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ABSTRACT

Reconnaissance geological mapping in the Coal River map area of southeastern Yukon investigated
several small mid-Cretaceous plutons. The intrusions are composed of unfoliated or incipiently
foliated, fine to coarse-grained, equigranular and porphyritic, biotite £ hornblende quartz
monzodiorite to granodiorite. They are metaluminous to peraluminous and have reduced to oxidized
geochemical characteristics. The composition of selected samples is consistent with magma formation
from partial melting of infracrustal source rocks.

U-Pb ages were obtained for nine plutons from five or six zircon single-grain analyses by the
isotope dilution thermal ionization mass spectrometry method with chemical abrasion (CA-TIMS).
All interpreted ages are concordant within statistical uncertainty. The plutons range in age from
99.80+0.03 to 97.70£0.03 Ma. Given the primarily unfoliated nature of the plutons, contractional,
fabric-forming deformation within the Cordilleran orogeny must therefore have largely ceased at the
present level of exposure in the Coal River area by the time of intrusion (ca. 98 Ma).

The ages and compositions of the plutons in Coal River map area are consistent with their being part
of the Tay River plutonic suite, a northwest-trending belt of coeval and compositionally similar plutons
and local volcanic rocks (South Fork volcanic suite) that, when augmented by the addition of the Coal
River plutons, extends approximately 465 km with a width of up to 150 km.

" lee.pigage@gov.yk.ca

YUKON EXPLORATION AND GEOLOGY 2013 169



YukoN GEOLOGICAL RESEARCH

INTRODUCTION

Several metallogenic belts of mid to late-Cretaceous
intrusions extend from central Alaska across to southeast
Yukon. Informally termed the Tintina gold belt (Smith,
2000), these intrusive belts have been a major impetus for
recent exploration in Alaska and Yukon. Intrusions in the
Coal River map area (NTS 95D) of southeastern Yukon
(Fig. 1) define the most southern exposures of these mid
to Late Cretaceous felsic plutons (Northern Cordilleran

A

mid-Cretaceous plutonic province of Hart et al., 2004)
northeast of the Tintina fault in Yukon. The intrusions have
been classified primarily in terms of age and composition
(Pigage and Anderson, 1985; Gordey and Anderson,
1993; Mortensen et al,, 1995; 2000; Hart et al., 2004;
Heffernan, 2004; Rasmussen et al.,, 2007; Rasmussen,
2013); these attempts have produced a complex and
partially conflicting terminology that includes the Selwyn,
Tombstone, Mayo, Tungsten, Tay River, transitional
Tungsten-Tay River, Anvil, and Hyland suites.
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Figure 1. Cretaceous plutonic rocks in south and central Yukon. The extent of the informal Tintina gold belt
(hachured in inset map) is modified from Smith (2000). Distribution of terranes is from Colpron and Nelson (2011)
and intrusions from Gordey and Makepeace (2003). Locations of figures 2 (Coal River map area shaded in pink)
and 12 are indicated. Abbreviations are: Y=Yukon; NWT=Northwest Territories; BC=British Columbia.
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Bedrock geological mapping (1:250000 scale) in 2009 and
2010 in the Coal River map area identified several small,
previously unrecognized granitoid intrusions. In this paper
we document the compositions and ages of many of these
intrusions and use these new data to assign them to one of
the regionally defined age/composition belts.

REGIONAL GEOLOGY

Southeastern Yukon is mainly underlain by a succession
of Proterozoic to upper Eocene sedimentary rocks with

a combined thickness of more than 14000 m (Gabrielse
and Blusson, 1969; Long and Sweet, 1994; Pigage, 2004;
2006; 2008; 2009; Pigage et al., 2011). Coal River map
area, centered 150 km northeast of the town of Watson
Lake, contains Proterozoic siliciclastic rocks deposited
during early rifting of the supercontinent Rodinia, lower
Paleozoic carbonate strata of the Macdonald platform and
marine shales of Selwyn basin, constituting the west-facing,
passive continental miogeocline of Laurentia (Cecile et al.,
1997). Upper Paleozoic and lower Mesozoic siliciclastic
and carbonate rocks were deposited in a shallow marine

basin. Significant depositional hiatuses or subsequent
erosion occurred in southeast Yukon during this time
interval. Upper Eocene to Oligocene sedimentary rocks
occur in a north-trending, extensional, half-graben (Pigage,
2008).

The age of contractional deformation and metamorphism
is poorly constrained between early Triassic and late
Eocene (Pigage, 2008; 2009), broadly correlative with
the Cordilleran orogeny (Nelson and Colpron, 2007). It
is manifested as northwest to northeast-trending, east-
verging, asymmetric folds and reverse faults (Fig. 2).
Metamorphic grade ranges from muscovite-chlorite to
biotite-staurolite-garnet zones; with metamorphic grade
generally decreasing from west to east. Extensional faults
offset the late Eocene-Oligocene sediments, suggesting
that at least some movement on normal faults is post-
Oligocene.

Cretaceous and younger granitoid plutons intrude both
the basinal marine siliciclastic rocks and the platformal
carbonate rocks of southeast Yukon.

PREVIOUS WORK
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completed the first systematic
regional mapping program in the
Coal River area (based on fieldwork
completed in 1967). Subsequent
mapping occurred mainly in map
areas farther north (e.g., Gabrielse
et al.,, 1973). Pigage and Anderson
(1985) and Gordey and Anderson
(1993) provided an early framework
for defining igneous suites in
Selwyn basin and Mackenzie

platform of central Yukon. All
intrusions were considered to be
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Figure 2. Locations of samples (coordinates in Table 1) with respect to bedrock
geology of northern Coal River map area, modified from Pigage et al. (2011).
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mid-Cretaceous plutonic suites and
belts extending across Alaska and
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Yukon; intrusions in southeast Yukon were assigned to the
Anvil-Hyland-Cassiar belt. Regional studies by Heffernan
(2004), Rasmussen et al. (2007), and Rasmussen (2013)
included previously-mapped intrusions in the northeastern
corner of the Coal River map area and completed
petrological, geochemical, and geochronological analyses.

They correlated southeastern Yukon intrusions with several

plutonic suites identified in central Yukon, including Tay
River, Tombstone, Mayo, and Tungsten suites.

PLUTONIC ROCKS IN COAL RIVER
MAP AREA

Field work to update the earlier reconnaissance geology
was completed in 2009 and 2010 (Pigage et al., 2011).
Several plutons intruding Neoproterozoic through
Mississippian carbonate and siliciclastic strata in northern
Coal River map area were investigated. All are poorly to
moderately exposed and inferred from the extents of their
positive aeromagnetic response to be subcircular, ranging
from 0.3 to 8.4 km in diameter (Fig. 3).

The exposed plutonic rocks are grey-weathering and
unfoliated to slightly foliated. They range in grain size
and texture from fine to coarse-grained and equigranular
to (dominantly) porphyritic. Biotitexhornblende are the
predominant primary mafic minerals.

Many of the intrusions are weakly to strongly altered, with
chlorite replacing hornblende and biotite and very fine
sericite replacing feldspar. Epidote and calcite are locally
abundant within the matrix.

The Main pluton is unique in containing primary
muscovite. It is a medium-grained, equigranular, foliated,
medium gray, plagioclase-quartz-muscovite-tourmaline-
garnet granitoid rock.

Details of their full extent, contact relationships and
metamorphic effects such as hornfelsing, skarn formation,
or alteration remain obscure because the intrusions are
poorly exposed.

Average magnetic susceptibility readings (MS) for the
various plutons range from 0 to 17.8 (107 Sl units; Table
1). The plutons with high MS values contain fine-grained
magnetite and correlate closely with large positive
anomalies in the first vertical derivative of the regional
aeromagnetic field (Fig. 3). Aeromagnetic anomalies
associated with several plutons (e.g., Jorgensen, Last2)
do not overlap with the surface extent of the plutons.

In this case the anomalies may represent pyrrhotite
hornfels, magnetite skarns, or a magnetic portion of the
pluton extending into the subsurface. The small and sub-
circular aeromagnetic anomalies provide a proxy for
the size and shape of the poorly exposed plutons and/

Coarse-grained, equigranular variants
locally have anhedral to subhedral
K-feldspar grains. Porphyritic variants
are unfoliated and typically crowded
with equant plagioclase phenocrysts
up to 5 mm across in a fine-grained,
grey matrix. Hornblende, biotite,
and minor quartz also occur as
phenocrysts in the porphyritic
phases. Some of the intrusions are
compositionally variable, but internal
contacts were not mapped because
visits were reconnaissance only.
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Figure 3. First vertical derivative of regional aeromagnetic survey, intrusions in Coal
River map area are labeled and described in this report. The age labels for the
dated plutons have an analytical error of 2 sigma, as described in the text.
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or hornfelsed sediments adjacent to the intrusions. Steep
intrusive contacts are suggested by the rapid lateral
change in magnetic intensity. Areas with similar positive
aeromagnetic patterns in Figure 3 are inferred to mark
unmapped or buried intrusions because sedimentary rocks
in the map area have low magnetic susceptibilities

(MS <1 x 1073 Sl units).

A north to northeast-trending, variable but generally
positive aeromagnetic anomaly in the western part of the
map area (Fig. 3) incorporates the Gabe, Main and Spork
plutons. This linear trend is generally coincident with a
topographic ridge exposing Neoproterozoic pelites with
biotite £ garnet £ staurolite metamorphic assemblages, in
contrast to the regional chlorite-muscovite metamorphic
grade. Samples from the Gabe and Main intrusions

(see Table 1), higher grade metamorphic rocks, and
lower grade sedimentary rocks all have weak magnetic
susceptibility (<1 x 102 Sl units). We suggest that this
magnetic anomaly trend is likely related to intrusive rocks
at depth, either directly as intrusion phases containing
magnetite, or indirectly as associated pyrrhotite-bearing
hornfels.

Another linear positive magnetic anomaly extends easterly
from the Gusty pluton (Fig. 3) to beyond the eastern
boundary of the map area where it terminates with a
magnetite-bearing, Eocene biotite syenite (described

by Pigage, 2009). Scant rock exposure along this
aeromagnetic trend are siliciclastic and carbonate rock
with little to no magnetic expression. Beneath these strata
may be a linear array of unexposed granitoid plutons and
associated hornfels. A similar east-trending “string” of
magnetic plutons is exposed between the Last1/Last2 and
Lookout/Powers plutons.

GEOCHEMISTRY

Thirteen whole rock compositions were determined for 12
plutons within the Coal River map area (Fig 2). Samples
are predominantly granodiorite with minor granite, quartz
monzodiorite and quartz diorite, based on the proportions
of normative minerals (Table 1; Fig. 4a). The common
porphyritic texture with a fine-grained, locally extensively
altered matrix precludes systematic use of modal
compositions (Streckeisen, 1976) to classify many of the
intrusions. Samples were examined in thin section; offcuts
from the thin sections were etched with HF and stained
with sodium cobaltinitrite to estimate the occurrence of
K-feldspar (see rock sample descriptions in the Appendix).
Rock names were checked where appropriate against

YUKON EXPLORATION AND GEOLOGY 2013

approximate mineral modes of stained samples from the
particular pluton. Using the MALI classification scheme
discussed by Frost et al. (2001), the plutons fall within the
calc-alkalic suite (Fig. 4b).

SiO, (Figs. 5 and 6) for most of the intrusions varies from
approximately 60 to 68%; only one sample is mafic
(51%), and only the Main pluton is strongly felsic (74%).
The ALLO,, MgO, Fe,O," (total iron as Fe,0,), and CaO
contents decrease approximately linearly with increasing
SiO,. In contrast, K,O increases with increasing SiO,
and Na,O, TiO,, and P,O, do not show any systematic
variation with SiO.,,. Trace elements and rare earth
elements (Fig. 6) are more scattered, with only V and Sc
illustrating linear variation with increasing SiO,.

Using Shand'’s index (Fig. 7) the intrusion samples are
metaluminous to slightly peraluminous; only the Main
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Figure 4. (a) Compositional classification of igneous
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compositional plot (Frost et al., 2001). The Main intrusion is
indicated with a triangle; other intrusions are indicated with
circles.
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Figure 5. Major element Harker diagrams for intrusion samples.
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sample is clearly peraluminous. Porphyritic and magnetic
samples do not display strong separation in Figure 7. The
metaluminous character is fully consistent with modal
occurrence of biotite and hornblende as the primary mafic
minerals. Most of the samples also straddle the magnetite-
ilmenite boundary (Fig. 8); only the sample of the Kostiuk
pluton plots clearly within the ilmenite series domain,

and Main pluton within the magnetite series domain. For
the Kostiuk sample, classification in the ilmenite series

is problematic given its very high measured magnetic
susceptibility which implies large modal magnetite. No
systematic correlation seems to exist between magnetic
susceptibility and molar Al content or ferric/ferrous

iron ratios. Similarly no apparent relation seems to exist
between oxidation ratio in Figure 8 and porphyritic or
equigranular texture.

Intrusion compositions normalized to primitive mantle
are enriched in all elements except for V and Sc (Fig. 9a).
Many of the samples have pronounced depletions in Nb
and Ti and a slight depletion in Eu. Intrusion compositions
normalized to upper continental crust have element
ratios close to 1 (Fig 9b). Elements plotted along the
x-axis in both figures are considered immobile under low
temperature conditions (Jenner 1996), which is relevant
considering the alteration noted in many of the samples.
Many of these elements have high field strengths and are
incompatible with typical differentiation processes; they
are therefore thought to be indicative of their abundance
in the source rocks. Normalized concentrations for the
Main pluton in Figure 9a,b are significantly different from

3 T T T T T T T T | T T T T
- Metaluminous \;ae'\,\ Peraluminous’|
- 7] -
S
i QO‘\‘:L N \,00\(\0\) ]
— o © & @ .
< L N 0 /AT W ° 3¢
& 2 Cfb‘\ f‘ \Qc/ 05!\\
z [ =N .A“f/ ¥ i
~ e(\ X || .
E: )O‘go\)éde*'\ wa\(\
L Q i
N i e® ) i
2
E | Peralkalin |
0 | | | | | | | | | | | | |
05 1.0 1.5 2.0
molar Al / (Ca+Na+K) N
£ 3
= <
2 gx magnetic
. . . S 8
Figure 7. Coal River plutonic S 3 susceptibiliy
samples plotted on Shand index 0 e <10
diagram (Manier and Piccoli, m 1.0-100
1989). A A >100
178

10F T I T T T T I =
= . . o .. -
< F Magnetite series N
e O
- - Qo -
z AP
L N _]
% 1 E o 2 G\)‘E: dée‘ E
w = VA | a0° ~ 3
s L ® 004K ¢ .
Q B = o 2% o° ]
[} » A o™ O\N X -
w Qoﬂ\(‘ RO o .e
e ° W o E
= RS 3
- S _
C ) ) AN® ]
- lImenite series .
01 1 | 1 1 1 1
40 50 60 70 80
SiO2 (wt. %)
o 8
. . . £ 2
>~ O
Figure 8. Coal Rlvef pl.utonllc £ & magnetic
samples on magnetite-ilmenite S §  susceptibility
intrusive fields as illustrated in o e <10
Hart et al. (2004). m 1.0-700
A A >10.0
é]1000E|||||||||||||||||||||§
Q@
=
©
=
(0]
2
E
a
=
[8]
o
¥
TE E
E CHONDRITE E
oot 00
ThNb La Ce Pr Nd Zr HfSmEuGd Ti TbDy Y Er Yb Lu Al V Sc
[b 10 T T T T T T T T T T T T T T T T T T T T T

0.1

Rock / Upper Continental Crust

gofb—L 1 o0y 1
ThNbLaCe PrNd Zr Hf SmEuGd Ti TbDy Y Er Yb Lu Al Sc V

Figure 9. Intrusion compositions normalized to: (a) primitive
mantle composition (from Kerrich and Wyman, 1996);

(b) upper continental crust composition (from MclLennan,
2001). Triangle for sample T0TOAO019 (Main intrusion);
circles for all other samples.

YUKON EXPLORATION AND GEOLOGY 2013



PIGAGE ET AL. - GEOCHEMISTRY & U-PB ZIRCON GEOCHRONOLOGY, MID-CRETACEOUS TAY RIVER SUITE INTRUSIONS

the other intrusions, raising the possibility that the Main
pluton is not part of the same plutonic suite as the other
intrusive bodies.

In tectonic discriminant diagrams (Fig. 10a,b,c; Pearce et
al., 1984) the intrusions are consistent with syn-collisional
(S-type) and volcanic arc (I-type) granite, but the sample
from the Main pluton plots in the field for within-plate
granite. Most intrusions plot within the volcanic arc or
I-type granite (Fig. 10c); however Rb is known to be
mobile under many conditions, and the significance of this
discriminant is suspect.

In summary, all of the intrusions except for the Main
pluton form a chemically coherent plutonic suite. The
plutons are generally weakly altered, but immobile
elements can be used to determine their chemical affinity.
They range from metaluminous to slightly peraluminous,
oxidizing to reducing, and plot predominantly within the
tectonic discriminant field of volcanic arc-related (or I-type)
granites. This chemistry supports the presence of biotite
and hornblende as the primary mafic minerals and the
general absence of muscovite as a primary mineral. The
mineralogy and chemistry of the Main pluton is distinct
from the other intrusions. Either it is a more extensively
evolved member of this plutonic suite, or it belongs to a
different plutonic suite.

U-PB GEOCHRONOLOGY METHODS AND
RESULTS

U-Pb ages (Table 2) for nine samples were obtained at
Boise State University by the chemical abrasion isotope
dilution thermal ionization mass spectrometry (CA ID-
TIMS) method from analyses of single zircon grains or
fragments of grains following methods described in
Pigage et al. (2012) as modified from Mattinson (2005).
Cathodoluminescent images were used to select zircon
grains for dating, based upon zoning patterns and lack of
apparent inherited cores (Appendix images A1-A9).

From each sample five or six grains were dated (Table 2;
Appendix Figs. A1-A9). Weighted mean 2°°Pb/238U ages for
each sample were calculated from equivalent ages using
[soplot 3.0 (Ludwig, 2003) and are interpreted as being the
igneous crystallization ages for these plutons. U-Pb dates
and uncertainties were calculated using the algorithms

of Schmitz and Schoene (2007), 2°U/?**Pb of 77.93 and
23U/%°U of 1.007066 for the Boise State University tracer
solution, and U decay constants recommended by Jaffey
etal (1971). 2°Pb/?38U ratios and dates were corrected
for initial 2°Th disequilibrium using a Th/U[magmal]=3
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using the algorithms of Crowley et al. (2007), resulting
in an increase in the 2°°Pb/%®U dates of ~0.09 Ma. All
common Pb in analyses was attributed to laboratory blank
and subtracted based on the measured laboratory Pb
isotopic composition and associated uncertainty. U blanks
are difficult to precisely measure, but are estimated at 0.07

ps.

Errors are the internal errors given at the 2 sigma
confidence interval based on analytical uncertainties

only, including counting statistics, subtraction of tracer
solution, and blank and initial common Pb subtraction.
These errors should be considered when comparing our
dates with 2°°Pb/?38U dates from other laboratories that
used the same Boise State University tracer solution or a
tracer solution that was cross-calibrated using EARTHTIME
gravimetric standards. When comparing our dates with
those derived from other geochronological methods using
the U-Pb decay scheme (e.g., laser ablation ICP-MS), a
systematic uncertainty in the tracer calibration should

be added to the internal error in quadrature; this error is
£0.10 Ma for all samples, resulting in a 2 sigma error of
£0.13 Ma. When comparing our dates with those derived
from other decay schemes (e.g., *°Ar/*°Ar, '¥Re'¥Os),
systematic uncertainties in the tracer calibration and 23U
decay constant (Jaffey et al., 1971) should be added to the
internal error in quadrature. This error is = 0.15 Ma for all
samples, resulting in a combined 2 sigma error of £0.18
Ma.

The 2°°Pb/238U weighted mean ages for zircon grains
from the nine plutons range from 99.79+0.03 Ma to
97.70£0.03 Ma (Fig. 11). One zircon grain from the Gusty
Lake sample (grain z6, Table 2) yielded an older date of
100.60+0.07 Ma and it was not used in calculating the
weighted mean. Also, one grain from the Lookout sample
(grain z4; Table 2) that yielded an older, discordant date
of 161 Ma (Table 2) was not used in the calculation of
the weighted mean date. Unfortunately the sample from
the Main stock (sample10TOAO019) yielded such poor
quality zircon that isotopic dating was not attempted.
The agreement of the high-precision single-grain dates
within each sample and the simple CL zoning patterns
(cf. Appendix) indicate this range reflects the timing of
intrusion rather than Pb loss or inheritance.

The age range of nine plutons spread across a

100 x 30 km area is only 2.1 Ma. No systematic change in
age across the map is apparent (Fig. 3). The three plutons
(Jorgensen, Caribou, Lookout) in the northeast corner of
the map area have an age spread of less than 0.1 Ma.
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Figure 11. Plot of new 2°Pb/?®U dates from single zircon
grains from plutons in Coal River map area. Plotted with
Isoplot 3.0 (Ludwig, 2003). Solid horizontal bars are 2 sigma
internal errors. Weighted mean date is represented by the
grey box behind the error bars.

DISCUSSION

Our geochronological results are comparable to those
completed by Heffernan (2004), Rasmussen et al. (2007),
and Rasmussen (2013) in the region. Previous U-Pb ID-
TIMS dating of the Patterson pluton (Fig. 3) used a single,
abraded fraction of poor to moderate quality zircon

to interpret an age of 97.5£0.5 Ma (Heffernan, 2004).
Discordant dates from other fractions were deemed the
result of inheritance. ID-TIMS dating of two fractions of
monazite from a felsic dyke near the Patterson pluton
yielded an age of 98.3+1.6 Ma (Heffernan, 2004). These
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relatively imprecise dates complement ages from the same
area reported here. U-Pb dating of zircon from the Powers
pluton by the laser ablation inductively coupled plasma
mass spectrometry (LA-ICP-MS) method yielded an age of
98.2+ 1.3 Ma (Rasmussen et al., 2007). This date is similar
to those from the same area reported here. U-Pb dating
of zircon from the Jorgensen pluton by Rasmussen et al.
(2007, sample KR-05-08, mistakenly listed in their Table 2
as the Powers pluton) yielded an age of 102.4+2.3 Ma; a
more recent re-analysis of this sample resulted in an age
of 95.9+0.8 Ma (Rasmussen, 2013). “°Ar 3°Ar dating of
biotite from this sample yielded an age of 101.4£0.6 Ma
(Rasmussen et al., 2007). These ages do not agree with
the age of 98.35£0.03 Ma from the Jorgensen pluton
reported here, which is a robust age based on six high-
precision CA-TIMS ages.

With the exception of the undated Main pluton, the similar
chemistry and crystallization ages for all plutons dated

in this study indicate they constitute a single plutonic

suite. The compositions, mineralogy and crystallization
ages of the dated Coal River intrusions support their
logical inclusion in the Tay River plutonic suite as defined
by Mortensen et al. (2000) and discussed further by
Heffernan (2004), Rasmussen et al. (2007), and Rasmussen
(2013).

Heffernan (2004) and Rasmussen et al. (2007) reported
whole rock geochemistry for the Patterson, Jorgensen
and Power plutons. Trace element plots normalized to
primitive mantle for their samples fall within the envelope
of plutonic samples reported in this study. High initial
87Sr/%Sr and epsilon Nd (eNd) values (Heffernan, 2004)
and '®0O signatures (Rasmussen and Arehart, 2010) for
these samples are consistent with the parental melts for
the intrusions being sourced primarily, if not completely,
from crustal rocks. Our element plots normalized to
upper continental crust (Fig. 9b) are fully consistent with
the sampled intrusions arising from partial melting of
continental crust.

The overall limited geochemical variation in the granitoid
samples implies a homogenous source material for the
intrusions. Trends shown by the Harker diagrams reflect a
liquid line of descent from a single magmatic source, with
the possible exception of the Main pluton. The petrology
of the samples, their metaluminous character and
distribution on the tectonic discriminant diagrams further
imply that the intrusions correlate best with I-type granites.
For similar reasons Rasmussen (2013) considered these
intrusions to be sourced from a homogenous, infracrustal
source.

YUKON EXPLORATION AND GEOLOGY 2013

Immediately north of the Coal River map area coeval Tay
River suite intrusions (including the Mount Kostiuk pluton,
Coal River batholith, Spork pluton, and Ivo-Salivo pluton)
are more extensively exposed, and not circular in plan
(Heffernan, 2004; Rasmussen et al., 2007; Fig. 12).
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Figure 12. Cretaceous intrusions in southeast Yukon and
southwest Northwest Territories superimposed on the
distribution of terranes and igneous bodies (from Colpron
and Nelson, 2011; Gordey and Makepeace, 2003). Filled
circles are ages from Heffernan (2004); filled squares are
ages from Rasmussen et al. (2007); filled triangles are ages
reported here. Error limits on ages from this paper are +2
sigma, including analytical error and uncertainty in the tracer
calibration. Large plutons of the Anvil suite indicated by the
cross pattern; Tay River plutonic suite denoted with random
single line pattern (and encircled by the heavy dashed line);
Tombstone plutonic suite indicated with random double
line pattern; intrusions with unknown affiliation indicated
with triangle pattern. NAb: basinal strata of North America;
NAp: platformal strata of North America; Y: Yukon; NWT:
Northwest Territories, BC: British Columbia.
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Crystallization ages for these intrusions are similar

or slightly younger than the ages in our study area
(Heffernan, 2004; Rasmussen et al., 2007; Rasmussen,
2013). This apparent exposure difference has an
approximate easterly orientation and appears to define the
gradational southern edge of Tay River suite intrusions in
Yukon. No apparent fault or plunging fold structures have
been mapped to indicate that the transition from large,
irregular to small, circular plan view exposures might be
related to exposure of different structural levels.

The intrusions are almost entirely unfoliated (in a few
localities incipiently foliated), indicating late syntectonic
to post-tectonic crystallization. The interpreted map
pattern for the slightly foliated Gabe intrusion suggests
that intrusion post-dated significant offset on the reverse,
normal and strike-slip faults traced into the area (Pigage

etal., 2011). Regional fabric-forming deformation at the
exposed structural level therefore ceased before
ca. 98 Ma.

Plutons of the 99-95 Ma Tay River suite occur in a

70-150 km wide belt that extends ~465 km northwest
from the Coal River area in southeast Yukon to northwest
of Faro (Mortensen et al., 2000; Rasmussen, 2013). This
belt is a subset of an arcuate belt of plutons of early and
mid-Cretaceous age (Woodsworth et al., 1991; Mortensen
et al., 1995; 2000; Hart et al., 2004; Rasmussen, 2013) on
the northeast side of Tintina fault (Fig. 13). When the

430 km of dextral offset is restored (Gabrielse et al., 2006),
the aggregate plutonic belt extends westward to include
the Livengood and Fairbanks-Salcha suites in central
Alaska, and southward to link with coeval plutons in the
Pelly and Cassiar mountains of south-central Yukon and
adjacent British Columbia.
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Figure 13. Distribution of Early to mid-Cretaceous plutons and volcanic rocks (from Hart et al.,, 2004a) and their generalized
magmatic belts reflecting geochronology by Rasmussen (2013), Heffernan (2004) and Mortensen et al. (2000). The
approximate locations of plutonic suites are labeled: A = Anvil, C = Cassiar, DR = Dawson Range, F-S = Fairbanks-Salcha,
H = Hyland, M = Mayo, S = Seagull-Thirtymile, Te = Teslin, To = Tombstone, TR = Tay River, Tu = Tungsten,

W = Whitehorse, and Y-T upland = Yukon-Tanana Upland (modified from Rasmussen, 2013, Figure 1.4a).
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The composition and isotopic systematics of the late
Early Cretaceous plutons are consistent with an arc
setting, and the concept of a continental arc and inboard
back-arc is widely accepted (e.g.,, Woodsworth et al.,
1991; Mortensen et al.,, 1995, 2000; Hart et al., 2004;
Rasmussen, 2013). They are interpreted to be the product
of northeastward subduction of the Gravina ocean crust
beneath the northwestward drifting North America
continent in Early and mid-Cretaceous time (Engebretson
et al., 1985; Nelson et al., 2013). Magmatism peaked
within the northern Cordillera between 115 to 100 Ma
with the voluminous intrusion of the Whitehorse-Coffee
Creek suite (arc), and the Cassiar, Anvil and Hyland suites
(back-arc; Hart et al., 2004; Rasmussen, 2013).

Following Early to mid-Cretaceous arc and back-arc
plutonism, mid-Cretaceous magmatism northeast of Tintina
Trench resulted in successive broadly northwest-trending
belts of plutons constituting the Tay River (99-96 Ma),
Tungsten (98-95 Ma), Mayo (98-93 Ma), and Tombstone
(94-89 Ma) plutonic suites and South Fork volcanism
(112-93.7 Ma; Table 5a in Gordey, in press). All of the
suites form convex bands extending easterly from the
Tintina fault and curving to a more southerly trend near
the Yukon-NWT border (Fig. 13). All are east (farther
inboard) of the earlier Anvil and Hyland suite back-arc
intrusions. The locus of plutonism moved east and north
with progressively younger plutonic suites (Rasmussen,
2013). Geochemistry comparison (Rasmussen, 2013)

of the different suites suggests that all but the Tungsten
suite are I-type and formed as partial melts of infracrustal
igneous source rocks. In contrast the Tungsten suite has
been identified as a mixed suite with both S-type and
I-type affinity, depending on location.

The arc magmatism interpretation for these mid-
Cretaceous plutonic suite belts is problematic in that

the northeast-facing subduction zone would have been
located at least 400 km southwest (outboard) of the
present location of the plutons. Rasmussen (2013)
suggested that the occurrence of I-type magmatism
hundreds of kilometres northeast (inboard) from the
subduction trench may have been related to flattening of
the subducting slab, moving the zone of mantle hydration
farther inland. Higher heat flow leading to magma genesis
could have been related to mantle convection around
the descending slab, although slab break-off is unlikely

or possibly occurred later (as indicated by the relative
inhomogeneity of the Tombstone and Tungsten suites).

The termination in a southward direction of the Tay River
suite plutons in the Coal River map area suggests that

YUKON EXPLORATION AND GEOLOGY 2013

the geometry of the subducting slab changed southward,
resulting in displacement or cessation of arc magmatism
along strike to the south.

CONCLUSIONS

Intrusions in the Coal River map area of southeastern
Yukon are predominantly equigranular or porphyritic,
biotite £ hornblende granodiorite with lesser tonalite,
granite quartz monzodiorite and quartz diorite. They

are characterized by a range of magnetic susceptibilities
from 0.0 to 17.8 (103 Sl units), consistent major and

trace element compositions corresponding to magnetite
to ilmenite series intrusions and largely metaluminous

to slightly peraluminous affinities. Their whole rock
geochemical character and age suggests that they belong
to the Tay River plutonic suite (except for the Main pluton)
which was sourced from partial melting of a homogenous,
infracrustal, igneous parent.

Most of the intrusions are approximately subcircular with
steep to vertical intrusive contacts. Regional aeromagnetic
surveys were helpful for locating intrusions in areas of
poor bedrock exposure.

U-Pb CA ID-TIMS zircon crystallization ages from nine
plutons range from 99.79+0.03 to 97.70+£0.03 Ma, a
spread of only 2.1 Ma. The plutons are late syntectonic
to post-tectonic, putting an upper age restriction on
deformation of the Cordilleran orogeny in the Coal River
area at the exposed structural level.

The Tay River plutonic suite in Yukon and Northwest
Territories is part of a northwest-trending belt of relatively
homogeneous plutons that represent an intermediate
phase (in both location and time) of the continental

arc response to subduction and accretion along the
Cordilleran margin.
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APPENDIX

SAMPLE DESCRIPTIONS

GUSTY (SAMPLE GUSTY LAKE)

The sample is an unfoliated, medium to fine-grained,
porphyritic hornblende-biotite tonalite. Euhedral biotite,
hornblende, plagioclase and quartz phenocrysts and
glomerocrysts are disseminated in a fine-grained matrix.
K-feldspar occurs only in the matrix, constituting up to
20% of the matrix.

KOSTIUK (SAMPLE 09RAS062)

The sample is an unfoliated biotite-hornblende-plagioclase-
quartz granodiorite. It is medium grained with a slightly
porphyritic to equigranular texture. Staining suggests that
the matrix contains 30-40% interstitial K-feldspar. Locally

it is extensively altered and contains sericite, epidote and
chlorite.

LAST 2 (SAMPLE 09LP098)

The sample is an unfoliated, porphyritic, plagioclase-
hornblende granodiorite. Subhedral plagioclase
phenocrysts are up to 2 mm across. Rare subrounded and
embayed quartz phenocrysts are also present. The matrix
consists of a fine-grained mixture of opaques, chlorite,
plagioclase, quartz and minor interstitial K-feldspar.

JORGENSEN (SAMPLE 09RAS136)

Texturally the sample is porphyritic with subhedral to
euhedral plagioclase, biotite, hornblende, and rare quartz
phenocrysts in a fine-grained, unfoliated, interstitial matrix.
Compositionally the sample is a quartz monzodiorite.
Very minor K-feldspar occurs only in the matrix. Quartz
phenocrysts are locally embayed. Locally primary minerals
are replaced by epidote, chlorite, sericite and carbonate.

CARIBOU (SAMPLE 09TOA180)

The sample is porphyritic with abundant euhedral to
subhedral phenocrysts of plagioclase, biotite, hornblende,
and minor quartz in a fine-grained, equigranular matrix.
Phenocrysts constitute 50% of the sample. Quartz
phenocrysts are rounded and locally embayed. The sample
is extensively altered with alteration minerals including
sericite, chlorite and epidote. K-feldspar is not present in
the sample.
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LOOKOUT (SAMPLE 09TOA179)

The sample is a porphyritic granodiorite with euhedral to
subhedral biotite and plagioclase phenocrysts in a fine-
grained, light grey matrix. The matrix is a mixture of quartz,
chlorite and sericite. It is extensively altered; plagioclase is
replaced by carbonate, and biotite is replaced by chlorite
and carbonate. K-feldspar was not noted in the sample.

SPORK 1 (SAMPLE 10TOAO014)

The sample is a coarse-grained, slightly foliated, medium
grey, biotite granodiorite. K-feldspar forms large, irregular
grains with well-developed microcline grid twinning. In
some areas K-feldspar grains have a perthitic texture.
The mafic mineral is biotite partially replaced by chlorite-
epidote-sphene aggregates, constituting approximately
15% of the mode.

SPORK 2 (SAMPLE 10TOAO16)

The sample is a coarse-grained, unfoliated, equigranular,
hornblende-biotite quartz diorite. Dark green, subhedral
hornblende is intergrown with lesser biotite. Biotite is
preferentially replaced by chlorite. Minor quartz occurs
as small interstitial grains. K-feldspar is not present, and
plagioclase is not altered.

GABE (SAMPLE 09LP048)

The sample is a slightly foliated, equigranular, coarse-
grained biotite-muscovite granodiorite. Biotite is
intergrown with lesser muscovite; these aggregates partly
to completely enclose euhedral to subhedral epidote.

OUDDER (SAMPLE 09TOA135)

The sample is a medium-grained, equigranular to slightly
porphyritic, biotite-hornblende granodiorite. Plagioclase
forms large subhedral phenocrysts and glomerocrysts in a
matrix of interstitial plagioclase and K-feldspar. The rock is
fresh with no deuteric alteration.

MAIN (SAMPLETOTOAO19)

The sample is a medium-grained, equigranular, foliated,
medium grey, muscovite-tourmaline-garnet granite. The
feldspar is exclusively plagioclase. Subhedral plagioclase
and interstitial quartz constitute approximately 90% of the
mode. Staining reveals very minor, fine-grained, interstitial

K-feldspar.
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25 microns

25 microns

25 microns

Figure A1. Cathodoluminescent(CL) images of zircon grains from Jorgensen intrusion (sample
09RAS136).
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25 microns

Figure A2. CL images of zircon grains from Last 2 intrusion (sample 09LP098).

25 microns

Figure A3. CL images of zircon grains from Gabe intrusion (sample 09LP048).
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25 microns

25 microns

Figure A4. CL images of zircon grains from Kostiuk intrusion (sample 09RAS062).

25 microns

25 microns

Figure A5. CL images of zircon grains from Oudder intrusion (sample 09TOA135).
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25 microns

Figure A6. CL images of zircon grains from Lookout intrusion (sample 09TOA179).

25 microns

25 microns

Figure A7. CL images of zircon grains from Caribou intrusion (sample 09TOA180).
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25 microns

Figure A8. ClL images of zircon grains from Spork 1
intrusion (sample T0TOAO014).

25 microns

Figure A9. CL images of zircon grains from Gusty intrusion (sample Gusty Lake).
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