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ABSTRACT

Paleozoic platformal and basinal strata of Cassiar Terrane are separated from rocks of Yukon-Tanana Terrane to the 
west by an unexposed fault in southeast Glenlyon map area. 

Quartzite, marble, phyllite, and amphibolite are grouped in Cassiar Terrane, and no rocks of Slide Mountain 
Terrane are recognized. The mid-Cretaceous Glenlyon batholith contains pendants of Cassiar Terrane and is 
intruded by at least fi ve andesite dykes. West of the fault, the Yukon-Tanana Terrane includes: (1) mafi c 
volcaniclastic rocks with preserved primary textures; (2) coarse-grained quartz-feldspar grit; and (3) metasiltstone 
and semi-pelitic schist. The grit is intruded by foliated hornblende granodiorite, likely of early Mississippian age. 
Small outcrops of tectonized serpentinite were tectonically emplaced into Yukon-Tanana Terrane, and a positive 
magnetic anomaly parallel to the fault suggests an unexposed extension to the southwest.

Two mylonite localities and evidence of brittle cataclasis up to 1 km on either side of the presumed buried fault 
suggest a complex structural history along this terrane boundary.

RÉSUMÉ

Les roches de marge continentale d’âge Paléozoïque du terrane de Cassiar sont séparées des roches du terrane 
de Yukon-Tanana (à l’ouest) par une faille dissimulée dans le secteur sud-est de la carte de Glenlyon. 

Le terrane de Cassiar consiste de quartzite, de marbre, de phyllade, et d’amphibolite; aucune de ces roche est 
apparentée au terrane de Slide Mountain (tel que suggéré au préalable). Le batholite de Glenlyon, datant du Crétacé 
moyen, contient des enclaves du terrane de Cassiar et est recoupé par au moins cinq dykes d’andésite. À l’ouest de 
la faille, le terrane de Yukon-Tanana comprend : (1) des roches volcaniclastiques mafi ques dont les textures primaires 
sont intactes; (2) un grès grossier à quartz et feldspath; et (3) du méta-siltstone et du schiste argilleux. Le grès est 
recoupé par un granodiorite à hornblende folié, dont l’âge est vraisemblablement du Mississippien précoce. De 
petits affl eurements de serpentinite tectonisée sont présents au sein du terrane de Yukon-Tanana; une anomalie 
magnétique positive qui parallèle la faille suggère que la serpentinite se continue vers le sud-ouest. 

Deux affl eurements de mylonite et des indications de structures cataclastiques cassantes sur près d’un kilomètre 
de distance de l’emplacement présumé de la faille suggère une évolution structurale complexe le long de ce 
contact entre les deux terranes.
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INTRODUCTION
A northwest-trending fault system regionally separates 
Paleozoic platformal and basinal strata of Cassiar Terrane 
to the east from crystalline rocks of Yukon-Tanana Terrane 
to the west (Fig. 1). In eastern Laberge map area 
(NTS 105E), the southern part of this fault system 
corresponds to the d’Abbadie Fault (Tempelman-Kluit, 
1979). It was originally interpreted by Tempelman-Kluit 
(1979) as a thrust fault that emplaced Yukon-Tanana 
Terrane over Cassiar Terrane in pre-Cretaceous time. It 
was later interpreted by Hansen (1989) as a strike-slip 
fault which formed the eastern boundary of a north-
trending Jurassic transpressional shear zone. Harvey et al. 
(1997) estimated right-lateral strike-slip displacement of 
4 km along the fault and demonstrated that d'Abbadie 
Fault is intruded by the synkinematic Last Peak granite, 
dated at 98 Ma (Brown et al., 1998). More recently, 
d'Abbadie Fault has been interpreted as a mid-Cretaceous 
brittle normal fault that cuts an older thrust fault that 
emplaced Yukon-Tanana Terrane onto Cassiar Terrane 
(de Keijzer et al., 1999). 

When traced northward, d’Abbadie Fault takes a sharp 
northeast-trending bend in the northeast corner of 
Laberge map area (105E; Fig. 2). Its northern extent is less 
certain. In southeastern Glenlyon map area (105L), the 
contact between Yukon-Tanana and Cassiar terranes is 
once again defi ned by a steep, northwest-trending fault 
system (Campbell, 1967) that has been correlated with 
the d’Abbadie Fault (Gordey and Makepeace, 2000). It is 
currently unclear whether the fault system mapped in 
southeastern Glenlyon map area shares the same 
deformation history as the d’Abbadie Fault mapped in 
eastern Laberge map area. Furthermore, the fault system 
in southeastern Glenlyon map area is displayed, in part, 
on recent geological compilations to separate Yukon-
Tanana Terrane, to the west, from Slide Mountain Terrane 
to the east (Gordey and Makepeace, 1999, 2000). An 
objective of the current study is to clarify these relations.

Recent paleomagnetic studies from Late Cretaceous 
volcanic rocks (Carmacks Group), which disconformably 
overlie the Yukon-Tanana Terrane immediately west of the 
d'Abbadie Fault, suggest that these rocks were 2000 km 
south of their present location during deposition 
(Johnston et al., 2001). This is consistent with the fi ndings 
of earlier paleomagnetic work in central Yukon (Johnston 
et al., 1996; Wynne et al., 1998). However, a maximum of 
450 km of Cretaceous or younger dextral strike-slip 
displacement can be accommodated by the strike-slip 
faults east of Solitary Mountain (Gabrielse, 1985; Roddick, 
1967). If the paleolatitude implied by these rocks is 
correct, a major Late Cretaceous-Early Tertiary structure 
northeast of Solitary Mountain must have accommodated 
large-scale northward translation of Yukon-Tanana Terrane. 
This study aims to provide further constraints on the 
nature of the contact between Yukon-Tanana Terrane and 
Cassiar Terrane in Glenlyon map area.

The study area was previously mapped by Campbell 
(1967) at a scale of 1:250 000, from fi eldwork carried out 
in the 1950s. Limited exploration work was completed in 
the 1980s and 1990s in connection with mineral 
prospects peripheral to mid-Cretaceous intrusions (Yukon 
MINFILE, 1997, 105L 001). More recently, Colpron (1999, 
2000) has mapped Yukon-Tanana Terrane in the areas 
north and southwest of Little Salmon Lake at a scale of 
1:50 000.

This paper presents the preliminary results of detailed 
1:50 000-scale mapping of a northwest-trending, 200-km2 

area straddling the boundary between Yukon-Tanana, 
Slide Mountain and Cassiar terranes in southeast 
Glenlyon map area. Access to the study area was by 
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of Glenlyon map area (NTS 105L), along d'Abbadie Fault. 
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helicopter. The eastern side of the d’Abbadie Fault is 
predominantly alpine with good outcrop exposure, in 
contrast to the low-lying areas to the west (Yukon-Tanana 
Terrane), which have poor outcrop exposure. 

GEOLOGY OF SOUTHEASTERN 
GLENLYON MAP AREA
A north-northwest-trending fault system bisects the study 
area (Fig. 3). The northeast side of the fault is underlain by 
a low-grade (greenschist facies) metamorphosed package 
of sedimentary rocks, including: (1) marble; (2) phyllite; 
(3) calc-silicate rocks; (4) amphibolite; and (5) pure and 

impure quartzite. Quartzite and marble are the most 
common lithologies. The quartzite commonly has a light 
green colour, is locally calcareous, and contains minor 
black, locally graphitic, phyllite. The thickness of the 
quartzite unit is unconstrained but is probably greater 
than 1 km. The quartzite unit underlies a marble unit 
which also includes minor amphibolite, quartzite and 
calc-silicate rocks. A thinly (centimetre-scale) interbedded 
gradational contact between the quartzite and marble 
was observed in several locations. Both quartzite and 
marble units are deformed by a steep foliation defi ned by 
mica growth that is axial planar to folds of lithological 
contacts. Open to closed folds on scales of tens to 
hundreds of metres have horizontal axes that are parallel 

Figure 3. Preliminary geological map of study area based on mapping completed in the 2001 fi eld season.
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to the terrane-bounding fault. Small, centimetre- to 
metre-scale chevron folds were observed locally, and are 
thought to be contemporaneous with the larger-scale 
folds. These rocks were likely deposited in a continental 
margin setting and are probably part of Cassiar Terrane.

This metasedimentary succession is intruded by the 
mid-Cretaceous Glenlyon batholith (Gordey and 
Makepeace, 2000; Figs. 3, 4). The batholith is 
characterized by an early phase of hornblende-quartz 
monzodiorite, a voluminous phase of biotite granodiorite, 
and a late phase of two-mica granite and pegmatite. The 
two-mica granite is locally plagioclase-megacrystic. These 
rocks are unfoliated, but are locally cut by north-
northwest-trending brittle faults. These faults are defi ned 
by chloritized fracture planes with slickenlines. Where 
present, release steps indicate dextral motion. 

Large xenoliths of quartz + muscovite ± biotite ± garnet 
schist, marble, garnet + diopside calc-silicate rock, and 
amphibolite are common near the margin of the batholith 
and best exposed on hilltops. They range in size from one 
metre to hundreds of metres. The Glenlyon batholith 
imposes a contact metamorphic aureole on the 
metasedimentary rocks. The contact aureole extends 
1-1.5 km from the southwestern margin of the batholith, 
with garnet-grade metamorphism at the batholith margin 
giving way to biotite- and chlorite-grade rocks farther to 
the southwest.

Five porphyritic andesite dykes, trending south-southeast 
to north-northwest, were observed in the Glenlyon 
batholith. The dykes are sub-vertical, 0.3 to 1.5 m wide, 
with chilled margins and small wall-rock xenoliths. 
Clinopyroxene and plagioclase phenocrysts are common. 
No dykes were observed in Yukon-Tanana Terrane to the 
west.

Southwest of the fault, the Yukon-Tanana Terrane is 
dominated by siliciclastic and mafi c volcaniclastic rocks. 
Coarse-grained arkosic grit in the northwestern part of the 
study area (Fig. 3) is intruded by a coarse-grained, foliated 
hornblende granodiorite. This association of arkosic grit 
and foliated granodiorite is similar to that described by 
Colpron and Reinecke (2000) from the north shore of 
Little Salmon Lake. There, the arkosic grit is intruded by a 
hornblende granodiorite which has yielded two 
discordant early Mississippian preliminary U-Pb zircon 
dates (Oliver and Mortensen, 1998; Colpron and 
Reinecke, 2000). The granodiorite mapped in the study 
area (Fig. 3) is of similar composition and is possibly of 
early Mississippian age.

West of the volcaniclastic unit, and south of the grit, 
several outcrops of meta-siltstone and a single exposure 
of quartz-feldspar-sericite-chlorite schist are exposed. The 
schist could represent a deformed grit or an intermediate 
volcanic protolith. It is therefore uncertain whether these 
rocks are associated with the grit unit or the volcaniclastic 
unit.

Mafi c volcaniclastic rocks occur in a 3-km-wide, 
northwest-trending belt that separates the grit unit from 
the fault system (Fig. 3). Primary porphyritic texture is 
commonly preserved in the basaltic lithic clasts. Epidote 
and chlorite development indicate greenschist facies 
regional metamorphism. Foliation, defi ned by an 
alignment of chlorite, dips steeply to the west. An 
interpreted disconformity, along which the volcaniclastic 
rocks overlie siliciclastic rocks to the north and west, is 
constrained to within 100 m at one location. Both the 
volcaniclastic rocks and the grit unit are interpreted to be 
part of the Yukon-Tanana Terrane. 

Five outcrops of serpentinite, 50-200 m long, have been 
found within the volcaniclastic unit, 50-500 m west of the 
contact between Yukon-Tanana and Cassiar terranes 
(Fig. 3). Lineations on facoid surfaces in two of the 
outcrops plunge shallowly to the south. In thin section, 
magnetite surrounded by felty masses of chlorite, can be 
seen. This association probably represents pseudomorphs 
of spinel with plagioclase coronae, which would suggest 

Figure 4. Coarse-grained granite of Glenlyon batholith 

intruding laminated marble of Cassiar Terrane. Rock 

hammer for scale.
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that the rock was changed from the spinel to the 
plagioclase stability fi eld as it was exhumed. This 
association therefore implies tectonic emplacement of the 
ultramafi c rocks, rather than an intrusive origin (D. Canil, 
pers. com., 2001). A strong positive magnetic anomaly 
spatially associated with these outcrops suggests a larger 
mass may lie further southwest in an area where there is 
no outcrop exposure (Gordey and Makepeace, 1999).

Due to limited outcrop exposure in some areas, the exact 
trace of the fault cannot be precisely located, but has 
been constrained to an area 50 to 150 m wide. A 
cataclastic texture was observed in some quartzite 
outcrops of Cassiar Terrane. A similar texture was noted in 
several exposures of volcaniclastic rocks southwest of the 
fault. This brittle fabric was generally observed within 
about 1 km of the presumed fault location, although it 
was less apparent in the volcaniclastic unit.

Outcrops of mylonitic rocks occur at intervals along strike 
from the ultramafi c rocks (Fig. 3). The mylonitic fabric is 
complexly folded at one locality, but the authors are 
uncertain whether this deformation of the mylonitic fabric 
is in response to a later event, or to progressive localized 
deformation. Another outcrop of mylonitic rocks occurs 
50 m north of the northernmost outcrop of serpentinite 
(Fig. 3). At this locality, the mylonitic fabric strikes parallel 
to the adjacent serpentinite cliff face and dips steeply 
southwest beneath it. The spatial association and similar 
orientation suggests that the fabric may have formed 
during ductile deformation associated with tectonic 
emplacement of the serpentinite.

DISCUSSION AND NEW 
INTERPRETATIONS
Platformal metasedimentary rocks and granitic intrusive 
rocks of Cassiar Terrane on the east side of the study area 
contrast with arkosic grit, quartz-muscovite schist, foliated 
granodiorite and mafi c volcaniclastic rocks of Yukon-
Tanana Terrane to the west. The contact between the 
terranes has been spatially constrained to a narrow (100- 
to 500-m-wide), north-northwest-trending zone 
coincident with the presumed location of the d’Abbadie 
Fault. Occurrences of serpentinite and mylonitic rocks 
near this contact, and the local presence of late, brittle 
structures, suggest that the terrane boundary has 
experienced a complex structural history. 

The boundaries of lithological units in Cassiar Terrane, 
previously shown as faulted contacts (Campbell, 1967), 

are explained by observed folding patterns and contact 
metamorphism (Figs. 2, 3). Therefore, these 
metasedimentary rocks (northeast of the fault) are 
grouped as quartzite and marble units of the Cassiar 
Terrane. Rocks that were formerly assigned to Slide 
Mountain Terrane (Fig. 2) were observed by the authors 
to be lithologically and structurally similar to the Cassiar 
Terrane rocks to the south, and are therefore shown 
herein as Cassiar Terrane. The authors also note that the 
Glenlyon batholith extends 5 km farther to the northwest 
than previously mapped (compare Figs. 2 and 3). A large 
portion of the area previously mapped as Cassiar Terrane 
(Fig. 2; unit 2a of Campbell, 1967) corresponds to a series 
of large xenoliths at the western margin of the batholith 
(Fig. 3). 

The 2002 fi eld season will build upon the geological map 
produced this season, focusing on the nature of the 
contact between Yukon-Tanana and Cassiar terranes and 
its relation to the d’Abbadie Fault, as defi ned to the south 
in Laberge map area. 
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