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ABSTRACT
Structure imparts a significant control on the distribution of Carlin-type gold mineralization recently 
discovered in the Nadaleen trend, Yukon. An improved understanding of the structural framework for 
gold mineralization is essential for continued exploration success and interpreting ore fluid controls. 
Structural observations from the Osiris cluster of the Nadaleen trend indicate that NW-verging F1 folds 
were refolded in response to later SSW-NNE directed contraction. F2 folds have a subvertical ESE-
striking axial plane with subvertically plunging axes on steep F1 limbs and subhorizontal fold axes 
in shallow F1 limbs. F2 folds have a pervasive axial planar cleavage that is recognized regionally. The 
steeply dipping Osiris and Nadaleen faults appear to cut all folds. Mineralization is spatially associated 
with later NW-striking faults in the Conrad zone. Much of the folding within the mineralized Conrad 
limestone is synsedimentary and its geometry reflects its emplacement as an olistostrome.
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and is associated with decalcified and silicified host 
limestone (Tucker et al., 2013; Tucker, 2015). Siliciclastic 
rocks are locally mineralized proximal to faults and along 
lithological contacts between mineralized limestone and 
adjacent siliciclastic rocks. In all host rocks, mineralization 
is spatially associated with realgar and orpiment, as well 
as enrichments in As, Sb, Hg and TI (Tucker et al., 2013).  
A deposit overview including examples of mineralization is 
provided by Coulter et al. (2018). Lithology and associated 
porosity and permeability exert a stratigraphic control in 
which mineralization is preferentially concentrated within 

some units and along lithological contacts at 
all scales. Gold distribution is also controlled 
by structures, with mineralization occurring 
in folded rock units, and proximal to fault 
zones at the deposit scale. At smaller scales, 
mineralization can be observed in stylolites, 
veins, minor faults, fault gouges, fracture sets and 
mesoscopic (metre or tens of metre-scale) fold 
hinges. A detailed structural understanding of 
the region is essential for considering structural 
controls on mineralization and identifying ore 
fluid pathways.

Building on previous work by Palmer and Kuiper 
(2017) and Tucker (2015), this paper presents 
the preliminary results of a new study to assess 
the role structure played in controlling fluid flow 
and the spatial distribution of gold mineralization 
along the Nadaleen trend. It summarizes field 
observations from the summer of 2017 during 
which the structure of the Osiris cluster was 
assessed through detailed surface geological 
mapping, examination of drill core, and 3D 
geological modelling. We present an updated 
geological map of the Osiris cluster, as well as 
structural observations and initial interpretations.

INTRODUCTION
The Nadaleen trend is an array of Carlin-type gold 
showings within the eastern extent of ATAC Resources 
Limited’s Rackla Gold property in eastern-central Yukon 
(Fig. 1; Tucker et al., 2013). It is generally considered 
to encompass the Osiris cluster in the east, including 
the Osiris, Sunrise, Ibis and Conrad ore zones, and 
gold occurrences within the Orion area, including the 
Pyramid showing and the Anubis cluster (Fig. 1b). Gold 
mineralization occurs in thin arsenic-rich rims on pyrite 

NAb

YT

NAm

NAp

AA

CA
ST

AX

NAb

YT
KS

QN

WR

WRCG

NAb

ST

YT

SM

CA

WM

SM

NAb
NAp

CA

CC

NAb

SM

NAp

CG
YA

YT
NAb

NAc

Mayo

Dawson

Whitehorse

Keno Hill

Teslin

Tintina

Yukon

Denali
Duke River

eastern lim
it of C

ordilleran deform
ation

Tintina

140°W

138°W
136°W 134°W 132°W 130°W 128°W

126°W

69°N

68°N

67°N

66°N

65°N

64°N

63°N

62°N

61°N

0 100 200

km

Legend
Outboard

Chugach

Yakutat

Insular

Alexander

Wrangellia

Arctic
Arctic Alaska

Intermontane
Cache Creek

Quesnellia

Slide Mountain

Stikinia

Yukon-Tanana

Kluane schist

Ancestral North America
Cassiar

basinal facies

shelf facies

craton & cover

AAAA

AXAX

WRWR

CGCG
YAYA

YTYT

STST

QNQN

NAbNAb

NApNAp

NAcNAc

SMSM

CCCC

KSKS

CACA

Tiger deposit

Paleozoic offshelf

Proterozoic offshelf

Paleozoic platform

Proterozoic shelf

Selwyn basin

Rau area Orion area Osiris area

Nadaleen 
fault

Osiris
clusterAnubis 

cluster

Pyramid 
showing

Dawson thrust

Kathleen Lakes fault

Notable deposit or gold showingMajor fault Facies boundary

Nadaleen
trend

185 km

Rackla gold property boundary

Figure 1. (a) Terrane map of Yukon with ATAC 
Resources Ltd.’s Rackla Gold property outlined  
in yellow (after Colpron and Nelson, 2011).  
(b) Property map with overview geology and 
the locations of major faults and gold showings 
(after Colpron et al., 2013). The Nadaleen trend is 
highlighted in blue.



Steiner et al. - Structural Framework For carlin-type gold mineralization, nadaleen trend

YUKON EXPLORATION AND GEOLOGY 2017 141

as 74.4 ± 1.0 Ma (Tucker, 2015). More details of Osiris 
cluster rocks can be found in the map legend (Fig. 2), 
stratigraphic column (Fig. 3) and in Coulter et al. (2018).

The Osiris cluster is generally characterized by steep, 
homoclinal bedding with monoclines and isolated 
macroscopic (hundreds of metres in scale or larger) 
folds. Carbonate units are folded on the mesoscopic 
and macroscopic scale with only local development of 
any associated cleavage, and without many smaller scale 
folds. Less competent argillaceous units accommodate 
deformation through widespread folding and pervasive 
cleavage development. Although exposure along ridge-
tops is generally excellent for structural analysis, thinly to 
moderately bedded units tend to be ex-situ to some extent 
as a result of frost-heave and gravitational creep.

SYN-SEDIMENTARY STRUCTURES
Abundant examples of soft sediment deformation 
and dewatering structures are readily observed in drill 
core (Fig. 4) from the Nadaleen trend. Examples of 
soft-sediment structures include soft-sediment folding  
(Fig. 4a), dewatering dish structures (Fig. 4b), interrupted 
bedding (Fig. 4b) and convoluted bedding (Fig. 4c). Grain 
flows (Fig. 4d) and turbidites are also common and are 
indicative of gravitational instability during deposition. 
Many of these features, particularly dewatering structures, 
soft-sedimentary folding and gravity flow deposits, are also 
observed in surface exposures. Interpreted allochthonous 
rafts and olistoliths can be observed in the Ice Brook 
Formation, as well as the Blueflower Formation and the 
Conrad siliciclastics in the Nadaleen formation (Aitken, 
1989, 1991). Mesoscopic synsedimentary slump folds 
are common in the Osiris cluster and throughout the 
Orion area. Slump folds are identified within the Upper 
Osiris limestone, the Conrad siliciclastics and the Conrad 
limestone (Fig. 5) using the following criteria (after 
Bradley and Hanson, 1998): 1) folds are anomalous in 
the wider structural context; 2) folds are disharmonic and 
variable; 3) folds truncate against one another with no 
indication of strain along the truncation surface; 4) folds 
are bound by homoclinal strata or strata recognizable as 
being tectonically folded from regional events and map 
contacts do not follow folds; and 5) folds are spatially 
associated with soft-sediment deformation structures. The 
best examples of slump folds can be found in the Conrad 
limestone at 630540 mE, 7112470 mN (Fig. 5; all grid 
references are relative to the NAD83, UTM8N).

SUMMARY OF REGIONAL AND 
DEPOSIT GEOLOGY 
The Nadaleen trend is bound to the north by the Kathleen 
Lakes fault and to the south by the eastern terminus of 
the Dawson thrust (Colpron, 2012; Moynihan, 2014). It 
comprises sedimentary rocks of off-shelf slope to basinal 
facies that are interpreted as a zone of transitional facies 
at the interface between the Mackenzie Platform to the 
north and the Selwyn basin to the south (Colpron, 2012). 
The Osiris cluster is underlain by Neoproterozoic rocks 
of the Windermere Supergroup with volumetrically minor 
mafic intrusive rocks (Tucker et al., 2013), while the Orion 
area is largely underlain by Palaeozoic sedimentary rocks 
ranging from Cambrian to Permian in age (Fig. 1b). The 
Osiris cluster (Fig. 2) is situated in the footwall of the 
Nadaleen fault, which juxtaposes the Cryogenian Ice 
Brook Formation against the Nadaleen formation (Fig. 3; 
Moynihan, 2016).

The Nadaleen formation forms the oldest package of rocks 
within the Osiris cluster (Moynihan, 2016). The lowermost 
unit of this formation comprises a thinly bedded silty 
limestone bound on both sides by a heterogeneous and 
somewhat chaotic siliciclastic package of sandstone, 
mudstone and gravel conglomerate. This package is 
overlain by a black shale unit, which is in turn is overlain by 
interleaved limestone, rudstone and siliciclastic shale. The 
Stenbraten member at the top of the Nadaleen formation 
is a grey argillite that has irregular colour bands of maroon 
and green in its upper strata. The Gametrail Formation, 
comprising variably dolomitized silty, quartz-rich limestone 
and interleaved rudstone, overlies the Nadaleen formation. 
A calcareous breccia defines the boundary between the 
Gametrail Formation and overlying Blueflower Formation. 
The Lower member of the Blueflower Formation is a 
distinctive thinly bedded brown calcarenite with local 
conglomerate beds. The overlying Middle member is 
a well-bedded siltstone with minor limestone beds. This 
member is overlain by the dolomitized Algae Formation 
and the maroon coloured Narchilla Formation argillite. 
Three intrusive igneous rock units have been recognized 
within the Osiris cluster. The hornblende-rich Osiris 
gabbro is exposed along Osiris ridge and has been dated 
as 465.6 ± 4.4 Ma (Tucker, 2015). Two altered dikes have 
been observed in drill core and in discontinuous surface 
exposures. They are plagioclase and carbonate-rich with 
minor pyroxene (Tucker et al., 2013) and have been dated 



Figure 2. Geology map of the Osiris cluster with geographical names, major fold axial traces, 
cross section lines and the Osiris, Sunrise, Ibis and Conrad ore zones indicated, and cross sections. 
Geologic map with overlay showing structural measurements and stereonets and map legend on 
next page.
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Map symbols

MAP UNITS

Ediacaran - Cambrian
Narchilla Formation

Amon mudstone, Am-Mst. Grey and maroon 
thinly bedded mudstone with thicker interbeds 
of siltstone and fine sandstone.

Ediacaran - Algae Formation

Atum dolostone, A-Dst. Cream to light grey 
silty or sandy dolostone with minor rudstone 
interbeds.

Ediacaran - Blueflower Formation

Atum siltstone, A-Slt. Thinly bedded to 
laminated brown siltstone with interbeded 
sandy limestone.
Upper Osiris limestone, O-uLs. Thinly 
bedded sandy limestone with calcareous 
breccias and rare sandstone interbeds. 
Distinctive terracotta colour. Readily 
frost-heaved and creeped.

Ediacaran - Gametrail Formation

Osiris diamictite, O-Dmt. Orange weathering, 
generally recessive carbonate breccia. Angular 
clasts of dolostone and limestone supported in 
a carbonate matrix which is locally dolomitized.

Osiris dolostone, O-Dst. Dolomitized version 
of Osiris Limestone (see below).

Osiris limestone, O-Lst. Variably bedded and 
laminated limestone, flat-pebble rudstone and 
carbonate breccia, often partially dolomitized. 
Dolomitic beds weather orange while limestone 
beds weather pale grey. Dark grey when fresh 
with extensive stylolites. Limestones are silty 
and locally show manganese dentritic weathering. 
Abundant soft-sediment deformation. Maroon 
coloured at its base.

Osiris mudstone, stippled where maroon coloured.
O-Mst. Grey, thinly bedded mudstone and siltstone. 
Alternating maroon and green coloured layers at top 
generally follow bedding. Often pencil fractured with 
small scale folds.

Ediacaran - Nadaleen formation

Upper Conrad limestone, C-uLs. Interbedded 
calcareous breccia, limestone and siliclastic shale. 
Breccias comprise gravel to cobble sized limestone 
clasts thatfine upwards in a limestone matrix. 
Extensive ‘beefy’ calcite veining.

Conrad shale, C-Shl. Recessive grey to black shale 
with abundant small scale folds.

Conrad dolostone, hatched where not dolomitised,
C-Dst. Pale grey silica dolostone cut by abundant 
black quartz veins. Not fully dolomitized near 
Nadaleen fault.

Conrad siliciclastics, C-Slc. Chaotic, interbedded 
sandstone, mudstone, siltstone and gravel 
conglomerates. Conglomerates are matrix supported, 
irregular and lensoidal. Minor calcareous sandstones.
Abundant soft-sediment deformation.

Conrad limestone, C-Lst. Thinly bedded silty 
limestone. Abundant calcite veins and stylolites. 
Dark-grey weathering and black when fresh. Abundant 
soft-sediment deformation. Minor dolomitized zones.

Cryogenian - Ice Brook Formation

Unclassified Nonad mudstone, patterned where
diamictite, N-Mst. Interbedded mudstone and
siltstone with minor sandstone. Large rafts of 
dolostone and conglomerate. Weathers along S2. 
Abundant soft-sediment deformation. Diamictites 
are polymict with clasts of sandstone, mudstone and 
limestone supported in a blue-grey clay matrix.

Upper sandstone, Ss. Poorly sorted, generally 
coarse grained orange-weathering sandstone. 

Upper mudstone, Ms. Dark grey to black 
laminated claystone and siltstone.

Nonad limestone, Ls. Dominantly grey granular 
limestone with isolated coarse quartz clasts.
Buff-weathering. Interbedded with trough cross-
bedded siltstone and black mudstone.

Quartz gravel conglomerate, Cg. Locally 
with minor feldspar clasts. Interbedded with 
sandstone and black mudstone.

Cryogenian - Twitya Formation

Intrusive rocks

North Conrad dike. Altered mafic dike.
Pale grey when fresh and orange weathering. 
74.4Ma (Tucker, 2015).

South Conrad dike. Altered mafic dike.
Pale grey-green when fresh and orange 
weathering. 74.4Ma (Tucker, 2015).
Osiris gabbro. Altered hornblende-rich gabbro.
Green colour when fresh, black weathering.
465.6Ma (Tucker, 2015).

Fault rocks

Nadaleen fault zone. Sheared cataclasite 
comprising clasts from the Nonad mudstone, 
Conrad siliciclastics and Conrad limestone.
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Figure 3. Stratigraphic succession of sedimentary rocks in 
the Osiris cluster. Mineralized intervals are shown in red. 
Regional correlation is after Moynihan (2016).

Figure 4. Core photographs of sedimentary structures in the Conrad 
limestone. (a) Synsedimentary folding; (b) interrupted laminae with dish 
structures; (c) convoluted bedding with small-scale slumps and load casts; 
and (d) grain flows with interrupted laminae. Scale in millimetres.

Disrupted laminae 

Dish 
Structures

Grain flows

Load structures

a

b

c

d



Steiner et al. - Structural Framework For carlin-type gold mineralization, nadaleen trend

YUKON EXPLORATION AND GEOLOGY 2017 145

FOLDING

Two phases of mesoscopic to macroscopic folding have 
affected the Osiris cluster. F1 folds are primarily developed 
on the macroscopic scale with the Osiris antiform-synform 
fold pair (Fig. 6c), and the West Conrad anticline being 
the most prominent examples of large F1 folds in the 
Osiris cluster. F1 folds have a steep to moderate southerly 
plunge and steep to moderately southeast-dipping axial 
planes. Where least affected by F2 folding, these large F1 
folds typically have one subvertically dipping limb and one 
shallow to moderate dipping limb (e.g., the Osiris antiform-
synform fold pair, Fig. 6c). Although parasitic mesoscopic 
F1 folds are not common, they can be readily observed 
adjacent to the Osiris ridge (629700 mE, 7112185 mN) and 
in the Ibis valley (629440 mE, 7111800 mN). Comparable 
scale F1 folds are also observed in the Mississippian 
limestone in the Orion area.

F2 folds overprint F1 folds and are characterized by 
axial planes that dip steeply to the south. S2 is typically 
developed as an axial plane foliation to F2 folds (Fig. 6b). 
Mesoscopic F2 folds are well developed on the Sunrise 
ridge (629325 mE, 7112075 mN), and along the Osiris 
ridge and at West Conrad. Examples of macroscopic F2 

STRUCTURAL GEOLOGY

FOLIATIONS

A well-developed S2 foliation is present in all argillaceous 
rocks and is locally developed in limestone units (Fig. 6a). 
This fabric is best observed along the western extent of 
the Sunrise ridge within the Osiris limestone (629000 mE, 
7112010 mN), and in the Ice Brook Formation immediately 
north of the Nadaleen fault where the foliation forms 
a prominent weathering surface. S2 strikes ESE with a 
subvertical dip and has been recognized throughout the 
Orion area and elsewhere regionally (Moynihan, 2014), 
suggesting it can serve as a regional marker foliation. S2 
is axial planar to vertically plunging F2 folds (described 
below; Fig. 6b) and crosscuts macro scale F1 folds. 
Across the Osiris cluster, intersection lineations of S2 with 
bedding exhibit considerable variation in plunge (Fig 2b; 
Stereonet 7), indicating pre-F2 folding occurred on a large 
scale. No S1 fabric was identified in the field, although 
the intersection of S2 and a weakly developed bedding 
parallel fissility has resulted in pervasive conchoidal 
pencil fracturing of argillaceous rocks and this commonly 
obscures the identification of any potential pre-S2 fabrics.

Figure 5. Annotated oblique aerial view of a steep 
exposure of Conrad limestone with interpreted 
soft-sediment slump folds. Bedding formlines are 
represented in orange whereas black lines represent 
observed (solid) or inferred (dashed) truncation 
surfaces. Fold hinges (shown in white) are denoted by 
plunge/trend and a representative value for generally 
homoclinal bedding to the east is in the form strike/dip/
dip direction. Note the variance in fold hinge plunge. 
Field of view is ~12 m across.
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folds are the West Conrad synform and the West Osiris 
synform (Fig. 2, Stereonets 1 and 5). The F2 fold axes and 
intersection lineations between bedding and S2 vary from 
a shallow to steep plunge within S2 (Fig. 2, Stereonet 7). 
The most prominent examples of F2 folds have a steep 
to subvertical plunge that likely represent folding of the 
steeply dipping limbs of macroscopic F1 folds.

In the Ibis valley and along the East ridge, subhorizontal 
upright monoclinal warps in bedding are developed on 
a macroscopic scale (Fig. 6d; cross sections in Fig. 2). A 
similar monoclinal warp is evident in drill core through the 
Sunrise zone (Fig. 2, Stereonet 2a). The dominant bedding 
attitude at depth is steep to the south, compared to a 30-
40o southerly dip at the surface (Fig. 2, Stereonet 2b). The 
monocline overprints the Osiris antiform-synform F1 fold 
pair and is interpreted as being a product of F2 folding of 
an F1 shallow limb. An upright subhorizontal macroscopic 
F2 fold can be observed on the western bluffs of the Nonad 
valley (Fig. 6e). Similar upright, subhorizontal, open to 
close folds that we interpret as being F2 structures can be 
recognized on regional maps (Moynihan, 2016; Colpron, 
2012) and are particularly clear in aerial photographs of 
the Orion area. The regions characterized by shallow 
plunging F2 monoclines and F2 folds likely represent 
folding of shallow dipping F1 fold limbs and/or regions 
largely unaffected by F1 folding.

Palmer and Kuiper (2017) identified a macroscopic 
antiform in the Ibis area. This fold was mapped as having 
a steep SE-dipping limb and a steep SW-dipping limb, but 
this is inconsistent with field observations made in this 
study (Fig. 2, Stereonet 3). Our data indicate the fold is 
an open antiformal flexure with a gentle interlimb angle 
of greater than 130o. We interpret this as being an F1 
structure and we correlate it with the Osiris antiform on 
the north side of the Osiris fault (see below). We suggest 
that the tighter ‘fold-shaped’ map pattern at Ibis is largely 
a function of shallow topography near the Osiris fault 
owing to the presence of an F2 monocline (Fig. 6d) and 
the interaction with topography creating a pronounced 
‘V-in-the-valley’ (Fig. 2).

faults?

E W

E W

EW

SN

SN

a b

c

d

e
Figure 6. Annotated field photographs. Bedding formlines 
are shown in orange, unit contacts in black, faults in 
dashed black, F

1
 axial traces in red dashed, S

2
 cleavage in 

white and F
2
 axial traces in dashed white. Photo locations 

shown in Figure 2. (a) Bedding-cleavage on Sunrise ridge. 
Hammer shaft is 37 cm; (b) S

2
 axial planar to an F

2
 fold. 

Notebook spine is 19 cm; (c) Osiris F
1
 antiform-synform pair. 

Wavelength pictured is ~325 m; (d) F
2
 monocline at Ibis. 

Field of view is ~650 m across; and (e) upright F
2
 fold hinge, 

Nonad valley. Field of view is ~500 m across.
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associated with mineralization and are interpreted as 
potential fluid conduits during mineralization. The 350 
fault has a dextral strike separation in plan view while 
the 650 and 850 faults have an apparent normal offset to 
the east. Drill data indicate displacement of both Conrad 
dikes across the 350 fault, indicating post-74.4 Ma slip. 
Drilling has not yet identified any significant offset across 
the 650 or 850 faults.

INTERNAL GEOMETRY OF THE 
CONRAD LIMESTONE
Extensive diamond drilling in the Conrad ore zone has 
shown that the Conrad limestone has a 3D lenticular 
geometry with depth; the strike length and unit thickness 
both decrease upwards as it approaches the Nadaleen fault 
(see cross section A-A`; Fig. 2). It is also bound on either 
side by a siliciclastic package that is thought to represent 
the same stratigraphic horizon - the Conrad siliciclastic 
unit. One possible explanation for this geometry is that the 
Conrad limestone is the core of an upright anticline, with 
a subvertical E-striking axial plane that is double plunging 
to the east and west (ATAC Resources Ltd., 2017). This 
geometry is anomalous in the wider tectonic context as it 
requires a tight interlimb geometry that is not observed in 
macroscopic folds elsewhere.

We propose that the Conrad limestone is an olistostrome 
and that its geometry is primarily a function of its 
emplacement morphology. We infer this from the 
abundance of slump folding and soft-sediment 
deformation within the Conrad limestone (Figs. 4 and 5),  
the inconsistency between structural measurements and 
outcrop pattern (Fig. 2; Stereonet 6), and the repeated 
Conrad siliciclastic unit on either side of the Conrad 
limestone. Furthermore, the Conrad limestone is not 
correlated with any part of the Nadaleen formation 
elsewhere regionally (Moynihan, 2016). The apparent 
double plunging nature of the Conrad limestone is a 
function partly of its lenticular emplacement shape and 
apparent normal dip-slip motion along the 650 and 850 
faults that cut across it. As an olistostrome, the Conrad 
limestone would have been emplaced during deposition 
of the Conrad siliciclastics. The provenance of the Conrad 
limestone is currently unknown. 

FAULTS

The Osiris cluster is cut by a number of significant faults 
that generally strike E, W or NW. The largest fault in 
terms of lateral extent is the Nadaleen fault, which can be 
traced west at least as far as the Pyramid gold showing, 
approximately 16 km west of the Osiris cluster (Fig. 1b; 
Moynihan, 2016). It has a net reverse displacement, 
placing Cryogenian rocks of the Ice Brook Formation on 
top of Ediacaran rocks within the Osiris cluster, where it 
strikes WNW. In Orion, it strikes NW and juxtaposes 
Paleozoic rocks to the south against Ediacaran rocks to 
the north. Drilling in the Conrad zone has constrained the 
Nadaleen fault to dip 60o to the north and also identified 
a large brittle shear zone known as the Nadaleen fault 
zone. This is a zone of sheared cataclasite, 60 m wide 
at its thickest, which occurs approximately between the 
350 and 650 faults. Drill core data from Conrad indicate 
that there is no increase in thickness of sedimentary units 
towards the fault plane, nor are any rollover structures 
developed. As such, we suggest the Nadaleen fault did not 
initiate as a synsedimentary structure. Rather, it initiated 
after the deposition of these rocks constraining its age to 
Paleozoic or younger. The Nadaleen fault is not folded 
and is interpreted to cut all folds.

The other large fault within the study area is the Osiris 
fault, which is an E striking structure that cuts through the 
centre of the Osiris cluster (Fig. 2). Drill core data from 
the Sunrise ore zone indicates that the fault dips to the 
south at ~70o, although its strike varies significantly along 
its length. Correlation of the anticlinal flexure at Ibis in 
the hanging wall to the fault with the Osiris antiform in 
the footwall, constrains net slip on the fault to have been 
oblique, with a dextral-reverse sense. The Sunrise zone of 
gold mineralization forms a plane that is subparallel to the 
Osiris fault, but is offset ~50 m down into the footwall. Drill 
core through the Osiris fault and the Sunrise zone define 
a continuous brittle shear zone comprising intensely 
fractured rock, fault gouge, sheared material and high vein 
density between them suggesting that the Sunrise zone 
might represent fluid flow through the high–permeability 
damage zone on the periphery of a wide, multi-cored 
Osiris fault zone (Faulkner et al., 2010). The Osiris fault 
cuts both F1 and F2 folds, restricting its age to post-folding.

The other dominant orientation of faults in the Osiris 
cluster are the NW-striking 350, 650 and 850 faults. These 
structures were targeted by diamond drilling for the first 
time in the summer of 2017. All three faults are spatially 
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Understanding the deformation context in which ore fluid 
pathways formed will help identify possible mineralizing 
structures elsewhere and explain the distribution of 
mineralized zones.

FOLD EVOLUTION
The geometry of various parts of the Osiris cluster can 
be explained using the following fold evolution model 
(Fig. 7). NW-SE directed bulk shortening produced NW-
verging F1 folds with a subvertical limb and a shallow limb 
(Fig. 7a,b). This was later refolded in response to SSW-
NNE directed contraction (Fig. 7b). F2 folds formed with 
S2 as an axial planar cleavage. In steep F1 limbs, these 
folds have subvertical plunges while in shallow limbs they 
have subhorizontal plunges and form large wavelength 
monoclines, although upright F2 hinges are observed 
elsewhere regionally. F1 folds hinges were steepened 
towards the south (Fig. 7c). Folding is cut by both the 
Osiris fault and the Nadaleen fault, indicating that these 
faults likely formed post-folding. However, they may be 
longer-lived structures that were recurrently active during 
folding. Later NW striking faults in the Conrad ore zone 
are spatially associated with mineralization and, if they 
all developed contemporaneously with the 350 fault, 
are constrained to post dike emplacement at 74.4 Ma. 
This model is consistent with observations by Palmer and 
Kuiper (2017), who proposed a similar model in which 
SSW-directed tilting came prior to folding and justified 
this with the lack of evidence for a prior E-W fold event 
elsewhere. We propose that the observations outlined in 
this contribution are evidence for such a prior event, at 
least locally. 

FUTURE WORK
This study forms the structural context within which ore 
fluid pathways into, out of, and within the Nadaleen trend 
will be assessed. Future work will focus on mapping fluid 
conduits using isotopic, thermal and mineralogical proxies 
for fluid alteration including δ18O isotopes, clumped 
isotopes, apatite fission track thermochronology and illite 
crystallinity. The aim is to recognize fluid pathways on 
three scales: 1) identifying where fluids enter and exit the 
Nadaleen trend as a whole; 2) assessing the macroscopic 
structures controlling the distribution of ore zones; and  
3) identifying small scale structures (stylolites, veins, minor 
faults) that are fluid conduits into mineralized horizons. 
This will be coupled with additional structural studies, 
including investigation of fault kinematics, analysis of 
fabrics in oriented thin-sections and assessing deformation 
age constraints through geochronology of intrusive rocks. 

Figure 7. Fold evolution within the Osiris cluster. 
(a) NW-SE directed contraction of subhorizontal 
beds; (b) Formation of F

1
 folds with a shallow limb, 

steep limb and an axial plane shown in red. L0
1
 is 

the intersection lineation of S
0
 and S

1
. Later NNE-

SSW directed compression; and (c) refolding of F
1
 

folds. Shallow limbs are refolded into F
2
 monoclines 

while steep limbs are refolded to steeply plunging 
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2
 folds with subvertical south-dipping axial 

planes (shown in green). L0
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 is folded so that it 

has a variable plunge towards the south. L0
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