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ABSTRACT

Preliminary whole rock Nd-Hf isotopic data for porphyritic rhyolitic intrusive rocks from the  
Wolverine volcanogenic massive sulphide (VMS) deposit are presented herein. Pre-VMS (~352 Ma) 
quartz-feldspar porphyritic intrusive rocks (QFP) have Nb/Ta ratios (~12) and lower eNdt and eHft 
values, compared to syn-VMS (~347 Ma) feldspar porphyritic intrusive rocks (FP), which have higher 
Nb/Ta ratios (~17) and lower eNdt and eHft. Both suites have Proterozoic to Archean depleted mantle 
model ages indicative of crustal inheritance; however, the FP suite has a more juvenile signature. 
The progression from the crustal-dominated QFP suite, to a more basalt-influenced FP suite reflects 
the progressive opening of the Wolverine back-arc rift where early QFP magma was dominated 
by continental crustal melting, whereas the FP magma reflects greater back-arc basin extension, 
upwelling of basaltic magma beneath the rift, and enhanced continental crust-juvenile basalt mixing. 
Basalt upwelling beneath the Wolverine basin likely created the elevated geothermal gradient 
required for Wolverine VMS deposit formation.
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resistant minerals (e.g., zircon, monazite, apatite) record 
similar geochemical and isotopic signatures. Presented 
herein are preliminary results from bulk rock Nd and 
Hf isotope geochemistry of pre and syn-VMS high-level 
(~synvolcanic) footwall porphyritic intrusive rock  
(i.e., porphyries) from the Wolverine deposit, which 
provide initial data to test the “hot” rift hypothesis.

GEOLOGICAL SETTING
The Finlayson Lake district is located northeast of the 
Tintina fault in southeastern Yukon (Fig. 1). The district 
is underlain by pericratonic rocks of the Yukon-Tanana 
terrane and oceanic rocks of the Slide Mountain terrane, 
which are juxtaposed against rocks of the North American 
continental margin along the Inconnu thrust of post-Late 
Triassic age (Fig. 2; Murphy et al., 2006). The Finlayson 
Lake district is subdivided into several informal fault 
and unconformity-bounded groups and formations; the 
Wolverine deposit is hosted by the Wolverine Lake group 
within the Big Campbell thrust sheet (Fig. 2; Murphy et al., 
2006). The Wolverine Lake group consists of Mississippian 
felsic metavolcanic and high level meta-intrusive rocks, 
metasedimentary units, and locally mafic metavolcanic and 
metaplutonic rocks (Figs. 2 and 3; Murphy et al., 2006).

In the Wolverine deposit area, the Wolverine Lake group 
consists of a footwall dominated by felsic tuffaceous 
rocks, meta-intrusive rocks, and interlayered black shale 
(Figs. 3 and 4; Bradshaw et al., 2008; Piercey et al., 2008, 
2016). The hanging wall consists of interlayered felsic 
siltstone, black shale, iron formation, carbonate exhalative 
rocks, felsic siltstone breccia, and mafic intrusive and 
lesser volcanic rocks (Figs. 3 and 4; Bradshaw et al., 2008; 
Piercey et al., 2008, 2016).

In the immediate footwall to the deposit there are very 
distinctive felsic porphyritic intrusive rocks. These coherent 
intrusive rocks occur at the Wolverine deposit proper, as 
well as along strike at other VMS prospects, including the 
Fisher, Puck, and Sable zones (Figs. 3 and 4). Previous 
work has documented the field relationships and ages of 
the porphyries and documented an older, ~352 Ma  
pre-VMS suite of quartz feldspar porphyries, and a 
younger ~347 Ma, syn-VMS suite of feldspar porphyritic 
rocks (Figs. 4 and 5; Piercey et al., 2008).

INTRODUCTION
Volcanogenic massive sulphide (VMS) deposits are 
important sources of base (Cu, Zn, Pb) and precious 
metals (Ag, Au) to the Canadian economy (e.g., Galley 
et al., 2007). Volcanogenic massive sulphide deposits 
in Yukon have been the focus of past exploration and 
production (e.g., Wolverine), and are the current focus 
of exploration in some locales (e.g., BMC Minerals Ltd. 
at Kudz Ze Kayah, Finlayson Lake district). Both globally 
and in Yukon examples, VMS deposits are associated 
with specific geodynamic environments and specific 
magma clans (e.g., Piercey, 2011). In particular, VMS 
deposits are associated with extensional geodynamic 
environments (e.g., ridges, arc rifts, back arc basins) and 
with magma that was emplaced at high temperatures 
(T >900oC; Piercey, 2011). More generally, extensional 
geodynamic environments provide the structural conduits 
and permeability required for hydrothermal fluid recharge, 
and eventual discharge onto the seafloor (e.g., Franklin et 
al., 2005; Galley et al., 2007; Piercey, 2011), whereas high 
temperature magmatism provides the heat engine required 
to drive hydrothermal circulation critical to VMS formation 
(Lesher et al., 1986; Barrie, 1995; Lentz, 1998; Piercey et 
al., 2001, 2008; Hart et al., 2004; Piercey, 2010, 2011).

In the Wolverine deposit, recent research illustrates that 
even in felsic-dominated successions mantle heat and 
upwelling of juvenile basaltic magma beneath a rift may 
be an important driver of VMS hydrothermal circulation 
(Piercey et al., 2008). Furthermore, the signature of mantle 
upwelling and juvenile crust-mantle mixing is recorded in 
the trace element signature of felsic rocks, and could be 
used as a proxy for heat flow of a given VMS environment. 
In particular, Piercey et al. (2008) illustrated that higher 
temperature felsic rocks have elevated high field strength 
element (HFSE) and rare earth element (REE) contents, but 
also have element ratios (e.g., Nb/Ta, Ti/Sc) indicative of 
evolved crust – juvenile basalt mixing. These authors also 
argued that this record of juvenile basalt involvement may 
be a critical feature for delineating prospective “hot” rifts 
in felsic dominated successions.

To test the significance of juvenile magmatism and “hot” 
rifts, a project was initiated at the Wolverine deposit 
utilizing bulk rock Sm-Nd and Lu-Hf tracer isotopes, and 
in situ mineral-scale analyses of Lu-Hf and U-Pb in zircon, 
to identify the “mantle” trace element signatures recorded 
in Wolverine porphyritic rhyolite, and to determine if 



Piercey et al. - MagMa prospectivity for cordilleran vMs deposits using nd-Hf isotopes

YUKON EXPLORATION AND GEOLOGY 2016 199

were undertaken. Throughout the course of the study 
repeat analysis of the JNDi-1 reference material yielded an 
average 143Nd/144Nd value of 0.512100 ± 6 (1 s.d, n = 27); 
the published value of Tanaka et al. (2000) is 0.512115. 
Lu-Hf isotopes were prepared using standard method 
of spiking, sample dissolution, column chemistry and 
subsequent analysis by multi-collector inductively coupled 
plasma mass spectrometry (MC-ICP-MS) following the 
methods of Vervoort et al. (2004). During the course of 
this study the JMC-475 Hf standard yielded an average 
value of 176Hf/177Hf = 0.282171 ± 17 (1 s.d, n = 12); the 
published values are 176Hf/177Hf = 0.282160 (Vervoort and 
Blichert-Toft, 1999). Initial 143Nd/144Nd ratios and eNdt 
were calculated at 350 Ma, the mid-point between the 
ages of the two porphyry suites presented in this paper. 
The chondritic uniform reservoir (CHUR) values used for  

LITHOGEOCHEMISTRY AND 
RADIOGENIC ISOTOPE 
GEOCHEMISTRY
Samples of the quartz-feldspar and feldspar porphyries 
were analyzed previously for lithogeochemistry as part 
of the study by Piercey et al. (2008). The samples were 
taken from drill core from the footwall in various zones 
of the Wolverine deposit (Fig. 4), and the full dataset 
will be released in future publications. A subsample of 
this dataset were subsequently analyzed for Sm-Nd and 
Lu-Hf isotopes at Memorial University of Newfoundland 
following the methods outlined in Phillips (2015). For 
Sm-Nd, standard methods of spiking, sample dissolution, 
column chemistry and subsequent analysis by isotope 
dilution thermal ionization mass spectrometry (ID-TIMS) 
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eNdt calculations are 143Nd/144Nd = 0.512638 and  
147Sm/144Nd = 0.1967 (Hamilton et al., 1983). 
Depleted mantle model ages (TDM) are calculated 
using the values of 143Nd/144Nd = 0.513163 and 
147Sm/144Nd = 0.2137 (Goldstein et al., 1984). 
Initial 176Hf/177Hf ratios and eHft were calculated 
at 350 Ma similar to the Nd isotopic data. The 
chondritic uniform reservoir (CHUR) values used 
for eHft calculations are 176Hf/177Hf = 0.282772 and 
176Lu/177Hf = 0.0332 (Blichert-Toft and Albarede, 
1997). Depleted mantle model ages (TDM) are 
calculated using the values of 176Hf/177Hf = 0.28325 
and 176Lu/177Hf = 0.0334 (Vervoort and Blichert-Toft, 
1999).

RESULTS

Sm-Nd and Lu-Hf results are shown in Figures 6 
and 7. In Figure 6 Wolverine quartz-feldspar and 
feldspar porphyritic rhyolite samples are plotted 
against the whole-rock Nb/Ta ratio. The Nb/Ta data 
are from Piercey et al. (2008) and are shown as they 
are reflective of the source region (i.e., upper crust 
vs. juvenile basalt) for the felsic rocks. Nb and Ta 
are geochemical twins and rarely fractionated from 
one another during partial melting and fractional 
crystallization, with upper crustal rocks and rocks 
derived therefrom having Nb/Ta ~12, whereas  
Nb/Ta ~17 for rocks derived from more juvenile, 

435000 437500 440000 442500

68
05

00
0

68
07

50
0

68
10

00
0

68
12

50
0

68
15

00
0

68
17

50
0

Fisher zone

Wolverine/Lynx zone

Sable
zone

Puck
zone

0 0.8 1.6 2.4 3.2

km

Legend
Geology

Campbell Range Formation
Sulphide
zone

Slide Mountain terrane

Yukon-Tanana terrane

Wolverine Lake Group

Kudz Ze Kayah Formation

Permian ultramafics

Money Creek Formation

hanging wall basalt

footwall carbonaceous sedimentary rocks
footwall felsic volcaniclastics and iron fmns
hanging wall aphyric rhyolite & volcaniclastics

footwall basal clastic rocks
Grass Lake Group

normal
fault

Symbols

Figure 5

Figure 3. Geology of local Wolverine deposit area, illustrating 
locations of different zones. Geology from Murphy et al. (2006).

17
30

0 
m

16
80

0 
m

1100 m

1400 m

SW

NE

0 50 100

metres

K-feldspar porphyry

LEGEND

massive basalt

basaltic volcaniclastic
interbedded graphitic 
argillite & greywacke
rhyolitic siltstone breccia
magnetite iron formation

carbonate exhalite
massive sulphide

finer grained rhyolitic siltsone/tuff

coarser grained rhyolitic siltsone/tuff
coarse grained felsic volcaniclastic (± qtz, fsp crystals)

graphitic argillite
trace of diamond drill hole

Figure 4. Geological cross sections 
Wolverine deposit illustrating 
deposit stratigraphy and the 
presence of feldspar porphyritic 
rhyolites in the deposit footwall. 
Sections modified from Bradshaw 
et al. (2008).



Yukon GeoloGical ReseaRch

YUKON EXPLORATION AND GEOLOGY 2016202

mantle sources (e.g., basalt; Green, 1995; Barth et al., 2000; Kamber and 
Collerson, 2000; McLennan, 2001). The pre-VMS QFP (352 Ma) suite have 
Nb/Ta ~12 and eNdt ranging from -7.7 to -11.5, eHft ranging from -12.4 to 
-19.0, and with TDM(Nd) ages of 1.66-2.58 Ga and TDM(Hf) ages of  
1.59-2.22 Ga (Figs. 6 and 7). The younger, syn-VMS FP (347 Ma) suite of 
porphyries have higher Nb/Ta ratios and eNdt ranging from -7.9 to -8.1, eHft 
ranging from -13.4 to -18.0, and with TDM(Nd) ages of 1.59-1.67 Ga and 
TDM(Hf) ages of 1.62-1.97 Ga (Figs. 6 and 7).

DISCUSSION AND SUMMARY
Porphyritic rocks from the Wolverine deposit have distinct variations in 
Nd-Hf isotopic signatures that are indicative of varying contributions of 
upper crust vs. juvenile (basaltic) material to their genesis. Both suites of 
high level intrusive rocks have been influenced by upper crustal materials 

as indicated by their negative eNdt and 
eHft values and Proterozoic to Archean 
depleted mantle model ages (Figs. 6 
and 7); it is implied that these rocks 
melted continental crustal sources, or 
assimilated continental crustal material 
during emplacement (Lentz, 1998; 
Piercey et al., 2008). These data are 
also consistent with previously reported 
data for the felsic rocks throughout the 
Yukon-Tanana terrane, which show 
strong evidence of crustal inheritance 
from Laurentian-derived, peri-continental 
material (e.g., Piercey et al., 2006).  
There are notable differences between 
the suites, however. The older QFP  
suite has lower Nb/Ta ratios, lower  
eNdt and overlapping, but generally 
lower eHft, compared to the younger  
FP suite (Figs. 6 and 7). Piercey et al. 
(2008) suggested that the lower  
Nb/Ta in the QFP suite reflected a 
greater upper crustal contribution 
relative to the FP suite, which had a 
greater juvenile contribution, likely 
derived from underplated basaltic 
magma at the base of the Wolverine 
back-arc rift. The isotopic results herein 
support this hypothesis and the FP 
suite is shifted towards higher eNdt and 
eHft, consistent with a greater juvenile 
contribution to its genesis relative to the 
QFP suite.

The progression from the more 
crustally-derived QFP suite at 352 Ma 
to the FP suite with a greater juvenile 
contribution at 347 Ma is interpreted 
to represent the progressive opening of 
the Wolverine back-arc basin, upwelling 
of juvenile basaltic magma beneath 
the rift, and greater crust-basalt mixing 
as the basin widened (Piercey et al., 
2008). The latter authors also argued 
that the upwelling of mantle-derived 
magma beneath the rift was also critical 
in increasing heat flow to the basin, 
which in turn enhanced hydrothermal 
circulation and ultimately led to the 
formation of the Wolverine deposit.
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The presence of distinctive, more juvenile eNdt-eHft 

signatures in the FP suite, which is intimately associated 
with mineralization and syn-VMS formation, suggests that 
rhyolitic rocks with similar juvenile signatures within the 
Yukon-Tanana terrane and other pericratonic terranes 
may also be prospective for VMS mineralization. This 
hypothesis requires further testing and will be the focus of 
ongoing research by the authors. Moreover, future work 
will focus on comparing both bulk rock Nd-Hf and in situ 
Hf-Nd-U-Pb signatures of heavy mineral phases  
(e.g., zircon, monazite, apatite) within the pericratonic 
terranes to see if there are important isotopic differences 
between barren and VMS-bearing assemblages, testing 
geochemical and isotopic relationships as a function 
of VMS deposit grade and tonnage, and seeing if such 
methods allow mapping of VMS potential and fertility of 
felsic-dominated assemblages.
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