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ABSTRACT

Six dikes that are closely associated with the Klaza epithermal vein system in the Mt. Nansen district
yield early Late Cretaceous U-Pb zircon ages (78.2-76.3 Ma); this age is similar to that obtained

from the porphyry stock that hosts the Cyprus Cu-Mo-Au porphyry occurrence immediately to the
southeast. These results support the interpretation that epithermal veins in the Mt. Nansen district
are likely genetically related to subvolcanic magmatism. Granodiorite of the Dawson Range batholith
that underlies most of the Klaza property gives a U-Pb zircon age of 107.9£0.3 Ma. These dates
overlap with previously reported mid-Cretaceous U-Pb zircon ages for felsic dikes associated with
the Brown-McDade and related vein and breccia deposits in the Mt. Nansen mine. The new results,
together with regional dating and Pb isotopic data from western Yukon, emphasize the metallogenic
importance of the “early Late Cretaceous” magmatic-hydrothermal event in this region.
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INTRODUCTION

The eastern Dawson Range in west-central Yukon hosts a
wide variety of porphyry, epithermal and related styles of
mineralization, including those in the Sonora Gulch area
as well as the Freegold and Mt. Nansen camps (Fig. 1).
Much of the mineralization in this region is known to be
“early Late” Cretaceous in age and associated with the
Casino plutonic suite (~78-72 Ma; Sonora Gulch, Nucleus,
Revenue, Casino); however, at least some intrusion-
related deposits, such as Antoniuk (Fig. 1), have yielded
unambiguous mid-Cretaceous formation ages (Allan et
al., 2013). In addition, some occurrences, such as the
Bonanza vein swarm in the Prospector Mountain area
(Fig. 1) are spatially and temporally associated with the
“late Late” Cretaceous (71-67 Ma) Prospector Mountain
suite magmatism and deposition of Carmacks Group
volcanic rocks (Allan et al., 2013).

The timing of formation of epithermal vein systems in the
Mt. Nansen camp, including the main “Brown-McDade
cluster” (Brown-McDade, Huestis, Weber, Flex and Dickson
veins; Fig. 2), as well as the extensive area of veining in
the Klaza deposit area to the north (“Klaza cluster”; Fig. 2),
has been problematic. Mortensen et al. (2003) report U-Pb
zircon ages ranging from 107.9+£0.9 Ma to 109.0£0.7 Ma
for northwest-trending quartz-feldspar porphyry dikes that
are closely associated with the veins in the main Brown-
McDade cluster, and, in the absence of any other direct
constraints on the timing of mineralization, concluded that
the veins formed at approximately the same time. Hart
and Langdon (1998) had previously argued that epithermal
veins in the Mt. Nansen camp (including both those in the
main camp and the Klaza system) could represent parts of
a “porphyry-to-epithermal transition” that was centered on
the Cyprus porphyry and contained Cu-Mo-Au porphyry-
style mineralization (Fig. 2). However, a Re-Os age of
71.1£0.3 Ma reported by Selby and Creaser (2001)

for molybdenite from the Cyprus porphyry deposit was
incompatible with such a model if the Mt. Nansen veins
were indeed middle Cretaceous in age.

A U-Pb dating study of intrusive rock units that either

host or are spatially closely associated with mineralization
in the Mt. Nansen area was undertaken. This study

also evaluates existing and new measured Pb isotopic
compositions of igneous feldspar minerals from many of
the intrusions as well as sulphides (mainly galena) from the
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various deposits and occurrences. The aim of the work is
to better constrain the timing of mineralization throughout
the eastern Dawson Range, and to test models such as
the “porphyry-to-epithermal transition” that was proposed
for the Mt. Nansen area. New results resolve some of the
questions concerning the age(s) of mineralization in much
of the area, although some areas of uncertainty still exist.

GEOLOGY OF THE EASTERN DAWSON
RANGE

The eastern Dawson Range is mainly underlain by
intermediate to felsic intrusive rocks of the Early
Cretaceous Dawson Range batholith (Whitehorse plutonic
suite; Fig. 1). Eruptive equivalents of the Whitehorse

suite are locally preserved as the Mt. Nansen Group
volcanic rocks in the vicinity of Mt. Nansen (Figs. 1 and 2).
The batholith was intruded into metamorphic rocks of

the Yukon-Tanana terrane, as well as large bodies of Late
Triassic and Early Jurassic plutonic rock of the Minto
plutonic suite that underlie much of the easternmost

end of the Dawson Range (Fig. 1). Small bodies of
hypabyssal felsic porphyry of early Late Cretaceous age
are widespread in the region; some of these host, or are
spatially closely associated with, some of the main mineral
deposits and occurrences in the area (e.g., Casino,
Nucleus, Revenue). The slightly younger late Late
Cretaceous Carmacks Group mafic volcanic rocks cover
extensive areas in the eastern Dawson Range (Fig. 1).
Paleocene and Eocene felsic intrusive and extrusive rocks
are increasingly abundant along the southwestern flank of

the Dawson Range.

MINERALIZATION IN THE MT.
NANSEN DISTRICT

The Mt. Nansen district (Fig. 2) includes two main
concentrations of mineralized veins: the “Brown-McDade
cluster”, centered approximately 11 km southeast of the
top of Mt. Nansen and includes the Brown-McDade vein
system that was mined by BYG Resources in 1995-98; and
the “Klaza cluster”, centered approximately 3 km east-
northeast of Mt. Nansen and based on recent exploration
work by Rockhaven Resources, contains an inferred
resource of 948 koz of gold and 21.8 Moz of silver

(Wegnzynowski et al., 2015; Fig. 2).
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Figure 1. Regional geology of the central and eastern Dawson Range, showing locations of some of the main mineral
deposits and occurrences referred to in the text. Box shows the location of Figure 2.
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The Brown-McDade cluster consists of veins and deposits
south of the Dickson fault, comprising the Webber, Flex,

Heustis, Dickson, Vince and Brown-McDade occurrences
(Fig. 3; Hart and Langdon, 1998; Anderson and Stroshein,

1998; Stroshein, 1999). These are historically amongst the
most economic in the district and cumulatively host

a resource of about 1 Mt with grades ranging from 5 to
14 g/t Au and 50 to 300 g/t Ag.
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Figure 3. Geology the Mt. Nansen District including the Brown-McDade cluster in the southeast, the

Cyprus porphyry and related occurrences in the central area, and the Klaza cluster in the northwest

(modified from Hart and Langdon, 1998).
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Most occurrences are hosted in Yukon-Tanana terrane
schist and gneiss, but the Brown-McDade deposit, which
is the largest, is mostly hosted in granodiorite. Each
occurrence typically includes a ‘swarm’ of several veins,
but may be dominated by a larger, single vein. Most
veins are at least partly hosted by, northwest-trending
quartz-feldspar porphyry dikes and small quartz-porphyry
plugs. Most veins strike northwesterly between 320 and
340° and dip moderate to steeply (65 to 80°) to the
southwest. Many of these veins have strike lengths of
500 m or greater, but their extents are variably displaced
along north-northeast-striking sinistral strike slip faults.
They are typically 0.2 to 0.8 m wide, but locally up to
2.5 m thick. The thicker parts result from intersections with
020°-striking fractures.

The veins are typically crudely banded, but are locally,
variably brecciated. The Brown-McDade deposit occurs
mostly as a breccia pipe (Stroshein, 1999). All veins are
generally similar in mineralogy consisting of ‘cherty’ fine-
grained grey and white quartz, with varying abundances of
sulphide minerals dominated by pyrite and arsenopyrite,
with essential galena and sphalerite typically to 10%, and
lesser stibnite, tetrahedrite and various sulphosalt minerals
such as boulangerite and jamesonite.

The Klaza area (Fig. 4) is mainly underlain by massive

and unfoliated, medium to coarse-grained, equigranular
hornblende-biotite granodiorite and quartz monzonite

of the Dawson Range batholith, which is part of the
regionally developed Whitehorse plutonic suite. A stock of
quartz monzonite to granite, termed the Cyprus porphyry,
intrudes the Dawson Range batholith on the southeastern
corner of the Klaza property (Figs. 2 and 3). The Dawson
Range batholith is cut by a set of northwest-trending,
steeply to moderately southwest-dipping fault zones, along
which dikes of vari-coloured (grey, green, tan, red and
purple) feldspar and quartz-feldspar porphyry have been
emplaced (Fig. 4). Individual porphyry dikes commonly
pinch and swell along strike, and are up to 30 m wide.
They consist of an aphanitic groundmass with up to 15%
K-feldspar phenocrysts (1 to 2 mm) and minor biotite and
rare quartz phenocrysts. Contacts with the granodiorite
range from sharp and undulating to brecciated with locally
abundant gouge development. A second, much less
common set of northwest-trending dikes is also locally
present, particularly in the southeastern part of the Klaza
property, near the Cyprus porphyry stock. These dikes

are typically fine grained to aphanitic, and appear to be
intermediate to mafic in composition. They contain a
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significant amount of magnetite, and are locally strongly
magnetic. These mafic dikes are up to 100 m in width, and
are larger and more abundant near the Cyprus porphyry.

The main mineralized zones at Klaza range from 1to 100 m
wide and are usually associated with feldspar porphyry
dikes. Mineralization occurs as veins, sheeted veinlets

and tabular breccia bodies. The feldspar porphyry dikes
generally occupy the same northwest-trending structural
zones as the mineralized veins and they are commonly
strongly fractured. They are locally cut by the main
mineralized veins as well as by late stage white carbonate
veinlets. Mineralization at Klaza mainly consists of gold
and silver bearing, sulphide-rich veins that comprise pyrite,
arsenopyrite, galena, sphalerite, various sulphosalts and
electrum in a gangue of quartz, rhodocrosite and barite.
The mafic dikes are also locally mineralized, hosting

small amounts of disseminated pyrite and pyrite stringers,
together with minor chalcopyrite and rare molybdenite.
The strongest copper mineralization on the property is
always associated with argillic altered versions of the mafic
dikes.

The feldspar porphyry dikes at the Klaza property have
been interpreted to emanate from the Cyprus porphyry
stock to the southeast. Two distinct centres of Cu-Mo = Au
porphyry-style mineralization have been identified within
the Cyprus porphyry stock, the Cyprus zone and the Kelly
zone (Fig. 3). These zones appear to contain modest
grades and be of limited extent (Wengzynowki et al.,
2015).

The northwest-trending feldspar porphyry dikes and the
mineralized structures at Klaza have been displaced by
two northeast trending faults (Fig. 4). The exact timing

of these faults is uncertain; however, they appear to be
coeval with, or post-date, the mineralized zones on the

property.

U-PB ZIRCON GEOCHRONOLOGY

METHODOLOGY

Zircons were separated from 2-4 kg samples using
conventional crushing, grinding, wet shaking table,
heavy liquids and magnetic separation methods. U-Pb
dating of zircons was done using laser ablation

(LA-) ICP-MS methods at the Pacific Centre for Isotopic
and Geochemical Research (PCIGR) at the University of
British Columbia. Analytical techniques employed are
as described by Allan et al. (2013). Twenty individual
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Figure 4. Map of the Klaza property showing the distribution of the various zones as well as drill holes and the specific
locations of samples that were analyzed in this study (modified from Wengzynowki et al., 2015). UTM coordinates are

in NAD83 datum.

zircon grains were analyzed from each sample. Complete
analytical data are provided in Appendix 1 and the results
are plotted as compilations of the calculated 2°°Pb/?38U
ages for individual sample analyses in Figures 3 and 4.
Errors quoted for final assigned ages are given at the 20
level.

RESULTS

All zircons analyzed from the Klaza U-Pb samples yielded
concordant analyses. Sample locations are shown on
Figure 3, and interpretations of the results for each of the
samples are presented briefly below.

Granodiorite of the Dawson Range batholith

Twenty zircon analyses from a sample of massive medium-
grained granodiorite from the Pika Zone (Fig. 4) yield a
weighted 2°°Pb/#38U age of 107.9£0.3 Ma (MSWD=0.74;
POF=0.78; Fig. 5a).

YUKON EXPLORATION AND GEOLOGY 201

Feldspar porphyry dikes in the Western Klaza Zone

Twenty zircon grains from a sample of feldspar porphyry
from DDH KL-12-75 (189-191 m; Fig. 4) yield a weighted
200ph /238 age of 76.9+0.3 Ma (MSWD =1.00; POF=0.45;
Fig. 5b). Eighteen zircon grains from a second feldspar
porphyry dike from the Western Klaza Zone in DDH
KL-14-185 (0-11.5 m; Fig. 4) yield a weighted 2°°Pb/28U
age of 76.8+0.4 Ma (MSWD=1.4; POF=0.14; Fig. 5¢).

A single grain from this sample gives a much older age
(*7Pb/?*°Pb age of 1600.6+40.6 Ma) and represents

an older xenocryst likely entrained from underlying
metamorphic basement rocks. One of the analyses gave a
significantly younger 2°°Pb/?38U age, likely related to post-
crystallization Pb-loss, and is not included in the calculated
weighted average age.
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Feldspar porphyry dike from the Western BRX Zone

Eighteen zircon grains from a porphyry dike sample in
DDH KL-14-154 (52.1-52.5 m; Fig. 4) yield a weighted
200ph /2381 age of 77.1+0.4 Ma (MSWD=0.78; POF=0.72;
Fig. 5d). Two grains give 2°°Pb/**U ages of 102.6 and
105.0 Ma, and are interpreted to have been xenocrystic
zircons entrained from the underlying Dawson Range
batholith.

Feldspar porphyry dike from the Central BRX Zone

Sixteen zircon grains from a porphyry dike in DDH KL-14-
165 (85.7-87.5 m; Fig 4) give a weighted 2°°Pb/**U age
of 76.5+£0.4 Ma (MSWD=0.68; POF=0.80; Fig. 5e). Four
grains give 2°°Pb/*8U ages of 105.0-105.7 Ma and a single
grain gives an age of 369.7 Ma; these are interpreted to
have been xenocrysts from the Dawson Range batholith
and the metamorphic basement rocks, respectively.

Feldspar porphyry dike from the Central Klaza Zone

Seventeen zircon grains from a porphyry dike in DDH
KL-11-12 (181-187 m; Fig. 4) give a weighted 2°Pb/?%8U
age of 71.6+0.3 Ma (MSWD=0.55; POF=0.92; Fig. 5f).
Two grains give slightly younger 2°°Pb/?3®U ages and are
not included in the calculated weighted average age. A
single grain gave a 2°°Pb/*®U age of 77.1+1.7 Ma. The
calculated age for this sample is significantly younger than
that of most of the other Klaza dikes that were dated, and
it appears to represent a distinctly younger intrusion. The
presence of the single 77.1 Ma zircon indicates that the
magma did interact to some extent with the “early Late”
Cretaceous rocks.

Mafic dike in the Eastern BRX Zone

Sixteen zircon grains from a mafic dike in DDH KL-12-134
(218-221.5 m) give a weighted 2*°Pb/?*%U age of
78.2+£1.0 Ma (MSWD=0.34; POF=1.00; Fig. 6a). Four
grains give 2°°Pb/*8U ages of 107.4-109.8 Ma, and are
interpreted to have been xenocrysts entrained from the
Dawson Range batholith.

Feldspar porphyry dike from the Far Eastern Klaza/
Pearl Zone

Fifteen zircon grains from a feldspar porphyry dike in DDH
KL-14-162 (86.2-86.5 m; Fig. 4) give a weighted 2°°Pb/23%U
age of 76.3+0.3 Ma (MSWD=0.49; POF=0.94; Fig. 6b).
Two grains give slightly older 2°°Pb /233U ages and are
excluded from the weighted average age calculation. Two
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other grains gave 2°°Pb/?*8U ages of 101.4 and 102.6 Ma,
and a single grain gave an age of 446.9 Ma; these are
interpreted to have been xenocrysts from the Dawson
Range batholith and the underlying metamorphic bedrock,
respectively.

Cyprus porphyry

Seventeen zircon grains from sample 97-CH-33-3 in the
Cyprus porphyry stock give a weighted 2°°Pb/?*%U age of
76.0£0.4 Ma (MSWD=0.75; POF=0.74; Fig. 6¢). Three
grains give slightly younger 2°°Pb/2*8U ages, likely reflecting
the effects of post-crystallization Pb-loss and were
excluded from the weighted average age calculation.

SUMMARY OF KLAZA DATING RESULTS

Results from the dating study of the Klaza samples confirm
an Early Cretaceous age of 107.9+£0.6 Ma for granodiorite
of the Dawson Range batholith in the Mt. Nansen area.
All but one of the northwest-trending dikes associated
with Klaza mineralization give ages ranging from 78.2

to 76.0 Ma, indicating that these intrusions are part of

the ~78-72 Ma Casino plutonic suite. An intermediate
composition dike that contains disseminated chalcopyrite
and minor molybdenite (sample KL-12-134; Eastern BRX
zone), and was initially speculated to be part of the
younger Prospector Mountain suite, actually yielded

the oldest age at 78.2+1.0 Ma. A sample of the felsic
porphyry that hosts the Cyprus Cu-Mo-Au porphyry
occurrence returned a crystallization age of 76.0+0.4 Ma,
confirming that this body is coeval and likely co-magmatic
with the felsic dikes in the Klaza area. One of the quartz-
feldspar dike samples from Klaza (KL-11-12; Central Klaza
zone) gave a significantly younger age of 71.6+0.3 Ma,
suggesting that this body either represents a late stage
Casino suite intrusion or (less likely) an early intrusion of
the Prospector Mountain suite.

RE-EXAMINATION OF DATING RESULTS FROM
THE BROWN-MCDADE CLUSTER

The porphyry dikes at Klaza are very similar to those
previously dated in the Brown-McDade cluster, in terms
of composition, structural setting in northwest-trending
faults, and association with sulphide-rich epithermal veins.
However, Mortensen et al. (2003) report multi-grain

TIMS zircon ages for five porphyry dikes and small stocks
from the Brown-McDade cluster ranging from 109.0 to
107.9 Ma, suggesting that these intrusions are temporally
related to the Dawson Range batholith. The TIMS data for

YUKON EXPLORATION AND GEOLOGY 2015
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Figure 5. Plots of 2°°Pb/?38U ages for zircons from Klaza igneous samples, with calculated weighted average ages. Error bars
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Figure 6. Plots of 2°°Pb/?33U ages for zircons from Klaza igneous samples, as well as the Cyprus porphyry and re-analysis
of three porphyry samples from the Brown-McDade cluster. Error bars are shown at the 20 level. Analyses shown by blue
boxes were not used in calculation of the weighted average ages.
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some of the samples show considerable scatter and there
is evidence for a substantial amount of older inherited
zircon present in some cases. Although considered
unlikely, it is conceivable that the Early Cretaceous zircons
dated in 2003 might have been of xenocrytic origin, and
entrained from underlying bodies of 108 Ma Dawson
Range batholith; the Brown-McDade cluster dikes and
plugs are mostly emplaced into Yukon-Tanana terrane
metamorphic rocks at the present level of exposure. In
order to evaluate this possibility, twenty zircon grains
from each of three samples from the 2003 study, selected
as representative of the entire range of grain size and
morphology present in the concentrate, were analyzed
using LA-ICP-MS methods (Appendix 1; Fig. 6d-f). The new
results confirm the original age assignments: Flex zone
porphyry, 108.4+0.7 Ma TIMS and 107.4£0.2 Ma LA;
Weber zone porphyry, 107.9+0.9 Ma TIMS and
107.4£0.4 LA; Brown-McDade porphyry: 109.0+0.7 Ma
TIMS; 107.6£0.3 Ma LA. Therefore, the reanalysis of
zircons from these samples strongly argues for an Early
Cretaceous crystallization age for the intrusions in the
Brown-McDade cluster. The most reasonable conclusion,
therefore, is that two similar, but completely unrelated
sets of felsic dikes and small stocks were emplaced into
northwest-trending faults in the Mt. Nansen area.

Pb ISOTOPES

METHODOLOGY

In general the Pb isotopic compositions of sulphides
precipitated from magmatic-hydrothermal fluids in
intrusion-related vein systems are very similar to the Pb
isotopic compositions of igneous feldspar within the
genetically related intrusions (Tosdal et al., 1999). Lead
isotopes therefore provide a powerful tool for determining
the source(s) from which Pb (and by analogy, other
metals) in a deposit is derived, and in the case of intrusion-
related mineralization, for identifying which intrusion

(or intrusive suite) is genetically associated with the
mineralization. In some cases, Pb compositions can also
yield some indication of the age of formation of epigenetic
mineralization, although this must be utilized with caution.
Lead isotopic compositions of several samples of galena
from veins from both the Brown-McDade and the Klaza
cluster were determined at the PCIGR, using TIMS
methods as described by Mortensen and Gabites (2002).
Analytical data are given in Appendix 2. An extensive

Pb isotopic database for both igneous feldspar minerals
from intrusive rocks and galena and other sulphides from
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various mineral deposits and occurrences from throughout
west-central Yukon, including data from various published
and unpublished sources, is also discussed.

RESULTS

New galena Pb isotopic analyses from Klaza (n=3) and
Brown-McDade (n=3) from this study are plotted on a
207Ply /204Ph s, 200Ph /204Ph diagram in Figure 7. Also shown
for comparison on this plot are fields of Pb isotopic
compositions from additional Klaza and Brown-McDade
vein samples, as well as sulphides from a number of
other epigenetic, polymetallic vein occurrences (Fig. 1)

in the Dawson Range and elsewhere in western Yukon,
including the Prospector Mountain area (Frog and Lilypad
occurrences), the Tinta Hill deposit in the Freegold
Mountain area, the Longline Au deposit in the Moosehorn
Range (Yukon MINFILE 115N 024), the Bomber vein

at Casino, and numerous other Late Cretaceous vein
occurrences in the region (data from Godwin et al.,

1988; Glasmacher, 1990; Smuk, 1999; Selby et al., 2001;
Joyce, 2002; Selby et al., 2001; Bineli-Betsi et al., 2013;
Mortensen, unpublished data). Also shown on the plot
are fields for igneous K-feldspars from Early Cretaceous
intrusions in the Moosehorn Range (from Joyce, 2002) and
Late Cretaceous intrusions in the Casino area (from Selby
etal., 1999), as well as other Early and Late Cretaceous
intrusions from throughout west-central and western
Yukon (Mortensen, unpublished data).

The Pb isotopic study tries to resolve the question of
whether veins in the Brown-McDade cluster formed at
the same time as those in the Klaza cluster (i.e., early Late
Cretaceous), and coincidentally happen to be spatially
associated with a lithologically similar but ~35 my older
set of porphyry dikes, or represent a completely unrelated
mineralizing event. The study also evaluates the relative
importance of mid-Cretaceous vs. early Late and late Late
Cretaceous mineralizing events in western Yukon.

The field for Early Cretaceous igneous feldspar from

the Moosehorn Range (dotted green line in Fig. 7) is
completely separate from that for sulphides in gold-bearing
veins from the Longline occurrence that is hosted by those
intrusions (solid green line). This observation led Joyce
(2002) to conclude that the metals in the Longline veins
were not derived from the host intrusions, or indeed from
any other intrusions in western Yukon or eastern Alaska,
but were actually orogenic rather than intrusion-related.

The field for igneous feldspar from other Early Cretaceous
intrusions in western Yukon (dotted red line in Fig. 7)
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overlaps with the Moosehorn Range feldspar data but
shows somewhat more scatter. Feldspar from early Late
Cretaceous Casino suite intrusions and from other early
and late Late Cretaceous intrusions in western Yukon (blue
dotted lines on Fig. 7; including the Cyprus porphyry in
the Mt. Nansen district, shown as the blue triangle) show
considerable scatter; although there is substantial overlap
with the fields for the Early Cretaceous feldspar, most of
the Late Cretaceous feldspar show higher 2°°Pb/2%4Ph
ratios and slightly lower 27Pb/?%4Pb ratios (Fig. 7). The
field for galena from the Bomber veins, which are
considered to be related to the early Late Cretaceous
Casino porphyry deposit, overlap with both the more
radiogenic (higher Pb/Pb compositions) part of the Early
Cretaceous feldspar Pb field and the less radiogenic
(lower Pb/Pb compositions) part of the Late Cretaceous
feldspar field. However, galena from other early and late
Late Cretaceous intrusion-related veins in western Yukon
(solid blue line on Fig. 7), show a good overlap with Late
Cretaceous feldspar but are completely separate from the
Early Cretaceous feldspar field. Taken together, the data
suggest: 1) Early and Late Cretaceous igneous feldspar
minerals yield partly overlapping compositional fields, but
most Late Cretaceous samples have higher 2°°Pb/2**Pb and
slightly lower 2°7Pb/2%4Pb ratios than the bulk of the Early
Cretaceous samples; and 2) epigenetic vein occurrences
that are known to be of Late Cretaceous age more closely
match the compositional fields for the Late Cretaceous
igneous feldspar than the Early Cretaceous samples,
which is consistent with the bulk of the metals in these
occurrences having been derived predominantly from the
Late Cretaceous intrusions.

Sulphide Pb isotopic compositions from four separate
areas (Klaza, Brown-McDade, Prospector Mountain, Tinta
Hill), however, are more puzzling. Field relationships
discussed above provide unequivocal evidence that the
Klaza veins (pink field in Fig. 7) are spatially and temporally
related with late Late Cretaceous porphyry intrusions,
whereas very similar veins in the Brown-McDade cluster
(blue field in Fig. 7) are most reasonably interpreted to be
Early Cretaceous in age. Both of these compositional fields
overlap with the least radiogenic part of the compositional
ranges for the Early and Late Cretaceous igneous rocks.
Veins in the Prospector Mountain area, whose galena

Pb isotopic compositions overlap almost perfectly with
the Brown-McDade galena field (Fig. 7), are interpreted

to cut Late Cretaceous Carmacks Group volcanic rocks,
and must therefore be Late Cretaceous in age. The Tinta
Hill Au-Ag-Cu-Pb-Zn deposit in the Mt. Freegold area is a
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polymetallic, epithermal vein that closely resembles the
Klaza and Brown-McDade veins in most respects (Bennett
and Bineli Betsi, 2010). The age of the Tinta Hill veins is
uncertain; Bineli Betsi and Bennett (2010) stated that the
vein is crosscut by a porphyry dike that yielded a 108

Ma U-Pb zircon (TIMS) age; however, there is somewhat
less certainty regarding this crosscutting relationship in
subsequent publications (Bineli Betsi, 2012; Bineli Betsi et
al., 2013). These four vein systems were each emplaced
into very different host rocks that would be expected to
have quite distinct Pb isotopic characteristics. The Brown-
McDade cluster of veins are mainly hosted by Yukon-
Tanana terrane metasedimentary rocks; whereas the
Klaza veins are hosted by the Early Cretaceous Dawson
Range batholith, the Prospector Mountain veins by Late
Cretaceous Carmacks Group volcanic rocks, and the Tinta
vein by the Early Jurassic Granite Mountain batholith. The
fact that sulphides from these four vein systems show
rather similar Pb isotopic compositions suggests that the
Pb in each was likely derived mainly from the associated
intrusions rather than the host rocks, and in general the Pb
isotopic compositions of the sulphides is more consistent
with the metals having been derived from Early, rather
than Late, Cretaceous magma.

The implications of the Pb isotopic study are therefore
uncertain at this time. It is very difficult to directly date
epithermal veins such as those in the eastern Dawson
Range, and vein ages typically must be inferred from
contact relations with dated igneous rock units. More
detailed geological investigations will be required to
resolve the age relations between the various intrusive

suites and vein systems in the area.

IMPLICATIONS FOR THE
METALLOGENY OF WEST-CENTRAL
YUKON

At least three distinct ages of porphyry-style mineralization
are known to exist in western Yukon: Early Cretaceous
(e.g., Pattison, Idaho); early Late Cretaceous (e.g., Casino,
Cash, Cyprus, Nucleus, Revenue, Sonora Gulch, Tad/
Toro and Bluff/Taurus in eastern Alaska); and late Late
Cretaceous (e.g., Mt. Cockfield, Sixtymile; Allan et al.,
2013). Similarly there are gold-bearing vein and breccia
systems of the same three ages: Early Cretaceous

(e.g., Antoniuk, possibly Brown-McDade, possibly Tinta
Hill); early Late Cretaceous (e.g., Klaza); and late Late
Cretaceous (e.g., Prospector Mountain, Connaught (Yukon
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MINFILE 115N 040)). The largest and most prospective
porphyry systems, however, appear to be related to

the early Late Cretaceous Casino suite, and the most
significant epithermal vein systems identified thus far
appear to be the Klaza deposit and some zones in the
Sonora Gulch area, also of early Late Cretaceous age.
Our new age constraints strongly support the “porphyry-
to-epithermal transition” model that was proposed by
Hart and Langdon (1998), at least for veins of the Klaza
cluster and the Cyprus and Kelly porphyry deposits. The
age of the epithermal veins in the Brown-McDade cluster,
however, is still not resolved, and it remains unclear
whether the Brown-McDade veins have any relationship
to any of the Late Cretaceous magma in the Mt. Nansen
area.

Lead isotopic studies of many of the mineral deposits and
occurrences in western Yukon, together with analyses of
igneous feldspars from potentially related intrusive rocks,
indicate that there is a substantial amount of scatter within
each of the plutonic suites in the region. It appears that
lead isotopes do not provide a simple tool for identifying
which intrusive rocks are genetically related to specific
mineralization in this region. It is unclear whether this

is because of the isotopic heterogeneity of the igneous
rocks themselves, or the fact that some amount of mixing
has occurred between metal-bearing magmatic fluids and
metals derived from compositionally variable host rocks.
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Figure 7. Compilation plot showing Pb isotopic compositional fields for igneous feldspars from Early to Late
Cretaceous intrusions from west-central Yukon, together with sulphide (mainly galena) compositions from a
variety of intrusion-related orogenic gold deposits and occurrences. Fields for sulphide Pb analyses from the Mt.
Nansen veins and from the Klaza deposit are shown as colored fields. The Cyprus porphyry feldspar Pb is shown
by the blue triangle. Sources of data are discussed in the text.
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MORTENSEN ET AL. - U-PB ZIRCON AGE & PB 1SOTOPIC CONSTRAINTS, EASTERN DAWSON RANGE

Appendix 2. Pb isotopic analyses of igneous feldspar from the Cyprus porphyry and galenas from the Klaza and Brown-
McDade clusters. Errors are given at the 10 level.

Sample 206ply /204phy error 207phy /204phy error 208phy /204phy error 207ph /206ph error 208phy /206phy error
Cyprus porphyry

feldspar (97CH33.3) 19.267 0.09 15.6602 0.04 39.0727 0.1 0.8128 0.085 2.028 0.028
Brown-McDade - 18.829 0.012 15.634 0.011 38.552 0.013 0.8303 0.005 2.0475 0.003
Dickson Zone galena

Brown-McDade - 19.156 0.006 15.64 0.005 38.816 0.009 0.8165 0.003 2.0263 0.007
Flex Zone galena

Brown-McDade - 19.186 0.002 15.672 0.002 38.92 0.002 0.8168 0.001 2.0285 0.001
Heustis Zone galena

gﬁgﬁa Pika vein 19.1485 0.01 15.685 0.01 38.9112 0.01 0.8191 0.008 2.0321 0.007
gﬁgﬁa KLTT-12-196 19.1859 0.01 15.7165 0.01 39.026 0.02 0.8192 0.006 2.0341 0.011
gﬁgﬁa KL14-165 19.1518 0.01 15.68 0.01 38.9108 0.01 0.8187 0.005 2.0317 0.006
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