSING MCQUESTEN MAP RANGE 105K 115I 105L TAY CARMACKS GLENLYON RIVER

Canadian Northern Economic Agence canadienne de Development Agency

Mayo Lake Minerals Inc., 2012. Assessment Report on the Trail-Minto Claim Group Describing an Airborne Geophysical Survey. Yukon Energy, Mines and Resources

Yukon Geological Survey Energy, Mines and Resources Government of Yukon

Open File 2020-21 Sheet 3 of 4

First Vertical Derivative of the Reduced-to-Pole Magnetic Field Shaded Colour Contour Map (NTS 105M) (1:250 000 scale)

> by Aurora Geosciences Ltd. and J.O. Bruce