# Summary of Rock-Eval data for the Whitehorse Trough, Yukon: Implications concerning the hydrocarbon potential of a frontier basin

**Grant W. Lowey<sup>1</sup>** Yukon Geological Survey

**Darrel Long** Laurentian University

Lowey, G.W. and Long, D., 2006. Summary of Rock-Eval data for the Whitehorse Trough, Yukon: Implications concerning the hydrocarbon potential of a frontier basin. *In:* Yukon Exploration and Geology 2005, D.S. Emond, G.D. Bradshaw, L.L. Lewis and L.H. Weston (eds.), Yukon Geological Survey, p. 207-230.

#### ABSTRACT

Whitehorse Trough is a frontier basin in south-central Yukon that is thought to contain gas and possibly oil. Over 400 samples from the Whitehorse Trough have been analysed by programmed pyrolysis and combustion, which together with coal rank, vitrinite reflectance, and the colour of microfossils indicate the following: the Povoas formation has no source rock potential; the Aksala formation is a poor source rock, probably gas-prone and postmature; the Richthofen formation is a poor to fair source rock, gas-prone and postmature; the Nordenskiold formation has no source rock potential; and the Tanglefoot and Tantalus formations are potentially good to very good source rocks, mainly gas-prone with a possibility of oil and mature. The Aksala and Richthofen formations are interpreted as spent source rocks, whereas the Tanglefoot and Tantalus formations are interpreted as potential source rocks and possibly effective source rocks. The most prospective areas for hydrocarbon exploration are Division Mountain, Tantalus Butte and Five Finger Rapids.

#### RÉSUMÉ

Le basin de Whitehorse est un bassin de région pionnière dans la partie centrale sud du Yukon qui renfermerait du gaz et peut-être du pétrole. Pour plus de 400 échantillons provenant du basin de Whitehorse, analysés par pyrolyse et combustion programmées, on a déterminé le classement du charbon, la réflectance de la vitrinite et la couleur des microfossiles; les résultats sont exposés ciaprès. La Formation de Povoas ne présente aucun potentiel comme roche mère; la Formation d'Aksala constitue une mauvaise roche mère, probablement favorable à la présence de gaz et postmature; la formation de Nordenskiold ne présente aucun potentiel comme roche mère; et les formations de Tanglefoot et de Tantalus pourraient être de bonnes à très bonnes roches mères, principalement favorables à la présence de gaz, renfermant peut-être du pétrole et parvenues à maturité. Les formations d'Aksala et de Richthofen sont interprétées comme étant des roches mères épuisées alors que les formations de Tanglefoot et de Tantalus pourraient constituer des roches mères mères efficaces. Les régions les plus prometteuses pour l'exploration à la recherche d'hydrocarbures sont celles des monts Division et Tantalus ainsi que celle des rapides Five Finger.

<sup>1</sup>grant.lowey@gov.yk.ca

# INTRODUCTION

Whitehorse Trough is one of eight oil and gas basins in the Yukon (Fig. 1). It occurs in southern Yukon and extends from just north of Carmacks, 650 km southwards, past Whitehorse and the Yukon-British Columbia border, into northern British Columbia. As a 'frontier' basin, interest in the Whitehorse Trough is based on its similarity to other Interior Cordilleran basins, such as the Bowser and Nechako basins in British Columbia, which all have a similar sedimentary history and tectonic evolution, and hence, corresponding oil and gas potential (Teitz and Young, 1982). In addition, there have been rumours of 'fire balls' and oil seeps in the Whitehorse area; Koch (1973) reported dry gas in samples from the Trough; and based on the volume and type of sedimentary rock preserved, it is estimated that the predicted potential mean oil content of the Whitehorse Trough is ~15x10<sup>6</sup> m<sup>3</sup>, and the expected mean gas volume is  $\sim 136 \times 10^6 \text{ m}^3$ (Osadetz, pers. comm., 2004)<sup>2</sup>. Given that the proposed

<sup>2</sup>Whitehorse Trough new gas-oil potential. E-mail, Wednesday, November 3, 2004.



**Figure 1.** Oil and gas basins in the Yukon showing the location of the Whitehorse Trough (Energy, Mines and Resources).

Alaska Highway pipeline would run through the centre of the Trough, any oil and gas discoveries in the area would have a greater chance of being economically viable.

The National Energy Board (2001) describes the Whitehorse Trough as an 'immature, mainly gas-prone' basin and identified potential source rocks (i.e., Triassic carbonates, Jurassic mudstones and Cretaceous mudstones), reservoirs (i.e., Triassic carbonates, and Jurassic and Cretaceous sandstones), seals (i.e., Jurassic mudstones and volcaniclastic rocks) and traps (i.e., anticlines and pinch-outs). A possible 'oil shale' in Jurassic rocks north of Whitehorse was described by Koch (1973), and Petro-Canada concluded that Jurassic rocks throughout the Whitehorse Trough have the potential to generate gas and possibly oil, whereas Cretaceous rocks have the potential to generate gas (Gilmore, 1985; Gunther, 1985). In addition, Beaton et al. (1992a) determined that coal seams from the Whitehorse Trough have a low potential to generate oil and gas, and Allen (2000) suggested that Jurassic rocks northwest of Whitehorse have the potential to generate gas and possibly oil. The purpose of this paper is to present the results of Rock-Eval analysis. This is a temperatureprogrammed geochemical whole-rock technique used to evaluate the petroleum source rock potential of the Whitehorse Trough strata in Yukon. Results of Rock-Eval analyses are supplemented with coal rank, vitrinite reflectance, conodont alteration index, and spore and pollen thermal alteration index data.

# TECTONIC AND STRATIGRAPHIC SETTING

Whitehorse Trough is located in the Intermontane belt of the Canadian Cordillera. It forms part of Stikine Terrane, which is flanked to the west and east by Yukon-Tanana Terrane, and is bordered on the south by Cache Creek Terrane (Wheeler and McFeely, 1991). Whitehorse Trough is thought to have originated in Middle to Late Triassic time, and has been variably interpreted as a back-arc basin (Tempelman-Kluit, 1978; Monger and Price, 1979; Bultman, 1979), a fore-arc basin (Tempelman-Kluit, 1979, 1980; Dickie and Hein, 1995; Johannson et al., 1997), a simple marginal basin (Eisbacher, 1981), or part of a complex of inter-arc basins (Monger et al., 1991) and small ocean basins (Souther, 1991). Lowey and Hills (1988) demonstrated that sandstone compositions from the Whitehorse Trough indicate sedimentation in two discrete basins: sandstones from Triassic and Jurassic rocks reflect

an undissected through to dissected magmatic arc provenance, compatible with a back-arc or fore-arc basin, whereas sandstones from Jura-Cretaceous rocks reflect a lithic and transitional orogenic provenance, compatible with an intra-suture embayment basin.

Wheeler (1961) introduced the term 'Whitehorse Trough' and recognized three stratigraphic units (i.e., the Lewes River and Laberge groups, and the Tantalus Formation). The Lewes River Group (Upper Triassic) was informally subdivided by Tempelman-Kluit (1984) into the lowermost Povoas formation, consisting of basalt, tuff and agglomerate, and interpreted as subaqueous lava flows, and the uppermost Aksala formation, consisting of sandstone, mudstone, conglomerate and limestone, and interpreted as deep-marine, reef, beach and tidal flat deposits (Tempelman-Kluit, 1978, 1980, 1984). The Laberge Group (Lower-Middle Jurassic) was informally subdivided by Tempelman-Kluit (1984) into four units, which from the base upwards, includes the Richthofen (i.e., thin- to medium-bedded turbidites), Conglomerate (i.e., framework-supported conglomerate), Nordenskiold (i.e., dacite tuff) and Tanglefoot (i.e., coal-bearing sandstone, mudstone and conglomerate) formations. Lowey (2004, 2005) demonstrated that the 'Conglomerate formation' is not a stratigraphic unit and these rocks can be assigned to other formations (i.e., the Richthofen and Tanglefoot formations). The Richthofen, Nordenskiold and Tanglefoot formations are interpreted as submarine fan, subaqueous pyroclastic and delta deposits, respectively (Cairnes, 1910; Lees, 1934; Bostock and Lees, 1938; Lowey, 2004). The Tantalus Formation (Upper Jurassic-Lower Cretaceous) consists of fluvial and paralic sandstone, mudstone, conglomerate and coal (Long, 1986; Lowey and Hills, 1988).

### **METHODS**

Rock-Eval analysis is a standard screening technique used for evaluating the source rock potential of a sedimentary basin (Lafargue *et al.*, 1998). Rock-Eval 6, the latest version of the apparatus, consists of a computer-controlled, temperature-programmed pyrolysis oven and oxidation oven (Behar *et al.*, 2001; Lafargue *et al.*, 1998). An approximately 70 mg sample of pulverized whole rock is placed in the pyrolysis oven, which has a nitrogen atmosphere and is at a temperature of 300°C; after two minutes the temperature is increased to 650°C at a rate of 25°C/min (Behar *et al.*, 2001; Lafargue *et al.*, 1998; Fowler *et al.*, 2005). A flame ionization detector records the

amount of hydrocarbons distilled from the sample, referred to as 'free hydrocarbons', or 'S1' in mg HC/g rock, and hydrocarbons pyrolysed from the sample, referred to as 'potential hydrocarbons', or 'S2' in mg HC/g rock; whereas an infrared cell records the amount of CO and CO<sub>2</sub> in the sample, referred to as 'S3' and 'S4', respectively (Behar et al., 2001; Lafargue et al., 1998; Fowler et al., 2005). The residual sample is then cooled to 300°C, placed in the oxidation oven, and the temperature is increased to 850°C at a rate of 20°C/min (Behar et al., 2001; Lafargue et al., 1998). A second infrared cell records the amount of additional CO and CO<sub>2</sub> in the sample, which are also referred to as 'S3' and 'S4', respectively (Behar et al., 2001; Lafargue et al., 1998; Fowler et al., 2005). The four 'acquisition parameters' (i.e., S1, S2, S3 and S4) are used to generate several 'calculated parameters', including:  $T_{max^\prime}$  the temperature of the maximum production of pyrolysed hydrocarbons; TOC, the percent of total organic carbon (basically a sum of the acquisition parameters); OI, the oxygen index (OI=S3x100/TOC); HI, the hydrogen index (HI=S2x100/ TOC); and PI, the production index (PI=S1/(S1+S2)).

Three main factors are considered in determining the potential of a rock for generating oil and gas: 1) quantity, or generative potential, based on TOC, S1 and S2; 2) guality, or type of hydrocarbon generated, based on HI and the S2/S3 ratio; and 3) maturation, or level of thermal alteration of the rock with respect to oil generation, based on PI and T<sub>max</sub> (Peters, 1986; Peters and Cassa, 1994). Guidelines published by Peters (1986), Peters and Moldowan (1993), and Peters and Cassa (1994) were used for evaluating the source rock potential based on the results of the Rock-Eval analysis (see Table 1). Note that Behar et al. (2001), Lafargue et al. (1998) and Peters (1986) all advise that results of programmed pyrolysis from outcrop samples be interpreted with caution (i.e., organic matter may have been oxidized, resulting in low S1 and S2 values and high T<sub>max</sub> values) and supported by other analyses (i.e., vitrinite reflectance).  ${\rm T}_{\rm max}$  is also affected by the type of organic matter and minerals in the matrix of the sample (Peters, 1986). In addition, Peters (1986) cautions that samples with S2 values <0.2 mg HC/g rock are commonly inaccurate and should be rejected, whereas Natural Resources Canada (2004)<sup>3</sup> suggests that if TOC  $\leq 0.3\%$ , all parameters have questionable significance; if TOC  $\leq 0.5\%$ , OI has questionable significance; and if S1 and S2  $\leq$  0.2 mg HC/g rock, T<sub>max</sub>

<sup>&</sup>lt;sup>3</sup>www.em.gov.bc.ca/dl/oilgas/cog/geofile200301/doc/html/rockeval.htm

and PI have questionable significance. In addition, Waples (1985) notes that results of Rock-Eval analysis provides information only on the present-day hydrocarbon generative capacity of kerogen in the rock, that is, mature to overmature rocks may have generated hydrocarbons previously.

Previous Rock-Eval analyses for the Yukon portion of the Whitehorse Trough (i.e., 124 samples) were presented by Gilmore (1985), Gunther (1985), Beaton *et al.* (1992a) and Allen (2000). This paper presents the results of 443 samples that were collected from outcrop and drill core of limestone, sandstone-mudstone couplets and mudstone throughout the Whitehorse Trough in Yukon (and includes Rock-Eval results for the Richthofen formation that were previously reported by Lowey, 2005). The analyses were performed on a Rock-Eval 6 'Turbo' apparatus by the Geological Survey of Canada at Calgary, Alberta (Appendix 1).

**Table 1.** Programmed pyrolysis and oxidation guidelines describing source rock quantity, quality and maturation parameters (Peters and Cassa, 1994).

| TOC<br>(wt.%)           | S <sub>1</sub><br>(mg HC/<br>g rock)                                                                                     | S <sub>2</sub><br>(mg HC/<br>g rock)                                                                                                                                                                                                                 |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0-0.5                   | 0-0.5                                                                                                                    | 0-2.5                                                                                                                                                                                                                                                |
| 0.5-1                   | 0.5-1                                                                                                                    | 2.5-5                                                                                                                                                                                                                                                |
| 1-2                     | 1-2                                                                                                                      | 5-10                                                                                                                                                                                                                                                 |
| 2-4                     | 2-4                                                                                                                      | 10-20                                                                                                                                                                                                                                                |
| >4                      | >4                                                                                                                       | >20                                                                                                                                                                                                                                                  |
| HI<br>(mg HC/<br>g TOC) | S <sub>2</sub> /S <sub>3</sub>                                                                                           | Kerogen type                                                                                                                                                                                                                                         |
| <50                     | <1                                                                                                                       | IV                                                                                                                                                                                                                                                   |
| 50-200                  | 1-5                                                                                                                      | III                                                                                                                                                                                                                                                  |
| 200-300                 | 5-10                                                                                                                     | II/III                                                                                                                                                                                                                                               |
| 300-600                 | 10-15                                                                                                                    | II                                                                                                                                                                                                                                                   |
| >600                    | >15                                                                                                                      | Ι                                                                                                                                                                                                                                                    |
| R <sub>o</sub> (%)      | T <sub>max</sub> (°C)                                                                                                    | TAI                                                                                                                                                                                                                                                  |
| 0.2-0.6                 | <435                                                                                                                     | 1.5-2.6                                                                                                                                                                                                                                              |
| 0.6-0.65                | 435-445                                                                                                                  | 2.6-2.6                                                                                                                                                                                                                                              |
| 0.65-0.9                | 445-450                                                                                                                  | 2.7-2.9                                                                                                                                                                                                                                              |
| 0.9-1.35                | 450-470                                                                                                                  | 2.9-3.3                                                                                                                                                                                                                                              |
| >1.35                   | >470                                                                                                                     | >3.3                                                                                                                                                                                                                                                 |
|                         | TOC<br>(wt.%)         0-0.5         0.5-1         1-2         2-4         >4         HI<br>(mg HC/<br>g TOC)         <50 | TOC<br>(wt.%)         S₁<br>(mg HC/<br>g rock)           0-0.5         0-0.5           0.5-1         0.5-1           1-2         1-2           2-4         2-4           >4         >4           HI         S₂/S₃<br>(mg HC/<br>g TOC)           <50 |

### RESULTS

### Lewes River Group

The Povoas formation consists of volcanic rocks and no samples were analysed by Rock-Eval. The Aksala formation does not contain abundant transported organic material (Long, 2005), but mudstone is present, and the National Energy Board (2001) suggested that a 'fetid limestone' was a possible source rock. Hence, only a few samples were analysed by Rock-Eval, and these results show that both the fetid limestone (i.e., samples GL03-6A, GL04-39A and GL04-97A) and mudstone (i.e., samples GL04-67B and GL04-68A) contain very small amounts of TOC, S1 and S2 (Fig. 2), indicating that, in terms of quantity, it is a poor source rock. Due to the low values of these parameters, determining the petroleum quality of the rock is not very accurate; hence, HI should be ignored, although the S2/S3 ratio is valid and indicates that only gas would be expected (Fig. 3). The thermal maturation of the samples cannot be determined because of the low values for TOC, S1 and S2.

### Laberge Group

Koch (1973) and the National Energy Board (2001) suggested that thin-bedded sandstone-mudstone couplets in the Richthofen formation resemble an 'oil shale' and are a potential source rock. However, Rock-Eval analysis of 70 samples shows that this unit contains only small amounts of TOC, S1 and S2 (Fig. 4), indicating that in terms of quantity, it is a poor and possibly a fair source rock. In terms of quality, only gas would be expected (Fig. 5). Due to the low values for S1 and S2, determining the thermal maturation of the samples is not very accurate, hence PI should be ignored, but two values for T<sub>max</sub> are valid and these indicate the unit is postmature (Fig. 6).

The Nordenskiold formation consists mostly of dacite tuff; it is not considered a source rock and no samples were analysed by Rock-Eval.

The Tanglefoot formation was not considered by the National Energy Board (2001) as a potential source rock. However, Rock-Eval analysis of 182 samples shows that this unit contains large amounts of TOC, small amounts of S1 and moderate amounts of S2 (Fig. 7), indicating that in terms of quantity, it is a good to very good source rock. In terms of quality, mainly gas would be present, but there is also the possibility of oil (Fig. 8). Also, the thermal maturation of the samples appear to be late immature according to PI, and early mature according to  $\mathrm{T}_{\mathrm{max}}$  (Fig. 9).

Prospective areas for gas and oil generation are Division Mountain (located approximately half-way between Whitehorse and Carmacks), Tantalus Butte (located at Carmacks) and Five Finger Rapids (located north of Carmacks). At all of the localities, hydrocarbon fluid inclusions were observed in the macerals (V. Stasiuk, per. comm., 2005)<sup>4</sup>.

# <sup>4</sup>Vitrinite reflectance data, Whitehorse Trough. E-mail, Wednesday, November 6, 2005.

#### **Tantalus** Formation

The National Energy Board (2001) described the Tantalus Formation as a potential source rock. Rock-Eval analysis of 186 samples shows that this unit contains moderate amounts of TOC, small amounts of S1 and moderate amounts of S2 (Fig. 10), indicating that in terms of quantity, it is a good to very good source rock. In terms of quality, mainly gas would be present, but there is also the possibility of oil (Fig. 11). Also, the thermal maturation of the samples appears to be late immature according to PI, and early mature according to  $T_{max}$  (Fig. 12). Hydrocarbon fluid inclusions were observed in the macerals at Tantalus Butte (V. Stasiuk, personal communication, 2005), which is the only prospective area for gas and oil generation in the Tantalus Formation.



Figure 2. Rock-Eval quantity parameters, Aksala formation.



Figure 3. Rock-Eval quality parameters, Aksala formation.



Figure 4. Rock-Eval quantity parameters, Richthofen formation.



Figure 5. Rock-Eval quality parameters, Richthofen formation.



Figure 6. Rock-Eval maturation parameters, Richthofen formation.



Figure 7. Rock-Eval quantity parameters, Tanglefoot formation.



Figure 8. Rock-Eval quality parameters, Tanglefoot formation.



Figure 9. Rock-Eval maturation parameters, Tanglefoot formation.

### DISCUSSION AND CONCLUSIONS

The Povoas formation is not considered a source rock based on its lithology. The Aksala formation is a poor source rock and gas-prone. The thermal maturation of the unit could not be determined by Rock-Eval analysis. However, over 40 samples have been analysed for conodonts, and these indicate a conodont alteration index (CAI) of 5 in the Whitehorse area, and 2 to 4 in the Carmacks area (England, 1980; Hart, 1997; Tempelman-Kluit, 1980). Note that the 'oil window' occurs between a CAI of 1.5 and 2 (Fowler *et al.*, 2005). Also, Tempelman-Kluit (1978) reported that pyrobitumen (i.e., thermally altered solidified bitumen) occurs locally in fractures and cavities in limestone. Hence, the Aksala formation is probably postmature and is interpreted as a 'spent' source rock, implying that it has reached the postmature stage and is incapable of further oil generation, but it still may be able to generate wet and dry gas (Peters and Cassa, 1994).



Figure 10. Rock-Eval quantity parameters, Tantalus Formation.



Figure 11. Rock-Eval quality parameters, Tantalus Formation.



Figure 12. Rock-Eval maturation parameters, Tantalus Formation.





Figure 13. OI-HI diagram, Tanglefoot Formation.

The Richthofen formation is a poor to fair source rock, gas-prone and postmature. English et al. (2005) reached a similar conclusion for the correlative Inklin Formation in the Whitehorse Trough in northern British Columbia. The Nordenskiold formation is not considered a source rock based on its lithology. The Tanglefoot formation is a good to very good source rock, and mainly gas-prone with a possibility of oil. The possibility of oil generation is supported by the OI-HI Van Krevelen-type diagram (Fig. 13). Although most samples plot along the Type III axis (i.e., gas-prone kerogen from terrestrial plants), several samples have HI values greater than 200 and plot along the Type I and Type II kerogen axes (i.e., lacustine and marine kerogen, respectively). HI values greater than 200 and Type I and Type II macerels are conducive to oil generation (Peters and Cassa, 1994; Tissot and Welte, 1984). Oil generation is marginally supported by the composition of coal in the Tanglefoot formation. Beaton et al. (1992b) determined that the coal contains 13% liptinite (basically amorphous or structureless organic matter). According to Peters and Cassa (1994), 15-20% liptinite is required for coal to generate oil. The Rock-Eval PI indicates that the Tanglefoot formation is late immature, whereas  $T_{max}$  indicates it is early mature. Coal rank in the Tanglefoot formation is high-volatile C to B bituminous (Cameron and Beaton, 2000; Beaton et al., 1992b), corresponding to the beginning half of the oil window (Fowler et al., 2005). According to Stack et al. (1982), economic accumulations of petroleum occur where the coal is less than or equal to high-volatile bituminous rank. Also, random vitrinite reflectance values for the Tanglefoot formation range from 0.48-0.61% (Cameron and Beaton, 2000; Beaton et al., 1992a,b; Russell, 1978; V. Stasiuk,



Figure 14. OI-HI diagram, Tantalus Formation.

personal communication, 2005), averaging ~0.58% (Beaton et al., 1992b), corresponding also to the beginning half of the oil window. In addition, spore and pollen from this unit are brown-black to brown in colour (Sweet, 2004), indicating a thermal alteration index (TAI) of 3 to 4; the oil window occurs between a TAI of ~2-3.5 (Fowler et al., 2005). Hence, the Tanglefoot formation is probably early mature and is interpreted as a 'potential' source rock (i.e., the rock contains adequate quantities of organic matter to generate petroleum; Peters and Cassa, 1994), and possibly an 'effective' source rock (i.e., the rock is, or has, generated and expelled petroleum; Peters and Cassa, 1994). Three potentially petroliferous sourcerock pods in the Tanglefoot formation are identified in the northern portion of the Whitehorse Trough at Division Mountain, Tantalus Butte and Five Finger Rapids.

The Tantalus Formation is a good to very good source rock and mainly gas-prone with a possibility of oil.

The possibility of oil generation is supported by the OI-HI Van Krevelen-type diagram (Fig. 14). Although most samples plot along the Type III axis (i.e., gas-prone terrestrial kerogen), several samples have HI values greater than 200 and plot along the Type I and Type II kerogen axes (i.e., oil-prone lacustrine and marine kerogen). However, oil generation is not supported by the composition of coal in the Tantalus Formation: Beaton *et al.* (1992b) determined that the coal contains only 2-7% liptinite. The Rock-Eval PI indicates that the Tantalus Formation is late immature, whereas  $T_{max}$  indicates it is early mature. Coal rank in the Tantalus Formation is high-volatile B to A bituminous (Cameron and Beaton, 2000; Beaton *et al.*, 1992a,b; Swartzman, 1948), corresponding

to the middle of the oil window (Fowler et al., 2005). Also, random vitrinite reflectance values for the Tantalus Formation range from 0.61-1.09% (Cameron and Beaton, 2000; Hacquebard, 1972; Russell, 1978; V. Stasiuk, personal communication, 2005), corresponding to the middle of the oil window, although Hunt and Hart (1994) reported values of 1.68-3.45%, but the latter are due to intrusion of rhyolite sills. In addition, spore and pollen from this unit are brown-black to brown (Sweet, 2004), indicating a thermal alteration index (TAI) of 3 to 4. Hence, the Tanglefoot formation is probably early to peak mature, and is interpreted as a potential source rock, and possibly an effective source rock. One potentially petroliferous source rock pod in the Tantalus Formation is identified in the northern portion of the Whitehorse Trough at Tantalus Butte.

# ACKNOWLEDGEMENTS

We thank Greg McAllister, Theirry Bruand and Karl Ziehe for their expert helicopter flying and Andrew Cook for his help as a summer fieldwork assistant. The Rock-Eval analyses and comments by Martin Fowler and Vern Stasiuk are gratefully appreciated. Discussions with Steve Piercey, Maurice Colpron and Lee Pigage concerning the Whitehorse Trough were also appreciated.

### REFERENCES

Allen, T., 2000. An evaluation of coal-bearing strata at Division Mountain (115H/8 east-half, 105E/5 west-half), south-central Yukon. *In:* Yukon Exploration and Geology 1999, D.S. Emond and L.H. Weston (eds.), Exploration and Geological Services Division, Yukon Region, Indian and Northern Affairs Canada, p. 177-198.

Beaton, A.P., Cameron, A.R. and Goodarzi, F., 1992a.
Petrography, geochemistry and utilization potential of the Division Mountain coal occurrences,
Yukon Territory. *In:* Current Research, Part E,
Geological Survey of Canada, Paper 92-1E, p. 23-32.

Beaton, A.P., Cameron, A.R. and Goodarzi, F., 1992b. Characterization of coals from the Whitehorse Trough, Yukon Territory. *In:* The Canadian Coal and Coalbed Methane Geoscience Forum. B.C. Geological Survey Branch, Alberta Geological Survey and Geological Survey of Canada, Parksville, B.C., February 2-5, 1992.

- Behar, F., Beaumont, V. and Penteado, H.L. De B., 2001. Rock-Eval 6 technology: performances and developments. Oil & Gas Science and Technology, vol. 56, p. 111-134.
- Bostock, H.S. and Lees, E.J., 1938. Laberge map-area, Yukon. Geological Survey of Canada, Memoir 217, 32 p.
- Bultman, T.R., 1979. Geology and tectonic history of the Whitehorse Trough west of Atlin, British Columbia.Unpublished Ph.D. thesis, Yale University, New Haven, Conneticut, U.S.A., 284 p.
- Cairnes, D.D., 1910. Preliminary memoir on the Lewes and Nordenskiold rivers coal district, Yukon Territory. Geological Survey of Canada, Memoir 5, 70 p.
- Cameron, A.R. and Beaton, A.P., 2000. Coal resources of Northern Canada with emphasis on Whitehorse Trough, Bonnet Plume Basin and Brackett Basin. International Journal of Coal Geology, vol. 43, p. 187-210.
- Dickie, J.R. and Hein, F.J., 1995. Conglomeratic fan deltas and submarine fans of the Jurassic Laberge Group, Whitehorse Trough, Yukon Territory, Canada: Fore-arc sedimentation and unroofing of a volcanic arc complex. Sedimentary Geology, vol. 98, p. 263-292.
- Eisbacher, G.H., 1981. Late Mesozoic-Paleogene Bowser Basin molasses and cordilleran tectonics. *In:* Sedimentation and Tectonics in Alluvial Basins, A.D. Miall (ed.), Geological Association of Canada, Special Paper 23, p. 125-151.
- England, T.D.J., 1980. A Study of Upper Triassic Conodonts of the Intermontane Belt, Yukon Territory. Unpublished B.Sc. thesis, Department of Geological Sciences, University of British Columbia, Vancouver, BC, 70 p.
- English, J.M., Johannson, G.G., Johnston, S.T., Mialynuk, M.G., Fowler, M. and Wight, K.L., 2005. Structure, stratigraphy and petroleum potential of the central Whitehorse Trough, Northern Canadian Cordillera. Bulletin of Canadian Petroleum Geology, vol. 53, p. 130-153.
- Fowler, M., Snowdon, L. and Stasiuk, V., 2005. Applying petroleum geochemistry to hydrocarbon exploration and exploitation. AAPG Short Course Notes, June 18-19, 2005, Calgary, Alberta.
- Gilmore, R.G., 1985. Whitehorse field party. Unpublished Report, Petro-Canada, 16 p. (plus photographs)

Gunther, P.R., 1985. Geochemical evaluation of Whitehorse field party samples. Unpublished Report, Petro-Canada, 19 p. plus appendices.

Hacquebard, P.A., 1972. Petrographic correlation of the Tantalus and Tantalus Butte coal seams at Carmacks, Yukon Territory. Geological Survey of Canada Technical Report No. 115 I/1-3.

Hart, C.J.R., 1997. A transect across northern Stikinia: geology of the northern Whitehorse map area, southern Yukon Territory (105D/13-16). Exploration and Geological Services Division, Yukon Region, Indian and Northern Affairs Canada, Bulletin 8, 112 p.

Hunt, J.A. and Hart, C.J.R., 1994. Thermal Maturation and Hydrocarbon Source Rock Potential of Tantalus Formation Coals in the Whitehorse Area, Yukon Territory. *In:* Yukon Exploration and Geology 1993, Exploration and Geological Services Division, Yukon Region, Indian and Northern Affairs Canada, p. 67-77.

Johannson, G.G., Smith, P.L. and Gordey, S.P., 1997. Early Jurassic evolution of the northern Stikinian arc: evidence from the Laberge Group, northwestern British Columbia. Canadian Journal of Earth Science, vol. 34, p. 1030-1057.

Koch, G., 1973. The Central Cordilleran Region. *In:* The Future Petroleum Provinces of Canada, R.G. McCrossan (ed.), Canadian Society of Petroleum Geologists, Memoir 1, p. 37-71.

Lafargue, E., Marquis, F. and Pillot, D., 1998. Rock-Eval 6 applications in hydrocarbon exploration, production, and soil contamination studies. Oil & Gas Science and Technologies, vol. 53, p. 421-437.

Lees, E.J., 1934. Geology of the Laberge area, Yukon. Transactions of the Royal Canadian Institute, no. 43, vol. 20, part 1, 48 p.

Long, D.G.F., 1986. Coal in Yukon. *In:* Mineral Deposits of the Northern Cordillera, J.A. Morin (ed.), Canadian Institute of Mining and Metallurgy, Special Volume 37, p. 311-318.

Long, D.G.F., 2005. Sedimentology and hydrocarbon potential of fluvial strata in the Tantalus and Aksala formations, northern Whitehorse Trough, Yukon. *In:* Yukon Exploration and Geology 2004, D.S. Emond, L.L. Lewis and G.D. Bradshaw (eds.), Yukon Geological Survey, p. 167-176. Lowey, G.W., 2004. Preliminary lithostratigraphy of the Laberge Group (Jurassic), south-central Yukon: Implications concerning the petroleum potential of the Whitehorse Trough. *In:* Yukon Exploration and Geology 2003, D.S. Emond and L.L. Lewis (eds.), Yukon Geological Survey, p. 129-142.

Lowey, G.W., 2005. Sedimentology, stratigraphy and source rock potential of the Richthofen formation (Jurassic), northern Whitehorse Trough, Yukon. *In:* Yukon Exploration and Geology 2004, D.S. Emond, L.L. Lewis and G.D. Bradshaw (eds.), Yukon Geological Survey, p. 177-191.

Lowey, G.W., and Hills, L.V., 1988. Lithofacies, petrography and environments of deposition, Tantalus Formation (Lower Cretaceous) Indian River area, west-central Yukon. Bulletin of Canadian Petroleum Geology, vol. 36, p. 296-310.

Monger, J.W.H. and Price, R.A., 1979. Geodynamic evolution of the Canadian Cordillera, progress and problems. Canadian Journal of Earth Sciences, vol. 16, p. 770-791.

Monger, J.W.H., Wheeler, J.O., Tipper, H.W., Gabrielse, H., Harms, T., Struik, L.C., Campbell, R.B., Dodds, G.E., Geherels, G.E. and O'Brien, J., 1991. Part B, Cordilleran terranes. *In:* Upper Devonian to Middle Jurassic Assemblages, Chapter 8, Geology of the Canadian Orogen in Canada, H. Gabrielse and C. Yorath (eds.), Geological Survey of Canada, Geology of Canada, vol. 4, p. 281-327.

National Energy Board, 2001. Petroleum resource assessment of the Whitehorse Trough, Yukon Territory, Canada. Oil and Gas Resource Branch. Department of Economic Development, Government of the Yukon, 59 p.

Peters, K.E., 1986. Guidelines for evaluating petroleum source rock using programmed pyrolysis. The American Association of Petroleum Geologists Bulletin, vol. 70, p. 318-329.

Peters, K.E. and Cassa, M.R., 1994. Applied source rock geochemistry. *In:* The petroleum system – from source to trap, L.B. Magoon and W.G. Dows (eds.), AAPG Memoir 60, p. 93-117.

Peters, K.E. and Moldowan, J.M., 1993. The Biomarker Guide. Prentice Hall, Englewoods Cliffs, New Jersey, 363 p.

Russell, N.J., 1978. Coal petrography of twelve coal samples from the Yukon Territory, Canada. Minerals Research Laboratories, Fuel Geoscience Unit, Restricted Investigation Report 924R.

Souther, J.G., 1991. Volcanic regimes, Chapter 14. *In:* Geology of the Cordilleran Orogen in Canada, H. Gabrielse and C. Yorath (eds.), Geological Survey of Canada, Geology of Canada, vol. 4, p. 457-490.

Stack, E., Mackowsky, M.Th., Teichmuller, M., Taylor, G.H., Chandra, D. and Teichmuller, R., 1982. Stack's textbook of coal petrology, Third Revised Edition. Gerbruder Borntraeger, Berlin, Stuttgart, Germany.

Swartzman, E., 1948. Study of coal from Tantalus Butte Mine, Yukon Territory. Department of Mines and Resources, Physical and Chemical Survey Report No. 137.

Sweet, A.R., 2004. Applied Research Report on 37 Samples From the Laberge Group, Whitehorse Trough, Yukon Territory. Paleontological Report 6-ARS-2004, Geological Survey of Canada

Teitz, H.H. and Young, F.G., 1982. Canadian hydrocarbon resource development up to the year 2000. Journal of Petroleum Geology, vol. 4, p. 347-375.

Tempelman-Kluit, D.J., 1978. Reconnaissance geology, Laberge map-area, Yukon. *In:* Current Research, Part A, Geological Survey of Canada, Paper 78-1A, p. 61-66.

Tempelman-Kluit, D.J., 1979. Transported cataclastite, ophiolite and granodiorite in Yukon: evidence of arccontinent collision. Geological Survey of Canada, Paper 79-14, 27 p. Tempelman-Kluit, D.J., 1980. Highlights of field work in Laberge and Carmacks map areas, Yukon Territory. *In:* Current Research, Part A, Geological Survey of Canada, Paper 80-1A, p. 357-362.

Tempelman-Kluit, D.J., 1984. Geology, Laberge (105E) and Carmacks (115I), Yukon Territory. Geological Survey of Canada, Open File 1101, 1:250 000 scale.

Tissot, B.P. and Welte, D.H., 1984. Petroleum formation and occurrence. Springer-Verlag, New York, New York, 699 p.

Waples, D.W., 1985. Geochemistry in petroleum exploration. International Hyman Resources Development Corporation, Boston, Massachusetts, 232 p.

Wheeler, J.O., 1961. Whitehorse map-area, Yukon Territory. Geological Survey of Canada, Memoir 312, 156 p.

Wheeler, J.O. and McFeely, P., 1991. Tectonic assemblage map of the Canadian Cordillera. Geological Survey of Canada, Map 1712A, 1:1 000 000 scale.

White, D., Buffet, G., Roberts, B., Colpron, M. and Abbott, G., 2004. Seismic images from an inverted sedimentary basin: The Whitehorse Trough, Yukon, Canada. Abstract submitted to the American Association of Petroleum Geologists Annual Meeting, June, 2005, Calgary, Alberta.

# **APPENDIX 1: RESULTS OF ROCK-EVAL 6 ANALYSIS**

For explanation of abbreviations of headings, see description in text in section on Methods.

#### **Aksala Formation**

| Sample   | Easting | Northing | T <sub>max</sub> | <b>S</b> 1 | <b>S</b> 2 | \$3  | PI   | \$2/\$3 | тос  | ні  | OI   |
|----------|---------|----------|------------------|------------|------------|------|------|---------|------|-----|------|
| GL03-6A  | 426085  | 6915152  | -40              | 0.00       | 0.00       | 0.68 | 1.00 | 0.00    | 0.40 | 0   | 170  |
| GL04-39A | 491169  | 6775460  | 439              | 0.01       | 0.04       | 0.27 | 0.19 | 0.15    | 0.04 | 100 | 675  |
| GL04-67B | 485092  | 6717134  | 402              | 0.00       | 0.01       | 0.30 | 0.02 | 0.03    | 0.01 | 100 | 3000 |
| GL04-68A | 485164  | 6716803  | 400              | 0.00       | 0.01       | 0.26 | 0.00 | 0.04    | 0.00 | 0   | 0    |
| GL04-97A | 507428  | 6765766  | 459              | 0.00       | 0.00       | 0.20 | 0.19 | 0.00    | 0.02 | 0   | 1000 |

### **Richthofen Formation**

| Sample   | Easting | Northing | <b>T</b> <sub>max</sub> | <b>S1</b> | <b>S</b> 2 | \$3  | PI   | \$2/\$3 | тос  | HI | OI  |
|----------|---------|----------|-------------------------|-----------|------------|------|------|---------|------|----|-----|
| GL03-90A | 489245  | 6772712  | -40                     | 0.00      | 0.00       | 0.16 | 1.00 | 0.00    | 0.85 | 0  | 19  |
| GL03-90B | 489245  | 6772712  | -40                     | 0.00      | 0.00       | 0.29 | 0.00 | 0.00    | 0.37 | 0  | 78  |
| GL03-81R | 489919  | 6770781  | 411                     | 0.00      | 0.02       | 0.45 | 0.04 | 0.04    | 0.43 | 5  | 105 |
| GL04-01A | 482978  | 6802442  | 494                     | 0.00      | 0.09       | 0.99 | 0.01 | 0.09    | 0.32 | 28 | 309 |
| GL04-02A | 482393  | 6803720  | 497                     | 0.02      | 0.38       | 0.55 | 0.04 | 0.69    | 1.41 | 28 | 39  |
| GL04-03A | 482168  | 6804552  | 491                     | 0.01      | 0.10       | 0.24 | 0.06 | 0.42    | 0.37 | 27 | 65  |
| GL04-05A | 482623  | 6799519  | 508                     | 0.00      | 0.03       | 0.93 | 0.05 | 0.03    | 0.21 | 14 | 443 |
| GL04-08A | 480760  | 6799644  | 496                     | 0.00      | 0.10       | 0.19 | 0.03 | 0.53    | 0.48 | 21 | 40  |
| GL04-08B | 480760  | 6799644  | 506                     | 0.02      | 0.80       | 0.28 | 0.02 | 2.86    | 3.02 | 28 | 9   |
| GL04-10A | 482916  | 6796053  | 506                     | 0.00      | 0.09       | 0.19 | 0.03 | 0.47    | 0.58 | 16 | 33  |
| GL04-16A | 485588  | 6792821  | 511                     | 0.00      | 0.04       | 0.16 | 0.02 | 0.25    | 0.39 | 10 | 41  |
| GL04-16B | 485588  | 6792821  | 490                     | 0.00      | 0.00       | 0.18 | 0.09 | 0.00    | 0.09 | 0  | 200 |
| GL04-16C | 485588  | 6792821  | 519                     | 0.00      | 0.10       | 0.20 | 0.01 | 0.50    | 1.11 | 9  | 18  |
| GL04-17A | 487670  | 6784498  | 414                     | 0.00      | 0.04       | 0.53 | 0.01 | 0.08    | 0.52 | 8  | 102 |
| GL04-18A | 487314  | 6784785  | 406                     | 0.00      | 0.04       | 0.41 | 0.04 | 0.10    | 0.74 | 5  | 55  |
| GL04-19A | 487296  | 6785151  | 395                     | 0.00      | 0.02       | 0.30 | 0.08 | 0.07    | 0.33 | 6  | 91  |
| GL04-20A | 487103  | 6785663  | 419                     | 0.00      | 0.01       | 0.20 | 0.11 | 0.05    | 0.14 | 7  | 143 |
| GL04-22A | 486673  | 6786747  | 417                     | 0.00      | 0.00       | 0.32 | 0.10 | 0.00    | 0.16 | 0  | 200 |
| GL04-23A | 486360  | 6788169  | 404                     | 0.00      | 0.00       | 0.23 | 0.09 | 0.00    | 0.17 | 0  | 135 |
| GL04-24A | 489553  | 6778917  | 427                     | 0.00      | 0.00       | 0.39 | 0.15 | 0.00    | 0.32 | 0  | 122 |
| GL04-26A | 489406  | 6778202  | 415                     | 0.00      | 0.01       | 0.25 | 0.08 | 0.04    | 0.35 | 3  | 71  |
| GL04-27A | 489383  | 6779415  | 372                     | 0.01      | 0.01       | 0.30 | 0.51 | 0.03    | 0.30 | 3  | 100 |
| GL04-28A | 489268  | 6780112  | 390                     | 0.00      | 0.00       | 0.10 | 0.00 | 0.00    | 0.11 | 0  | 91  |
| GL04-29A | 489175  | 6780655  | 363                     | 0.00      | 0.00       | 0.18 | 0.01 | 0.00    | 0.03 | 0  | 600 |
| GL04-30A | 489037  | 6781689  | 427                     | 0.00      | 0.04       | 0.25 | 0.05 | 0.16    | 0.13 | 31 | 192 |
| GL04-31A | 488848  | 6782553  | 425                     | 0.00      | 0.01       | 0.14 | 0.07 | 0.07    | 0.36 | 3  | 39  |
| GL04-32A | 488094  | 6783424  | 400                     | 0.00      | 0.01       | 0.28 | 0.01 | 0.04    | 0.15 | 7  | 187 |
| GL04-33A | 491444  | 6771562  | 443                     | 0.00      | 0.01       | 0.36 | 0.02 | 0.03    | 0.11 | 9  | 327 |

Richthofen formation (continued)

| Sample    | Easting | Northing | <b>T</b> <sub>max</sub> | <b>S1</b> | \$2  | \$3  | PI   | <b>S</b> 2/ <b>S</b> 3 | тос  | н   | OI   |
|-----------|---------|----------|-------------------------|-----------|------|------|------|------------------------|------|-----|------|
| GL04-34A  | 491725  | 6771506  | 412                     | 0.00      | 0.01 | 0.24 | 0.04 | 0.04                   | 0.01 | 100 | 2400 |
| GL04-36A  | 492078  | 6772503  | 394                     | 0.00      | 0.00 | 0.27 | 0.32 | 0.00                   | 0.51 | 0   | 53   |
| GL04-38A  | 491169  | 6775360  | 380                     | 0.00      | 0.01 | 0.28 | 0.03 | 0.04                   | 0.31 | 3   | 90   |
| GL04-41A  | 489115  | 6773985  | 410                     | 0.00      | 0.00 | 0.25 | 0.14 | 0.00                   | 0.61 | 0   | 41   |
| GL04-42A  | 489883  | 6775821  | 418                     | 0.00      | 0.02 | 0.66 | 0.10 | 0.03                   | 0.03 | 67  | 2200 |
| GL04-43A  | 490070  | 6775227  | 379                     | 0.00      | 0.03 | 0.27 | 0.02 | 0.11                   | 0.04 | 75  | 675  |
| GL04-44A  | 490421  | 6773773  | 406                     | 0.00      | 0.01 | 0.19 | 0.10 | 0.05                   | 0.05 | 20  | 380  |
| GL04-45A  | 490594  | 6768588  | 425                     | 0.00      | 0.05 | 0.39 | 0.05 | 0.13                   | 0.36 | 14  | 108  |
| GL04-47A  | 488682  | 6795733  | 591                     | 0.00      | 0.01 | 0.23 | 0.02 | 0.04                   | 0.67 | 1   | 34   |
| GL04-48A  | 488298  | 6794223  | 568                     | 0.00      | 0.01 | 0.85 | 0.25 | 0.01                   | 0.32 | 3   | 266  |
| GL04-48B  | 488298  | 6794223  | 538                     | 0.00      | 0.02 | 0.43 | 0.17 | 0.05                   | 0.65 | 3   | 66   |
| GL04-48C  | 488298  | 6794223  | 418                     | 0.00      | 0.00 | 0.31 | 0.42 | 0.00                   | 0.37 | 0   | 84   |
| GL04-49A  | 489163  | 6793656  | 439                     | 0.00      | 0.08 | 0.55 | 0.05 | 0.15                   | 0.31 | 26  | 177  |
| GL04-50A  | 488339  | 6791663  | 544                     | 0.00      | 0.00 | 0.16 | 0.05 | 0.00                   | 0.13 | 0   | 123  |
| GL04-52A  | 489026  | 6789126  | 569                     | 0.00      | 0.02 | 0.19 | 0.04 | 0.11                   | 0.37 | 5   | 51   |
| GL04-53A  | 489319  | 6788320  | 552                     | 0.00      | 0.02 | 0.19 | 0.01 | 0.11                   | 0.65 | 3   | 29   |
| GL04-55A  | 494422  | 6776779  | 493                     | 0.02      | 0.05 | 0.11 | 0.24 | 0.45                   | 0.21 | 24  | 52   |
| GL04-56A  | 495108  | 6775504  | 496                     | 0.01      | 0.03 | 0.13 | 0.13 | 0.23                   | 0.19 | 16  | 68   |
| GL04-57A  | 495525  | 6774105  | 511                     | 0.01      | 0.05 | 0.18 | 0.17 | 0.28                   | 0.35 | 14  | 51   |
| GL04-59A  | 493297  | 6763660  | 417                     | 0.00      | 0.09 | 0.50 | 0.05 | 0.18                   | 0.49 | 18  | 102  |
| GL04-59B  | 493297  | 6763660  | 410                     | 0.00      | 0.02 | 0.18 | 0.05 | 0.11                   | 0.31 | 6   | 58   |
| GL04-60A  | 491993  | 6766061  | 394                     | 0.00      | 0.00 | 0.12 | 0.22 | 0.00                   | 0.18 | 0   | 67   |
| GL04-60B  | 491993  | 6766061  | 425                     | 0.00      | 0.03 | 0.57 | 0.00 | 0.05                   | 0.25 | 12  | 228  |
| GL04-61A  | 491415  | 6766150  | 402                     | 0.00      | 0.02 | 0.36 | 0.04 | 0.06                   | 0.26 | 8   | 138  |
| GL04-63A  | 492320  | 6765079  | 419                     | 0.00      | 0.08 | 1.29 | 0.03 | 0.06                   | 2.30 | 3   | 56   |
| GL04-65A  | 474962  | 6788368  | 452                     | 0.00      | 0.01 | 0.59 | 0.07 | 0.02                   | 0.40 | 3   | 148  |
| GL04-69A  | 542111  | 6689770  | 422                     | 0.00      | 0.03 | 0.56 | 0.04 | 0.05                   | 0.65 | 5   | 86   |
| GL04-72A  | 538399  | 6697887  | 328                     | 0.00      | 0.00 | 0.71 | 0.30 | 0.00                   | 0.45 | 0   | 158  |
| GL04-74A  | 490495  | 6760518  | 598                     | 0.00      | 0.00 | 0.24 | 0.92 | 0.00                   | 0.55 | 0   | 44   |
| GL04-76A  | 545510  | 6682568  | 387                     | 0.00      | 0.01 | 0.25 | 0.09 | 0.04                   | 0.37 | 3   | 68   |
| GL04-78B  | 517479  | 6671919  | 374                     | 0.00      | 0.00 | 0.16 | 0.50 | 0.00                   | 0.70 | 0   | 23   |
| GL04-79A  | 501900  | 6651051  | 392                     | 0.00      | 0.00 | 0.17 | 0.12 | 0.00                   | 0.62 | 0   | 27   |
| GL04-83A  | 491538  | 6763490  | 431                     | 0.00      | 0.02 | 0.40 | 0.02 | 0.05                   | 0.35 | 6   | 114  |
| GL04-85B  | 491119  | 6763203  | 438                     | 0.00      | 0.01 | 0.34 | 0.03 | 0.03                   | 0.28 | 4   | 121  |
| GL04-86A  | 491441  | 6763165  | 431                     | 0.00      | 0.01 | 0.48 | 0.05 | 0.02                   | 0.68 | 1   | 71   |
| GL04-92A  | 489819  | 6759345  | 416                     | 0.00      | 0.02 | 0.44 | 0.07 | 0.05                   | 0.42 | 5   | 105  |
| GL04-92C  | 489819  | 6759345  | 410                     | 0.00      | 0.03 | 0.54 | 0.05 | 0.06                   | 0.35 | 9   | 154  |
| GL04-93A  | 490232  | 6759119  | 319                     | 0.00      | 0.00 | 0.50 | 0.30 | 0.00                   | 0.47 | 0   | 106  |
| GL04-93C  | 490232  | 6759119  | 316                     | 0.00      | 0.00 | 0.25 | 0.62 | 0.00                   | 0.63 | 0   | 40   |
| GL04-94B  | 492711  | 6760581  | -40                     | 0.00      | 0.00 | 0.35 | 1.00 | 0.00                   | 0.47 | 0   | 74   |
| GL04-95A  | 492000  | 6761523  | 433                     | 0.00      | 0.05 | 0.46 | 0.04 | 0.11                   | 0.29 | 17  | 159  |
| GL04-101B | 506577  | 6765794  | 443                     | 0.00      | 0.00 | 0.33 | 0.17 | 0.00                   | 0.16 | 0   | 206  |

## **Tanglefoot Formation**

| Sample      | Easting | Northing | T <sub>max</sub> | <b>S</b> 1 | S2    | \$3   | PI   | \$2/\$3 | тос   | н   | OI  |
|-------------|---------|----------|------------------|------------|-------|-------|------|---------|-------|-----|-----|
| C-76-01-015 | 434000  | 6889070  | 440              | 0.00       | 0.52  | 3.23  | 0.00 | 0.16    | 1.53  | 35  | 211 |
| C-76-01-032 | 434000  | 6889070  | 456              | 0.00       | 0.04  | 0.66  | 0.05 | 0.06    | 0.32  | 13  | 206 |
| C-76-01-042 | 434000  | 6889070  | 435              | 0.09       | 15.90 | 4.73  | 0.01 | 3.36    | 8.78  | 182 | 54  |
| C-76-01-043 | 434000  | 6889070  | 431              | 0.04       | 0.57  | 1.20  | 0.07 | 0.48    | 1.04  | 56  | 115 |
| C-76-01-046 | 434000  | 6889070  | 437              | 0.00       | 0.10  | 1.06  | 0.02 | 0.09    | 0.47  | 21  | 226 |
| C-76-03-320 | 433900  | 6889920  | 501              | 0.09       | 30.03 | 13.91 | 0.00 | 2.16    | 67.18 | 46  | 21  |
| C-76-03-364 | 433900  | 6889920  | 440              | 0.00       | 0.04  | 0.40  | 0.02 | 0.10    | 0.22  | 18  | 182 |
| C-76-03-384 | 433900  | 6889920  | 429              | 0.01       | 1.44  | 0.39  | 0.01 | 3.69    | 1.52  | 95  | 26  |
| C-76-03-444 | 433900  | 6889920  | 436              | 0.08       | 23.61 | 1.01  | 0.00 | 23.38   | 10.40 | 229 | 10  |
| C-76-03-483 | 433900  | 6889920  | 428              | 0.02       | 2.49  | 0.50  | 0.01 | 4.98    | 1.89  | 132 | 26  |
| C-76-03-540 | 433900  | 6889920  | 438              | 0.02       | 3.79  | 0.90  | 0.01 | 4.21    | 3.57  | 108 | 25  |
| C-76-03-555 | 433900  | 6889920  | 438              | 0.04       | 11.42 | 0.99  | 0.00 | 11.54   | 7.41  | 156 | 13  |
| C-76-03-595 | 433900  | 6889920  | 429              | 0.03       | 2.45  | 0.62  | 0.01 | 3.95    | 2.15  | 114 | 29  |
| C-76-03-625 | 433900  | 6889920  | 439              | 0.05       | 3.19  | 0.53  | 0.02 | 6.02    | 2.31  | 139 | 23  |
| C-76-03-637 | 433900  | 6889920  | 435              | 0.01       | 1.15  | 0.28  | 0.01 | 4.11    | 1.24  | 94  | 23  |
| C-76-03-638 | 433900  | 6889920  | 436              | 0.01       | 0.99  | 0.39  | 0.01 | 2.54    | 1.26  | 79  | 31  |
| C-76-03-639 | 433900  | 6889920  | 432              | 0.01       | 1.17  | 0.52  | 0.01 | 2.25    | 1.35  | 87  | 39  |
| C-76-03-656 | 433900  | 6889920  | 436              | 0.00       | 0.50  | 0.46  | 0.00 | 1.09    | 0.80  | 63  | 58  |
| C-76-03-730 | 433900  | 6889920  | 437              | 0.01       | 0.82  | 0.99  | 0.01 | 0.83    | 1.07  | 78  | 93  |
| C-76-03-761 | 433900  | 6889920  | 436              | 0.01       | 0.58  | 0.30  | 0.01 | 1.93    | 0.71  | 82  | 42  |
| C-76-03-762 | 433900  | 6889920  | 434              | 0.00       | 0.58  | 0.32  | 0.01 | 1.81    | 0.76  | 76  | 42  |
| C-76-03-786 | 433900  | 6889920  | 437              | 0.07       | 19.77 | 1.33  | 0.00 | 14.86   | 12.80 | 156 | 10  |
| C-76-03-796 | 433900  | 6889920  | 431              | 0.01       | 0.62  | 1.83  | 0.02 | 0.34    | 1.03  | 60  | 178 |
| C-76-03-799 | 433900  | 6889920  | 443              | 0.03       | 4.34  | 0.47  | 0.01 | 9.23    | 2.48  | 176 | 19  |
| C-76-04-312 | 434600  | 6884035  | 524              | 0.02       | 0.81  | 0.55  | 0.02 | 1.47    | 2.55  | 33  | 22  |
| C-76-04-483 | 434600  | 6884035  | 436              | 0.00       | 0.00  | 0.52  | 0.02 | 0.00    | 0.09  | 0   | 578 |
| C-76-04-503 | 434600  | 6884035  | 498              | 0.08       | 0.32  | 0.52  | 0.19 | 0.62    | 0.72  | 44  | 72  |
| C-76-05-413 | 433900  | 6889920  | 446              | 0.03       | 4.87  | 1.70  | 0.01 | 2.86    | 5.70  | 87  | 30  |
| C-76-05-460 | 433900  | 6889920  | 436              | 0.05       | 4.99  | 0.65  | 0.01 | 7.68    | 2.86  | 176 | 23  |
| C-76-05-465 | 433900  | 6889920  | 433              | 0.04       | 3.87  | 0.83  | 0.01 | 4.66    | 2.76  | 141 | 30  |
| C-76-05-468 | 433900  | 6889920  | 434              | 0.09       | 4.35  | 1.14  | 0.02 | 3.82    | 3.18  | 138 | 36  |
| C-76-05-498 | 433900  | 6889920  | 434              | 0.01       | 1.68  | 1.09  | 0.01 | 1.54    | 2.00  | 85  | 55  |
| C-76-05-499 | 433900  | 6889920  | 433              | 0.01       | 1.74  | 1.30  | 0.00 | 1.34    | 2.07  | 85  | 63  |
| C-76-05-537 | 433900  | 6889920  | 439              | 0.02       | 4.42  | 0.98  | 0.00 | 4.51    | 4.96  | 90  | 20  |
| C-76-05-538 | 433900  | 6889920  | 432              | 0.02       | 1.07  | 0.62  | 0.01 | 1.73    | 1.20  | 89  | 52  |
| C-76-06-252 | 434760  | 6883730  | 461              | 0.00       | 0.03  | 0.36  | 0.02 | 0.08    | 0.21  | 14  | 171 |
| C-76-06-345 | 434760  | 6883730  | 462              | 0.05       | 3.41  | 0.28  | 0.01 | 12.18   | 2.65  | 131 | 11  |
| C-76-06-362 | 434760  | 6883730  | 471              | 0.01       | 0.47  | 0.25  | 0.02 | 1.88    | 0.96  | 50  | 26  |
| C-76-06-408 | 434760  | 6883730  | 485              | 0.01       | 0.90  | 0.33  | 0.01 | 2.73    | 2.72  | 35  | 12  |
| C-76-06-412 | 434760  | 6883730  | 515              | 0.00       | 0.19  | 0.17  | 0.00 | 1.12    | 0.98  | 19  | 17  |
| C-76-06-516 | 434760  | 6883730  | 493              | 0.01       | 0.23  | 0.39  | 0.03 | 0.59    | 0.37  | 65  | 105 |
| C-76-07-573 | 434655  | 6884080  | 476              | 0.00       | 0.01  | 0.18  | 0.00 | 0.06    | 0.07  | 14  | 257 |

Tanglefoot formation (continued)

| Sample      | Easting | Northing | T <sub>max</sub> | \$1  | \$2   | \$3  | PI   | <b>S</b> 2/ <b>S</b> 3 | тос   | HI  | OI  |
|-------------|---------|----------|------------------|------|-------|------|------|------------------------|-------|-----|-----|
| C-76-07-598 | 434655  | 6884080  | 511              | 0.00 | 0.00  | 0.16 | 0.14 | 0.00                   | 0.06  | 0   | 267 |
| C-76-07-750 | 434655  | 6884080  | 440              | 0.00 | 1.02  | 0.38 | 0.00 | 2.68                   | 1.15  | 90  | 33  |
| C-76-08-030 | 434080  | 6890040  | 433              | 0.01 | 0.94  | 0.73 | 0.01 | 1.29                   | 1.04  | 91  | 70  |
| C-76-08-040 | 434080  | 6890040  | 440              | 0.00 | 0.08  | 0.88 | 0.02 | 0.09                   | 0.43  | 19  | 205 |
| C-76-08-049 | 434080  | 6890040  | 435              | 0.01 | 1.14  | 0.73 | 0.01 | 1.56                   | 1.26  | 91  | 58  |
| C-76-08-054 | 434080  | 6890040  | 433              | 0.00 | 0.17  | 0.96 | 0.02 | 0.18                   | 0.67  | 25  | 143 |
| C-76-08-060 | 434080  | 6890040  | 442              | 0.01 | 1.02  | 0.37 | 0.01 | 2.76                   | 1.35  | 77  | 27  |
| C-76-08-075 | 434080  | 6890040  | 438              | 0.06 | 11.32 | 0.76 | 0.01 | 14.89                  | 6.46  | 177 | 12  |
| C-76-08-142 | 434080  | 6890040  | 437              | 0.00 | 0.32  | 0.32 | 0.01 | 1.00                   | 0.28  | 114 | 114 |
| C-76-08-164 | 434080  | 6890040  | 438              | 0.00 | 0.64  | 0.71 | 0.00 | 0.90                   | 0.67  | 97  | 106 |
| C-76-08-168 | 434080  | 6890040  | 433              | 0.03 | 3.92  | 0.42 | 0.01 | 9.33                   | 1.31  | 300 | 32  |
| C-76-08-183 | 434080  | 6890040  | 441              | 0.00 | 0.31  | 0.44 | 0.01 | 0.70                   | 0.45  | 69  | 98  |
| C-76-08-184 | 434080  | 6890040  | 437              | 0.01 | 1.54  | 0.28 | 0.01 | 5.50                   | 1.16  | 134 | 24  |
| C-76-08-206 | 434080  | 6890040  | 433              | 0.00 | 0.66  | 0.54 | 0.01 | 1.22                   | 0.86  | 78  | 63  |
| C-76-08-215 | 434080  | 6890040  | 439              | 0.01 | 0.41  | 0.31 | 0.02 | 1.32                   | 0.65  | 63  | 48  |
| C-76-08-219 | 434080  | 6890040  | 436              | 0.01 | 1.23  | 0.40 | 0.01 | 3.08                   | 1.58  | 78  | 25  |
| C-76-08-220 | 434080  | 6890040  | 436              | 0.01 | 0.67  | 0.47 | 0.02 | 1.43                   | 1.02  | 67  | 46  |
| C-76-08-254 | 434080  | 6890040  | 432              | 0.00 | 0.34  | 0.32 | 0.01 | 1.06                   | 0.60  | 57  | 53  |
| C-76-08-270 | 434080  | 6890040  | 434              | 0.00 | 0.21  | 0.35 | 0.01 | 0.60                   | 0.28  | 75  | 125 |
| C-76-08-386 | 434080  | 6890040  | 440              | 0.00 | 0.61  | 0.37 | 0.00 | 1.65                   | 1.00  | 62  | 37  |
| C-76-08-390 | 434080  | 6890040  | 432              | 0.00 | 0.35  | 0.41 | 0.00 | 0.85                   | 0.51  | 69  | 80  |
| C-76-08-394 | 434080  | 6890040  | 438              | 0.01 | 0.82  | 0.46 | 0.01 | 1.78                   | 1.20  | 69  | 38  |
| C-76-08-411 | 434080  | 6890040  | 431              | 0.00 | 0.19  | 0.23 | 0.00 | 0.83                   | 0.40  | 48  | 58  |
| C-76-08-415 | 434080  | 6890040  | 439              | 0.00 | 0.34  | 0.67 | 0.01 | 0.51                   | 0.54  | 63  | 124 |
| C-76-08-435 | 434080  | 6890040  | 428              | 0.00 | 0.08  | 0.34 | 0.00 | 0.24                   | 0.12  | 67  | 283 |
| C-76-08-450 | 434080  | 6890040  | 432              | 0.00 | 0.07  | 0.31 | 0.01 | 0.23                   | 0.06  | 117 | 517 |
| C-76-09-094 | 434050  | 6890100  | 432              | 0.00 | 0.12  | 0.39 | 0.00 | 0.31                   | 0.18  | 67  | 217 |
| C-76-09-113 | 434050  | 6890100  | 438              | 0.00 | 0.30  | 0.40 | 0.02 | 0.75                   | 0.31  | 97  | 129 |
| C-76-09-114 | 434050  | 6890100  | 436              | 0.01 | 0.77  | 0.31 | 0.01 | 2.48                   | 1.07  | 73  | 29  |
| C-76-09-121 | 434050  | 6890100  | 431              | 0.00 | 0.50  | 0.49 | 0.01 | 1.02                   | 0.58  | 86  | 84  |
| C-76-09-132 | 434050  | 6890100  | 431              | 0.01 | 1.30  | 0.52 | 0.01 | 2.50                   | 1.34  | 98  | 39  |
| C-76-09-148 | 434050  | 6890100  | 433              | 0.01 | 0.14  | 0.47 | 0.04 | 0.30                   | 0.26  | 54  | 181 |
| C-76-09-149 | 434050  | 6890100  | 441              | 0.00 | 0.29  | 0.88 | 0.00 | 0.33                   | 0.41  | 71  | 215 |
| C-76-09-159 | 434050  | 6890100  | 431              | 0.01 | 0.27  | 0.57 | 0.02 | 0.47                   | 0.36  | 75  | 158 |
| C-76-10-645 | 434785  | 6883720  | 485              | 0.15 | 20.49 | 1.46 | 0.01 | 14.03                  | 18.62 | 112 | 8   |
| C-76-10-654 | 434785  | 6883720  | 465              | 0.01 | 0.54  | 0.43 | 0.02 | 1.26                   | 1.10  | 50  | 39  |
| C-76-12-170 | 434980  | 6883475  | 489              | 0.01 | 0.13  | 0.25 | 0.06 | 0.52                   | 0.19  | 68  | 132 |
| C-76-12-261 | 434980  | 6883475  | 470              | 0.04 | 0.92  | 0.61 | 0.04 | 1.51                   | 1.27  | 74  | 48  |
| C-76-12-264 | 434980  | 6883475  | 468              | 0.04 | 1.16  | 0.25 | 0.04 | 4.64                   | 1.99  | 60  | 13  |
| C-76-12-376 | 434980  | 6883475  | 498              | 0.01 | 0.08  | 0.43 | 0.15 | 0.19                   | 0.19  | 42  | 226 |
| C-76-12-402 | 434980  | 6883475  | 452              | 0.01 | 0.08  | 0.33 | 0.07 | 0.24                   | 0.10  | 80  | 330 |
| C-76-12-412 | 434980  | 6883475  | 498              | 0.01 | 0.09  | 0.55 | 0.08 | 0.16                   | 0.09  | 100 | 611 |

| Sample      | Easting | Northing | ,<br>T | <b>S1</b> | <b>S</b> 2 | \$3  | PI   | \$2/\$3 | тос   | ні  | OI   |
|-------------|---------|----------|--------|-----------|------------|------|------|---------|-------|-----|------|
| C-76-12-441 | 434980  | 6883475  | 440    | 0.00      | 0.00       | 0.36 | 0.02 | 0.00    | 0.06  | 0   | 600  |
| C-76-12-509 | 434980  | 6883475  | 342    | 0.00      | 0.00       | 0.36 | 0.00 | 0.00    | 0.03  | 0   | 1200 |
| C-76-12-756 | 434980  | 6883475  | 436    | 0.01      | 0.57       | 0.39 | 0.01 | 1.46    | 0.67  | 85  | 58   |
| C-76-14-057 | 433950  | 6889920  | 431    | 0.01      | 0.18       | 0.48 | 0.07 | 0.38    | 0.13  | 138 | 369  |
| C-76-14-066 | 433950  | 6889920  | 434    | 0.03      | 0.39       | 1.53 | 0.07 | 0.25    | 0.82  | 48  | 187  |
| C-76-14-077 | 433950  | 6889920  | 429    | 0.03      | 0.36       | 1.50 | 0.07 | 0.24    | 0.76  | 47  | 197  |
| C-76-14-080 | 433950  | 6889920  | 437    | 0.02      | 0.32       | 2.03 | 0.06 | 0.16    | 0.71  | 45  | 286  |
| C-76-14-090 | 433950  | 6889920  | 431    | 0.02      | 0.30       | 1.71 | 0.07 | 0.18    | 0.64  | 47  | 267  |
| C-76-14-097 | 433950  | 6889920  | 435    | 0.02      | 0.28       | 1.35 | 0.07 | 0.21    | 0.52  | 54  | 260  |
| C-76-14-105 | 433950  | 6889920  | 436    | 0.08      | 2.66       | 2.45 | 0.03 | 1.09    | 2.71  | 99  | 90   |
| C-76-14-111 | 433950  | 6889920  | 437    | 0.05      | 0.57       | 1.81 | 0.08 | 0.31    | 1.16  | 50  | 156  |
| C-76-14-124 | 433950  | 6889920  | 430    | 0.05      | 0.62       | 0.92 | 0.08 | 0.67    | 1.19  | 52  | 77   |
| C-76-14-132 | 433950  | 6889920  | 435    | 0.07      | 1.85       | 1.88 | 0.04 | 0.98    | 2.25  | 84  | 84   |
| C-76-14-143 | 433950  | 6889920  | 440    | 0.15      | 9.37       | 1.13 | 0.02 | 8.29    | 6.63  | 143 | 17   |
| C-76-14-146 | 433950  | 6889920  | 428    | 0.29      | 28.25      | 1.73 | 0.01 | 16.33   | 13.54 | 209 | 13   |
| C-76-14-154 | 433950  | 6889920  | 440    | 0.02      | 0.75       | 1.62 | 0.03 | 0.46    | 1.08  | 70  | 150  |
| C-76-14-156 | 433950  | 6889920  | 439    | 0.03      | 0.68       | 1.54 | 0.04 | 0.44    | 1.11  | 62  | 139  |
| C-76-14-162 | 433950  | 6889920  | 429    | 0.06      | 1.95       | 0.54 | 0.03 | 3.61    | 2.07  | 95  | 26   |
| C-76-14-174 | 433950  | 6889920  | 440    | 0.11      | 1.00       | 1.76 | 0.10 | 0.57    | 1.60  | 63  | 110  |
| C-76-14-175 | 433950  | 6889920  | 434    | 0.06      | 1.05       | 1.61 | 0.05 | 0.65    | 1.66  | 63  | 97   |
| C-76-14-185 | 433950  | 6889920  | 423    | 0.07      | 0.52       | 0.58 | 0.12 | 0.90    | 0.44  | 118 | 132  |
| C-76-16-150 | 434265  | 6184310  | 487    | 0.14      | 1.88       | 0.67 | 0.07 | 2.81    | 3.07  | 62  | 22   |
| C-76-16-177 | 434265  | 6184310  | 463    | 0.11      | 2.04       | 0.32 | 0.05 | 6.38    | 2.79  | 75  | 11   |
| GL03-2A     | 429657  | 6904616  | 447    | 0.15      | 0.78       | 1.72 | 0.16 | 0.45    | 2.44  | 32  | 70   |
| GL03-3B     | 429524  | 6904655  | 461    | 0.03      | 0.48       | 0.69 | 0.06 | 0.70    | 1.32  | 37  | 52   |
| GL03-5A     | 429668  | 6904864  | 442    | 0.19      | 1.74       | 0.94 | 0.10 | 1.85    | 2.47  | 71  | 38   |
| GL03-5C     | 429668  | 6904864  | 439    | 0.21      | 4.96       | 1.32 | 0.04 | 3.76    | 3.70  | 135 | 36   |
| GL03-5D     | 429668  | 6904864  | 439    | 0.80      | 22.30      | 0.60 | 0.03 | 37.17   | 5.71  | 391 | 11   |
| GL03-9A     | 429948  | 6905297  | 489    | 0.02      | 0.15       | 0.90 | 0.13 | 0.17    | 0.64  | 23  | 141  |
| GL03-10C    | 428392  | 6912139  | -40    | 0.00      | 0.00       | 2.01 | 0.00 | 0.00    | 1.82  | 0   | 110  |
| GL03-13D    | 460022  | 6893977  | -40    | 0.00      | 0.00       | 1.12 | 1.00 | 0.00    | 0.92  | 0   | 122  |
| GL03-17B    | 455988  | 6877573  | 513    | 0.00      | 0.00       | 0.83 | 0.38 | 0.00    | 0.38  | 0   | 218  |
| GL03-18B    | 455718  | 6877707  | 501    | 0.00      | 0.06       | 0.84 | 0.01 | 0.07    | 0.74  | 8   | 114  |
| GL03-20B    | 441298  | 6886202  | 535    | 0.00      | 0.18       | 0.98 | 0.01 | 0.18    | 2.71  | 7   | 36   |
| GL03-20D    | 441298  | 6886202  | 545    | 0.00      | 0.14       | 1.39 | 0.02 | 0.10    | 2.66  | 6   | 52   |
| GL03-22A    | 441748  | 6885861  | 549    | 0.00      | 0.11       | 0.52 | 0.03 | 0.21    | 1.79  | 7   | 29   |
| GL03-22C    | 441748  | 6885861  | 526    | 0.01      | 0.21       | 0.40 | 0.03 | 0.53    | 2.65  | 9   | 15   |
| GL03-22E    | 441748  | 6885861  | 524    | 0.00      | 0.01       | 1.12 | 0.21 | 0.01    | 0.82  | 1   | 137  |
| GL03-22J    | 441748  | 6885861  | 537    | 0.00      | 0.08       | 2.06 | 0.04 | 0.04    | 2.05  | 4   | 100  |
| GL03-23A    | 436456  | 6888383  | 508    | 0.00      | 0.10       | 0.96 | 0.00 | 0.10    | 1.10  | 9   | 87   |
| GL03-23D    | 436456  | 6888383  | 512    | 0.00      | 0.26       | 1.36 | 0.00 | 0.19    | 1.92  | 14  | 71   |
| GL03-23F    | 436456  | 6888383  | 508    | 0.00      | 0.32       | 1.27 | 0.00 | 0.25    | 1.84  | 17  | 69   |

Tanglefoot formation (continued)

### Tanglefoot formation (continued)

| Sample    | Easting | Northing | T <sub>max</sub> | <b>S1</b> | S2   | \$3   | PI   | \$2/\$3 | тос   | н   | OI  |
|-----------|---------|----------|------------------|-----------|------|-------|------|---------|-------|-----|-----|
| GL03-24E  | 434006  | 6890664  | 443              | 0.01      | 2.12 | 3.52  | 0.00 | 0.60    | 3.54  | 61  | 99  |
| GL03-30C  | 431042  | 6908305  | -40              | 0.00      | 0.00 | 0.76  | 1.00 | 0.00    | 0.41  | 0   | 185 |
| GL03-30D  | 431042  | 6908305  | -40              | 0.00      | 0.00 | 0.85  | 1.00 | 0.00    | 0.38  | 0   | 224 |
| GL03-30E  | 431042  | 6908305  | -40              | 0.00      | 0.00 | 0.77  | 1.00 | 0.00    | 0.52  | 0   | 148 |
| GL03-39A  | 436777  | 6908818  | -40              | 0.00      | 0.00 | 1.39  | 0.00 | 0.00    | 0.61  | 0   | 228 |
| GL03-44B  | 441092  | 6861315  | 605              | 0.00      | 0.93 | 12.63 | 0.00 | 0.07    | 44.46 | 3   | 28  |
| GL03-44C  | 441092  | 6861315  | -40              | 0.00      | 0.00 | 0.96  | 0.00 | 0.00    | 0.52  | 0   | 185 |
| GL03-45A  | 439319  | 6865677  | 474              | 0.00      | 0.38 | 1.90  | 0.00 | 0.20    | 1.25  | 31  | 152 |
| GL03-45E  | 439319  | 6865677  | 463              | 0.01      | 0.27 | 0.48  | 0.02 | 0.56    | 0.91  | 31  | 53  |
| GL03-68B  | 455245  | 6877903  | 465              | 0.00      | 0.07 | 0.52  | 0.00 | 0.13    | 0.44  | 16  | 118 |
| GL03-69A  | 466405  | 6809300  | 508              | 0.03      | 0.04 | 0.29  | 0.47 | 0.14    | 0.98  | 4   | 30  |
| GL03-69E  | 466405  | 6809300  | 513              | 0.00      | 0.12 | 0.60  | 0.01 | 0.20    | 1.02  | 13  | 59  |
| GL03-69EE | 466405  | 6809300  | 510              | 0.01      | 0.42 | 0.91  | 0.02 | 0.46    | 2.75  | 16  | 33  |
| GL03-70A  | 466134  | 6809925  | 500              | 0.00      | 0.01 | 0.11  | 0.07 | 0.09    | 0.33  | 3   | 33  |
| GL03-70B  | 466134  | 6809925  | 507              | 0.01      | 0.07 | 0.24  | 0.07 | 0.29    | 0.84  | 8   | 29  |
| GL03-70C  | 466134  | 6809925  | 509              | 0.00      | 0.09 | 0.14  | 0.02 | 0.64    | 0.85  | 11  | 16  |
| GL03-73A  | 442488  | 6860181  | -40              | 0.00      | 0.00 | 0.03  | 1.00 | 0.00    | 0.05  | 0   | 60  |
| GL03-73B  | 442488  | 6860181  | -40              | 0.00      | 0.00 | 0.03  | 1.00 | 0.00    | 0.13  | 0   | 23  |
| GL03-75A  | 442204  | 6801621  | 444              | 0.00      | 0.12 | 0.18  | 0.00 | 0.67    | 0.64  | 19  | 28  |
| GL03-75C  | 442204  | 6801621  | 437              | 0.00      | 0.03 | 0.49  | 0.02 | 0.06    | 0.35  | 9   | 140 |
| GL03-78C  | 454918  | 6829145  | -40              | 0.00      | 0.00 | 0.26  | 1.00 | 0.00    | 0.09  | 0   | 289 |
| GL03-91G  | 464396  | 6803479  | -40              | 0.00      | 0.00 | 0.50  | 1.00 | 0.00    | 0.51  | 0   | 98  |
| GL03-95B  | 463534  | 6806068  | -40              | 0.00      | 0.00 | 1.16  | 1.00 | 0.00    | 0.21  | 0   | 552 |
| GL03-97B  | 463713  | 6805770  | -40              | 0.00      | 0.00 | 1.13  | 1.00 | 0.00    | 0.42  | 0   | 269 |
| GL03-97C  | 463713  | 6805770  | -40              | 0.00      | 0.00 | 1.14  | 1.00 | 0.00    | 0.27  | 0   | 422 |
| GL03-99B  | 470476  | 6797182  | -40              | 0.00      | 0.00 | 0.64  | 0.00 | 0.00    | 0.50  | 0   | 128 |
| GL03-100A | 475575  | 6790537  | 456              | 0.10      | 6.98 | 0.65  | 0.01 | 10.74   | 6.86  | 103 | 9   |
| GL03-100C | 475575  | 6790537  | 469              | 0.03      | 0.18 | 0.88  | 0.13 | 0.20    | 0.57  | 32  | 154 |
| GL03-102B | 481339  | 6777628  | -40              | 0.00      | 0.00 | 0.31  | 0.00 | 0.00    | 0.49  | 0   | 63  |
| GL03-103A | 481560  | 6777390  | 548              | 0.00      | 0.00 | 0.17  | 0.00 | 0.00    | 0.79  | 0   | 22  |
| GL04-64B  | 463503  | 6802692  | 407              | 0.00      | 0.00 | 0.34  | 0.01 | 0.00    | 0.07  | 0   | 486 |
| GL04-102B | 513914  | 6790104  | 606              | 0.01      | 0.01 | 0.53  | 0.31 | 0.02    | 1.76  | 1   | 30  |
| GL04-102D | 513914  | 6790104  | 598              | 0.00      | 0.00 | 0.27  | 0.05 | 0.00    | 0.69  | 0   | 39  |
| GL04-102E | 513914  | 6790104  | 606              | 0.02      | 0.04 | 0.40  | 0.32 | 0.10    | 2.69  | 2   | 15  |
| GL04-103B | 513341  | 6789935  | 553              | 0.02      | 0.10 | 0.40  | 0.12 | 0.25    | 2.11  | 5   | 19  |
| 94-25-20  | 441900  | 6801798  | 432              | 0.02      | 1.50 | 0.40  | 0.01 | 3.75    | 1.66  | 92  | 24  |
| 94-25-163 | 441900  | 6801798  | 428              | 0.02      | 1.63 | 0.28  | 0.01 | 5.82    | 1.39  | 118 | 20  |
| 94-38-28  | 444410  | 6799580  | 434              | 0.00      | 1.16 | 0.20  | 0.00 | 5.80    | 1.23  | 95  | 16  |
| 94-38-69  | 444410  | 6799580  | 446              | 0.09      | 3.59 | 0.27  | 0.03 | 13.30   | 3.16  | 115 | 9   |
| 94-38-150 | 444410  | 6799580  | 430              | 0.11      | 4.25 | 0.43  | 0.02 | 9.88    | 4.76  | 90  | 9   |
| 94-38-154 | 444410  | 6799580  | 427              | 0.12      | 5.13 | 0.40  | 0.02 | 12.83   | 4.01  | 128 | 10  |
| 94-38-161 | 444410  | 6799580  | 428              | 0.08      | 3.84 | 0.32  | 0.02 | 12.00   | 3.37  | 115 | 9   |

|           |         |          |                         |      |            | -    |      |                |      |     |      |
|-----------|---------|----------|-------------------------|------|------------|------|------|----------------|------|-----|------|
| Sample    | Easting | Northing | <b>T</b> <sub>max</sub> | S1   | <u>\$2</u> | \$3  | PI   | <u>\$2/\$3</u> | тос  | HI  | OI   |
| 94-38-172 | 444410  | 6799580  | 425                     | 0.16 | 9.33       | 0.39 | 0.02 | 23.92          | 5.02 | 186 | 8    |
| 94-40-262 | 444409  | 6799579  | 424                     | 0.25 | 17.59      | 0.57 | 0.01 | 30.86          | 5.01 | 351 | 11   |
| 94-40-267 | 444409  | 6799579  | 429                     | 0.15 | 5.94       | 0.41 | 0.02 | 14.49          | 3.49 | 170 | 12   |
| 94-42-253 | 444189  | 6799726  | 423                     | 0.04 | 3.74       | 0.64 | 0.01 | 5.84           | 1.98 | 189 | 32   |
| 94-42-259 | 444189  | 6799726  | 426                     | 0.05 | 4.23       | 0.33 | 0.01 | 12.82          | 3.02 | 140 | 11   |
| 94-47-98  | 442860  | 6801040  | 432                     | 0.02 | 1.90       | 0.29 | 0.01 | 6.55           | 1.25 | 153 | 23   |
| 94-47-175 | 442860  | 6801040  | 605                     | 0.03 | 0.08       | 0.21 | 0.23 | 0.38           | 1.81 | 5   | 12   |
| 94-47-199 | 442860  | 6801040  | 436                     | 0.04 | 2.48       | 0.47 | 0.01 | 5.28           | 1.47 | 169 | 32   |
| 94-47-218 | 442860  | 6801040  | 426                     | 0.13 | 9.36       | 0.63 | 0.01 | 14.86          | 3.86 | 243 | 16   |
| 94-47-219 | 442860  | 6801040  | 432                     | 0.06 | 2.97       | 0.40 | 0.02 | 7.43           | 3.58 | 84  | 11   |
| 97-61-79  | 444703  | 6797233  | 434                     | 0.05 | 2.33       | 0.31 | 0.02 | 7.52           | 2.21 | 106 | 14   |
| 97-61-207 | 444703  | 6797233  | 434                     | 0.04 | 3.00       | 0.33 | 0.01 | 9.09           | 2.21 | 137 | 15   |
| 97-61-229 | 444703  | 6797233  | 409                     | 0.01 | 0.03       | 0.85 | 0.21 | 0.04           | 0.06 | 50  | 1417 |
| 97-63-83  | 445122  | 6796798  | 428                     | 0.11 | 7.75       | 0.47 | 0.01 | 16.49          | 4.35 | 180 | 11   |

## Tanglefoot formation (continued)

### **Tantalus Formation**

| Sample      | Easting | Northing | T <sub>max</sub> | \$1  | S2   | \$3  | PI   | \$2/\$3 | тос  | н   | OI   |
|-------------|---------|----------|------------------|------|------|------|------|---------|------|-----|------|
| C-76-01-108 | 434000  | 6889070  | 435              | 0.04 | 2.93 | 1.90 | 0.01 | 1.54    | 4.44 | 67  | 43   |
| C-76-01-126 | 434000  | 6889070  | 427              | 0.01 | 0.14 | 1.08 | 0.04 | 0.13    | 0.51 | 27  | 212  |
| C-76-01-127 | 434000  | 6889070  | 443              | 0.01 | 0.03 | 1.49 | 0.25 | 0.02    | 0.17 | 18  | 876  |
| C-76-01-132 | 434000  | 6889070  | 425              | 0.01 | 0.23 | 1.63 | 0.04 | 0.14    | 0.76 | 30  | 214  |
| C-76-01-139 | 434000  | 6889070  | 441              | 0.01 | 0.04 | 0.52 | 0.17 | 0.08    | 0.23 | 17  | 226  |
| C-76-01-197 | 434000  | 6889070  | 432              | 0.01 | 0.34 | 2.03 | 0.03 | 0.17    | 0.71 | 48  | 286  |
| C-76-01-327 | 434000  | 6889070  | 449              | 0.00 | 0.06 | 1.07 | 0.04 | 0.06    | 0.45 | 13  | 238  |
| C-76-01-331 | 434000  | 6889070  | 431              | 0.00 | 0.09 | 1.08 | 0.04 | 0.08    | 0.48 | 19  | 225  |
| C-76-01-339 | 434000  | 6889070  | 440              | 0.01 | 0.06 | 1.57 | 0.15 | 0.04    | 0.30 | 20  | 523  |
| C-76-01-404 | 434000  | 6889070  | 435              | 0.01 | 0.14 | 0.87 | 0.07 | 0.16    | 0.41 | 34  | 212  |
| C-76-01-405 | 434000  | 6889070  | 437              | 0.00 | 0.01 | 1.37 | 0.20 | 0.01    | 0.06 | 17  | 2283 |
| C-76-01-614 | 434000  | 6889070  | 433              | 0.02 | 1.90 | 0.76 | 0.01 | 2.50    | 1.88 | 102 | 40   |
| C-76-01-620 | 434000  | 6889070  | 434              | 0.02 | 0.26 | 1.11 | 0.06 | 0.23    | 0.38 | 68  | 292  |
| C-76-01-668 | 434000  | 6889070  | 437              | 0.00 | 0.68 | 0.86 | 0.01 | 0.79    | 0.94 | 73  | 91   |
| C-76-01-685 | 434000  | 6889070  | 472              | 0.00 | 0.02 | 0.32 | 0.05 | 0.06    | 0.12 | 17  | 267  |
| C-76-01-690 | 434000  | 6889070  | 446              | 0.00 | 0.02 | 0.37 | 0.00 | 0.05    | 0.19 | 11  | 195  |
| C-76-01-751 | 434000  | 6889070  | 434              | 0.01 | 1.13 | 0.62 | 0.01 | 1.82    | 1.34 | 85  | 46   |
| C-76-01-754 | 434000  | 6889070  | 440              | 0.00 | 0.12 | 0.42 | 0.01 | 0.29    | 0.26 | 46  | 162  |
| C-76-01-761 | 434000  | 6889070  | 436              | 0.01 | 1.61 | 0.43 | 0.01 | 3.74    | 1.71 | 95  | 25   |
| C-76-01-774 | 434000  | 6889070  | 433              | 0.00 | 0.34 | 0.36 | 0.01 | 0.94    | 0.45 | 76  | 80   |
| C-76-01-793 | 434000  | 6889070  | 435              | 0.00 | 0.61 | 0.44 | 0.01 | 1.39    | 1.19 | 52  | 37   |
| C-76-01-796 | 434000  | 6889070  | 437              | 0.01 | 0.44 | 0.36 | 0.02 | 1.22    | 0.48 | 92  | 75   |
| C-76-01-810 | 434000  | 6889070  | 439              | 0.01 | 1.37 | 0.81 | 0.01 | 1.69    | 2.65 | 53  | 31   |
| C-76-02-001 | 434000  | 6889070  | 439              | 0.02 | 1.02 | 1.53 | 0.02 | 0.67    | 1.50 | 69  | 102  |
| C-76-02-050 | 434000  | 6889070  | 433              | 0.06 | 3.94 | 1.13 | 0.02 | 3.49    | 3.30 | 120 | 34   |
| C-76-02-059 | 434000  | 6889070  | 441              | 0.01 | 0.15 | 0.63 | 0.04 | 0.24    | 0.31 | 48  | 203  |
| C-76-02-060 | 434000  | 6889070  | 434              | 0.00 | 0.19 | 0.54 | 0.02 | 0.35    | 0.54 | 35  | 100  |
| C-76-02-114 | 434000  | 6889070  | 438              | 0.02 | 1.75 | 0.73 | 0.01 | 2.40    | 1.95 | 91  | 37   |
| C-76-02-143 | 434000  | 6889070  | 429              | 0.01 | 0.81 | 2.39 | 0.02 | 0.34    | 2.18 | 38  | 110  |
| C-76-02-171 | 434000  | 6889070  | 456              | 0.00 | 0.04 | 1.59 | 0.05 | 0.03    | 0.27 | 15  | 589  |
| C-76-02-174 | 434000  | 6889070  | 432              | 0.02 | 1.19 | 0.98 | 0.01 | 1.21    | 1.67 | 72  | 59   |
| C-76-02-189 | 434000  | 6889070  | 436              | 0.00 | 0.09 | 0.99 | 0.05 | 0.09    | 0.42 | 21  | 236  |
| C-76-02-205 | 434000  | 6889070  | 434              | 0.01 | 1.37 | 0.48 | 0.01 | 2.85    | 1.69 | 82  | 28   |
| C-76-02-207 | 434000  | 6889070  | 440              | 0.02 | 2.70 | 1.73 | 0.01 | 1.56    | 4.23 | 65  | 41   |
| C-76-02-215 | 434000  | 6889070  | 444              | 0.01 | 0.11 | 1.26 | 0.05 | 0.09    | 0.43 | 26  | 293  |
| C-76-02-221 | 434000  | 6889070  | 434              | 0.00 | 0.11 | 0.39 | 0.02 | 0.28    | 0.30 | 37  | 130  |
| C-76-02-277 | 434000  | 6889070  | 449              | 0.03 | 1.22 | 2.54 | 0.03 | 0.48    | 2.08 | 60  | 122  |
| C-76-02-279 | 434000  | 6889070  | 438              | 0.01 | 0.74 | 1.07 | 0.01 | 0.69    | 1.36 | 55  | 79   |
| C-76-02-421 | 434000  | 6889070  | 435              | 0.02 | 3.27 | 0.57 | 0.01 | 5.74    | 3.39 | 97  | 17   |
| C-76-02-632 | 434000  | 6889070  | 442              | 0.03 | 5.21 | 1.02 | 0.01 | 5.11    | 4.96 | 107 | 21   |
| C-76-02-660 | 434000  | 6889070  | 431              | 0.02 | 1.73 | 0.56 | 0.01 | 3.09    | 2.05 | 85  | 27   |
| C-76-02-768 | 434000  | 6889070  | 437              | 0.03 | 2.31 | 0.40 | 0.01 | 5.78    | 1.70 | 137 | 24   |

| Sample      | Easting | Northing | <b>T</b> <sub>max</sub> | <b>S1</b> | \$2  | \$3  | PI   | <b>S2/S3</b> | тос  | н   | OI   |
|-------------|---------|----------|-------------------------|-----------|------|------|------|--------------|------|-----|------|
| C-76-02-814 | 434000  | 6889070  | 434                     | 0.02      | 2.19 | 0.37 | 0.01 | 5.92         | 2.04 | 108 | 18   |
| C-76-03-043 | 433900  | 6889920  | 441                     | 0.01      | 0.63 | 2.01 | 0.01 | 0.31         | 1.76 | 37  | 114  |
| C-76-03-045 | 433900  | 6889920  | 432                     | 0.01      | 0.37 | 2.02 | 0.02 | 0.18         | 1.10 | 34  | 184  |
| C-76-03-263 | 433900  | 6889920  | 445                     | 0.02      | 0.63 | 2.38 | 0.03 | 0.26         | 1.77 | 36  | 134  |
| C-76-03-273 | 433900  | 6889920  | 441                     | 0.02      | 1.18 | 2.54 | 0.01 | 0.46         | 1.96 | 61  | 130  |
| C-76-05-060 | 433900  | 6889920  | 438                     | 0.00      | 0.15 | 1.16 | 0.03 | 0.13         | 0.71 | 21  | 163  |
| C-76-05-065 | 433900  | 6889920  | 429                     | 0.00      | 0.05 | 0.71 | 0.08 | 0.07         | 0.30 | 17  | 237  |
| C-76-05-077 | 433900  | 6889920  | 441                     | 0.00      | 0.39 | 1.90 | 0.01 | 0.21         | 1.34 | 30  | 142  |
| C-76-05-078 | 433900  | 6889920  | 445                     | 0.00      | 0.09 | 1.35 | 0.05 | 0.07         | 0.53 | 17  | 255  |
| C-76-05-090 | 433900  | 6889920  | 441                     | 0.01      | 0.10 | 0.47 | 0.07 | 0.21         | 0.34 | 29  | 138  |
| C-76-05-093 | 433900  | 6889920  | 445                     | 0.00      | 0.02 | 1.56 | 0.08 | 0.01         | 0.31 | 6   | 503  |
| C-76-05-101 | 433900  | 6889920  | 490                     | 0.00      | 0.00 | 1.68 | 0.00 | 0.00         | 0.23 | 0   | 730  |
| C-76-05-104 | 433900  | 6889920  | 446                     | 0.00      | 0.01 | 1.81 | 0.29 | 0.01         | 0.13 | 8   | 1392 |
| C-76-05-107 | 433900  | 6889920  | 444                     | 0.01      | 0.04 | 1.48 | 0.24 | 0.03         | 0.35 | 11  | 423  |
| C-76-05-652 | 433900  | 6889920  | 438                     | 0.01      | 0.40 | 0.45 | 0.01 | 0.89         | 0.69 | 58  | 65   |
| C-76-05-750 | 433900  | 6889920  | 431                     | 0.01      | 1.23 | 0.57 | 0.01 | 2.16         | 1.35 | 91  | 42   |
| C-76-05-855 | 433900  | 6889920  | 440                     | 0.01      | 1.92 | 0.38 | 0.00 | 5.05         | 1.69 | 115 | 22   |
| C-76-05-858 | 433900  | 6889920  | 435                     | 0.01      | 2.52 | 0.75 | 0.00 | 3.36         | 2.39 | 106 | 31   |
| C-76-05-878 | 433900  | 6889920  | 440                     | 0.01      | 2.04 | 0.54 | 0.01 | 3.78         | 2.02 | 102 | 27   |
| C-76-05-883 | 433900  | 6889920  | 438                     | 0.01      | 1.74 | 0.47 | 0.01 | 3.70         | 1.93 | 91  | 24   |
| C-76-05-916 | 433900  | 6889920  | 423                     | 0.00      | 0.30 | 0.33 | 0.01 | 0.91         | 1.00 | 30  | 33   |
| C-76-05-942 | 433900  | 6889920  | 437                     | 0.01      | 1.59 | 0.53 | 0.01 | 3.00         | 1.68 | 96  | 32   |
| C-76-08-488 | 434080  | 6890040  | 430                     | 0.02      | 1.22 | 0.58 | 0.01 | 2.10         | 1.30 | 95  | 45   |
| C-76-08-500 | 434080  | 6890040  | 428                     | 0.01      | 0.21 | 0.34 | 0.03 | 0.62         | 0.19 | 111 | 179  |
| C-76-10-212 | 434785  | 6883720  | 470                     | 0.01      | 0.33 | 2.57 | 0.04 | 0.13         | 1.30 | 26  | 198  |
| C-76-10-529 | 434785  | 6883720  | 446                     | 0.01      | 0.14 | 1.86 | 0.06 | 0.08         | 0.61 | 23  | 305  |
| C-76-10-666 | 434785  | 6883720  | 468                     | 0.02      | 0.31 | 0.44 | 0.05 | 0.70         | 1.28 | 25  | 34   |
| C-76-10-747 | 434785  | 6883720  | 437                     | 0.05      | 1.85 | 4.82 | 0.03 | 0.38         | 5.16 | 37  | 93   |
| C-76-10-786 | 434785  | 6883720  | 453                     | 0.01      | 1.53 | 0.67 | 0.01 | 2.28         | 2.62 | 60  | 26   |
| C-76-10-801 | 434785  | 6883720  | 463                     | 0.03      | 1.65 | 1.12 | 0.02 | 1.47         | 2.55 | 66  | 44   |
| C-76-10-861 | 434785  | 6883720  | 479                     | 0.00      | 0.69 | 0.51 | 0.01 | 1.35         | 1.28 | 55  | 40   |
| C-76-11-087 | 434120  | 6888920  | 433                     | 0.01      | 0.56 | 2.44 | 0.02 | 0.23         | 1.33 | 43  | 183  |
| C-76-11-099 | 434120  | 6888920  | 454                     | 0.00      | 0.01 | 1.25 | 0.30 | 0.01         | 0.04 | 25  | 3125 |
| C-76-11-106 | 434120  | 6888920  | 444                     | 0.00      | 0.07 | 1.32 | 0.01 | 0.05         | 0.38 | 18  | 347  |
| C-76-11-108 | 434120  | 6888920  | 445                     | 0.00      | 0.04 | 0.46 | 0.02 | 0.09         | 0.24 | 17  | 192  |
| C-76-11-163 | 434120  | 6888920  | 437                     | 0.03      | 1.55 | 0.56 | 0.02 | 2.77         | 1.49 | 105 | 38   |
| C-76-11-210 | 434120  | 6888920  | 444                     | 0.01      | 0.51 | 1.46 | 0.03 | 0.35         | 1.21 | 43  | 121  |
| C-76-11-242 | 434120  | 6888920  | 442                     | 0.00      | 0.05 | 1.21 | 0.09 | 0.04         | 0.37 | 14  | 327  |
| C-76-11-261 | 434120  | 6888920  | 445                     | 0.01      | 0.26 | 1.36 | 0.04 | 0.19         | 0.80 | 33  | 170  |
| C-76-11-274 | 434120  | 6888920  | 435                     | 0.01      | 0.08 | 1.25 | 0.10 | 0.06         | 0.45 | 18  | 278  |
| C-76-11-278 | 434120  | 6888920  | 435                     | 0.01      | 0.19 | 1.03 | 0.07 | 0.18         | 0.49 | 39  | 210  |
| C-76-11-284 | 434120  | 6888920  | 434                     | 0.01      | 0.21 | 1.17 | 0.02 | 0.18         | 0.53 | 40  | 221  |

| Sample      | Easting | Northing | <b>T</b> <sub>max</sub> | <b>S1</b> | <b>S</b> 2 | \$3  | PI   | <b>S2/S3</b> | тос  | HI  | OI  |
|-------------|---------|----------|-------------------------|-----------|------------|------|------|--------------|------|-----|-----|
| C-76-11-445 | 434120  | 6888920  | 434                     | 0.01      | 0.48       | 0.68 | 0.01 | 0.71         | 0.54 | 89  | 126 |
| C-76-11-470 | 434120  | 6888920  | 445                     | 0.07      | 1.83       | 1.59 | 0.04 | 1.15         | 2.94 | 64  | 54  |
| C-76-11-490 | 434120  | 6888920  | 435                     | 0.03      | 0.45       | 0.34 | 0.07 | 1.32         | 0.73 | 63  | 47  |
| C-76-11-496 | 434120  | 6888920  | 435                     | 0.02      | 2.45       | 0.49 | 0.01 | 5.00         | 2.50 | 99  | 20  |
| C-76-11-512 | 434120  | 6888920  | 439                     | 0.03      | 1.62       | 0.73 | 0.02 | 2.22         | 1.75 | 94  | 42  |
| C-76-11-519 | 434120  | 6888920  | 435                     | 0.05      | 0.35       | 0.77 | 0.13 | 0.45         | 0.63 | 56  | 122 |
| C-76-11-520 | 434120  | 6888920  | 436                     | 0.00      | 0.10       | 0.83 | 0.03 | 0.12         | 0.40 | 25  | 208 |
| C-76-11-524 | 434120  | 6888920  | 438                     | 0.01      | 0.09       | 1.61 | 0.11 | 0.06         | 0.32 | 28  | 503 |
| C-76-11-528 | 434120  | 6888920  | 434                     | 0.00      | 0.23       | 0.79 | 0.02 | 0.29         | 0.51 | 45  | 155 |
| C-76-11-586 | 434120  | 6888920  | 437                     | 0.03      | 2.76       | 0.55 | 0.01 | 5.02         | 2.77 | 101 | 20  |
| C-76-11-649 | 434120  | 6888920  | 434                     | 0.01      | 1.25       | 0.53 | 0.01 | 2.36         | 1.37 | 92  | 39  |
| C-76-11-650 | 434120  | 6888920  | 439                     | 0.01      | 0.99       | 0.87 | 0.01 | 1.14         | 1.23 | 81  | 71  |
| C-76-11-653 | 434120  | 6888920  | 434                     | 0.03      | 1.47       | 0.64 | 0.02 | 2.30         | 1.69 | 88  | 38  |
| C-76-11-666 | 434120  | 6888920  | 443                     | 0.00      | 0.04       | 0.46 | 0.03 | 0.09         | 0.28 | 14  | 164 |
| C-76-11-675 | 434120  | 6888920  | 441                     | 0.01      | 0.51       | 0.29 | 0.02 | 1.76         | 0.61 | 85  | 48  |
| C-76-11-680 | 434120  | 6888920  | 434                     | 0.00      | 0.77       | 0.31 | 0.00 | 2.48         | 0.82 | 94  | 38  |
| C-76-11-699 | 434120  | 6888920  | 438                     | 0.02      | 3.93       | 0.72 | 0.00 | 5.46         | 4.80 | 83  | 15  |
| C-76-11-707 | 434120  | 6888920  | 440                     | 0.00      | 0.43       | 0.33 | 0.01 | 1.30         | 0.85 | 52  | 39  |
| C-76-11-709 | 434120  | 6888920  | 430                     | 0.00      | 0.21       | 0.50 | 0.01 | 0.42         | 0.52 | 40  | 96  |
| C-76-11-744 | 434120  | 6888920  | 437                     | 0.00      | 0.63       | 0.45 | 0.00 | 1.40         | 0.87 | 74  | 52  |
| C-76-11-773 | 434120  | 6888920  | 433                     | 0.01      | 0.46       | 0.25 | 0.03 | 1.84         | 0.67 | 69  | 37  |
| C-76-11-817 | 434120  | 6888920  | 439                     | 0.01      | 0.55       | 0.30 | 0.01 | 1.83         | 0.76 | 72  | 39  |
| C-76-11-821 | 434120  | 6888920  | 439                     | 0.01      | 1.02       | 0.27 | 0.01 | 3.78         | 1.21 | 85  | 22  |
| C-76-11-827 | 434120  | 6888920  | 434                     | 0.00      | 0.08       | 0.20 | 0.01 | 0.40         | 0.15 | 53  | 133 |
| C-76-13-068 | 434445  | 6884315  | 525                     | 0.01      | 0.01       | 0.92 | 0.64 | 0.01         | 0.11 | 9   | 836 |
| C-76-13-402 | 434445  | 6884315  | 471                     | 0.01      | 0.03       | 0.38 | 0.15 | 0.08         | 0.11 | 27  | 345 |
| C-76-13-487 | 434445  | 6884315  | 471                     | 0.01      | 0.24       | 0.44 | 0.04 | 0.55         | 0.45 | 53  | 98  |
| C-76-13-544 | 434445  | 6884315  | 465                     | 0.02      | 0.25       | 0.40 | 0.06 | 0.63         | 0.39 | 64  | 103 |
| C-76-13-609 | 434445  | 6884315  | 459                     | 0.01      | 0.08       | 0.35 | 0.09 | 0.23         | 0.13 | 62  | 269 |
| C-76-14-235 | 433950  | 6889920  | 436                     | 0.03      | 0.40       | 2.09 | 0.07 | 0.19         | 1.15 | 36  | 182 |
| C-76-14-247 | 433950  | 6889920  | 430                     | 0.18      | 6.44       | 1.94 | 0.03 | 3.32         | 4.12 | 157 | 47  |
| C-76-14-256 | 433950  | 6889920  | 440                     | 0.21      | 19.18      | 1.45 | 0.01 | 13.23        | 5.68 | 339 | 26  |
| C-76-14-260 | 433950  | 6889920  | 432                     | 0.06      | 0.57       | 0.71 | 0.09 | 0.80         | 0.65 | 88  | 109 |
| C-76-14-270 | 433950  | 6889920  | 431                     | 0.06      | 1.09       | 0.52 | 0.05 | 2.10         | 1.12 | 98  | 46  |
| C-76-14-273 | 433950  | 6889920  | 436                     | 0.02      | 0.14       | 0.92 | 0.12 | 0.15         | 0.20 | 70  | 460 |
| C-76-14-429 | 433950  | 6889920  | 438                     | 0.02      | 0.50       | 1.02 | 0.03 | 0.49         | 0.61 | 82  | 167 |
| C-76-14-430 | 433950  | 6889920  | 441                     | 0.02      | 0.81       | 1.37 | 0.02 | 0.59         | 1.15 | 71  | 119 |
| C-76-14-452 | 433950  | 6889920  | 435                     | 0.03      | 1.24       | 0.36 | 0.02 | 3.44         | 1.04 | 120 | 35  |
| C-76-14-455 | 433950  | 6889920  | 432                     | 0.04      | 1.93       | 0.77 | 0.02 | 2.51         | 1.94 | 101 | 40  |
| C-76-14-466 | 433950  | 6889920  | 438                     | 0.01      | 0.28       | 0.62 | 0.04 | 0.45         | 0.34 | 82  | 182 |
| C-76-14-502 | 433950  | 6889920  | 432                     | 0.01      | 0.09       | 0.27 | 0.11 | 0.33         | 0.13 | 69  | 208 |
| C-76-14-504 | 433950  | 6889920  | 429                     | 0.02      | 0.28       | 0.33 | 0.05 | 0.85         | 0.40 | 70  | 83  |

| Sample       | Easting | Northing | <b>T</b> <sub>max</sub> | <b>S1</b> | S2   | \$3  | PI   | \$2/\$3 | тос  | н   | OI   |
|--------------|---------|----------|-------------------------|-----------|------|------|------|---------|------|-----|------|
| C-76-14-510  | 433950  | 6889920  | 440                     | 0.01      | 0.43 | 1.56 | 0.02 | 0.28    | 0.93 | 47  | 168  |
| C-76-14-523  | 433950  | 6889920  | 430                     | 0.02      | 0.57 | 0.29 | 0.04 | 1.97    | 0.90 | 63  | 32   |
| C-76-14-589  | 433950  | 6889920  | 434                     | 0.02      | 0.11 | 0.25 | 0.12 | 0.44    | 0.12 | 92  | 208  |
| C-76-14-600  | 433950  | 6889920  | 432                     | 0.02      | 0.84 | 0.34 | 0.03 | 2.47    | 1.21 | 69  | 28   |
| C-76-14-601  | 433950  | 6889920  | 448                     | 0.03      | 2.88 | 0.67 | 0.01 | 4.30    | 3.70 | 79  | 18   |
| C-76-15-106  | 434070  | 6888500  | 430                     | 0.05      | 1.00 | 2.24 | 0.05 | 0.45    | 1.92 | 53  | 117  |
| C-76-15-111  | 434070  | 6888500  | 440                     | 0.03      | 0.73 | 2.17 | 0.04 | 0.34    | 1.49 | 50  | 146  |
| C-76-15-253  | 434070  | 6888500  | 434                     | 0.07      | 2.93 | 1.02 | 0.02 | 2.87    | 3.07 | 96  | 33   |
| C-76-15-257  | 434070  | 6888500  | 466                     | 0.02      | 0.38 | 0.67 | 0.05 | 0.57    | 1.34 | 29  | 50   |
| C-76-15-282  | 434070  | 6888500  | 437                     | 0.03      | 1.56 | 0.33 | 0.02 | 4.73    | 1.26 | 125 | 26   |
| T1-7 14.0    | 450400  | 6798400  | 452                     | 0.01      | 0.08 | 2.45 | 0.15 | 0.03    | 0.21 | 38  | 1167 |
| T9-5 192.3   | 439400  | 6703200  | 449                     | 0.00      | 0.01 | 0.65 | 0.34 | 0.02    | 0.08 | 13  | 813  |
| T9-9 452.0   | 439400  | 6703200  | 431                     | 0.00      | 0.01 | 0.40 | 0.10 | 0.03    | 0.04 | 25  | 1000 |
| T9-10 467.7  | 439400  | 6703200  | 402                     | 0.03      | 0.10 | 0.45 | 0.25 | 0.22    | 0.06 | 167 | 750  |
| T9-11 486.0  | 439400  | 6703200  | 436                     | 0.01      | 0.04 | 0.90 | 0.22 | 0.04    | 0.12 | 33  | 750  |
| T9-28 1179.2 | 439400  | 6703200  | 430                     | 0.10      | 1.03 | 1.28 | 0.08 | 0.80    | 1.06 | 97  | 121  |
| T9-30 1280.0 | 439400  | 6703200  | 437                     | 0.03      | 1.12 | 2.20 | 0.02 | 0.51    | 1.68 | 67  | 131  |
| T11-7 63.9   | 480600  | 6867600  | 458                     | 0.01      | 0.15 | 0.65 | 0.07 | 0.23    | 0.54 | 28  | 120  |
| T11-8 72.7   | 480600  | 6867600  | 487                     | 0.02      | 0.22 | 0.89 | 0.07 | 0.25    | 0.62 | 35  | 144  |
| T11-11 157.0 | 480600  | 6867600  | 339                     | 0.02      | 0.02 | 0.99 | 0.50 | 0.02    | 0.12 | 17  | 825  |
| T12-4        | 480500  | 6867500  | 344                     | 0.02      | 0.06 | 0.32 | 0.29 | 0.19    | 0.10 | 60  | 320  |
| T12-41       | 480500  | 6867500  | 577                     | 0.02      | 0.03 | 0.27 | 0.33 | 0.11    | 0.39 | 8   | 69   |
| T12-43       | 480500  | 6867500  | 520                     | 0.01      | 0.29 | 1.29 | 0.04 | 0.22    | 1.12 | 26  | 115  |
| T12-46       | 480500  | 6867500  | 482                     | 0.04      | 0.41 | 0.39 | 0.08 | 1.05    | 0.94 | 46  | 41   |
| T12-50       | 480500  | 6867500  | 368                     | 0.02      | 0.05 | 0.29 | 0.34 | 0.17    | 0.11 | 45  | 264  |
| T13-2 1.0    | 434300  | 6890300  | 443                     | 0.02      | 0.35 | 0.69 | 0.05 | 0.51    | 0.80 | 44  | 86   |
| T13-3 3.7    | 434300  | 6890300  | 438                     | 0.05      | 3.48 | 3.36 | 0.01 | 1.04    | 4.89 | 72  | 69   |
| T13-6 7.1    | 434300  | 6890300  | 435                     | 0.05      | 1.57 | 2.42 | 0.03 | 0.65    | 2.91 | 55  | 83   |
| T13-11 9.8   | 434300  | 6890300  | 424                     | 0.13      | 0.34 | 1.15 | 0.27 | 0.30    | 0.25 | 136 | 460  |
| T13-12 10.1  | 434300  | 6890300  | 436                     | 0.04      | 0.57 | 1.31 | 0.06 | 0.44    | 1.13 | 51  | 116  |
| T13-13 10.5  | 434300  | 6890300  | 435                     | 0.06      | 1.36 | 1.26 | 0.04 | 1.08    | 2.27 | 61  | 56   |
| T13-22 16.3  | 434300  | 6890300  | 436                     | 0.04      | 0.64 | 0.83 | 0.06 | 0.77    | 1.22 | 53  | 68   |
| T17-1 0.0    | 433800  | 6885200  | 309                     | 0.32      | 0.24 | 0.26 | 0.57 | 0.92    | 0.15 | 160 | 173  |
| T17-4 1.5    | 433800  | 6885200  | 359                     | 0.04      | 0.10 | 0.41 | 0.26 | 0.24    | 0.11 | 91  | 373  |
| T17-10 75.3  | 433800  | 6885200  | 327                     | 0.81      | 2.12 | 0.79 | 0.28 | 2.68    | 0.55 | 385 | 144  |
| T17-12 181.5 | 433800  | 6885200  | 452                     | 0.11      | 0.70 | 2.77 | 0.14 | 0.25    | 1.29 | 55  | 215  |
| T17-32 297.7 | 433800  | 6885200  | 441                     | 0.05      | 0.14 | 1.25 | 0.29 | 0.11    | 0.49 | 29  | 255  |
| T18-6 32.0   | 432900  | 6883400  | 335                     | 0.03      | 0.07 | 0.27 | 0.32 | 0.26    | 0.13 | 54  | 208  |
| T19-4 10.0   | 484700  | 6706900  | 515                     | 0.00      | 0.02 | 0.73 | 0.15 | 0.03    | 0.34 | 6   | 215  |
| T19-13 65.0  | 484700  | 6706900  | 336                     | 0.01      | 0.03 | 0.51 | 0.22 | 0.06    | 0.21 | 14  | 243  |
| T19-46 123.5 | 484700  | 6706900  | 521                     | 0.01      | 0.05 | 2.12 | 0.20 | 0.02    | 2.12 | 2   | 100  |
| T19-60 224.0 | 484700  | 6706900  | 334                     | 0.00      | 0.00 | 0.46 | 0.50 | 0.00    | 0.03 | 0   | 1533 |

| Sample    | Easting | Northing | T <sub>max</sub> | <b>S1</b> | \$2  | \$3  | PI   | S2/S3 | тос  | HI  | OI  |
|-----------|---------|----------|------------------|-----------|------|------|------|-------|------|-----|-----|
| T20-7 3.0 | 485800  | 6705900  | 348              | 0.01      | 0.04 | 0.34 | 0.21 | 0.12  | 0.05 | 80  | 680 |
| T22-22    | 495700  | 6686100  | 497              | 0.00      | 0.00 | 0.38 | 0.78 | 0.00  | 0.25 | 0   | 152 |
| GL03-24A  | 434006  | 6890664  | 437              | 0.01      | 0.96 | 1.18 | 0.01 | 0.81  | 1.63 | 60  | 72  |
| GL03-24B  | 434006  | 6890664  | 447              | 0.00      | 0.73 | 2.22 | 0.00 | 0.33  | 1.83 | 40  | 121 |
| GL03-24C  | 434006  | 6890664  | 440              | 0.00      | 1.86 | 2.58 | 0.00 | 0.72  | 3.03 | 62  | 85  |
| GL03-46E  | 438192  | 6867931  | 473              | 0.00      | 0.00 | 0.16 | 0.02 | 0.00  | 0.25 | 0   | 64  |
| GL03-58B  | 455535  | 6802395  | 513              | 0.00      | 0.09 | 1.67 | 0.00 | 0.05  | 1.32 | 7   | 127 |
| GL03-59C  | 455484  | 6803101  | 491              | 0.01      | 0.21 | 1.40 | 0.06 | 0.15  | 1.13 | 19  | 124 |
| GL03-60B  | 454797  | 6804082  | 492              | 0.05      | 0.27 | 1.31 | 0.15 | 0.21  | 1.48 | 19  | 89  |
| GL03-60C  | 454797  | 6804082  | 509              | 0.01      | 0.03 | 0.78 | 0.27 | 0.04  | 0.47 | 6   | 166 |
| GL03-63B  | 457911  | 6803958  | 508              | 0.00      | 0.08 | 0.52 | 0.00 | 0.15  | 0.57 | 14  | 91  |
| GL03-64B  | 457738  | 6804139  | 491              | 0.02      | 0.13 | 0.42 | 0.16 | 0.31  | 0.84 | 15  | 50  |
| GL03-64D  | 457738  | 6804139  | 488              | 0.02      | 0.09 | 0.18 | 0.15 | 0.50  | 0.58 | 16  | 31  |
| GL03-65A  | 457985  | 6803864  | 491              | 0.04      | 0.12 | 0.32 | 0.24 | 0.38  | 0.65 | 18  | 49  |
| GL03-67C  | 438047  | 6814323  | 444              | 0.11      | 1.20 | 1.29 | 0.08 | 0.93  | 2.66 | 46  | 48  |
| GL03-67D  | 438047  | 6814323  | 440              | 0.00      | 0.24 | 1.33 | 0.00 | 0.18  | 2.44 | 10  | 55  |
| GL03-67F  | 438047  | 6814323  | 426              | 0.00      | 0.76 | 0.70 | 0.00 | 1.09  | 2.61 | 30  | 27  |
| 97-63-28  | 445122  | 6796798  | 430              | 0.05      | 1.14 | 0.35 | 0.04 | 3.26  | 1.04 | 111 | 34  |