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aBStraCt

The Whitehorse Trough is a Mesozoic sedimentary basin in south-central Yukon that has been 
identified as an immature, gas-prone basin, based on a limited geoscience database. A total of 
170 km of regional, multi-channel, multi-component Vibroseis seismic reflection data were acquired 
in 2004 across the northern Whitehorse Trough in order to improve understanding of its structural 
architecture. The shallow seismic images appear to depict broad antiformal and synformal structures, 
truncated by relatively steep faults. Strata interpreted as the Lewes River and Laberge groups seem 
to attain a maximum thickness of 6000-7000 m toward the west side of the Trough, with interpreted 
Laberge Group accounting for up to ~3000 m of this total. Maximum vertical relief of the structures 
is ~4000 m. 

rÉSuMÉ

Le basin de Whitehorse est un bassin sédimentaire d’âge Mésozoïque dans le centre-sud du Yukon. 
Il fût identifié, sur la base de données géoscientifiques limitées, comme étant un bassin immature 
ayant un potentiel pour le gaz naturel. Des données de levé sismique Vibroseis régional multicanal 
et multicomposante ont été acquises sur 170 kilomètres en 2004 sur la partie septentrionale de la 
cuvette de Whitehorse, dans le but d’améliorer notre compréhension de son architecture structurale. 
Les images sismiques à faible profondeur semblent révéler des structures antiformes et synformes de 
grande amplitude recoupées par des failles de fort pendage. Les strates interprétées comme étant 
les groupes de Lewes River et de Laberge atteignent une épaisseur maximale de 6000 à 7000 
mètres vers le côté ouest du basin, le Groupe de Laberge représentant jusqu’à 3000 mètres de cette 
épaisseur totale. L’extension maximale de ces structures suivant la verticale est d’environ 4000 
mètres.
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introduCtion
The Whitehorse Trough is an elongated, northwest-
trending Mesozoic marine sedimentary basin which 
extends some 650 km from just north of Carmacks, Yukon, 
to near Dease Lake, British Columbia (Fig. 1). It originated 
as a forearc basin in the Middle to Late Triassic, adjacent 
to the emerging Lewes River Arc, and had received more 
than 7000 m of clastic deposits by Middle Jurassic time 
(e.g., Wheeler, 1961; Tempelman-Kluit, 1979). It is 
underlain by late Paleozoic and early Mesozoic arc 
volcanic rocks of Stikinia and is structurally overlain, in 
southern Yukon and northern British Columbia, by the 
oceanic Cache Creek Terrane (Fig. 1). The Whitehorse 
Trough overlies Stikinia at its northern apex, where it is 
bounded on three sides by polydeformed and 
metamorphosed mid- to late Paleozoic rocks of the Yukon-
Tanana Terrane. 

The Whitehorse Trough has been identified as an 
immature, gas-prone basin in which potential source 
rocks, reservoirs and seals occur (National Energy Board, 
2001). Potential for some 7.3 trillion cubic feet (Tcf) 
(210 billion m3) of gas, and possibly some oil, is estimated 
for the basin, with 2.6 to 4.8 Tcf (74 to 140 billion m3) in 
Yukon (K. Ozadetz, pers. comm., 2004). Structural traps 
associated with clastic or carbonate reservoirs 
(Lewes River and Laberge groups) are proposed as having 
significant hydrocarbon potential with surface-defined 
anticlines posing the best primary drilling targets (National 

Energy Board, 2001). However, current assessments of 
hydrocarbon potential in the Whitehorse Trough rely on 
limited stratigraphic studies and are based on conceptual 
plays. No private seismic surveys or wells have been 
completed in this region. A recent Lithoprobe seismic 
survey crosses the central part of Whitehorse Trough near 
the Yukon-British Columbia boundary (SNORCLE line 3, 
Fig. 1; Cook et al., 2004) and provides an interpretation of 
the crustal structure in the area. However, the Lithoprobe 
survey was designed primarily to image deep crustal 
features and offers limited information about the upper 
crust, and thus is of little use for hydrocarbon potential 
assessment. In 2004, the Yukon Geological Survey and 
Geological Survey of Canada commissioned a regional, 
multi-channel, multi-component Vibroseis seismic 
reflection survey across the northern part of Whitehorse 
Trough and into adjacent terranes (Fig. 2), with the aim of 
enhancing the geoscience database of the area for use in 
future hydrocarbon potential assessments. The survey 
comprises two seismic profiles, totaling 170 km in length, 
acquired along the Robert Campbell and North Klondike 
highways (Fig. 2). An initial interpretation of the shallow 
part of these crustal sections is presented here. 

GEoloGiCal SEttinG
The Canadian Cordillera consists of a collage of terranes 
that were accreted to the western margin of the North 
American craton between late Paleozoic and early 

Figure 1. Terrane map of Yukon and 

adjacent northern British Columbia. 

The grey-shaded area in northern 

Stikinia indicates regional distribution 

of the Whitehorse Trough.  

Cm = Carmacks, DL = Dease Lake,  

Wh = Whitehorse.
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Cenozoic time (Coney et al., 1980; Gabrielse et al., 1991; 
Price and Monger, 2000 and references therein). The 
largest of these terranes, Stikinia, comprises 
Late Devonian to Middle Jurassic volcanic and 
sedimentary strata, as well as comagmatic plutonic rocks 
(Monger et al., 1991). Paleozoic assemblages are mostly 
known in northern British Columbia (e.g., Logan et al., 
2000). The northern portion of Stikinia is composed of 
Upper Triassic arc volcanic and sedimentary rocks of the 
Lewes River Group and Lower to Middle Jurassic 
sedimentary strata of the Laberge Group (e.g., Wheeler, 
1961; Fig. 3). Sedimentary facies of the Lewes River 
(Aksala formation) and Laberge groups define the 

Whitehorse Trough in Yukon (e.g., Wheeler, 1961; Hart, 
1997). The Lewes River Group at its base comprises calc-
alkaline basalts, andesites and agglomerates of the Povoas 
formation (Tempelman-Kluit, 1984; Hart, 1997). The 
Povoas locally overlies Paleozoic greenstones of the 
Takhini assemblage west of Whitehorse (Hart, 1997). The 
Povoas is comformably overlain by heterogeneous clastic 
strata (mainly sandstone, greywacke and argillite), 
limestone and minor conglomerate of the Aksala 
formation (Tempelman-Kluit, 1984; Hart, 1997). 

The Laberge Group consists of conglomerate, sandstone, 
siltstone, argillite and tuff. In the northern Whitehorse 
Trough, near Carmacks (Fig. 2), the Laberge Group 
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consists primarily of coal-bearing interbedded sandstone 
and mudstone of the Tanglefoot formation, which includes 
subordinate amounts of conglomerate, pebbly sandstone 
and tuffaceous rocks (Lowey, 2004). At this latitude, the 
Tanglefoot formation unconformably overlies the 
Lewes River Group. To the south, in the central 
Whitehorse Trough, the Richthofen formation, dominated 
by thin-bedded sandstone-mudstone couplets (turbidites) 
and clast-supported conglomerates (but no coal), 
unconformably overlies the Lewes River Group (Lowey, 
2005). 

The Laberge Group is unconformably overlain by the 
Upper Jurassic to Lower Cretaceous Tantalus Formation 
(Fig. 3; Bostock, 1936; Tempelman-Kluit, 1984; Long, 
2005), which consists primarily of fluvial sandstone and 
chert-pebble conglomerate representing a molasse 
deposit that marks the end of deposition in the 
Whitehorse Trough. In the northern Whitehorse Trough, 
occurrences of the Tantalus Formation are primarily 
restricted to the western edge of the Trough near 
Carmacks (Fig. 2), where significant coal resources have 
historically been mined, and in isolated exposures north 
of Claire Lake and beneath the Carmacks Group basalts 
along the Robert Campbell Highway (Tempelman-Kluit, 
1984; Colpron et al., 2002). 

At the latitude of Carmacks, the northern Whitehorse 
Trough is bounded on the west by the Braeburn fault, a 
dextral strike-slip fault with an estimated 8-km of 
displacement, which projects underneath the Upper 
Cretaceous Carmacks Group (Fig. 2; Tempelman-Kluit, 
1984). To the west, granodiorite gneiss of the Yukon-
Tanana Terrane, intruded by Early Jurassic granitic 
batholiths, dips to the east beneath the Whitehorse 
Trough. The eastern margin of the Whitehorse Trough is 
defined by the Tadru fault, a southeast-dipping thrust fault 
that places mid- to late Paleozoic rocks of the Boswell 
assemblage onto Upper Triassic strata of the Lewes River 
Group (Colpron et al., 2002, 2003). Boswell assemblage 
rocks consist of basalt and limestone of the Late Devonian 
to Early Mississippian Moose formation and volcanic, 
volcaniclastic and sedimentary rocks of the Boswell 
formation (Simard, 2003; Fig. 2). 

North of the Tatchun batholith (Fig. 2), metasedimentary 
rocks of the Snowcap complex, the oldest unit in 
Yukon-Tanana Terrane (Devonian and older), structurally 
overlie greenstone of the Moose formation along the 
Needlerock thrust (Fig. 2). Along Robert Campbell 
Highway, the Boswell assemblage and Yukon-Tanana 
Terrane are juxtaposed along the Big Salmon fault, a strike-
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modified from Hart (1997) to accommodate revisions to 

the Laberge Group stratigraphy suggested by Lowey 
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slip fault with up to 56 km of Late Cretaceous(?) dextral 
displacement (Colpron et al., 2003; Fig. 2). 

The Yukon-Tanana Terrane comprises a metasedimentary 
basement complex (Snowcap complex), intruded by 
Mississippian plutons, and unconformably overlain by 
Carboniferous arc-derived metaclastic rocks (Drury and 
Pelmac formations) and mafic metavolcanic rocks 
(Little Salmon formation). To the east, Yukon-Tanana 
Terrane is juxtaposed with Cassiar Terrane along the 
Tummel fault, a ~3 km-wide zone of imbricate fault slices 
of Slide Mountain Terrane (chert, basalt, serpentinite) and 
synorogenic metaclastic rocks (Colpron et al., 2005; 
Fig. 2). 

Rocks of Yukon-Tanana Terrane, Boswell assemblage and 
Lewes River Group are intruded by large Early Jurassic 
batholiths (Fig. 2) that are, in part, coeval with deposition 
of Laberge Group strata in the Whitehorse Trough. 
Cretaceous plutons intrude rocks of Stikinia near 
Whitehorse, but are absent from the northern Whitehorse 
Trough (Gordey and Makepeace, 2001). In this region, 
Cretaceous plutons are mainly restricted to Yukon-Tanana 
and Cassiar terranes (Fig. 2). 

Rocks of the northern Whitehorse Trough are extensively 
faulted and folded by broad, open to southwest-vergent 
folds (Fig. 2; Tempelman-Kluit, 1984). The overall 
structure is that of a broad anticlinorium, occupied by 
strata of the Lewes River Group, flanked by two 
synclinoria of the Laberge Group. These structures are 
dissected by an array of brittle faults with a complex 
kinematic history. 

Basalt and agglomerate of the Upper Cretaceous 
Carmacks Group overlie all terranes along the transect 
area (Fig. 2; Tempelman-Kluit, 1984). The Carmacks 
Group occurs as a series of erosional remnants, along the 
survey transect, which are typically only a few hundred 
metres thick, with the thickest accumulation (~800 m) 
west of Carmacks. The Carmacks Group clearly postdates 
some of the major faults in the area (Tadru and Braeburn 
faults, Fig. 2), but is possibly affected by late brittle 
deformation along some of the other faults 
(e.g., Big Salmon, Hoochekoo and Miller faults). 

SurVEY dESiGn

The seismic survey was designed to transect three distinct 
geological terranes: the Yukon-Tanana Terrane, the 
Boswell assemblage, and Stikinia, which envelop the 
Whitehorse Trough. Two regional profiles were acquired 
in the winter, 2004: Line GSC-001-04 (Line 1) is a 117-km 

east-west transect across the northern Whitehorse Trough, 
along the Robert Campbell Highway, beginning at the 
midpoint of Little Salmon Lake, and ending 13 km west of 
the town of Carmacks on Mt. Nansen road (Fig. 2). This 
line transects all terranes, generally at a high angle to the 
regional structures. It starts well to the east of the 
Whitehorse Trough in order to test whether Mesozoic 
strata extend in the subsurface beneath Paleozoic rocks 
of the Boswell assemblage and Yukon-Tanana Terrane. 
Line GSC-002-04 (Line 2) is 53 km in length, starting 
35 km north of Carmacks and ending 18 km south of the 
town, entirely along the western edge of the Whitehorse 
Trough on the North Klondike Highway (Fig. 2). A 
2.64-km section on the North Klondike Highway is 
common to both lines. Data recording parameters were 
chosen to obtain optimal resolution in the upper 5 km, 
while allowing sufficient depth penetration to image 
crustal-scale features. 

rECordinG paraMEtErS

During the survey, standard operating procedures were 
followed which precluded vibrating in the immediate 
vicinity of buildings, wells or other infrastructure. While 
traversing the town of Carmacks, data receivers were 
deployed to record reflections from vibration points 
located outside of town, but no vibration operations were 
conducted through the town. This expectantly reduced 
data quality somewhat near Carmacks. However, due to 
low population density this approach was necessary only 
once per line and did not affect the overall data 
acquisition integrity. Acquisition parameters are 
summarized in Table 1, with Table 2 providing the 
sequence of processes applied to obtain the seismic 
images presented here. In addition to the processes listed 
in Table 2, tests of prestack partial migration (or dip-
moveout processing) and prestack time migration were 
made but without significant improvement of the seismic 
images.

prEliMinarY intErprEtation

The preliminary interpretation of the seismic reflection 
profiles presented here focuses on the shallow structures 
of the Whitehorse Trough (upper 3 seconds (s); Fig. 4). 
An example of the migrated seismic data for the centre of 
the Whitehorse Trough is shown in Figure 5, overlain with 
a preliminary geological interpretation. Summary 
interpretation schematics for Lines 1 and 2 are included in 
Figure 4. 
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Interpretation of the seismic lines is complicated by the 
variable orientation of the profiles relative to the regional 
strike of the regional geology in this area which is 
approximately southeast. Recognizing this, it is important 
to keep in mind that the dips observed on the seismic 
sections are apparent dips and that changes in apparent 
attitude may in some cases be caused by changes in the 
direction of the seismic lines.

The interpretations presented in Figure 4 hinge on 
observations made along the central part of Line 1 (Fig. 5) 
where the seismic data correlate very well with observed 
surface geology. A seismically defined antiform 
corresponds with a geologically mapped anticline, and a 
highly reflective package projects up-dip to exposed 
Upper Triassic limestone of the Lewes River Group at 
Eagle’s Nest bluff. The reflection fabrics observed in the 
upper 5-6 km are interpreted as primarily representing 
original stratigraphic layering as rocks of the Whitehorse 
Trough have experienced relatively low-grade 
metamorphism. Based on correlation with outcrops 
(along the central part of Line 1 and the northern end of 
Line 2), and the more diverse composition of the Lewes 
River Group relative to the Laberge Group, as a general 
rule, the zones of higher subsurface reflectivity are 
interpreted as Lewes River Group (Fig. 5). The shallow 
seismic images depict broad antiformal and synformal 
structures punctuated by relatively steep faults where 
reflectivity is abruptly truncated (e.g., Teslin fault in Fig. 5). 
The vertical extent of interpreted strata of Lewes River 
and Laberge groups attains a maximum thickness of 
6000-7000 m toward the west side of the Trough, with 
interpreted Laberge Group accounting for up to ~3000 m 
of this total. Maximum vertical relief is ~4000 m as 
indicated by the amplitude of the interpreted fold 
structures, with less structural relief observed along-strike 
on Line 2 (Fig. 4). 

Several prominent fault zones within or along the 
boundaries of the Whitehorse Trough are crossed along 
Lines 1 and 2, including the Tadru, Teslin, Hoochekoo and 
Braeburn faults. These faults have variable expression on 
the seismic sections. The Tadru fault does not have a 
distinct shallow expression, but the interpreted location of 
this fault in the seismic data is based primarily on the 
surface projection of a prominent east-dipping zone of 
reflectivity that can be followed to mid-crustal depths (not 
shown). The Teslin fault is identified by truncation of a 
prominent package of west-dipping reflections (Fig. 5), 
defining a relatively steep fault trace to a two-way 
traveltime of ~2 s. At greater depth, it is interpreted to dip 

Field crew

Date

Clients

 
Instrumentation

Traces/record

Record length

Sample rate

Anti-alias filter

Nominal CDP fold

Kinetex Inc., Calgary.

February-April, 2004

Geological Survey of Canada/
Yukon Geological Survey

I/O Vectorseis® System IV

600

33 seconds (extended correlation)

2 ms

½ Nyquist

100

Vibroseis source parameters

Source type

Source array

Pattern length

VP interval

# sweeps/VP

Sweep length

Sweep type

Sweep frequency

4 Vibrators (IVI Y2400 Buggy Mount)

4 Vibrators in-line

100 m

60 m

6 or 10 (with 3 vibrators operational)

24 seconds

Linear upsweep

10-84 Hz

Receiver array parameters

Group interval

Geophones/group

20 m

1 (3C Sensor Buried)

Table 1. Data acquisition parameters

Data 
preparation

Diversity stacking of unstacked sweeps

Vibroseis self-tapering extended correlation

Crooked-line geometry application

First breaks manually picked

Pre-stack 
processing

AGC: 500ms mean window

Top mute application

Velocity analysis: semblance and constant 
velocity stack

Refraction statics correction: final datum 
elevation: 750 m, replacement velocity: 
4800 m/s

Normal moveout correction: Stretch mute 
tolerance of 50%

Residual statics correction

CDP Stack: Method for trace summing: 
mean

Post-stack 
processing

Phase-shift migration

Semblance smoothing

Amplitude threshold applied 
(values < 1.5*RMS are set to zero)

Table 2. Data processing flow
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Figure 5. Preliminary interpretation of migrated seismic data from the central segment of Line 1. Indicated along the top 

of the plot are the following: 1) the distribution of rock types as mapped at the surface (patterns correspond to legend in 

Fig. 4); 2) apparent dip of bedding measured on outcrops near the profile (solid bars); 3) orientation of the seismic line 

with respect to regional strike of structures in Whitehorse Trough (~315°N); 4) surface location of major faults; 5) surface 

projection of an anticlinal structure mapped north of the profile (Tempelman-Kluit, 1984); and 6) location of Eagle’s Nest 

Bluff, where Upper Triassic limestone of the Lewes River Group is exposed. Note that the road takes a 90° bend near the 

bluff (Fig. 2). Grey-shaded area in subsurface shows distribution of interpreted Lewes River Group extrapolated from 

surface exposure. The approximate depth scale indicated on the right vertical axis assumes a mean subsurface seismic 

velocity of 5000 m/s. TWT = two-way traveltime (in seconds). 

Figure 4. Schematic interpretations for Lines 1 and 2. The surface locations of major faults are indicated. Also shown are 

the locations of the town of Carmacks, Eagle’s Nest Bluff and point of intersection of the two lines. Detailed image for the 

central part of Line 1 is shown in Figure 5. “HF” on Line 2 points to subsurface expression of the Hoochekoo fault. Note 

that the depth of the bottom of the Lewes River Group along Line 2 is uncertain, although it is shown continuing to 

7500 m depth. TWT = two-way traveltime (in seconds).
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eastward to at least the middle crust and perhaps deeper 
(Fig. 4). The interpreted subsurface trajectory of the 
Hoochekoo fault is based primarily on the image from 
Line 2 (not shown) where a prominent zone of reflectivity 
projects at the surface to near the location of the fault as 
indicated by the surface geology (Figs. 2, 4). This fault 
extends to 2 s two-way traveltime where it appears to 
sole out. It should be noted that the seismic interpretation 
of Line 2 suggests that the surface location of the 
Hoochekoo fault is actually several kilometres south of its 
currently mapped position (Fig. 4). The nature of the 
Braeburn fault is not obvious in the seismic data, due 
largely to the crooked nature of the profiles where this 
fault is crossed.

SuMMarY
Preliminary images from the Whitehorse Trough seismic 
survey provide a first look at the crustal architecture of 
the region. Preliminary interpretation of the shallow 
seismic images indicates broad antiformal and synformal 
structures truncated by relatively steep faults. Interpreted 
strata of the Lewes River and Laberge groups attain a 
maximum thickness of 6000-7000 m toward the west side 
of the Trough, with interpreted Laberge Group accounting 
for up to ~3000 m of this total. Maximum vertical relief of 
the structures is ~4000 m. Interpreted results will be 
studied against current geological models to assess the 
hydrocarbon potential of the Whitehorse Trough and 
advance the understanding of the tectonic history and 
structural framework of central Yukon.
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