

YGS Open File 2022–7

Audiomagnetotelluric and broadband magnetotelluric data for geothermal exploration in the Burwash Landing area

Victoria Tschirhart¹, James Craven¹, Maurice Colpron² and Quantec Geosciences Ltd.

- ¹ Geological Survey of Canada victoria-tschirhart@nrcan-rncan.gc.ca; jim.craven@nrcan-rncan.gc.ca
- ² Yukon Geological Survey

Canada

Published under the authority of the Department of Energy, Mines and Resources, Government of Yukon https://yukon.ca/en/department-energy-mines-resources.

Printed in Whitehorse, Yukon, 2022.

Publié avec l'autorisation du Ministères de l'Énergie, des Mines et des Ressources du gouvernement du Yukon, https://yukon.ca/en/department-energy-mines-resources.

Imprimé à Whitehorse (Yukon) en 2022.

geology.

© Department of Energy, Mines and Resources, Government of Yukon

This, and other Yukon Geological Survey publications, may be obtained from: Yukon Geological Survey 102-300 Main Street Box 2703 (K-102) Whitehorse, Yukon, Canada Y1A 2C6 email geology@gov.yk.ca Visit the Yukon Geological Survey website at https://yukon.ca/en/science-and-natural-resources/

In referring to this publication, please use the following citation:

Tschirhart, V., Craven, J., Colpron, M. and Quantec Geoscience Ltd., 2022. Audiomagnetotelluric and broadband magnetotelluric data for geothermal exploration in the Burwash Landing area. Yukon Geological Survey, Open File 2022-7.

Front cover: Aerial view (looking north) of the Duke River where geothermal studies along the Denali fault are focused. Ruby Range in the background. Photo credit: Theron Finley, University of Victoria.

Table of Contents

Introduction		1
Data		1
References		2
Appendices		
Appendix	1: Spartan MT survey report	3
Appendices 2 th	rough 5 – only available digitally.	
Appendix	2: EDI	
Appendix	3: 2D models	
Appendix	4: 3D models	
Appendix	5: Positioning	

Introduction

As Canada transitions to a low carbon economy, an increasing focus is being placed on the search for zero-emission, green energy sources. This is particularly important for sustainable development of Canada's North where many communities disconnected from the North American energy grid rely on fossil fuels (primarily diesel) for power generation and heat. Geothermal energy can provide base-lode power while emitting little carbon and requiring minimal physical infrastructure for development making it an attractive alternative energy source for the Arctic (Majorowicz and Grasby, 2014). In Yukon, although ~83% of electrical power is generated by hydro-electric plants (Yukon Bureau of Statistics, 2021a) and distributed to most communities via transmission lines, additional power requirements are provided by thermal generator burning diesel or liquefied natural gas and four communities are off-grid and relying primarily on fossil fuel for power generation. In addition, >56% of residential dwelling in Yukon rely on fossil fuels (oil or propane) for space heating (Yukon Bureau of Statistics, 2021b). Geothermal energy could potentially help reduce Yukon's reliance on fossil fuels and the Yukon Geological Survey is actively pursuing a geothermal energy research program not only for power generation but also for district heating, greenhouses and aquaculture. The Yukon Geological Survey has identified Burwash Landing, one of four off-grid Yukon communities, as a favourable environment for geothermal energy (Witter et al., 2018; Fraser et al., 2019; Witter, 2020). The Burwash Landing area is deemed prospective based on an estimated geothermal gradient of >40°C/km, local occurrences of warm groundwaters, and proximity to the active, crustal-scale, dextral strike-slip Denali fault (Witter et al., 2018; Witter, 2020; Elliott and Freymueller, 2020; McDermott et al., 2021).

The Yukon Geological Survey, in collaboration with the Geological Survey of Canada and university researchers, are trying to better understand the geothermal potential of Denali fault system in the Burwash Landing area (Relf, 2022). As part of this research, audiomagnetotelluric (AMT) and broadband magnetotelluric (BBMT) surveys were conducted in the Burwash Landing region in 2021 and 2022. Geophysical data offer invaluable insights on these types of potential blind geothermal systems (e.g. Craig et al., 2021) as they visualize the subsurface rock properties related to a rock's porosity or permeability either intrinsic to the rock itself or caused by faulting. Faulting can generate interconnected fracture networks facilitating fracture-dominated permeability along fault zones that can be important conduits for transporting warm hydrothermal fluids (Craig et al., 2021).

Data

This report distributes the 34 audiomagnetotelluric (AMT) and 46 broadband magnetotelluric (BBMT) stations collected in the Burwash Landing region, Yukon, by Quantec Geoscience Ltd. from October 8 to November 2, 2021. The technical report in Appendix 1 contains details of the acquisition process, processing and preliminary modelling products. The AMT and BBMT soundings are released here are as EDI files (Appendix 2), 2D modelling products are released as GDB, GRD, and XYZ files (Appendix 3), and 3D modelling products are released as GDB, VOXEL and XYZ files (Appendix 4). Geographic positioning of AMT and BBMT stations and electrodes are provided in GDB and CSV formats (Appendix 5). The products released herein were provided by Quantec Geoscience Ltd. The final preferred 3D inversion model incorporating extremely low frequency electromagnetic (Witter, 2020), AMT and BBMT data, as well as details of that 3D modelling process can be found in Tschirhart et al. (2022).

References:

- Craig, J.W., Faulds, J.E., Hinz, N.H., Earney, T.E., Schermerhorn, W.D., Siler, D.L., Glen, J.M., Peacock, J., Coolbaugh, M.F. and Deoreo, S.B., 2021. Discovery and analysis of a blind geothermal system in southeastern Gabbs Valley, western Nevada, USA. Geothermics, vol. 97, p.102–177, https://doi.org/10.1016/j.geothermics.2021.102177.
- Elliott, J. and Freymueller, J.T., 2020. A block model of present-day kinematics of Alaska and western Canada: Journal of Geophysical Research: Solid Earth, vol. 125, p. e2019JB018378, https://doi.org/10.1029/2019JB018378.
- Fraser, T.A., Colpron, M. and Relf, C., 2019. Evaluating geothermal potential in Yukon through temperature gradient drilling. In: Yukon Exploration and Geology 2018, K.E. MacFarlane (ed.), Yukon Geological Survey, p. 75–90.
- Majorowicz, J. and Grasby, S.E., 2014. Geothermal Energy for Northern Canada: Is it Economical? Natural Resources Research, vol. 23, p. 159–173. https://doi.org/10.1007/s11053-013-9199-3.
- McDermott, R.G., Ault, A.K. and Caine, J.S., 2021. Dating fault damage along the eastern Denali fault zone with hematite (U-Th)/He thermochronometry. Earth and Planetary Science Letters, vol. 563, 116872, https://doi.org/10.1016/j.epsl.2021.116872.
- Relf, C., 2022. Yukon Geological Survey 2021 overview. In: Yukon Exploration and Geology 2021, K.E. MacFarlane (ed.), Yukon Geological Survey, p. 1–15.
- Tschirhart, V., Colpron, M., Craven, J.A., Hormozzade Ghalati, F., Enkin, R.J., and Grasby, S.E., 2022. Geothermal exploration in the Burwash Landing region, Canada, using threedimensional inversion of passive electromagnetic data. Remote Sensing, vol. 14, https://doi. org/10.3390/rs1423596.
- Witter, J.B., Miller, C.A., Friend, M. and Colpron, M., 2018. Curie point depths and heat production in Yukon, Canada. 43rd Workshop on Geothermal Reservoir Engineering, Stanford University, CA, 11 p.
- Witter, J.B., 2020. Early-stage exploration for geothermal energy resources along the Denali fault near Duke River, Yukon. Yukon Geological Survey, Open File 2020-3, 70 p.
- Yukon Bureau of Statistics, 2021a. Yukon statistical review 2021. Department of Finance, Government of Yukon, https://yukon.ca/sites/yukon.ca/files/ybs/fin-yukon-statisticalreview-2021_0.pdf.
- Yukon Bureau of Statistics, 2021b. Yukon energy facts 2021. Department of Finance, Government of Yukon, https://yukon.ca/sites/yukon.ca/files/ybs/fin-yukon-energy-facts-2021.pdf.

Appendix 1

Logistics Report for a SPARTAN MT survey in the Burwash Landing area.

LOGISTICS REPORT FOR A

SPARTAN MT SURVEY

OVER THE

YUKON MT PROJECT

(YUKON TERRITORY, CANADA)

ON BEHALF OF THE

YUKON GEOLOGICAL SURVEY

November 30, 2021 CA01281S

Quantec Geoscience Ltd. 146 Sparks Ave., Toronto, ON, M2H 2S4, Canada +1-416-306-1941

Report Disclaimer:

Quantec Geoscience Limited holds a Certificate of Authorization from the Association of Professional Geoscientists of Ontario (PGO) to perform the work presented in this report. Quantec employed qualified professionals to carry out the work presented in this geophysical report.

Statements made in this report represent opinions that consider information available at the time of writing. Although every effort has been made to ensure the accuracy of the material contained in this report, complete certainty cannot be guaranteed due to the interpretive nature of the work which may include mathematically derived solutions that are inherently non-unique. Therefore, the estimated physical parameters of the subsurface may have no direct relation to the real geology and possible economic value of any mineralization.

There is no guarantee or representation to the user as to the level of accuracy, currency, suitability, completeness, usefulness, or reliability of this information for any purpose. Therefore, decisions made based on this work are solely the responsibility of the end user. It is incumbent upon the end user to examine the data and results delivered and make Quantec aware of any perceived deficiencies.

EXECUTIVE SUMMARY

This report presents the logistics of the SPARTAN MT survey completed from October 8, 2021, to November 2, 2021 over the Yukon MT Project by Quantec Geoscience Ltd. on behalf of the Yukon Geological Survey.

The report describes the instrumentation, data acquisition and processing procedures, final data formats and contents of the digital archives. The final processed data are also presented as Magnetotelluric (MT) sounding curves of apparent resistivity, phase, and Tipper.

A total of 83 MT sites were surveyed. Data were processed and inspected for quality assurance on site and reviewed daily by the geophysicist in charge of the project. Technical and quality control assistance for the project was provided by the Geological Survey of Canada.

The final processed survey results delivered with this report include:

- Magnetotelluric (MT) Data
 - Single site data in the Electrical Data Interchange (EDI) format containing the MT spectra at each frequency.
- Positioning data in .CSV and Geosoft .GDB format.

TABLE OF CONTENTS

List of F	igures			5
List of 1	Tables			5
1. Introc		iction		7
	1.1.	Client I	nformation	7
	1.2.	Genera	l Project Information	7
2.	Survey	Logistics	5	Э
	2.1.	Access		Э
	2.2.	Grid Ar	ea	Э
	2.3.	Produc	tion Summary	Э
	2.4.	Survey	Coverage Summary	Э
	2.5.	Quante	c Personnel11	1
	2.6.	Health,	Safety, and Environment (HSE)12	1
		2.6.1.	Hazard Assessment and Control12	2
		2.6.2.	Systems and Procedures	2
		2.6.3.	Training	2
		2.6.4.	Reporting12	2
3.	Survey	Specific	ations13	3
	3.1.	Instrum	nentation13	3
	3.2.	Survey	Layout13	3
	3.3.	Magne	totelluric Survey Parameters14	4
		3.3.1.	Geometry14	4
		3.3.2.	Acquisition and Processing Parameters14	4
		3.3.3.	Data Presentation	5
		3.3.4.	Ap Index	5
4.	Comme	ents on I	Measured Data17	7
5.	Deliver	ables		3
	5.1.	Digital	Data Archive	3
	5.2.	Field Da	ata Archive (Hard Drive)18	3
APPEN	DIX A.	Produc	tion Summary19	9
APPEN	DIX B.	Survey	Coverage22	1

26
89
109
115
L23

LIST OF FIGURES

Figure 1-1: General location map	8
Figure 2-1: MT survey coverage map – Full view (MT line sites).	. 10
Figure 2-2: MT survey coverage map – MT grid	. 10
Figure 2-3: MT survey coverage map – AMT grid	. 11
Figure 3-1: Survey acquisition layout showing full-frequency setup. AMT sites used only HF coils; MT	
sites used only LF coils	. 13
Figure 3-2: Magnetic signal strength (Ap index) during the project.	. 16

LIST OF TABLES

ble 5-1: Contents of the digital archive18
--

1. INTRODUCTION

This report presents the logistics of the SPARTAN MT survey completed from October 8, 2021, to November 2, 2021 over the Yukon MT Project by Quantec Geoscience Ltd. on behalf of the Yukon Geological Survey.

1.1. CLIENT INFORMATION

Name:	Yukon Geological Survey
Address:	91807 Alaska Highway Whitehorse, YT Y1A 0R3 Canada
Representative (YGS):	Maurice Colpron Phone: +1-867-667-8235 Email: Maurice.Colpron@yukon.ca
Representative (GSC):	Jim Craven Phone: +1-613-996-9935 Email: jim.craven@NRCan-RNCan.gc.ca

1.2. GENERAL PROJECT INFORMATION

Quantec Project Manager:	Mark Morrison	
Quantec Project Number:	CA01281S	
Report Prepared by:	Sam Edwards, I	Darcy McGill
Project Name:	Yukon MT Proje	ect
Survey Type:	SPARTAN MT	
General Location:	AMT Grid appro Landing, MT Lir of Haines Junct Lat /Long: UTM: Datum:	oximately 5 km West of Burwash ne runs from north of Quill Creek to East ion (see Figure 1-1). 61°21'58″ N, 139°06'12″ W 601390 E, 6805026 N NAD83, UTM Zone 7N
Survey Period:	October 8, 202	1, to November 2, 2021

Figure 1-1: General location map.

2. SURVEY LOGISTICS

2.1. ACCESS

Base of Operations:	Talbot Arm Motel, Destruction Bay
Mode of Access:	Truck and UTV.

2.2. GRID AREA

Established by:	Quantec, approved by client prior to survey execution
Grid Coordinate Reference System:	UTM coordinates
Datum and Projection:	WGS 84, UTM Zone 7N
Grid Azimuth:	Grid N is 0° True
Magnetic Declination:	18°E
Site Location:	Handheld GPS, Electrode locations marked using Hemisphere GPS.

2.3. PRODUCTION SUMMARY

Details of Survey Production:	See APPENDIX A
Survey Period (Total):	From October 8, 2021, to November 2, 2021 25 days
Survey Days (Read Time):	22 days
Standby:	2 days
Fatigue Days:	1 day

2.4. SURVEY COVERAGE SUMMARY

Details of Survey Coverage: See APPENDIX B

AMT/MT Survey:

Sites Acquired:

83 sites 123 EDI files delivered (one per MT site (49) and two per AMT site (74); 3 sites, "BBMTXX" had both MT and AMT data at the same site)

Figure 2-1: MT survey coverage map – Full view (MT line sites).

Figure 2-2: MT survey coverage map – MT grid.

Figure 2-3: MT survey coverage map – AMT grid.

2.5. QUANTEC PERSONNEL

Mark Morrison
Andrew Casson
Darcy McGill
Jordan Sampsor
Sam Edwards
Rodney Renaud
Alex Marino
Jordan Reelis

2.6. HEALTH, SAFETY, AND ENVIRONMENT (HSE)

Quantec Geoscience is committed to conducting its activities in a manner that will safeguard and protect the health and safety of all Quantec personnel, clients, the public and the environment.

2.6.1.Hazard Assessment and Control

Prior to mobilization, Quantec HSE compiled a hazard inventory for the project and risk assessments were completed for the tasks involved in conducting the work. On the basis of the risk assessments, corresponding Job Safety Analyses (JSA) were prepared defining safe work procedures.

2.6.2.Systems and Procedures

All personnel were equipped with any personal protective equipment (PPE) required for the work.

One Quantec crew member was assigned as an HSE coordinator to assist the Field Manager with implementation of HSE procedures and reporting.

Daily safety meetings of Quantec personnel were conducted each morning prior to commencement of work to review safe work procedures and discuss any prior incidents, daily plans and potential hazards.

Vehicle circle checks were completed by drivers before departure.

2.6.3.Training

2 new hires from Quantec were trained on the operation of MT surveys on this project.

2.6.4.Reporting

Daily reports were sent by email to both Quantec and the client representative, including:

- Daily operations plan for each acquisition team.
- Incident Reports if required.

3. SURVEY SPECIFICATIONS

3.1. INSTRUMENTATION

Receiver System:	RT160Q Quantec data logger
Synchronisation:	GPS clock (10 ns precision)
Receiver Electrodes:	Steel plates (AMT) / Phoenix PE5 $PbCl_2$ porous pots (MT)
Magnetic Sensors [HF]:	Geometrics G100K magnetic field sensors EMI BF6 magnetic field sensors
Magnetic Sensors [LF]:	Phoenix MTC50 magnetic field sensors Phoenix MTC80 magnetic field sensors

See APPENDIX G for more detailed information.

3.2. SURVEY LAYOUT

Figure 3-1: Survey acquisition layout showing full-frequency setup. AMT sites used only HF coils; MT sites used only LF coils.

3.3. MAGNETOTELLURIC SURVEY PARAMETERS

3.3.1.Geometry			
Technique:	Tensor magnetotelluric soundings processed with remote reference.		
Site Configuration:	Cross-shaped E-field with HF and/or LF magnetic sensors located at each site.		
E-field Dipole Lengths:	Ex: 100 m Ey: 100 m		
Site Orientation:	Acquisition layout with X pointing to 0° True.		
Remote Site Configuration:	L-shaped E-fields with HF and LF magnetic sensors located at the site. The sensors are oriented in the same direction as the local sites.		
Remote Reference Position:	585380E, 6819363N (NAD83, UTM Zone 7N)		
Synchronization to Remote:	GPS clock (10 ns precision)		
3.3.2.Acquisition and Processing Param	eters		
Data Acquisition:	Time series recording.		
Time Series Sampling:	HF1:48,000 samples/sHF2:12,000 samples/sLF1:2,000 samples/sLF2:40 samples/s (resampled from LF1)		
Time Series Recording Time:	HF1: minimum 2 events @ 30 s per eventHF2: minimum 3 events @ 4 minutes per eventLF1: at least 2 events @ 4 hours per event		
	 HF: minimum of 1 hour to maximum of storage capacity or until pick up LF: minimum of 8 hours to maximum of storage capacity or until pick up LF and LF magnetics schedule is fixed and defined as 		

Band	Sampling	Start	Duration
HF1	48 kHz	16, 36, 56 minutes after the hour	30 s for each run
HF2	12 kHz	0, 8, 20, 28, 40, 48 minutes after the hour	4 minutes for each run
LF	2000 Hz	At logger deployment	Continuous until pickup

Frequency Bandwidth:	AMT: 10 kHz to 3 Hz MT: 400 Hz to 0.001 Hz
Calibration Version:	ver.2.313 (released: 2021/10/01)
Processing:	Quantec proprietary QuickLay software (ver.5.7.8.7) coupled with Egbert MT processing code (Egbert, 1997): 1) Coherent noise rejection using remote reference 2) Proprietary digital filtering (scrubbing) 3) Coherency sorting 4) Impedance estimate stacking Processing configuration set to 12 frequencies per decade
	Data processed to output X at 0° True
	Data Conventions: Right-hand positive down coordinate system. Time dependence: $e^{+j\omega t}$
Remote Reference Processing:	See APPENDIX C for a list of remote reference sites used for each site:
	Each AMT site processed with remote H- and E- referencing (2 EDI files delivered per site)
Each MT site processed with remote H- See APPENDIX C for list of reference site	referencing (1 EDI file delivered per site) es used for each MT and AMT site.
Processed Data:	Auto- and cross-power spectral estimates for individual stations and sampling band archived as Spectral Density Matrix (SDM) files (Egbert output) Results are band-merged, edited, and saved as SEG-EDI ¹

(Electronic Data Interchange) files.

¹ EDI is a format conforming to SEG standard for the storage of magnetotelluric (MT) data (Wight, 1987).

Field Quality Control Tests	
Parallel Sensor Test:	A parallel sensor test was completed at the beginning of the survey to verify proper operation of the equipment. The test results are presented in APPENDIX E.
Remote Test:	MT data was collected at the remote site prior to the survey to evaluate suitability of the site location. The test results are presented in APPENDIX F.
3.3.3.Data Presentation	
Sounding Curves:	Observed XY and YX apparent resistivity and phase Observed Tzx and Tzy Tipper
	(see APPENDIX D for sounding curves)

3.3.4.Ap Index

The magnetic signal strength as reported by the Ap^2 index varies from 1 to a maximum of 43, with an average near 6 during the project.

Figure 3-2: Magnetic signal strength (Ap index) during the project.

² Ap Index reported on the processing notes were uploaded from the Helmholtz Centre Potsdam – GFZ German Research Centre for Geosciences (<u>https://www.gfz-potsdam.de/en/kp-index/</u>).

4. COMMENTS ON MEASURED DATA

General Comments:

- Most sites had clean data with the LF signal of MT clean to 0.001 Hz.
- Data was generally quiet in terms of powerline noise except for MT sites near Haines Junction which recorded more 60 Hz powerline noise (scrubbed in processing).

Known Issues:

- Until October 16, the remote site LF Hx coil was set up at the incorrect azimuth (oriented to magnetic north instead of true north). LF data deployed October 15 and earlier was therefore referenced to coils from other sites on the grid instead of to the remote coils.
- There were several days of low signal (1 or 2 Ap index) over which data quality was slightly worse than usual.
- Occasionally the LF Hz would record low frequency noise from wind possible due to an exposed coil. Starting Oct. 28 photos were taken of the Hz coils at LF sites at the client's request as a record of the burial condition. Repeat data were acquired where necessary to improve results.
- Due to frozen ground in some locations especially gravel riverbeds impedances for the electrics were sometimes higher than optimal. This caused some phase distortion at high frequencies in some AMT sites.

Special processing procedures:

- AMT data was processed to a lowest frequency of 3 Hz, which is outside the nominal bandwidth of the HF magnetic coils (usually minimum frequency 10 Hz).
- AMT sites were processed using other AMT sites on the grid as reference sites.
- AMT sites were also processed using E-referencing to other grid sites.

5. DELIVERABLES

The final deliverables include the following:

5.1. DIGITAL DATA ARCHIVE

Directory	Contents
\EDI	Final processed MT data (.EDI)
\Field Notes	Field setup notes for each site
\Photos	Field photographs of site and Hz coil installation
\Positioning	Site location data (Geosoft .GDB and .CSV)
\Report	Logistics report (.PDF)

Table 5-1: Contents of the digital archive.

5.2. FIELD DATA ARCHIVE (HARD DRIVE)

The raw field data are delivered on a hard disk drive and comprise the following:

Time Series:	Raw event files (e.g., Eventxxxx.dat), provided with log files having information on the location and time of the event (QuickLay digital format).	
Processed MT Data:	Daily processing runs in QuickLay digital format saved as '.MT' files linked with SDM files containing auto- and cross-power spectral estimates for each sampling band and site; Spectra are in right-hand positive down coordinate system. Processed SDM formatted data are band-merged into geo-referenced EDI files containing auto- and cross- power spectral estimates for individual stations.	

Respectfully submitted by:

Sam Edwards, Darcy McGill Quantec Geoscience Limited November 30, 2021

APPENDIX A. PRODUCTION SUMMARY

A.1. DAILY ACTIVITY SUMMARY

Task	Date	# sites	Site Log	Daily Field Activity
				Scouted and Cleared UTV trails on Grid (8:00am
				to 3:00pm), scouted East on Hwy for remote
Standby	2021-10-08			site (8:00am to 2:00pm)
				Continued scouting and clearing UTV trails on
.				grid (8:00am to 5:30), scouted Quill creek road
Standby	2021-10-09			for remote sites (8:00am to 12:00pm)
Survey	2021-10-10			PST and remote install
			AMT69, AMT68,	
<u> </u>	2024 40 44		MT18, MT06,	
Survey	2021-10-11	6	M107, M108	Install MT sites, Safety meeting at 8:00am,
Currier	2021 10 12	-	BB64, AMI162,	Install MT sites. Cafety meeting at 9,00pm
Survey	2021-10-12	5	MT19, MT74, MT75	Install WT sites, Safety meeting at 8:00am,
			IVI170, IVI177,	
SURVOV	2021-10-12	5	1V1178, AIV1159,	Install MT sites. Safety meeting at 8:00am
Survey	2021-10-13	5		install wit sites, safety meeting at 8.00am,
			MT81 AMT53	
Survey	2021-10-14	5	MT23	Install MT sites. Safety meeting at 8:00am
Survey	2021 10 11		AMT58. AMT51.	
Survey	2021-10-15	4	MT05, MT15	Install MT sites, Safety meeting at 8:00am,
			MT34, MT71,	,
			AMT47, AMT 52,	
Survey	2021-10-16	5	MT22	Install MT sites, Safety meeting at 8:00am,
Survey	2021-10-17	2	MT25, MT28	Install MT sites, Safety meeting at 8:00am,
			MT30, AMT67,	
Survey	2021-10-18	4	AMT48, AMT49	Install MT sites, Safety meeting at 8:00am,
			MT37, MT32,	
Survey	2021-10-19	3	AMT72	Install MT sites, Safety meeting at 8:00am,
Fatigue	2021-10-20			Fatigue day
			MT16, BBMT20,	
Survey	2021-10-21	4	AMT66, MT29	Install MT sites, Safety meeting at 8:00am,
			MT10, MT38,	
			AMT44, AMT57,	
Survey	2021-10-22	5	BBMT65	Install MT sites, Safety meeting at 8:00am,
Survey	2021-10-23	2	MT42, MT33	Install MT sites, Safety meeting at 8:00am,

Task	Date	# sites	Site Log	Daily Field Activity
			MT39, MT12,	
			AMT17, AMT60,	
Survey	2021-10-24	5	AMT61	Install MT sites, Safety meeting at 8:00am,
			AMT56, AMT73,	
			MT35, MT11,	
Survey	2021-10-25	5	AMT55	Install MT sites, Safety meeting at 8:00am,
			MT09, MT36,	
Survey	2021-10-26	3	AMT31	Install MT sites, Safety meeting at 8:00am,
			MT41, AMT27,	
Survey	2021-10-27	4	AMT43, AMT21	Install MT sites, Safety meeting at 8:00am,
			MT40, AMT24,	
Survey	2021-10-28	4	AMT54, AMT45	Install MT sites, Safety meeting at 8:00am,
Survey	2021-10-29	2	MT82, MT83	Install MT sites, Safety meeting at 8:00am,
			AMT46, AMT50,	
Survey	2021-10-30	5	MT01, MT02, MT14	Install MT sites, Safety meeting at 8:00am,
			AMT26, AMT70,	
Survey	2021-10-31	5	MT03, MT04, MT13	Install MT sites, Safety meeting at 8:00am,
Survev	2021-11-01	2	MT02R. MT04R	Install MT sites. Safety meeting at 8:00am.

APPENDIX B. SURVEY COVERAGE

B.1. MT SITES

B.1.1. MT Site Locations (Surveyed)

Site ID	UTM (NAD83, Zone 7N)		Longitude	Latitude	
(EDI)	Easting	Northing	(dd:mm:ss.ssE)	(dd:mm:ss.ssN)	Elevation
					(m)
<u>AMT Only</u>					
AMT17	599139.3	6806888	139°08'39.94"W	61°22'59.75"N	858.91
AMT21	597017.5	6804596	139°11'7.12"W	61°21'47.66"N	1055.75
AMT24	596813.8	6805574	139°11'19.00"W	61°22'19.44"N	1026.83
AMT26	597658.1	6805080	139°10'23.10"W	61°22'2.70"N	983.5
AMT27	597819.5	6806061	139°10'10.38"W	61°22'34.25"N	915.54
AMT31	597881.1	6806615	139°10'5.18"W	61°22'52.09"N	902.23
AMT43	598264.6	6806135	139°09'40.28"W	61°22'36.22"N	900.26
AMT44	599350.8	6806069	139°08'27.27"W	61°22'33.12"N	867
AMT45	597668.9	6805569	139°10'21.44"W	61°22'18.51"N	948.8
AMT46	598234.4	6805581	139°09'43.36"W	61°22'18.36"N	924.59
AMT47	598792.8	6805483	139°09'5.95"W	61°22'14.68"N	874.92
AMT48	599193.4	6805614	139°08'38.74"W	61°22'18.55"N	873.25
AMT49	599701.2	6805606	139°08'4.58"W	61°22'17.83"N	867.37
AMT50	598134	6805089	139°09'51.05"W	61°22'2.56"N	944.66
AMT51	598641.7	6805089	139°09'16.88"W	61°22'2.10"N	882.03
AMT52	599158.6	6805103	139°08'42.06"W	61°22'2.07"N	876.44
AMT53	599658.8	6805093	139°08'8.41"W	61°22'1.31"N	871.34
AMT54	597075.7	6805080	139°11'2.29"W	61°22'3.23"N	1020.31
AMT55	597561.8	6804534	139°10'30.60"W	61°21'45.15"N	1017.75
AMT56	598067.7	6804567	139°09'56.50"W	61°21'45.76"N	985.5
AMT57	598431	6804597	139°09'31.99"W	61°21'46.39"N	963.85
AMT58	599066.7	6804588	139°08'49.23"W	61°21'45.53"N	942.8
AMT59	599581.9	6804590	139°08'14.55"W	61°21'45.14"N	902.78
AMT60	597478.8	6804059	139°10'37.08"W	61°21'29.90"N	1091.71
AMT61	597989.3	6804119	139°10'2.62"W	61°21'31.36"N	988.05
AMT62	598493.1	6804085	139°09'28.78"W	61°21'29.81"N	968.12
AMT63	599005.8	6804143	139°08'54.18"W	61°21'31.22"N	962.56
AMT66	597402.8	6803586	139°10'43.09"W	61°21'14.67"N	1101.68

Site ID	UTM (NAD8	3, Zone 7N)	Longitude	Latitude	
(EDI)	Easting	Northing	(dd:mm:ss.ssE)	(dd:mm:ss.ssE) (dd:mm:ss.ssN)	
					(m)
AMT67	597903.2	6803612	139°10'9.37"W	61°21'15.07"N	990.1
AMT68	598406.9	6803570	139°09'35.56"W	61°21'13.26"N	961.73
AMT69	598939.7	6803632	139°08'59.60"W	61°21'14.77"N	986.82
AMT70	597229.1	6805581	139°10'51.03"W	61°22'19.28"N	1001.18
AMT72	599865.8	6806374	139°07'52.01"W	61°22'42.49"N	861.89
AMT73	598575.5	6806744	139°09'18.18"W	61°22'55.61"N	878.56
<u>AMT & MT</u>					
BBMT20	598764.4	6806141	139°09'6.61"W	61°22'35.98"N	900.47
BBMT64	599478.6	6804129	139°08'22.39"W	61°21'30.32"N	932.78
BBMT65	596892.3	6804073	139°11'16.52"W	61°21'30.86"N	1132.38
<u>MT Only</u>					
MT01	566594	6838936	139°44'30.41"W	61°40'40.22"N	721.65
MT02	576143.3	6832025	139°33'51.47"W	61°36'50.56"N	830.46
MT03	588888.4	6824570	139°19'39.74"W	61°32'39.91"N	741.79
MT04	593376.7	6816080	139°14'51.37"W	61°28'1.84"N	809.85
MT05	614077.2	6798067	138°52'13.57"W	61°18'0.13"N	812.83
MT06	621179	6791141	138°44'32.80"W	61°14'8.74"N	793
MT07	628288	6784995	138°36'51.52"W	61°10'42.11"N	816
MT08	632962	6774972	138°32'4.22"W	61°05'12.86"N	798
MT09	600823.3	6812456	139°06'35.68"W	61°25'58.06"N	805.23
MT10	604043.4	6810423	139°03'2.61"W	61°24'49.33"N	796.88
MT11	599467.6	6810286	139°08'11.30"W	61°24'49.22"N	819.93
MT12	601367.4	6807968	139°06'7.79"W	61°23'32.58"N	836.49
MT13	602623.7	6806817	139°04'45.46"W	61°22'54.20"N	831.08
MT14	604504.4	6805640	139°02'41.20"W	61°22'14.37"N	819.55
MT15	605810.8	6804759	139°01'15.07"W	61°21'44.67"N	805.48
MT16	597284.6	6807665	139°10'43.37"W	61°23'26.54"N	880.34
MT18	601391.2	6805030	139°06'11.94"W	61°21'57.64"N	833.89
MT19	603233.9	6803901	139°04'10.18"W	61°21'19.44"N	843.57
MT22	601009.8	6802794	139°06'41.96"W	61°20'45.78"N	937.82
MT23	603322	6801413	139°04'9.20"W	61°19'58.99"N	900
MT25	594852.1	6804909	139°13'32.27"W	61°21'59.70"N	1257.64
MT28	599879.8	6801959	139°07'59.57"W	61°20'19.87"N	1083.87
MT29	600901.9	6799411	139°06'55.79"W	61°18'56.61"N	1300.19
MT30	594917.4	6803188	139°13'31.03"W	61°21'4.04"N	1279.99

Site ID	UTM (NAD83, Zone 7N)		Longitude	Latitude	
(EDI)	Easting	Northing	(dd:mm:ss.ssE)	(dd:mm:ss.ssN)	Elevation
					(m)
MT32	598092.4	6801147	139°10'1.30"W	61°19'55.26"N	1025.11
MT33	599831.8	6800233	139°08'6.11"W	61°19'24.16"N	1196.6
MT34	595767.8	6801398	139°12'37.12"W	61°20'5.45"N	1090.03
MT35	596758.9	6799738	139°11'33.57"W	61°19'10.97"N	964.68
MT36	598481.3	6798635	139°09'39.91"W	61°18'33.77"N	1206.66
MT37	593360.4	6801928	139°15'18.04"W	61°20'24.68"N	1276.1
MT38	594123.2	6799628	139°14'30.91"W	61°19'9.72"N	1236.88
MT39	595405.1	6798378	139°13'7.05"W	61°18'28.24"N	1082.65
MT40	597097.9	6797226	139°11'15.48"W	61°17'49.49"N	1056.64
MT41	599145.9	6796492	139°08'59.34"W	61°17'23.95"N	1384.99
MT42	594320.2	6797136	139°14'22.18"W	61°17'49.07"N	1120.82
MT71	597889.3	6802683	139°10'12.06"W	61°20'45.06"N	915.91
MT74	641630	6769450	138°22'41.04"W	61°02'3.68"N	819.95
MT75	650770.6	6766696	138°12'40.50"W	61°00'22.57"N	957.28
MT76	659538.4	6762308	138°03'10.69"W	60°57'48.54"N	960.81
MT77	669177.3	6757853	137°52'44.88"W	60°55'10.32"N	876.47
MT78	673892.2	6750344	137°47'56.66"W	60°51'0.65"N	1031.79
MT79	681619.7	6744911	137°39'43.87"W	60°47'52.90"N	684.03
MT80	690401.4	6746180	137°29'59.63"W	60°48'19.07"N	661.31
MT81	699618	6749510	137°19'38.82"W	60°49'50.23"N	687.41
MT82	709047.5	6751670	137°09'7.52"W	60°50'42.42"N	672.1
MT83	717729.4	6751964	136°59'32.64"W	60°50'35.12"N	686.28

APPENDIX C. SITE REMOTE REFERENCE LIST

Site	Reference	Site	Reference	Site	Reference
MT01	Remote	MT29	Remote	AMT57	AMT44
MT02	Remote	MT30	Remote	AMT58	AMT51
MT03	Remote	AMT31	AMT55	AMT59	AMT63
MT04	Remote	MT32	Remote	AMT60	AMT61
MT05	MT15	MT33	Remote	AMT61	AMT17
MT06	MT18	MT34	Remote	AMT62	BBMT64
MT07	MT18	MT35	Remote	AMT63	AMT59
MT08	MT18	MT36	Remote	BBMT64	AMT62/MT75
MT09	Remote	MT37	Remote	BBMT65	AMT44/Remote
MT10	Remote	MT38	Remote	AMT66	BBMT20
MT11	Remote	MT39	Remote	AMT67	AMT48
MT12	Remote	MT40	Remote	AMT68	AMT69
MT13	Remote	MT41	Remote	AMT69	AMT68
MT14	Remote	MT42	Remote	AMT70	AMT26
MT15	MT05	AMT43	AMT27	MT71	Remote
MT16	Remote	AMT44	AMT57	AMT72	E: MT32/ H: Remote
AMT17	AMT61	AMT45	AMT24	AMT73	AMT56
MT18	MT06	AMT46	AMT50	MT74	BBMT64
MT19	MT75	AMT47	AMT52	MT75	BBMT64
BBMT20	Remote/AMT66	AMT48	AMT67	MT76	MT78
AMT21	AMT27	AMT49	AMT67	MT77	MT76
MT22	Remote	AMT50	AMT46	MT78	MT76
MT23	MT81	AMT51	AMT58	MT79	MT23
AMT24	AMT45	AMT52	AMT47	MT80	MT23
MT25	Remote	AMT53	E: MT23/ H: Remote	MT81	MT23
AMT26	AMT70	AMT54	AMT45	MT82	Remote
AMT27	AMT43	AMT55	AMT31	MT83	Remote
MT28	Remote	AMT56	AMT73		

APPENDIX D. MEASURED MT DATA

This section presents the final processed MT data on a site-by-site basis as:

Sounding curves

- a. Observed XY and YX Apparent Resistivity (Ω ·m)
- b. Observed XY and YX Phase
- c. Observed Tzx and Tzy Tipper

Notice:

Mode XY is defined by Electrical (Ex) field and orthogonal magnetic (Hy) field (=Ex/Hy);

Mode YX is defined by Electrical (Ey) field and orthogonal Magnetic (Hx) field (=Ey/Hx);

Tipper Tzx and Tzy represent the ratio of the Vertical Magnetic (Hz) field and the Horizontal X (Hx) and Y Magnetic (Hy) fields respectively;

X-axis pointing to 0° True and Y is perpendicular to X

(right hand positive down coordinate system)

AMT sites have both **H**- and **E**-referenced versions of the EDIs (listed as AMTXX_H and AMTXX_E respectively).

D.1. AMT SITES

D.2. MT SITES

CA01281S: Yukon MT Project

CA01281S: Yukon MT Project

CA01281S: Yukon MT Project

APPENDIX E. PARALLEL SENSOR TEST

E.1. GENERAL INFORMATION

Project:	CA01281S
Date:	October 10, 2021
Prepared by:	Sam Edwards
Field Staff:	Andrew Casson Rodney Renaud Jordan Sampson Rajan Naran Alex Marino Jordan Reelis
QuickLay version:	ver.5.7.8
Common folder:	ver.2.313 (released: 2021/10/01)
Datum and Projection:	WGS 84 / UTM Zone 7 North
Site Location (UTM):	585559E / 6819393N
Coil Orientation :	90° True
Magnetic Declination:	18° East

E.2. SUMMARY OF COILS TESTED AND RESULTS

Serial ID	Test Passed (ID)	Notes
<u>P-50-</u>		
3005	LF1	
3006	LF1	
3007	LF1	
3092	None	Excluded from project.
3093	LF1	
3100	LF1	
3102	LF1	
3111	LF1	
3113	LF1	
3116	LF1	
3117	LF1	
3125	LF2	
3128	LF1	
3131	LF1	
<u> P80-</u>		
7006	LF1	
7071	LF1	
7123	LF1	
7153	LF1	
7163	LF1	
7169	LF1	
7185	LF1	
<u>BF6-</u>		
0112	HF1	
0302	HF1	
0710	HF1	
<u>GHF-</u>		

Serial ID	Test Passed (ID)	Notes
1083	HF1	
1125	HF1	
1142	HF1	
1454	HF1	
1456	HF1	
1457	HF1	
1458	HF1	
1462	HF1	
1463	HF1	
1465	HF1	
1467	HF1	

E.2.1. Photo(s) of the PST layout

E.2.2. PST conditions (culture, noise, etc.)

Very quiet area just off a mine road (shut for the season – no traffic). Near large gravel pile.

E.2.3. Comment on test results

Test ID	Notes
Test LF1	All coils look fine except 3092. 3125 had negative polarity due to coil cable but was looked okay.
Test LF2	Retest for 3092 and 3125. 3092 improved but still had lower coherency and the PSD was slightly off.
Test HF1	All coils okay.

E.3. PST PROCESSING PARAMETERS

For Low Frequency (LF)

Processing Properties	×
General Processing Method Welch Display Options Apply Calibration Unwrap Phase Min: 0.01 Hz Degrees	Display PSD Coherency Relative Amplitude Relative Phase MISO Noise PSD
OK Cancel	Apply Help

For High Frequency (HF)

Processing Properties	×
General Processing Method Welch Display Options Apply Calibration Unwrap Phase Min: 5 Hz Degrees	Display PSD Coherency Relative Amplitude Relative Phase MISO Noise PSD
OK Cancel	Apply Help

E.4. TEST LF 1 RESULTS

Name: PST_283185444_2k Description:	Type: MT Sub Type: Line 10/10/2021 19:09:09	Mark as Bad						
vent Com	nponents Channels Processor View	w PST View						
3-MT Event PST 283185444 2k Char	nnels Segment	Sensor: Name Sensor: Name	Instrument Na., S	ensor: Type 🔍 [DAU: ID 🔍	Sensor: Azimu Sensor: Comp	Sensor, Impe Sensor, Dipol	. DAU: Gain 🔦 🛛 S
⊡ ⑦ Info	ALL 0038 01 - PHOENIX	PHOENIX P50-3005	P50-3005 M	lagnetometer I	C038.01	90 Inline	110	16
- 🕐 Name: PST 283185444 2k 🎼 🛛	AU C071 01 - PHOENIX	PHOENIX P50-3006	P50-3006 M	lagnetometer	C071.01	90 Inline	110	16
- 🕐 Event Intersecting	AU C05C 02 - PHOENIX	PHOENIX P50-3007	P50-3007 M	lagnetometer	C05C.02	90 Inline	110	16
MT Survey: Magneto Telluric	AU C035.02 - PHOENIX	PHOENIX P50-3092	P50-3092 N	agnetometer	C035.02	90 Inline	110	16
(2) Sample Bate: 2000	AU C035.01 - PHOENIX	PHOENIX P50-3093	P50-3093 M	lagnetometer	C035.01	90 Inline	110	16
🕀 🚫 Duration: 01h15m40.99900s 🜿 D	AU C05C.01 - PHOENIX	PHOENIX P50-3100	P50-3100 N	lagnetometer (C05C.01	90 Inline	110	16
Components (7)	AU C038.03 - PHOENIX	PHOENIX P50-3102	P50-3102 N	lagnetometer	C038.03	90 Inline	110	16
D Components (r)	AU C07B.01 - PHOENIX	PHOENIX P50-3111	P50-3111 M	lagnetometer (C07B.01	90 Inline	110	16
اية D	AU C071.02 - PHOENIX	PHOENIX_P50-3113	P50-3113 M	lagnetometer (C071.02	90 Inline	110	16
"∰ D	AU C071.03 - PHOENIX	PHOENIX_P50-3116	P50-3116 M	lagnetometer (C071.03	90 Inline	110	16
t∰ D	AU C035.03 - PHOENIX	PHOENIX_P50-3117	P50-3117 M	lagnetometer (C035.03	90 Inline	110	16
"∰ D	AU C07B.02 - PHOENIX	PHOENIX_P50-3125	P50-3125 M	lagnetometer (C07B.02	90 Inline	110	16
t∰ D	AU C07B.03 - PHOENIX	PHOENIX_P50-3128	P50-3128 M	lagnetometer	C07B.03	90 Inline	110	16
*運 D	AU C038.02 - PHOENIX	PHOENIX_P50-3131	P50-3131 M	lagnetometer I	C038.02	90 Inline	110	16
*連 D	AU C03A.01 - PHOENIX	PHOENIX_P80-7006	P80-7006 M	lagnetometer	C03A.01	90 Inline	110	16
*運 D	AU C03A.03 - PHOENIX	PHOENIX_P80-7071	P80-7071 M	lagnetometer I	C03A.03	90 Inline	110	16
NE D	AU C079.03 - PHOENIX	PHOENIX_P80-7123	P80-7123 M	lagnetometer I	C079.03	90 Inline	110	16
*暹 D	AU C079.02 - PHOENIX	PHOENIX_P80-7153	P80-7153 M	lagnetometer 🛛	C079.02	90 Inline	110	16
*連 D	AU C03A.02 - PHOENIX	PHOENIX_P80-7163	P80-7163 N	lagnetometer I	C03A.02	90 Inline	110	16
"暹 D	AU C079.01 - PHOENIX	PHOENIX_P80-7169	P80-7169 M	lagnetometer 🛛	C079.01	90 Inline	110	16
"缱 D	DAU C05C.03 - PHOENIX	PHOENIX_P80-7185	P80-7185 N	lagnetometer (C05C.03	90 Inline	110	16

Notes: coil 3125 had negative polarity due to coil cable – retested in LF2. Coil 3092 Had very low PSD compared to other coils – retested in LF2.

Time Series @2000 samples per second

400000	
280000	DAU CO71.01 - PHOENIX_P50.3006
60000	DAU COSC 02 - PHOENIX_P50.3007
750 -	PAU COST OF PHOENIX FED 3092 WWW. Manual Ma Manual Manual Ma Manual Manual Manu
-40000	
-80000	
-400000	
460000	
-420000	DAU 007/102 - PHOENK P50-3113
1 0000	DAU 0071/03 - PHOENX PE0-3116
80000	
40000	
-20000	
360000	
300000	
-60000	DAU C079 02 - PHOENIX P80-7153.
60000	
-320000	
-340000	
-60000	
	Oct 10 2021 _{19:19:17} 19:19:17 19:19:17 19:19:17 19:19:17 19:19:17 19:19:17 19:19:17 19:19:17 19:19:17 19:19:17 19:19:17 19:19:17 19:19:17 19:19:17

E.5. TEST LF 2 RESULTS

Name: PST_283212303_2k	Туре: МТ	-					
Description:	Sub Type: Line	Mark as Bad					
Sample Rate: 2000Hz							
Start Use Limit 10/10/2021	✓ 10/10/2021 21:23:03 ▲ 2	1:23:03					
End: Use Limit 10/10/2021	End: Use Limit 10/10/2021 v 10/10/2021 22:04:57 .43100 + <22:04:58						
▼ TS Viewer works only with event time	range						
Ivent	Components Channels Processor View F	ST View					
∃ MT Event PST_283212303_2k	Channels Segment %	Sensor: Name 🔍	Instrument: Na Sensor: Type	AU: ID 🔍	Sensor: Azimu Sensor: Comp.	Sensor: Impe Sensor: Dipol	DAU: Gain 🔦
⊨ @ Info	🌿 DAU C07B.01 - PHOENIX	PHOENIX_P50-3092	P50-3092 Magnetomet	er C07B.01	90 Inline	110	16
	1/1 DAU C07B.02 - PHOENIX	PHOENIX_P50-3125	P50-3125 Magnetomet	er C07B.02	90 Inline	110	16
- 🕜 Event: Intersecting	🌿 DAU C07B.03 - PHOENIX	PHOENIX_P50-3128	P50-3128 Magnetomet	er C07B.03	90 Inline	110	16
MT Sussey MeanataTalluria							

Notes: 3125 all okay. 3092 improved compared to LF1 but still has slightly odd PSD (with jump at 120Hz) and lower coherency than other coils.

Time Series @2000 samples per second

E.6. TEST HF 1 RESULTS

Name: PST_283195600_48k	Туре: М	т 💌]							
Description:	Sub Type: Li	ne 💌	Mark as Bad							
Sample Rate: 48000Hz										
Start Use Limit 10/10/2021 v 10/10/2021 19:56:00 v 19:56:00										
End: Use Limit 10/10/2021	✓ 10/10/2021 19:56:30	.45000(<	19:56:31							
TS Viewer works only with event time	range									
vent	Components Channels (15)	Processor View	PST View							
3-MT Event PST_283195600_48k	Channels	Segment %	Sensor: Name 🔍	Instrument: Na	Sensor: Type @	DAU: ID 🔍	Sensor: Azimu	Sensor: Comp	Sensor: Impe Sensor: Di	ool DAU: Gain 🔍 🛛
🗄 🖓 Info	# DAU C07B.08 - EMI BF6-0		EMI BF6-0112	BF6-0112	Magnetometer	C07B.08	90	Inline	50	16
	AU C07B.09 - EMI BF6-0		EMI BF6-0302	BF6-0302	Magnetometer	C07B.09	90	Inline	50	16
- 🕐 Event Intersecting	DAU C05C.07 - EMI BF6-0		EMI BF6-0710	BF6-0710	Magnetometer	C05C.07	90	Inline	50	16
- MT Survey: MagnetoTelluric	DAU C064.07 - GEOMETRI		GEOMETRICS_GHF	GHF-1065	Magnetometer	C064.07	90	Inline	50	16
- (?) Sample Rate: 48000	📲 DAU C048.09 - GEOMETRI		GEOMETRICS_GHF	GHF-1083	Magnetometer	C048.09	90	Inline	50	16
Duration: 30.450000s	🌿 DAU C071.09 - GEOMETRI		GEOMETRICS_GHF	GHF-1125	Magnetometer	C071.09	90	Inline	50	16
Components (5)	🌿 DAU C064.08 - GEOMETRI		GEOMETRICS_GHF	GHF-1142	Magnetometer	C064.08	90	Inline	50	16
	🌿 DAU C071.07 - GEOMETRI		GEOMETRICS_GHF	GHF-1454	Magnetometer	C071.07	90	Inline	50	16
	🌿 DAU C048.07 - GEOMETRI		GEOMETRICS_GHF	GHF-1456	Magnetometer	C048.07	90	Inline	50	16
	📲 DAU C064.09 - GEOMETRI		GEOMETRICS_GHF	GHF-1457	Magnetometer	C064.09	90	Inline	50	16
	* DAU C05C.08 - GEOMETR		GEOMETRICS_GHF	GHF-1458	Magnetometer	C05C.08	90	Inline	50	16
	📲 DAU C07B.07 - GEOMETR		GEOMETRICS_GHF	GHF-1462	Magnetometer	C07B.07	90	Inline	50	16
	👷 DAU C071.08 - GEOMETRI		GEOMETRICS_GHF	GHF-1463	Magnetometer	C071.08	90	Inline	50	16
	DAU C05C.09 - GEOMETR		GEOMETRICS_GHF	GHF-1465	Magnetometer	C05C.09	90	Inline	50	16
	ME DAU C048.08 - GEOMETRI		GEOMETRICS_GHF	GHF-1467	Magnetometer	C048.08	90	Inline	50	16
	-									

Notes: All passed coils okay. 0302 and 0710 weak and to be watched.

Time Series @48k samples per second

-800000	DAU C07B.08 - EMI_BF6-0112						ويعرب والمستحد والمستحد والمستح		Lange and the second
-850000	DAU 007B 09 - EMI BE6-0302			a na ana ana ana ana ana ana ana ana an			- (· · · · · · · · · · · · · · · · · ·		
1300000		╪╪╢┝╍╌┝╍╌╍╍					and the second secon		+++++++++++++++++++++++++++++++++++++++
1350000 -400000 -	DAU C05C.07 - EMI_BF6-0710								
-500000	DAU C048.09 - GEOMETRICS_GHF-1083	niji n Alli a							
1550000	DAU C071.09 - GEOMETRICS_GHF-1125								
500000 _ • 500000 _ • 1750000 _ •	DAU C064.08 - GEOMETRICS_GHF-1142								
1650000	DAU C071.07 - GEOMETRICS_GHF-1454					(ور المراجع		
	DAU C048.07 - GEOMETRICS_GHF-1456								
-50000 - 💌	DAU C064.09 - GEOMETRICS_GHF-1467			en helen om stade komme					
-50000 - 50000 -	DAU C05C.08 - GEOMETRICS_GHF-1458								
-50000 50000	DAU C07B 07 - GEOMETRICS_GHF-1462								• • • • • • • • • • • • • • • • • • •
-50000 -	DAU C071.08 - GEOMETRICS_GHF-1463	1000 							
550000	DAU C05C.09 - GEOMETRICS_GHF-1465	'' .							
-50000 -	DAU C048.08 - GEOMETRICS_GHF-1467					1	en e		
-50000 -		ير الديالية							19. 4. 4. 4. 19.
	19:56:00 19:56:02 19:56:04 19:56:06 19:56:08 Oct 10 2021	19:56:10	19:56:12	19:56:14 Tim	19:56:16	19:56:18 19	9:56:20 1	9:56:22 19:	56:24

APPENDIX F. MT REMOTE TEST

F.1. GENERAL INFORMATION

Project:			CA01281S							
Date:		October 11, 2021								
Prepared by:			Sam Edwa	Sam Edwards						
QuickLay version:			ver.5.7.8							
Common folder:			ver.2.313 (released: 2021/10/01)							
Datum and P	rojection:		WGS 84 / UTM Zone 7 North							
Site Location	(UTM):		585380E /	6819363N						
Magnetic De	clination:		18° E							
Sensor Inform	mation:		see table b	elow.						
Channel	Azimuth	L	ength	Char	nnel	Azimu	th			
Ex	180° South	-	L00 m	00 m Hx		00° North				
Ey	90° East	-	L00 m	m Hy		90° East				
<u>LF:</u>										
Channels	Instrument: Name	Sensor: Name 🔍	Sensor: Dipole Le	Sensor: Impedance	Sensor: Azimuth 🔍	Sensor: Component	Sensor: Polarity 🦠			
【連 DAU C071.01 - REMOTE_Hx	P50-3102	REMOTE_Hx		110	0	Inline	Positive			
🚜 DAU C071.02 - REMOTE_Hy	P50-3117	REMOTE_Hy		110	90	Crossline	Positive			
🛴 DAU C071.04 - REMOTE_Ex	GL	REMOTE_Ex	100m	4500	180	Inline	Positive			
📇 DAU C071.05 - REMOTE_Ey	GL	REMOTE_Ey	100m	14400	90	Crossline	Positive			
HF:										
Channels	Instrument: Name 🤍	Sensor: Name 🥄	Sensor: Dipole Le	Sensor: Impedance	Sensor: Azimuth 🔍	Sensor: Component	Sensor: Polarity 🔍			
🌿 DAU C071.07 - REMOTE Hx	BF6-0710	REMOTE Hx		50	0	Inline	Positive			
DAU C071.08 - REMOTE Hy	GHF-1457	REMOTE Hy		50	90	Crossline	Positive			
DAU C071.10 - REMOTE Ex	GL	REMOTE_Ex	100m	4500	180	Inline	Positive			
DAU CO71.11 - REMOTE_Ey	GL	REMOTE_Ey	100m	14400	90	Crossline	Positive			

Test conditions: Local and East plate for the E's buried in sandy gravel. South plate in forest soil.

F.2. SOUNDING CURVES

Apparent resistivity, phase, magnetic signal amplitude and off-diagonal coherences of the MT remote, data processed unreferenced.

Comments: All looks normal.

AMT (48k & 12k sps)

MT (2k & 40 sps)

F.3. EVENTS ACQUIRED AND USED IN PROCESSING

Sample rate	Net Events	TS Length	Observation
48,000 sps	REMOTE_2840816_48k REMOTE_2840856_48k REMOTE_2840836_48k	30 seconds each	
12,000 sps	REMOTE_2840800_12k REMOTE_2840808_12k REMOTE_2840848_12k REMOTE_2840820_12k REMOTE_2840828_12k REMOTE_2840840_12k	4 minutes each	
2,000 sps	REMOTE_2840400_2k REMOTE_2840500_2k REMOTE_2840600_2k REMOTE_2840300_2k REMOTE_2840200_2k REMOTE_2840800_2k REMOTE_2840100_2k REMOTE_2840100_2k REMOTE_2840100_2k REMOTE_2841600_2k REMOTE_2841600_2k REMOTE_2840000_2k REMOTE_2840000_2k REMOTE_2841500_2k REMOTE_2840700_2k REMOTE_2840900_2k REMOTE_2841400_2k REMOTE_2841100_2k REMOTE_2841100_2k REMOTE_2841100_2k REMOTE_2841100_2k REMOTE_2841200_2k REMOTE_2841100_2k REMOTE_2841100_2k REMOTE_2841100_2k REMOTE_2841200_2k	18 hours 37 minutes	Hy shows several spikes with decaying tails throughout the time series. Strong tellurics during the night seen in LF data (Ap index: 12).
40 sps			Resampled from 2k data.

F.4. SCREEN CAPTURE OF TIME SERIES

APPENDIX G. INSTRUMENT SPECIFICATIONS

G.1. REF TEK - 160 QUANTEC DATA ACQUISITION SYSTEM

Refraction Technology Inc. – Plano, Texas

Specification		Description					
Mechanical – DAS							
Size:	130mm high x 24	130mm high x 240mm wide x 400mm long					
Weight:	16 lbs						
Shock:	Survives a 1 met	er drop on any axis					
Operating Temperature:	-20°C to +60°C	-20°C to +60°C					
Connectors							
Channel Input:	PTO7A14-19S (2	each for 6-Channel DAS)					
Power:	PTO7A12-4S						
GPS Antenna:	standard						
Power	1						
Input Voltage:	10 to 15 VDC	10 to 15 VDC					
Average Power:	~6 W (5-6 channel)						
	~8 W (10-12 channel)						
A/D Converter	1						
Туре:	Δ – Σ modulation, 256 KHz base rate, 24-bit output resolution						
Channels:	12 (6 @ LS and 6 @ HS)						
Input Impedance:	100 Mohm						
	Innut Full Scale Bit Weight						
	Gain	(volts)	Actual	Reported			
	1	± 32 V	3.81 μV				
	2	± 16 V	•				
	4	± 8 V	954 nV				
Sensor Input Signal Range:	8	± 4 V					
	16	± 2 V	238 nV				
	32	± 1 V					
	64	± 500 mV	59.6 nV				
	128	± 250 mV					
	256	± 125 mV	14.9 nV				

Specification	Description
Sample Rates HS:	48000, 12000, 9600, 8000 sps
Sample Rates LS:	4000, 2000, 1600, 1000, 960, 800, 500, 480, 400, 250, 240, 200, 125, 120, 100, 60, 50 sps

Specification	Description				
Time Base					
Туре:	GPS Receiver/Clock plus a disciplined oscillator				
Accuracy with GPS:	+/- 100 µsec after validated 3-D fix and locked				
Free-Running Accuracy:	0.1 ppm over the temperature range of 0°C to 40°C, and 0.2 ppm from -20°C to 0°C				
Recording Modes					
Continuous:	All LS modes				
HS Mode 0	8000 sps for 360 s; once				
HS Mode 1	8000 sps for 360 s; every 10 minutes on the 0, 10, 20, 30, 40, 50 minute marks				
HS Mode 2	12000 sps for 240 s; every 10 minutes on the 0, 10, 20, 30, 40, 50 minute marks				
HS Mode 3	48000 sps for 60 s; every 10 minutes on the 0, 10, 20, 30, 40, 50 minute marks				
HS Mode 4	2 @ 12 ksps for 240 s and 1 @ 48 ksps for 30 s; repeated 20 minutes (12 ksps on 0, 8, 20, 28, 40, 48 minute marks and 48 ksps on 16, 36, and 56 minute marks)				
Recording Capacity					
Battery Backed SRAM:	64 Mbytes				
Removable Storage:	3 @ 8 GB industrial USB 2 sticks				
Recording Format					
Format:	SEED and miniSEED Recording Formats				

G.2. MTC 50 (P50) SERIES MAGNETIC SENSORS

Phoenix Geophysics Ltd

MTC-50 magnetic sensor coils weigh just over 10 kg, and measure only 141 cm. They provide magnetotelluric data at frequencies between 400 Hz to 0.00002 Hz.

Technical Specifications

Overall Length : 141 cm Outside Diameter : 6.0 cm Weight : 10.5 kg Frequency Range (for MT) : 400 Hz to 0.00002 Hz

G.3. MTC 80 (P80) SERIES MAGNETIC SENSORS

Phoenix Geophysics Ltd

MTC-80H magnetic sensor coils are the newest addition to the induction coil family. Intended for use in MT surveys to moderate depth, they weigh about 5 kg (half the weight of the MTC-50H) and measure 97 cm in length (70% of the length of an MTC-50H). The MTC-80H provides good data from 400 Hz down to 10 000 seconds, depending on signal strength and local conditions.

G.4. GHF MAGNETIC FIELD INDUCTION SENSOR

Geometrics

Geometrics G100K Magnetic Induction Sensor

The Geometrics G100K Magnetic Induction Sensors is a highly sensitive, low-noise coil induction sensor. The sensor response is stable and flat over a broad range of frequencies to provide a consistent and reliable measurement for AMT, CSAMT, and other geophysical measurements requiring vector magnetic field measurements four decades of frequencies from 10 Hz to 100k Hz.

Features:

- Rugged G10 casing
- Low noise
- Stable amplitude and phase response over time and operating temperture
- Low power consumption (480 mW)
- Small diameter and light weight
- Frequency range: 10 Hz to 100 kHz

Technical Specifications:

- 3 dB point: 7 Hz and 100 kHz
- Power consumption: 20 mA at +/- 12 V
- Sensitivity in flat region: 150 mV/nT
- Mechanical
 - o Length: 76.2 cm (30 in)
 - o Diameter: 4.1 cm (1.63 in)
 - Weight: 2.04 kg (4.5 lbs)
- Connector
 - Type: Tajimi 8-pin (23A16-8AM)
 - Mating type: Tajimi 8-pin (23B16-8AF)
 - Dust cap: Tajimi (16 RC)
 - Pin out (show connector pin diagram below)

December 2, 2011

G.5. BF-6 MAGNETIC FIELD INDUCTION SENSOR

Schlumberger – EMI (Electromagnetic Instruments Inc.) Technology Center

Schlumberger BF-6 Magnetic Field Induction Sensor

PERFORMANCE

- Frequency range: 1 Hz to 25 kHz or 1 Hz to 100 kHz
- 3-dB frequency corners: 10 Hz, 25 Hz or 10 Hz, 100 kHz
- Sensitivity (flat region): 0.3 V/nT (standard)
- Power consumption: 18 mA at ±12 V

MECHANICAL SPECIFICATIONS

- Housing: High-impact acrylonitrile butadiene styrene (ABS) straight tube
- Length: 73 cm (29 in)
- Diameter: 5 cm (2 in)
- Weight: 1.7 kg (3.7 lbm)
- Connector: 8-pin Tajimi

PINOUT SPECIFICATIONS

- 8-pin Tajimi connector pinout: 23A16-8AM
- Connector mating part: 23B16-8AF
- Dust cap: 16RC

BF MAGNETIC SENSORS are constructed using a highmagnetic-permeability, mu-metal core with proprietary windings. The coil windings are shielded and epoxy potted inside a high-impact ABS housing.

The BF-6 sensor utilizes a magnetic feedback design to yield a stable flat response over several decades of frequency; here, the sensors respond as a B field detector. At frequencies below the flat region, the response is proportional to frequency. The coil and preamplifier are housed in a rugged impact-resistant ABS tube and powered by an external +12 V power supply. The amplifier will drive signals up to 300 m.

APPLICATIONS

These sensors may be customized for a variety of sevices including geophysical surveys (magnetotelluric, audiomagnetotelluric, controlled source audio frequency magnetotelluric, magnetometric resistivity, magnetic-induced polarization, controlled source electromagnetic, tensor source high-frequency magnetotelluric, Stratagem™), marine surveys, earthquake studies, and high-accuracy magnetic field studies

FREQUENCY RANGE

NOISE PERFORMANCE

Company, product, and service names are the properties of their respective owners Copyright \oplus 2008 Schlumberger. All rights reserved. 08-0F-109

G.6. POROUS POT ELECTRODES (PE5)

Phoenix Geophysics Ltd

Manufactured and screened (electrode-pair) to the following specifications (for stationary MT application and buried at 1 m depth with proper electrode-soil treatment).

Technical Specifications

- 13cm x 7.25cm dia., 0.75kg
- Flat response from DC to 10 000Hz
- Internal resistance <300Ω
- Temperature range +50°C to -10°C
- Temperature drift <0.1 μV/°C
- DC potential <2 mV
- Life Expectancy 2 years

A low noise, low offset, low DC drift, non-polarizing, broadband electrode.

Porous ceramic contact surface and PbCl₂ slurry prevent polarization.

Heavy-duty PVC and ABS construction protects against foul weather and temperature variations when buried in the earth.

APPENDIX H. REFERENCES

Telford., W.M., Geldart, L., Sheriff, R., and Keys, D., 1976. Applied Geophysics: Cambridge University Press, New York, NY.

Egbert, G.D., 1997. Robust multiple station magnetotelluric data processing. Geophys. J. Int., 130, 475-496.

Wight, D.E., 1987. MT/EMAP Data Interchange Standard. The Society of Exploration Geophysicists Document.

SUMMARY INFORMATION

QUANTEC OFFICE INFORMATION			
Office:	Quantec Geoscience Ltd.		
Address:	146 Sparks Ave., Toronto, ON, M2H 2S4, Canada		
Phone:	+1-416-306-1941		
Web:	<u>quantecgeo.com</u>		
Email:	info@quantecgeoscience.com		
PROJECT INFORMATION			
Client Name:	Yukon Geological Survey		
Project Name:	Yukon MT Project		
Project Location:	Yukon Territory, Canada		
Project Type:	SPARTAN MT		
Project Number:	CA01281S		
Project Manager:	Mark Morrison		
Project Period:	October 8, 2021, to November 2, 2021		
Report Type:	Logistics Report		
Report Author(s):	Sam Edwards, Darcy McGill		
Report date:	November 30, 2021		
Reference	Logistics Report for a SPARTAN MT survey over Yukon MT Project (Yukon Territory, Canada) by Quantec Geoscience Ltd. on behalf of Yukon Geological Survey		
Template version	Version 2021.09.21		