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Abstract
The Sunnydale landslide is a slow-moving rock-slope deformation on the western bank of the Yukon River 
directly across from Dawson, Yukon. While recent data suggest acceleration of the slide, which could 
pose a potential hazard to Dawson if the acceleration continues to the point of rapid failure, limited data 
precludes certainty on probability and timing of this occurrence. Field mapping allowed for documentation 
of road subsidence, expanding tension cracks, recent and ongoing rockfall and production of detailed 
geomorphological and surficial geology maps of the slide. Differencing from 2014, 2018, 2019, 2020 and 
2022 aerial lidar data, and data from physical monitoring stations indicate current movement rates of up 
to 11 cm/yr across the slide area. Ongoing work including terrestrial lidar change analysis and installation 
of a near-real-time monitoring system in early 2023 will increase our understanding of current movement 
trends. Additionally, in-progress geologic dating of deformation features will further our understanding of 
the history and context of this feature on a geologic timescale.
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Forcing mechanisms that cause DSGSDs to progress 
into rapid rock avalanches can range from seismic 
activity to anomalously heavy rainfall or snowmelt that 
change porewater pressure in the slope (Pánek and 
Klimeš, 2016). Hilger et al. (2021) provide evidence for 
permafrost degradation as a trigger for reactivation and 
acceleration of DSGSDs while Chigira et al., (2013) show 
that location above incising rivers can be a precursory 
influence. While these factors may both apply to the 
Sunnydale slide, no evidence of permafrost was found 
during fieldwork and ongoing influence of the river is 
likely small due to the location of the suspected failure 
plane approximately 30 m above water levels.

Introduction
The Sunnydale landslide is an approximately 100 000 m2  
progressively developing rock slope deformation within 
an approximately 180 000 m2 larger deep-seated 
gravitational slope deformation (DSGSD) located on 
the western bank of the Yukon River, directly across 
from Dawson, Yukon (Fig. 1). Rock slope instabilities 
of this nature are characterized by slow deformation 
on hundred-to-thousand-year timescales (Pánek and 
Klimeš, 2016; Hungr et al., 2014). While many of these 
features pose little hazard and may never accelerate 
to the point of rapid failure, some do evolve into large 
destructive rock avalanche events (Pánek and Klimeš, 
2016; Hungr et al., 2014).
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Figure 1. Overview map showing the location of the Sunnydale slide relative to Dawson and the Klondike Valley. 
Satellite imagery from 2017 and 2020 (Esri, 2022) paired with lidar hillshade from 2022.
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south with headwaters north of Dawson. Following the 
formation of Glacial Lake Yukon, and contemporaneous 
with its drainage, the river reversed drainage at about 
2.64 Ma (Tempelman-Kluit 1980; Froese et al., 2000; 
Hidy et al., 2012). This reversal greatly expanded the 
drainage area of the river and began down-cutting, 
which formed the slope on which the Sunnydale slide 
is located. Loess sedimentation has occurred during 
glacial periods throughout the Quaternary (Fraser and 
Burn, 1997).

The Dawson area contains numerous other rockslides. 
The Moosehide slide, for example, has been a key 
landmark of the region since time immemorial and 
several other prehistoric rockslide deposits have been 
mapped throughout the region (McKenna and Lipovsky, 
2014). The Moosehide slide has been studied in detail 
(Brideau et al., 2007, 2012; BGC, 2020b, 2021a,b) and 
recently instrumented with a near-real-time monitoring 
system consisting of GNSS-Rovers, extensometers, 
tiltmeters and a weather station (BGC, 2021c).

Climate records dating to 1901 show an average 
annual air temperature of -4.58°C and average annual 
precipitation of 323.37 mm (Environment Canada, 
2022). Dawson and the Sunnydale landslide are located 
within the zone of extensive discontinuous permafrost 
(Heginbottom et al., 1995). While a detailed regional 
model suggests a 0.7 to 0.8 probability of permafrost 
on the slope (Bonnaventure et al., 2012), no evidence 
of permafrost was observed during field investigations 
or desktop analysis.

The Dawson region experiences only minor seismic 
activity. Small, infrequent, local earthquakes under 
magnitude four have been observed in the Dawson 
area over the last century. Larger events occur more 
regularly to the north and south of the region but at 
distances from the Sunnydale landslide that make them 
unlikely to act as a landslide trigger (cf., Keefer, 1984).

The timing of the initial displacement is currently 
unknown; however, weathering on the upper portion of 
the headscarp suggests exposure for several thousand 
if not tens-of-thousands of years. Ages this old or older 
are possibly due to the slide location within Beringia, an 
area of Yukon that was not glaciated in the Quaternary 
(Duk-Rodkin, 1996; Froese et al., 2000).

The landslide was first brought to the attention of the 
Yukon Geological Survey in 2020 by Dawson local Greg 
Hakonson; he made a connection between deformation 
along the Top of the World Highway and shallow 
landslide activity on the steeper front above the Yukon 
River (Pers. Comm.). Peter Nagano, road foreperson 
for the Dawson region, stated that the deformation of 
the Top of the World Highway road surface has been 
noticeable for approximately 30 years but has gotten 
worse in the last six years (Pers. Comm.). Further 
investigation by the Yukon Geological Survey confirmed 
the presence of the landslide and concerns were such 
that engineering firm BGC was hired to perform a 
preliminary investigation (BGC 2020a). This report 
included an initial map of the area, initial lidar-based 
change detection, and a recommendation for further 
study. A second report from BGC estimated the annual 
failure probability to be between 0.0005 and 0.009 or  
an approximately 15% chance in the next 50 years 
(BGC, 2020b).

Regional setting
Bedrock in the slide area is mapped as the Dawson–
Clinton Creek unit, a part of the Yukon-Tanana terrane. 
The unit consists of metavolcanic and metasedimentary 
rocks including greenstone, phyllite and metachert of 
Permian age. While no faults are mapped across the 
slide itself, the local area is cut by several thrust faults 
(Mortensen, 1988).

The Yukon River has played an extensive role in shaping 
the Dawson region throughout the Quaternary. Until 
the latest Pliocene, the Yukon River flowed to the 



Yukon Geological Research

Yukon Exploration and Geology 202222

vegetation cover that increase with height (Fig. 4). 
Competent bedrock is best exposed at the southern 
margin of the slide at TCMS station 3 (Fig. 2). The 
headscarp here has a strike and dip of 300/75 and 
slickenlines covering the bottom ~1 m at a plunge 
and trend of 67/070 (Fig. 4). The bedrock forming 
the headscarp becomes increasingly, but non-linearly, 
weathered and vegetated first with lichen and then 
moss and grasses towards the top. These differences 
may indicate episodic movement on a timescale of 
thousands to tens of thousands of years. Rock samples 
taken from the headscarp are being analyzed for 
cosmogenic-nuclide measurement to determine the 
timing of surface exposure and to further elucidate a 
chronology of prehistoric movement.

Geomorphological mapping and 
geologic history
A combination of airborne lidar, aerial photos and 
field mapping was used to identify and characterize 
geomorphic features and variations in surficial and 
bedrock geology (Figs. 2 and 3). The landslide consists 
of two main geomorphic areas. The lower half of the  
slide (roughly 50 000 m2) is a steep, sparsely vegetated 
face consisting of bedrock, boulder fields, and mixed 
loess and bedrock colluvium. The upper half (roughly 
50 000 m2) is characterized by gentler slopes, spruce 
forests and a covering of loess and mixed loess 
and weathered bedrock colluvium. The headscarp 
is approximately 6 m in height and 150 m long, and 
displays three distinct degrees of weathering and 
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Figure 2. Geomorphological map of the Sunnydale slide including locations of DGPS and TCMS physical 
monitoring stations. 
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Figure 3. Surficial geology map of the Sunnydale slide.

Figure 4. (a) The 
headscarp of the slide 
near TCMS station 
3. Note the distinct 
change in vegetation 
at approximately waist 
height. (b) Slickenlines on 
the headscarp.
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minimum age of displacement; however this minimum 
age is expected to be a significant underestimate. 
Results from additional ongoing dating work will further 
constrain minimum age of opening of these features.

Two shallow landslides are present at the toe of the 
main slide; each is 1–3 m deep and has an approximate 
volume of 1000–3000 m3. The northern landslide 

Many of the lineaments mapped on the upper half of 
the slide consist of sediment-filled grabens or tension 
cracks. Several of these features were investigated 
using soil trenches to document the stratigraphy of the 
sediments that have filled them (Fig. 5). Tephra from 
the northern lobe of the White River ash volcanic event 
found within these features date them to approximately 
1625 years old (Reuther et al., 2020) providing a current 

Figure 5. (a) Tension 
crack near TCMS station 
2. Recent movement 
is shown by the gap 
between the rock and 
moss growth. (b) TCMS 
station 6. (c) Split tree 
near TCMS 8 with nail 
monitoring installed. This 
crack opened 2.2 cm and 
3.3 cm between June and 
September 2022 at the 
upper and lower nail sets 
respectively.  
(d) Terrestrial lidar 
scanner with the 
Sunnydale slide in the 
background across the 
Yukon river, note the 
shallow landslide directly 
left of the scanner.
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(BGC, 2021a). GSI results span a wide range of values 
from 5–75 with a mean of 43. These results indicate 
blocky, disturbed and disintegrated rock across the 
slide area (Hoek and Brown, 1997).

Current measurable motion is constrained to an area 
of approximately 100 000 m2 but evidence of past 
deformation exists across much of the adjacent hillslope, 
encompassing an area of approximately 180 000 m2. 
While the depth of the failure plane is uncertain, lidar 
differencing and geomorphic evidence have allowed for 
an approximate delineation of a daylighting surface on 
the face of the slide (Fig. 6).

initially failed in 2018, while the southern slide  
occurred in 2019. While both slides continue to 
grow, the northern slide has experienced significant 
enlargement as recently as September 2022. These 
slides are likely related to over-steepening at the toe 
of the larger Sunnydale rock mass as it pushes out 
towards the river (Fig. 6).

Extensive bedrock exposure across many areas of the 
slide allowed for analysis through use of joint and fabric 
mapping as well as Geological Strength Index (GSI) 
characterization. Prior work used these techniques for 
preliminary slope stability analysis and the new data 
will be added to enhance any future modeling work 

Figure 6. Horizontal lidar differencing between 2014 and 2022 aerial lidar data. Dashed line 
indicates the inferred failure plane where it daylights on the steep river cut slope. Solid line shows 
the approximate upper extent of the slide. Two small shallow landslides are visible and indicated by 
dotted lines. 
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with the DGPS stations while TCMS 6 to 9 were 
established by Jackson Bodtker and Holly Basiuk on 
June 24 and 30, 2022. The NT stations consist of trees 
that have been split due to differential ground motion 
below them (Fig. 5), and were installed by Jackson 
Bodtker and Holly Basiuk on June 30, 2022.

Results from comparing repeat DGPS measurements 
show significant and potentially accelerating movement 
of 6 to 11 cm/year across the slide since installation 
(Figs. 7, 8 and 9; Table 1). TCMS measurements 
also indicate motion on the slide (Fig. 10).  

Physical displacement monitoring
Three types of physical monitoring stations are  
currently in use on the landslide; GPS pin stations 
(DGPS; Table 1), tension crack monitoring stations 
(TCMS; Table 2), and nails in split trees (NT; Fig. 5; 
Table 2). The DGPS consist of a single rebar pin, these 
stations were installed on July 2 and 3, 2021 by Jeffrey 
Bond and Peter von Gaza. The TCMS consist of two 
rebar pins spanning a tension crack or scarp feature to 
assess rates of opening. TCMS 1 to 5 were established 
by Jeffrey Bond and Peter von Gaza coincidentally  

Station Number

UTM Position (m)

2–3 July 2021 22 June 2022 7 October 2022

Easting Northing Height Easting Northing Height Easting Northing Height

DGPS

1 575308.319 7104267.632 510.257 575308.441 7104267.603 510.194 575308.485 7104267.612 510.181

2 575330.931 7104315.234 499.335 575331.117 7104315.225 499.267 575331.164 7104315.224 499.215

3 575355.352 7104283.389 485.159 575355.498 7104283.386 485.102 575355.536 7104283.376 485.05

4 575283.442 7104361.339 514.886 Destroyed

5 575222.011 7104164.164 539.44 575222.102 7104164.145 539.404 575222.115 7104164.141 539.389

6 575199.443 7104077.596 532.936 575199.524 7104077.601 532.868 575199.545 7104077.588 532.839

7 575139.777 7104111.815 562.111 575139.835 7104111.805 562.053 575139.865 7104111.795 562.047

9 575064.509 7104235.78 594.638 575064.558 7104235.774 594.641 No Measurement

10 575145.015 7104250.971 567.998 575145.094 7104250.971 567.929 575145.126 7104250.964 567.895

16 Measurement Error 575162.638 7104385.318 555.95 575162.639 7104385.313 555.932

Station Number

Change (cm)

July 2021 – June 2022 June 2022 – Oct. 2022 July 2021 – Oct. 2022

Easting Northing Height Easting Northing Height Easting Northing Height

DGPS

1 -12.2 2.9 -6.3 -4.4 -0.9 -1.3 -16.6 2.0 -7.6

2 -18.6 0.9 -6.8 -4.7 0.1 -5.2 -23.3 1.0 -12.0

3 -14.6 0.3 -5.7 -3.8 1.0 -5.2 -18.4 1.3 -10.9

4 Destroyed

5 -9.1 1.9 -3.6 -1.3 0.4 -1.5 -10.4 2.3 -5.1

6 -8.1 -0.5 -6.8 -2.1 1.3 -2.9 -10.2 0.8 -9.7

7 -5.8 1.0 -5.8 -3.0 1.0 -0.6 -8.8 2.0 -6.4

9 -4.9 0.6 +0.3 N/A N/A

10 -7.9 0.0 -6.9 -3.2 0.7 -3.4 -11.1 0.7 -10.3

16 N/A -0.1 0.5 -1.8 N/A

Table 1. Differential GPS station locations and change analysis.
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Displacements across TCMS 1 and 2 of less 
than 1 cm/year compared to 16.6 to 23.3 cm  
of eastward change seen at adjacent DPGS 1, 
2 and 3 indicate that these tension cracks are 
not currently opening, and this area of the slide 
is likely moving as a larger semi-coherent block. 
TCMS 3, 4 and 5 are located along the margins 
of the slide and show 1 to 3 cm/year movement 
relative to areas with less or no current motion. 
TCMS 6 to 9 only have measurements across 
~3 months from June to September 2022, yet 
TCMS 8 shows an alarming 6.5 cm of motion 
on the northern margin of the slide during this 
time. We assume up to 1 cm of error in these 
measurements due to approximately 0.5 cm of 
flex at each rebar pin.

Station 
Type Number

Measurements (cm) Change (cm)
Error 
(cm) Latitude Longitude2–3 July 

2021 
23 May 
2022 

23–30 
June 2022

22 Sept. 
2022

July 2021 – 
Sept. 2022 

June – Sept. 
2022

TCMS

1 660.5 661.0 661.3 661.0 0.5 -0.3

1.0

64.05691 -139.45706

2 788.7 790.0 790.0 789.8 +1.0 -0.2 64.05714 -139.45718

3 U 92.6 94.4 94.5 94.8 +2.2 +0.3
64.05531 -139.46050

3 L 56.0 57.0 57.3 57.6 +1.6 +0.3

4 695.9

N/A

699.0 698.5 +2.6 -0.5 64.05583 -139.46160

5 405.0 409.0 409.5 +4.5 +0.5 64.05667 -139.46220

6

N/A

721.5 720.7

N/A

-0.8 64.05716 -139.46148

7 713.0 713.3 +0.3 64.05725 -139.46049

8 790.7 797.2 +6.5 64.05766 -139.45545

9 708.5 709.5 +1.0 64.05782 -139.45608

Split 
Trees

1 Upper

N/A N/A

13.2 12.8

N/A

-0.4 

0.2

64.05782 -139.456621 Lower 23.4 22.8 -0.6

1.5 7.2 7.0 -0.2

2 Upper 11.9 12.4 +0.5
64.05785 -139.45631

2 Lower 23.5 24.3 +0.8 

3 Upper 14.6 14.7 +0.1 

64.05774 -139.455773 Middle 33.2 33.4 +0.2 

3 Lower 41.9 42.4 +0.5 

4 Upper 23.5 25.7 +2.2 
64.05766 -139.45545

4 Lower 43.7 47.0 +3.3 

Table 2. Tension crack and split tree monitoring station locations and change analysis.
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Figure 8. Average rate of change in the vertical and 
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Figure 9. Vertical lidar 
displacement from 2020 
to 2022 overlain by arrows 
showing measured vertical 
and horizontal displacement 
at DGPS stations from 2021 
to 2022 (see Fig. 7).
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Figure 10. Periodic measurement of displacement across tension cracks and scarps. See figure 2 for station 
locations.

TCMS 3
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along the z-axis. The road surface was chosen due to 
the lack of noise associated with lidar pulse returns 
on vegetated surfaces and the relatively flat surface 
minimizing vertical error arising from small differences 
in nearest-point locations between collection years. 
Results from these data show continuing vertical drop 
(3–5 cm/year) throughout the period of available data 
(Fig. 12). Ongoing work will further analyze airborne 
lidar data and incorporate repeat terrestrial lidar scans 
completed during June and September of 2022.

Conclusions 
Current rates of motion on the Sunnydale slide paired 
with its volume and location adjacent to the community 
of Dawson make this one of the highest priority 
geohazards in the Yukon. Work in progress to further 
understand this landslide includes implementation of a 
near-real-time GNSS monitoring system on the slide, 

Lidar change analysis
Aerial lidar data from 2014, 2018, 2019, 2020 and 
2022 were analyzed to characterize changes to the 
ground surface (Table 3). Point clouds were registered 
and analyzed using cloud to cloud distance differencing 
in CloudCompare (CloudCompare, 2022). Differencing 
was completed for 2014 to 2018, 2018 to 2019, 2019  
to 2020, 2020 to 2022, 2014 to 2022, and 2018 to  
2022. Deviations in positions of points between years 
were split into x, y and z components with the z-axis 
oriented vertically and the x-axis oriented at 110°, 
perpendicular to the Yukon River, and approximately 
parallel to the direction of horizontal ground motion 
observed from DGPS data. Rasters with a one-metre 
cell size were created from the final differenced point 
clouds (Figs. 6, 9 and 11)) and the surface of the Top 
of the World Highway was subsampled down to 
500 randomly distributed points to compare change 

Station Range
Change (cm)

Mean Rate 
(cm/year)

Minimum Maximum Mean Median
Standard 
Deviation

Lidar Subsample

2014–2018 -32 13 -15 -15 4 3.64

2018–2019 -8 12 -3 -3 2 2.96

2019–2020 -12 10 -3 -3 3 3.34

2020–2022 -16 13 -9 -9 3 4.93

Date Vertical 
Accuracy (m)

Point 
Density 
(ppm)

Source Horizontal 
Datum

Vertical 
Datum Projection

Lidar Data

Sept. 8 and 15, 
2014 0.119 7.5

Government 
of Yukon Lidar 

Repository 
(Contractor: 
McElhanney)

NAD83(CSRS) CGVD28 UTM Zone 7N

Sept. 19, 21 and 
29, 2018 0.14 10.7

June 7, 11 and 13, 
2019 0.02 18.4

Aug. 19, 2020 0.05 18.1

June 17, 2022 0.021 11.7

Table 3. Lidar metadata and subsample change analysis.
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Figure 11. Vertical displacement from aerial lidar differencing from 2018 to 2022. Anomalous areas of 
elevation gain north of the slide area are likely due to discrepancies in last return picking across different 
years. 
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Figure 12. Vertical displacement along 
the Top of the World highway from 
aerial lidar data. Values are the mean of 
500 randomly-distributed points along 
the roadway within the boundaries of 
the main slide.
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repeat lidar surveys and a variety of dating analyses 
to further our understanding of the timing and rate of 
prehistoric movement. Additional complimentary work 
is being undertaken by several consultants to further 
constraint the current rates of movement and model 
theoretical rapid failure scenarios. This ongoing work 
will help us evaluate the risk posed to the community 
by the Sunnydale slide and set a standard for landslide 
assessment monitoring in the territory.
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